JP4660843B2 - Feeder for aligning and conveying chips in a single row - Google Patents

Feeder for aligning and conveying chips in a single row Download PDF

Info

Publication number
JP4660843B2
JP4660843B2 JP2000252877A JP2000252877A JP4660843B2 JP 4660843 B2 JP4660843 B2 JP 4660843B2 JP 2000252877 A JP2000252877 A JP 2000252877A JP 2000252877 A JP2000252877 A JP 2000252877A JP 4660843 B2 JP4660843 B2 JP 4660843B2
Authority
JP
Japan
Prior art keywords
feeder
chip
chips
conveying
conveyance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000252877A
Other languages
Japanese (ja)
Other versions
JP2002068460A (en
Inventor
滋 窪田
正人 池田
隆史 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Kogyo Corp
Original Assignee
Nitto Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Kogyo Corp filed Critical Nitto Kogyo Corp
Priority to JP2000252877A priority Critical patent/JP4660843B2/en
Publication of JP2002068460A publication Critical patent/JP2002068460A/en
Application granted granted Critical
Publication of JP4660843B2 publication Critical patent/JP4660843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Feeding Of Articles To Conveyors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、チップ(チップタイプの各種小型電子部品、例えばコンデンサー、レジスター、ダイオード、スイッチ、コネクタ、その他、それらの形状は主として長方形立方体、直方体等。)を振動直進搬送式双方向フィダーM、Nで搬送する過程で各チップの面を目的面に揃えると共に溝内に1列整列して搬送して次工程へ送給するようにした、チップの整面1列整列搬送用フィダーに係り、
【0002】
例えば、上記フィダーで整面1列整列搬送されてくるチップの先頭の1個から順に1個宛ローターの各凹部に装填して(1個分離)設定位置まで搬送し、該位置でチップテープの各チップ装填凹部へ1個宛移乗装填するように備えた、チップテーピング装置の一部装置として使用するものである。
【0003】
チップの中にはその表裏を問題とせず単に1個宛に分離して搬送すればよいものと、例えばチップレジスタのように全てのチップを表(若しくは裏)向きに揃えて1個宛に分離搬送して、その状態でチップテープ等のチップ保持手段に移乗供給せねばならないものがあり、
【0004】
また、近時、横断面が正方形の直方形のチップ即ち、チップの6面の内、前面面を除く4面(上面、下面、左面、右面)が同形のチップが使用されており、該チップの場合にも全てのチップの目的面(例、上面)に整面して1個宛分離搬送し、その状態でチップテープ等のチップ保持手段に移乗供給せねばならないものがある。
【0005】
そして、上記の表裏整列や整面整列は、従来は主として振動式ボールフィダーと1列搬送フィダー(ストレートフィダー)を組合せてなるフィダーのボールフィダーにおいて行われており、該ボールフィダーはボールに多数個のチップをランダムに投入しそれを振動によって渦巻き状に1列整列搬送すると共に、その辺りに備えた判別センサーの判別と噴気口の噴気作用により目的面(例、上面)以外のチップを再びボールに戻すように備え、目的面に揃ったものだけを1列搬送フィダーに送って、それからローターの各凹部に1個宛分離装填するようにしていた。
【0006】
然るところ、上記のチップの整列手段は、ボールフィダーの一部として一体的に構成されているため、該ボールフィダーは特殊で特注品的なものとして極めて高価となる課題があり、また、振動で搬送する搬送速度に限界がある上に搬送の1列整列途中段階で判別するため、せっかく1列整列するまで一緒に搬送してきたものの略1/2乃至3/4をボールに戻してしまうことになるため、チップの整面1列整列搬送の効率(搬送個数、スピード)が約1/2乃至1/4に低下することになって、チップの自動分離搬送の高速化を阻害する原因となっていた。
【0007】
また、特にボールフィダーは広い設置スペースを要する欠点があると共に、ボルフィダーとリニアフィダーでは振動方向が一致しないため、両者の接続部19(チップの乗換え部)の構成が難しく、これが原因となって、近時チップが極めて小形化(例、0408型は幅0.4mm、長さ0.8mm)しているのと相俟って搬送トラブルの発生因となると共に搬送の高速化を阻害しており、また設置調整に多くの時間と手数を要する等の課題があり、更にボールフィダー自体の整列搬送速度が遅く、今後も高速化が望めない等の課題があった。
【0008】
【本発明の前提発明技術】
本発明の出願人は先に特許出願した発明、即ち、特願平9−256018号、特開平10−175724号、「チップの1列整列搬送用双方向フィダー」を出願した。
該特許発明が、チップを1列整列搬送する発明であるのに対し、本発明は前記発明を基礎技術として、それにチップの目的面を整面し(目的面に揃えた)1列整列搬送する構成、機能を加えたフィダーを発明したものである。
【0009】
【課題を解決する手段】
即ち、本発明は、振動直進搬送式のフィダーM、Nを搬送方向を反対にすると共に各一側辺を近接平行して備えた双方向フィダーであり、フィダーMはチップを右方向へ搬送し、フィダーNはチップを左方向へ搬送するように備え、フィダーNで搬送したチップをフィダーMへ移乗しフィダーMの溝にチップの長手方向に揃えて嵌合し1列整列状態で外部へ送給するように備えた、チップの1列整列搬送用双方向フィダーであり、
【0010】
フィダーNは、左右端の移乗部の間に横断面L形(片側搬送用)若しくはW形(両側搬送用)に形成しチップをその角部に沿って搬送するように設定角度傾斜した搬送面N1と平面状の搬送面N2を連続形成すると共に、搬送面N1片側若しくは両側に沿って一段低く回収搬送面N3を形成したものであり、
【0011】
上記搬送面N1は、広幅の搬送面N1−1、狭幅の搬送面N1−2、チップを長手方向に揃えた1列だけ通り抜けできる搬送面N1−3、及び上方にチップの目的面を検出するセンサーを備えた搬送面N1−4からなり、搬送面N1−1及びN1−2でチップの高さ寸法に備えた噴気口の噴気により2重以上に重なって搬送されてきた上のチップ及び長さ方向に起立したチップを吹き崩して面上に均し、或は回収搬送面N3へ吹き落し除去し、搬送面N1−3で長手方向1列以外のチップを噴気口の噴気及び自重落下で回収搬送面N3へ落下除去し、搬送面N1−4でセンサーによりチップの目的面を検出し、噴気口の噴気によりチップを90度反転して目的面に整面するように備え、
【0012】
上記搬送面N1に連続する搬送面N2は、搬送面N1−3で長手方向1列にすると共に搬送面N1−4で目的面に整面したL形搬送面(片側搬送)若しくはW形搬送面(両側搬送)のチップを平面状の搬送面上に導入し、各チップを長手方向に向いた整面状態であり乍ら列をなさない自由な状態で搬送し、左端の移乗部からフィダーMの搬送面M1へ移乗するように備え、
【0013】
また、回収搬送面N3は、搬送面N1の片側(L形搬送面)若しくは両側(W形搬送面)に沿って備え、両側の場合は両者をトンネルで連続して備え、搬送面N1から落下除去されたチップを搬送し、左端の移乗部からフィダーMの供給搬送面M2へ移乗するように備えたものであり、
【0014】
フィダーMは、横断面L形に形成し設定角度傾斜した搬送面M1の角部にチップを長手方向に1列整列嵌合して搬送する溝をフィダーMの左端から外部へ連通するように形成し、また、供給搬送面M2を搬送面M1の内側に沿って1段低く、フィダーNの回収搬送面N3と相対し、両者間に隔壁を形成すると共に各左端の移乗部で連通した状態に形成し、
【0015】
上記搬送面M1の設定位置M1−1に噴気口を備え、溝内のチップ上に2重以上に乗ったチップをその噴気で搬送面上に均し若しくは供給搬送面M2へ吹き落し除去し、設定位置M1−2の振動式ゲートで溝に1列嵌合した以外の搬送面上のチップを供給搬送面M2へ排除し、設定位置M1−3、M1−4の上方にセンサーと噴気口を備え、溝内チップの目的面を検出すると共に目的面以外のチップを供給搬送面M2へ吹き落し除去し、設定位置M1−5の振動式ゲートで溝に1列嵌合した以外の搬送面上のチップを供給搬送面M2へ排除するのに続いて、溝を垂直方向から水平方向へ90度捻り形成して溝内のチップを90度回転し、目的面に整面して、1列整列状態でフィダー外部へ送給するように備え、
【0016】
また、供給搬送面M2は、フィダーNの搬送面N1から除去されその回収搬送面N3から移乗してくるチップ、フィダーM、Nの上方に備えたホッパー等から新規供給されるチップ、及びフィダーMの搬送面M1から除去されたチップを右方向へ搬送し右端の移乗部からフィダーNの右端の移乗部へ移乗するように備えたものであって、
【0017】
上記フィダーMの供給搬送面M2から移乗されたチップをフィダーNが上記のように搬送し、フィダーMから外部へ目的に整面して1列整列状態で送給することを繰り返し行うように備えた、チップの整面1列整列搬送用フィダーによって課題を解決したものである。
【0018】
【実施例】
本発明の実施例を説明する。(図1〜図24参照)
振動直進搬送式のフィダーM、Nを搬送方向を反対にすると共に各一側辺を近接平行して備えた双方向フィダーであり、フィダーMはチップtを右方向へ搬送し、フィダーNはチップtを左方向へ搬送するように備え、フィダーNで搬送したチップをフィダーMへ移乗しフィダーMの溝1にチップtの長手方向に揃えて嵌合し1列整列状態で外部へ送給するように備えた、チップの1列整列搬送用双方向フィダーであり、(図1)
【0019】
フィダーN(図2,及び図3〜図12)は、左右端の移乗部2、3(図3,及び図12)の間に、横断面L形(片側搬送用)若しくはW形(両側搬送用)(図示例)に形成しチップtをその角部4に沿って搬送するように設定角度傾斜(例、20度)した搬送面N1と平面状の搬送面N2を連続形成すると共に、搬送面N1の片側若しくは両側に沿って一段低く回収搬送面N3を形成したものであり、
【0020】
上記搬送面N1は、広幅の搬送面N1−1(図4,5)、狭幅の搬送面N1−2(図6)、チップtを長手方向に揃えた1列だけ通り抜けできる搬送面N1−3(図7)、及び上方にチップtの目的面(例、表面若しくは裏面)を検出するセンサーを備えた搬送面N1−4(図10)からなり、搬送面N1−1及びN1−2でチップtの高さ寸法に備えた噴気口6、7の噴気により2重以上に重なって搬送されてきた上のチップt及び長さ方向に起立したチップtを吹き崩して搬送面上に均し、或は回収搬送面N3へ吹き落し除去し、搬送面N1−3(図4、5、6)で長手方向1列以外のチップtを噴気口8の噴気及び自重落下で回収搬送面N3へ落下除去し(図7)、搬送面N1−4でセンサー5によりチップtの目的面を検出し、噴気口9の噴気によりチップtを水平に反転して(図10、11)目的面に整面するように備え、
【0021】
上記搬送面N1に連続する搬送面N2は、搬送面N1−3で長手方向1列にすると共に搬送面N1−4で目的面に整面したL形搬送面(片側搬送面)若しくはW形搬送面(両側搬送面)のチップtを平面状の搬送面上に導入し、各チップtを長手方向に向いた整面状態であり乍ら列をなさない自由な状態で搬送し(図12)、左端のガイド兼移乗部1からフィダーMの搬送面M1へ移乗するように備え、
【0022】
また、回収搬送面N3は、搬送面N1の片側若しくは両側に沿って備え、両側の場合は両者をトンネル10で連続して備え、搬送面N1から落下除去されたチップtを搬送し、左端の移乗部11からフィダーMの供給搬送面M2へ移乗するように備えたものであり、
【0023】
フィダーMは(図1,及び図13〜図23)、横断面L形に形成し設定角度傾斜した搬送面M1の角部12にチップtを長手方向に1列整列嵌合して搬送する溝1をフィダーMの左端から外部へ連通するように形成し(図3,及び図15〜図23)、また、供給搬送面M2は搬送面M1の内側に沿って1段低く、フィダーNの回収搬送面N3と相対し、両者間に隔壁13(フィダーM、Nの何れかに備える)を形成すると共に各左端の移乗部で連通した状態に形成し、
【0024】
上記搬送面M1の設定位置M1−1(図16)に噴気口14を備え、溝1内のチップt上に2重以上に乗ったチップtをその噴気で供給搬送面M2へ吹き落し除去し、設定位置M1−2の振動式ゲート20で溝1に1列嵌合した以下の搬送面上のチップtを排除し(図17)、設定位置M1−3、M1−4の上方にセンサー15と噴気口16を備え、溝1内のチップtの目的面を検出すると共に目的面以外のチップtを供給搬送面M2へ吹き落し除去し(図18)、設定位置M1−5の振動式ゲート21で溝1に1列嵌合した以下の搬送面上のチップtを排除するのに続き(図19)溝1を垂直方向から水平方向へ90度捻り形成17して溝1内のチップtを90度回転し(図21、22)、目的面に整面して、1列整列状態でフィダーMから外部へ送給するように備え(図23)、
【0025】
また、供給搬送面M2(図13,及び図15〜図22)は、フィダーNの搬送面N1から除去されその回収搬送面N3から移乗してくるチップt、フィダーM、Nの上方に備えたホッパー19等から新規供給されるチップt、及びフィダーMの搬送面M1から除去されたチップt等を右方向へ搬送し右端の移乗部18からフィダーNの右端の移乗部3へ移乗するように備えたものであって、
【0026】
上記フィダーMの供給搬送面M2から移乗されたチップtをフィダーNが上記のように搬送し、フィダーMから外部へ目的整面1列整列状態で送給することを繰り返し行うように備えたチップの整面1列整列搬送用フィダーである。
【0027】
【作用】
フィダーMはチップtを右方向へ、スイッチNはチップtを左方向へ各高速搬送する作用を行う。
ホッパー19等から新規のチップtを、センサー等でチップの貯溜状態を検出し乍ら、供給搬送面M2、回収搬送面N3の左端部ガイド兼移乗部11付近へ落下供給し、それと搬送面N1から回収搬送面N3へ除去され左方向へ搬送されたチップが合流し、搬送面M1から除去されたチップtと一緒になって供給搬送面M2で右方向へ搬送され、右端の移乗部18からフィダーNの移乗部3へ移乗される。
【0028】
フィダーNに移乗されたチップtは搬送面N1の設定角度傾斜面(例、20度)を滑降し角部4(L形、W形)に沿って左方向へ搬送され、広幅の搬送面N1−1、N1−2の搬送中に2重以上に重なったチップt及び起立したチップtを噴気口6、7で吹き崩して搬送面上にならし或は回収配送路N3へ吹き落し除去し、N1−3の1列搬送面で長手方向1列以外のチップtを噴気口8の噴気及び自重落下で回収搬送面N3へ落下除去し、N1−4でセンサー5によりチップtの目的面(例、表面若しくは裏面)を検出し、噴気口9の噴気でチップtを水平に反転して目的面に整面して次の平面状の搬送面N2へ送給する。
【0029】
平面状の搬送面N2で各チップtは長手方向に向き目的面に整面された状態で、特に列を作ることなく、平面上に解き放された自由な状態で搬送され、左端の移乗部2からフィダーMの搬送面M1へ移乗される。
【0030】
また、搬送面N1(N1−1〜N1−4)から回収搬送面N3へ落下除去されたチップtは回収搬送面N3を左方向へ搬送され左端の移乗部11からフィダーMの供給搬送面へ移乗される。なお、搬送面N1がW形の場合は搬送面N1の両側に回収搬送面N3が備えられており、よって、外側の回収搬送面N3へ落下除去されたチップtは搬送面N1の下に貫通したトンネル10を通って内側の回収搬送面N3に合流して搬送される。
【0031】
フィダーMに移乗したチップtはその搬送面の設定角度傾斜面(例、10度)を滑降し角部12の溝1に順に嵌合しつつ搬送され嵌合しきれないチップtは搬送面上を同行搬送され途中溝1に空きがあると嵌合して整面フィダーNですでに整面状態で1列搬送され、M1−2の振動式ゲート20で溝に嵌合したチップ以外の搬送面上のチップtが排除されて供給搬送面M2へ落下除去され、設定位置M1−1の噴気口14の噴気で溝1内のチップt上に2重以上に重なったりもたれかかったりしたチップtが供給搬送面M2へ吹き落し除去され、M1−3、M1−4のセンサー15でチップの目的面を検出して目的面以外のチップtを噴気口16の噴気で供給搬送面M2へ吹き落し除去し、M1−5振動式ゲート21で溝に嵌合したチップ以外の搬送面上のチップtが排除されるのに続いて、溝1を垂直方向から水平方向へ90度捻り形成してあるため、例えば直立姿勢で整面1列搬送してきたチップtを90度回転して水平姿勢にして搬送し、その状態(整面1列整列状態)でフィダーMから外部へ、例えばフィダーMに連設したローター21へ送給するものである。
【0032】
また、供給搬送面M2は、フィダーNの搬送面N1から除去されその回収搬送面N3から移乗されてくるチップt、フィダーMの搬送面M1から除去されチップt、及びフィダーM、Nの上方に備えたホッパー19等から新規供給されるチップt等を合流して右方向へ搬送し、右端の移乗部18からフィダーNの移乗部3へ移乗して、上記の作用をはじめから繰り返して行い、最終的にチップを溝1内に整面1列整列状態にして次の工程へ送給するものである。
【0033】
【効果】
以上のように本発明は、フィダーNでチップの面を目的面に整面して搬送し、フィダーMでその整面したチップを溝内に1列整列導入しると共に繰り返しのチェック工程で確実に整面及び1列整列状態にしたのち、チップの向きを90度回転して水平とし、その状態でフィダーMからローター等の次工程へ送給するようにしたものであるため、極めて多数個の、極めて小形なチップを極めて高速かつ正確に整面1列整列搬送できる革期的な効果がある。
ちなみに、現時点の整面1列整列搬送能力は現時点の使用目的に応じて毎分2000〜2500個に設定しているが、目的に対応してそれ以上に搬送能力を向上することは全く容易である。
【図面の簡単な説明】
【図1】フィダーM、Nからなる本発明実施例フィダーの平面図(周辺機器を含む)。
【図2】フィダーNの正面図(J′−J′矢視図)、フィダーNの平面図、及び背面図(K′矢視図)。
【図3】図2のA′−A′断面図。
【図4】図2のB′−B′断面図。
【図5】図2のC′−C′断面図。
【図6】図2のD′−D′断面図。
【図7】図2のE′−E′断面図。
【図8】図2のF′−F′断面図。
【図9】図2のG′−G′断面図。
【図10】図2のH′−H′断面図。
【図11】図2のI′−I′断面図。
【図12】図2のL′−L′断面図。
【図13】フィダーMの正面図、及び平面図。
【図14】図13のA−A断面図。
【図15】図13のB−B断面図。
【図16】図13のC−C断面図。
【図17】図13のD−D断面図。
【図18】図13のE−E断面図。
【図19】図13のF−F断面図。
【図20】図13のG−G断面図。
【図21】図13のH−H断面図。
【図22】図13のI−I断面図。
【図23】図13のJ−J断面図。
【図24】(イ)は長方形チップの1例の斜視図、(ロ)は直方形チップの1例の斜視図。
【符号の説明】
t チップ
M フィダー(整面1列整列搬送)
M1 溝付搬送面
M2 供給搬送面
N フィダー(整面搬送)
N1 L形搬送面(片側搬送面)若しくはW形搬送面(両側搬送面)
N1−1 広幅搬送面
N1−2 狭幅搬送面
N1−3 1列搬送面
N1−4 センサー検出整面反転搬送面
N2 平面搬送面
N3 回収搬送面
1 溝
2 移乗部(Nの右端)
3 移乗部(Nの左端)
4 角部(N1)
5 センサー
6 噴気口
7 噴気口
8 噴気口
9 噴気口
10 トンネル
11 移乗部(N3の左端)
12 角部(M1)
13 隔壁
14 噴気口
15 センサー
16 噴気口
17 溝1の90度捻り形成
18 移乗部(M2の左端)
19 ホッパー
20 振動式ゲート
21 振動式ゲート
22 噴気口
23 側板(N)
24 ローター
25 チップテープ
[0001]
[Industrial application fields]
In the present invention, a chip (various chip-type electronic components such as capacitors, resistors, diodes, switches, connectors, etc., the shape of which is mainly a rectangular cube, a rectangular parallelepiped, etc.) is vibrated linearly transporting bidirectional feeder M, N In connection with the feeder for aligning and transferring the single-chip surfaces, the surface of each chip is aligned with the target surface in the process of transferring at the same time, aligned and transferred to the next process in the groove,
[0002]
For example, the above-mentioned feeders are loaded into each concave portion of the rotor addressed in order from the top one of the chips that are aligned and transported in a single line by the feeder (separated by one) and transported to the set position, and at that position the chip tape It is used as a part of a chip taping device provided to transfer and load one chip into each chip loading recess.
[0003]
Some chips need only be separated and transported to a single chip without causing any problems. For example, all chips are aligned to the front (or back) like a chip register and separated into one chip. There are things that have to be transported and transferred to chip holding means such as chip tape in that state,
[0004]
Recently, a rectangular chip having a square cross section, that is, a chip having the same shape on the four surfaces (upper surface, lower surface, left surface, right surface) of the six surfaces of the chip, excluding the front surface, is used. Even in this case, there is a case in which all the chips have to be arranged on the target surface (for example, the upper surface), separated and transported to one chip, and transferred to a chip holding means such as a chip tape in that state.
[0005]
The above-described front / back alignment and surface alignment are conventionally performed in a ball feeder that is a combination of a vibrating ball feeder and a single-row conveying feeder (straight feeder). Chips are randomly placed and aligned in a row in a spiral by vibration, and the chips other than the target surface (for example, the upper surface) are balled again by the discrimination sensor provided around them and the jet action of the jet port. In this case, only the ones aligned with the target surface are sent to the one-line transport feeder, and then one is separately loaded into each recess of the rotor.
[0006]
However, since the above chip alignment means is integrally formed as a part of the ball feeder, the ball feeder has a problem that it is very expensive as a special and custom-made one, and vibration is also caused. In addition, there is a limit to the transfer speed of the transfer, and in order to determine in the middle of the line alignment of the transfer, approximately 1/2 to 3/4 of what has been transferred together until the line is aligned is returned to the ball. As a result, the efficiency (number of transports, speed) of the aligned and one-line alignment of the chips is reduced to about 1/2 to 1/4, which is a cause of hindering the speeding up of the automatic separation and conveyance of the chips. It was.
[0007]
In addition, the ball feeder particularly has a drawback of requiring a large installation space, and since the vibration direction does not match between the volt feeder and the linear feeder, the configuration of the connecting portion 19 (chip changing portion) of both is difficult, and this is the cause. In combination with the recent miniaturization of the chip (for example, 0408 is 0.4mm in width and 0.8mm in length), it causes a transport trouble and hinders the speeding up of the transport. In addition, there are problems such as requiring a lot of time and labor for installation adjustment, and further, there is a problem that the speed of aligning and conveying the ball feeder itself is slow, and it is not possible to increase the speed in the future.
[0008]
[Premise Invention Technology of the Present Invention]
The applicant of the present invention has filed an application for a patent application previously filed, ie, Japanese Patent Application No. 9-256018, Japanese Patent Application Laid-Open No. 10-175724, “Bidirectional feeder for aligning and conveying chips in a single row”.
Whereas the patented invention is an invention for aligning and conveying chips in a single row, the present invention uses the above invention as a basic technology to align the target surface of the chips (aligned to the target surface) and convey in a single row. Invented a feeder with added structure and function.
[0009]
[Means for solving the problems]
In other words, the present invention is a bi-directional feeder in which the vibrators M and N of the straight vibration conveying type have the conveying directions opposite to each other and the respective sides are closely parallel to each other, and the feeder M conveys the chip in the right direction. The feeder N is equipped to convey the chip in the left direction, the chip conveyed by the feeder N is transferred to the feeder M, fitted in the groove of the feeder M in the longitudinal direction of the chip, and sent to the outside in an aligned state. A bi-directional feeder for aligning and conveying a single row of chips,
[0010]
The feeder N is formed between the left and right transfer parts with a L-shaped cross section (for single-sided conveyance) or W-shaped (for double-sided conveyance), and the conveyance surface is inclined at a set angle so as to convey the chips along the corners. N1 and the flat conveyance surface N2 are formed continuously, and the collection conveyance surface N3 is formed one step lower along one or both sides of the conveyance surface N1,
[0011]
The transport surface N1 detects a wide transport surface N1-1, a narrow transport surface N1-2, a transport surface N1-3 through which one row of chips aligned in the longitudinal direction can pass, and an upper target surface of the chip A chip having a conveying surface N1-4 provided with a sensor, and the upper chip that has been conveyed two or more times at the conveying surfaces N1-1 and N1-2 due to the jets of the nozzles provided for the height of the chip; Chips standing in the lengthwise direction are blown down and leveled on the surface, or blown off to the collecting and transporting surface N3 and removed, and chips other than one row in the longitudinal direction are dropped on the transporting surface N1-3. In order to drop and remove to the recovery transport surface N3, detect the target surface of the chip by the sensor on the transport surface N1-4, and prepare to invert the chip 90 degrees by the blowout of the air outlet and level the target surface,
[0012]
The conveyance surface N2 continuous to the conveyance surface N1 is an L-shaped conveyance surface (one-sided conveyance) or a W-shaped conveyance surface which is arranged in a row in the longitudinal direction on the conveyance surface N1-3 and is adjusted to the target surface on the conveyance surface N1-4. (Both sides transfer) chips are introduced on a flat transfer surface, and each chip is transferred in a free-standing state with a flat surface facing in the longitudinal direction. Prepare to transfer to the transfer surface M1
[0013]
Further, the recovery conveyance surface N3 is provided along one side (L-shaped conveyance surface) or both sides (W-shaped conveyance surface) of the conveyance surface N1, and in the case of both sides, both are continuously provided by a tunnel and dropped from the conveyance surface N1. The removed chip is transported, and is provided so as to be transferred from the transfer portion at the left end to the supply transport surface M2 of the feeder M.
[0014]
The feeder M is formed in a cross section L-shaped, and a groove for conveying the chip by aligning and fitting the chips in the longitudinal direction to the corner of the conveying surface M1 inclined at a set angle so as to communicate from the left end of the feeder M to the outside. In addition, the supply conveyance surface M2 is lowered by one step along the inner side of the conveyance surface M1, is opposed to the collection conveyance surface N3 of the feeder N, forms a partition wall therebetween, and communicates with the transfer portion at each left end. Forming,
[0015]
A nozzle is provided at the set position M1-1 of the conveying surface M1, and the chips that are double or more on the chips in the groove are leveled on the conveying surface by the fusible air or blown down to the supply conveying surface M2 and removed. Chips on the conveyance surface other than one row fitted in the grooves by the vibration gate at the setting position M1-2 are excluded to the supply conveyance surface M2, and a sensor and an air outlet are provided above the setting positions M1-3 and M1-4. On the conveyance surface except for detecting the target surface of the chip in the groove and blowing off the chip other than the target surface to the supply conveyance surface M2 and fitting it in the groove by a vibration gate at the setting position M1-5. Next, the grooves are twisted 90 degrees from the vertical direction to the horizontal direction, and the chips in the grooves are rotated 90 degrees to adjust the target surface and align in a row. Prepare to feed outside the feeder in the state,
[0016]
Further, the supply conveyance surface M2 is removed from the conveyance surface N1 of the feeder N, the chip transferred from the collection conveyance surface N3, the chip newly supplied from the hopper provided above the feeders M and N, and the feeder M The chip removed from the transport surface M1 is transported in the right direction and transferred from the transfer section at the right end to the transfer section at the right end of the feeder N,
[0017]
The feeder N is transported as described above, and the chips transferred from the feeding and conveying surface M2 of the feeder M are prepared as described above, and are repeatedly arranged to be aligned from the feeder M to the outside and fed in a single-row aligned state. In addition, the problem is solved by a feeder for aligning and conveying a single row of chips.
[0018]
【Example】
Examples of the present invention will be described. (Refer to FIGS. 1 to 24)
Vibrating linearly moving type feeders M and N are bi-directional feeders having the conveying direction opposite to each other and each side being closely parallel to each other. The feeder M conveys the chip t to the right, and the feeder N is the chip. t is transported to the left, and the chip transported by the feeder N is transferred to the feeder M, fitted in the groove 1 of the feeder M in the longitudinal direction of the chip t, and fed to the outside in a single-row aligned state. 1 is a bidirectional feeder for aligning and conveying chips in a single row (FIG. 1).
[0019]
The feeder N (FIGS. 2 and 3 to 12) has an L-shaped cross section (for single-sided conveyance) or a W-shaped (both-side conveyance) between the transfer parts 2 and 3 (FIGS. 3 and 12) at the left and right ends. For example, the transfer surface N1 and the flat transfer surface N2 that are formed at a set angle (eg, 20 degrees) so as to transfer the chip t along the corner 4 are continuously formed and transferred. The recovery conveyance surface N3 is formed one step lower along one side or both sides of the surface N1,
[0020]
The conveyance surface N1 is a conveyance surface N1- that can pass through a wide conveyance surface N1-1 (FIGS. 4 and 5), a narrow conveyance surface N1-2 (FIG. 6), and a single row of chips t aligned in the longitudinal direction. 3 (FIG. 7), and a transport surface N1-4 (FIG. 10) provided with a sensor for detecting the target surface (eg, front surface or back surface) of the chip t above, the transport surfaces N1-1 and N1-2 The upper tip t that has been transported in a double layer or more and the tip t that has stood up in the length direction are blown down and leveled on the transport surface. Or, it is blown off to the collecting and conveying surface N3 and removed, and the chips t other than one row in the longitudinal direction on the conveying surface N1-3 (FIGS. 4, 5, and 6) are discharged to the collecting and conveying surface N3 by the jet of the nozzle 8 and the falling of its own weight. The falling surface is removed (FIG. 7), the target surface of the chip t is detected by the sensor 5 on the transport surface N1-4, and fumarole 9 Fumarolic inverts the chip t horizontally by the provided so as to face settling in (FIGS. 10, 11) object surface,
[0021]
The conveyance surface N2 continuous with the conveyance surface N1 is an L-shaped conveyance surface (one-side conveyance surface) or a W-shaped conveyance that is arranged in a row in the longitudinal direction on the conveyance surface N1-3 and is adjusted to the target surface on the conveyance surface N1-4. Chips t on the surface (both transport surfaces) are introduced onto a planar transport surface, and each chip t is transported in a free state in which the chips t are aligned in the longitudinal direction and do not form a row (FIG. 12). In order to transfer from the leftmost guide and transfer unit 1 to the transport surface M1 of the feeder M,
[0022]
Further, the recovery conveyance surface N3 is provided along one side or both sides of the conveyance surface N1, and in the case of both sides, both are continuously provided by the tunnel 10, and the chip t dropped and removed from the conveyance surface N1 is conveyed, It is equipped to transfer from the transfer unit 11 to the supply conveyance surface M2 of the feeder M,
[0023]
The feeder M (FIG. 1, FIG. 13 to FIG. 23) is a groove that is formed in a cross-sectional L shape and that conveys chips t aligned and aligned in the longitudinal direction to the corner portion 12 of the conveying surface M1 inclined at a set angle. 1 is formed so as to communicate with the outside from the left end of the feeder M (FIGS. 3 and 15 to 23), and the supply conveyance surface M2 is one step lower along the inside of the conveyance surface M1, and the recovery of the feeder N Opposite to the conveying surface N3, a partition wall 13 (provided in any of the feeders M and N) is formed between the two and formed in a state of communicating with each left end transfer portion,
[0024]
A nozzle 14 is provided at the set position M1-1 (FIG. 16) of the transfer surface M1, and the chips t that are double or more on the chips t in the groove 1 are blown off to the supply transfer surface M2 by the jets and removed. Then, the following chip t on the following conveyance surface fitted into the groove 1 by the vibrating gate 20 at the setting position M1-2 is eliminated (FIG. 17), and the sensor 15 is set above the setting positions M1-3 and M1-4. And a jet port 16 for detecting the target surface of the chip t in the groove 1 and removing the chip t other than the target surface by blowing it down to the supply transport surface M2 (FIG. 18). 21, after removing the chip t on the following conveying surface fitted in the groove 1 in one row (FIG. 19), the groove 1 is twisted 90 degrees from the vertical direction to the horizontal direction to form the chip t in the groove 1. Rotate 90 degrees (Figs. 21 and 22) Equipped to deliver to the outside (FIG. 23),
[0025]
Further, the supply conveyance surface M2 (FIGS. 13 and 15 to 22) is provided above the chips t and the feeders M and N that are removed from the conveyance surface N1 of the feeder N and transferred from the collection conveyance surface N3. The chip t newly supplied from the hopper 19 or the like and the chip t or the like removed from the transport surface M1 of the feeder M are transported in the right direction and transferred from the transfer section 18 at the right end to the transfer section 3 at the right end of the feeder N. With
[0026]
Chip provided so that the feeder t transports the chip t transferred from the supply transport surface M2 of the feeder M as described above, and repeatedly feeds the chip t from the feeder M to the outside in an aligned state of the target surface. This is a feeder for aligning and transporting one surface of the surface.
[0027]
[Action]
The feeder M carries the tip t in the right direction, and the switch N carries out the tip t in the left direction.
A new chip t is detected from the hopper 19 or the like by a sensor or the like, and dropped and supplied to the vicinity of the left end guide / transfer section 11 of the supply conveyance surface M2 and the collection conveyance surface N3, and the conveyance surface N1. Chips removed from the recovery transport surface N3 and transported to the left join together, and are transported to the right on the transport transport surface M2 together with the chips t removed from the transport surface M1, and from the right end transfer section 18 Transferred to the transfer unit 3 of the feeder N.
[0028]
The chip t transferred to the feeder N slides down a set angle inclined surface (for example, 20 degrees) of the transport surface N1 and is transported to the left along the corner portion 4 (L-shaped, W-shaped), and has a wide transport surface N1. -1 and N1-2, and the tip t and the standing tip t that have been stacked more than twice are blown down at the air outlets 6 and 7 and smoothed on the transport surface or blown down to the recovery delivery path N3 and removed. , Chips 1 other than the first row in the longitudinal direction on the one-line conveying surface of N1-3 are dropped and removed to the collecting and conveying surface N3 by the jet of the air outlet 8 and falling by its own weight, and the target surface of the chip t by the sensor 5 (N1-4) For example, the front surface or the back surface is detected, and the tip t is horizontally inverted by the jet of the jet port 9 to adjust the surface to the target surface, and is fed to the next planar conveying surface N2.
[0029]
Each chip t is transported in a free state released on the plane without forming a row in a state where each chip t is oriented in the longitudinal direction on the planar transport surface N2 and is aligned with the target surface. To the transport surface M1 of the feeder M.
[0030]
Further, the chip t dropped and removed from the transport surface N1 (N1-1 to N1-4) to the recovery transport surface N3 is transported to the left on the recovery transport surface N3 and is transferred from the transfer end 11 at the left end to the supply transport surface of the feeder M. Transferred. When the conveyance surface N1 is W-shaped, the collection conveyance surface N3 is provided on both sides of the conveyance surface N1, and thus the chip t dropped and removed to the outer collection conveyance surface N3 penetrates under the conveyance surface N1. Then, it passes through the tunnel 10 and joins and is transported to the inner collection transport surface N3.
[0031]
The chip t transferred to the feeder M slides down the set angle inclined surface (for example, 10 degrees) of the transport surface and is transported while being sequentially fitted in the groove 1 of the corner portion 12, and the chip t that cannot be completely fitted is on the transport surface. Is transported along the way, and if there is a gap in the groove 1 in the middle, it is already transported in one row by the leveling feeder N in a leveled state, and transported other than the chip fitted in the groove by the vibrating gate 20 of M1-2 Chip t on the surface is removed and dropped onto supply conveyance surface M2, and chip t that has overlapped or leaned on chip t in groove 1 due to the blowout of jet port 14 at setting position M1-1. Is blown off to the supply and conveyance surface M2, and the target surface of the chip is detected by the sensors 15 of M1-3 and M1-4, and the tip t other than the target surface is blown down to the supply and conveyance surface M2 by the blast of the nozzle 16. After the chip is removed and fitted into the groove with the M1-5 vibrating gate 21 Since the groove 1 is twisted 90 degrees from the vertical direction to the horizontal direction after the chip t on the transport surface is removed, for example, the chip t that has been transported in one row on the leveled surface is rotated 90 degrees. It is rotated and conveyed in a horizontal posture, and is fed from the feeder M to the outside, for example, to the rotor 21 connected to the feeder M in that state (aligned state in a single row).
[0032]
Further, the supply conveyance surface M2 is removed from the conveyance surface N1 of the feeder N and is transferred from the collection conveyance surface N3, and removed from the conveyance surface M1 of the feeder M and above the chips t and the feeders M and N. The newly supplied chip t etc. from the equipped hopper 19 etc. is joined and conveyed to the right, transferred from the transfer unit 18 at the right end to the transfer unit 3 of the feeder N, and the above action is repeated from the beginning, Finally, the chips are aligned in a single row in the groove 1 and fed to the next step.
[0033]
【effect】
As described above, according to the present invention, the surface of the chip is adjusted to the target surface by the feeder N and transported, and the aligned chip is introduced into the groove by the row by the feeder M, and the repeated check process is surely performed. After the surface is aligned and aligned in a single row, the orientation of the tip is rotated 90 degrees to make it horizontal, and in that state, it is fed to the next process such as the rotor, so a very large number of chips Thus, there is a leather-like effect capable of aligning and transporting extremely small chips at a very high speed and in a precise manner.
By the way, the current leveling single row alignment transport capacity is set to 2000-2500 per minute according to the current use purpose, but it is quite easy to improve the transport capacity further according to the purpose. is there.
[Brief description of the drawings]
FIG. 1 is a plan view of a feeder according to an embodiment of the present invention comprising feeders M and N (including peripheral devices).
2 is a front view (J′-J ′ arrow view) of the feeder N, a plan view of the feeder N, and a rear view (K ′ arrow view). FIG.
3 is a cross-sectional view taken along line A′-A ′ of FIG.
4 is a cross-sectional view taken along line B′-B ′ of FIG.
5 is a cross-sectional view taken along the line C′-C ′ of FIG.
6 is a sectional view taken along the line D'-D 'of FIG.
7 is a cross-sectional view taken along line E′-E ′ of FIG. 2;
FIG. 8 is a cross-sectional view taken along the line F′-F ′ of FIG.
9 is a cross-sectional view taken along line G′-G ′ in FIG.
10 is a cross-sectional view taken along line H′-H ′ in FIG. 2;
11 is a cross-sectional view taken along the line I′-I ′ of FIG.
12 is a cross-sectional view taken along line L′-L ′ of FIG.
13 is a front view and a plan view of the feeder M. FIG.
14 is a cross-sectional view taken along line AA in FIG.
15 is a cross-sectional view taken along the line BB in FIG.
16 is a cross-sectional view taken along the line CC of FIG.
17 is a sectional view taken along the line DD of FIG. 13;
18 is a cross-sectional view taken along the line E-E in FIG. 13;
19 is a sectional view taken along line FF in FIG.
20 is a cross-sectional view taken along line GG in FIG.
21 is a cross-sectional view taken along line HH in FIG.
22 is a cross-sectional view taken along the line II of FIG.
23 is a sectional view taken along line JJ in FIG.
24A is a perspective view of an example of a rectangular chip, and FIG. 24B is a perspective view of an example of a rectangular chip.
[Explanation of symbols]
t Chip M Feeder (Sequence-aligned single-row aligned transport)
M1 Conveying surface with groove M2 Supplying and conveying surface N Feeder
N1 L-shaped transport surface (single-side transport surface) or W-shaped transport surface (both-side transport surface)
N1-1 Wide conveying surface N1-2 Narrow conveying surface N1-3 Single row conveying surface N1-4 Sensor detection leveling reversing conveying surface N2 Flat conveying surface N3 Collection conveying surface 1 Groove 2 Transfer part (right end of N)
3 Transfer part (the left end of N)
4 corner (N1)
5 Sensor 6 Air outlet 7 Air outlet 8 Air outlet 9 Air outlet 10 Tunnel 11 Transfer section (left end of N3)
12 corners (M1)
13 Partition 14 Fume port 15 Sensor 16 Fume port 17 90 degree twist formation of groove 1 18 Transfer part (left end of M2)
19 Hopper 20 Vibrating gate 21 Vibrating gate 22 Fumarole 23 Side plate (N)
24 Rotor 25 Chip tape

Claims (13)

振動直進搬送式のフィダーM、Nを搬送方向を反対にすると共に各一側辺を近接平行して備えた双方向フィダーであり、フィダーMはチップを右方向へ搬送し、フィダーNはチップを左方向へ搬送するように備え、フィダーNで搬送したチップをフィダーMへ移乗しフィダーMの溝にチップの長手方向に揃えて嵌合し1列整列状態で外部へ送給するように備えた、チップの1列整列搬送用双方向フィダーであり、
フィダーNは、左右端の移乗部の間に横断面L形(搬送面が1面)若しくはW形(搬送面が2面)に形成しチップをその角部に沿って搬送するように設定角度傾斜した搬送面N1と平面状の搬送面N2を連続形成すると共に、搬送面N1の片側若しくは両側に沿って一段低く回収搬送面N3を形成したものであり、
上記搬送面N1は広幅の搬送面N1−1、狭幅の搬送面N1−2、チップを長手方向に揃えた1列だけ通り抜けできる搬送面N1−3、及び上方にチップの目的面を検出するセンサーを備えた搬送面N1−4からなり、
搬送面N1−1及びN1−2でチップの高さ寸法に備えた噴気口の噴気により2重以上に重なって搬送されてきた上のチップ及び長さ方向に起立したチップを吹き崩して面上に均し、或は回収搬送面N3へ吹き落し除去し、搬送面N1−3で長手方向1列以外のチップを噴気口の噴気及び自重落下で回収搬送面N3へ落下除去し、搬送面N1−4でセンサーによりチップの目的面を検出し、噴気口の噴気によりチップを水平に反転して目的面に整面するように備え、
上記搬送面N1に連続する搬送面N2は、搬送面N1−3で長手方向1列にすると共に搬送面N1−4で目的面に整面したL形搬送面(片側搬送面)若しくはW形搬送面(両面搬送面)のチップを平面状の搬送面上に導入し、各チップを長手方向に向いた整面状態であり乍ら列をなさない自由な状態で搬送し、左端の移乗部からフィダーMの搬送面M1へ移乗するように備え、
また、回収搬送面N3は、搬送面N1の片側(L形搬送面)若しくは両側(W形搬送面)に沿って備え、両側の場合は両者をトンネルで連続して備え、搬送面N1から落下除去されたチップを搬送し、左端の移乗部からフィダーMの供給搬送面M2へ移乗するように備えたものであり、
フィダーMは、横断面L形に形成し設定角度傾斜した搬送面M1の角部にチップを長手方向に1列整列嵌合して搬送する溝をフィダーMの左端から外部へ連通するように形成し、また、供給搬送面M2を搬送面M1の内側に沿って1段低く、フィダーNの回収搬送面N3と相対し、両者間に隔壁を形成すると共に各左端の移乗部で連通した状態に形成し、
上記搬送面M1の設定位置M1−1に噴気口を備え、溝内のチップ上に2重以上に乗ったチップをその噴気で搬送面上に均すか若しくは供給搬送面M2へ吹き落し除去し、設定位置M1−2の振動式ゲートで溝に1列嵌合した以外の搬送面上のチップを供給搬送面M2へ排除し、設定位置M1−3、M1−4の上方にセンサーと噴気口を備え、溝内チップの目的面を検出すると共に目的面以外のチップを供給搬送面M2へ吹き落し除去し、設定位置M1−5の振動式ゲートで1列整列するのに続いて溝を垂直方向から水平方向へ90度捻り形成して溝内のチップを90度回転し、目的面に整面して、1列整列状態でフィダー外部へ送給するように備え、
また、供給搬送面M2は、フィダーNの搬送面N1から除去されその回収搬送面N3から移乗してくるチップ、フィダーM、Nの上方に備えたホッパー等から新規供給されるチップ、及びフィダーMの搬送面M1から除去されたチップを右方向へ搬送し右端の移乗部からフィダーNの右端の移乗部へ移乗するように備えたものであって、
上記フィダーMの供給搬送面M2から移乗されたチップをフィダーNが上記のように搬送し、フィダーMから外部へ目的面に整面した1列整列状態で送給することを繰り返し行うように備えたものである、
チップの整面1列整列搬送用フィダー。
Vibrating linearly moving type feeders M and N are two-way feeders with the conveying direction opposite to each other and each side is closely parallel to each other. The feeder M conveys the chip in the right direction, and the feeder N conveys the chip. It was prepared to convey leftward, and the chip conveyed by the feeder N was transferred to the feeder M, fitted in the groove of the feeder M in the longitudinal direction of the chip, and fed to the outside in an aligned state. , A bi-directional feeder for aligning and conveying chips in a single row,
The feeder N is formed in a cross-sectional L shape (one transport surface) or W shape (two transport surfaces) between the transfer portions at the left and right ends, and a set angle so that the chip is transported along the corners. In addition to continuously forming the inclined transport surface N1 and the planar transport surface N2, the recovery transport surface N3 is formed one step lower along one or both sides of the transport surface N1,
The transport surface N1 detects a wide transport surface N1-1, a narrow transport surface N1-2, a transport surface N1-3 through which one row of chips aligned in the longitudinal direction can pass, and an upper target surface of the chip. Consists of transport surface N1-4 with sensor,
On the surface by blowing up the upper chip and the chip standing up in the length direction which are transported in a double layer or more by the blow of the blow hole provided for the height of the chip on the transport surfaces N1-1 and N1-2. Or blown down to the collection conveyance surface N3 and removed, and the chips other than the first row in the longitudinal direction are dropped and removed to the collection conveyance surface N3 by the blowout of the nozzles and the falling of its own weight on the conveyance surface N1-3. In -4, the target surface of the chip is detected by the sensor, and the chip is horizontally reversed by the blast of the air outlet to prepare the target surface to be adjusted,
The conveyance surface N2 continuous with the conveyance surface N1 is an L-shaped conveyance surface (one-side conveyance surface) or a W-shaped conveyance that is arranged in a row in the longitudinal direction on the conveyance surface N1-3 and is adjusted to the target surface on the conveyance surface N1-4. Chips on the surface (double-sided conveyance surface) are introduced onto a flat conveyance surface, and each chip is conveyed in a straightened state in the longitudinal direction and in a free state that does not form a row. Prepare to transfer to the transport surface M1 of the feeder M,
Further, the recovery conveyance surface N3 is provided along one side (L-shaped conveyance surface) or both sides (W-shaped conveyance surface) of the conveyance surface N1, and in the case of both sides, both are continuously provided by a tunnel and dropped from the conveyance surface N1. The removed chip is transported, and is provided so as to be transferred from the transfer portion at the left end to the supply transport surface M2 of the feeder M.
The feeder M is formed in a cross section L-shaped, and a groove for conveying the chip by aligning and fitting the chips in the longitudinal direction to the corner of the conveying surface M1 inclined at a set angle so as to communicate from the left end of the feeder M to the outside. In addition, the supply conveyance surface M2 is lowered by one step along the inner side of the conveyance surface M1, is opposed to the collection conveyance surface N3 of the feeder N, forms a partition wall therebetween, and communicates with the transfer portion at each left end. Forming,
A nozzle is provided at the set position M1-1 of the transfer surface M1, and the chips that are double or more on the chips in the groove are leveled on the transfer surface with the jets or blown down to the supply transfer surface M2 and removed. Chips on the conveyance surface other than one row fitted in the grooves by the vibration gate at the setting position M1-2 are excluded to the supply conveyance surface M2, and a sensor and an air outlet are provided above the setting positions M1-3 and M1-4. In addition, the target surface of the chip in the groove is detected, and the chip other than the target surface is blown off to the supply conveyance surface M2, and the grooves are vertically aligned after being aligned in a row by the vibrating gate at the setting position M1-5. From 90 to 90 degrees in the horizontal direction, rotate the tip in the groove 90 degrees, adjust the target surface and feed it to the outside of the feeder in a single-row aligned state,
Further, the supply conveyance surface M2 is removed from the conveyance surface N1 of the feeder N, the chip transferred from the collection conveyance surface N3, the chip newly supplied from the hopper provided above the feeders M and N, and the feeder M The chip removed from the transport surface M1 is transported in the right direction and transferred from the transfer section at the right end to the transfer section at the right end of the feeder N,
The feeder N is transported as described above, and the chips transferred from the feeder transport surface M2 of the feeder M are repeatedly transported from the feeder M to the outside in a one-row aligned state with the target surface aligned. Is,
Feeder for aligning and conveying chips in a single row.
フィダーM、Nは振動直進搬送式のフィダーを使用し、その振動方式は圧電素子、マグネットコイル、その他の既存の方式によるものである、
請求項1のチップの整面1列整列搬送用フィダー。
The feeders M and N use a vibration-straight-feed type feeder, and the vibration method is based on piezoelectric elements, magnet coils, and other existing methods.
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
フィダーNの搬送面N1は搬送面を1面とする場合は横断面L形に形成してその角部に沿ってチップを搬送するように備え、搬送面を2面にして同時多数搬送する場合は横断面W形に形成してその2つのV形の各角部に沿ってチップを搬送するように備えたものである、
請求項1のチップの整面1列整列搬送用フィダー。
When the conveyance surface N1 of the feeder N is a single conveyance surface, it is formed in a L-shaped cross section so that chips are conveyed along the corners, and the conveyance surface is divided into two surfaces to convey a large number simultaneously. Is formed to have a cross-sectional W shape and convey chips along each corner of the two V shapes.
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
フィダーNの搬送面N1−4の上方にセンサーと噴気口を備え、センサーでチップの目的面を検出すると共に目的面以外のチップを噴気により水平に反転して目的面に整面するように備え、また、搬送面N1−4を水平に形成したことによりチップの搬送速度を速めてチップ間に間隔を形成してセンサーの検出及び噴気除去が確実に行われるように備えたものである、
請求項1のチップの整面1列整列搬送用フィダー。
A sensor and an air outlet are provided above the conveying surface N1-4 of the feeder N, and the sensor detects the target surface of the chip and prepares a chip other than the target surface to be horizontally reversed by the air to adjust to the target surface. In addition, by forming the conveyance surface N1-4 horizontally, the chip conveyance speed is increased to form an interval between the chips so that the detection of the sensor and the removal of the fumarole are performed reliably.
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
フィダーNの設定位置N1−1の搬送面をチップが複数並行できる広幅に形成し、設定位置N1−2の搬送面をチップの2列並行ができない位に狭幅に形成し、設定位置N1−3の搬送面をチップを長手方向に揃えて1列だけ通り抜けできる幅に形成して、各搬送路に乗れないチップを回収搬送面N3へ落下除去するように備えたものである、
請求項1のチップの整面1列整列搬送用フィダー。
The conveying surface of the setting position N1-1 of the feeder N is formed wide enough to allow a plurality of chips to be paralleled, and the conveying surface of the setting position N1-2 is formed so narrow that the two rows of chips cannot be paralleled, and the setting position N1- The transport surface of 3 is formed in such a width that the chips are aligned in the longitudinal direction and can pass through only one row, and the chips that cannot get on each transport path are dropped and removed to the recovery transport surface N3.
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
フィダーNの搬送面N1の設定位置N1−1、N1−2、N1−3の搬送面をフィダーNの左方向上り勾配に形成し、設定位置N1−3の搬送面を水平に形成し、平面状の搬送面N2を左方向上り勾配に形成したものである、
請求項1のチップの整面1列整列搬送用フィダー。
The conveying surfaces of the setting positions N1-1, N1-2, N1-3 on the conveying surface N1 of the feeder N are formed in a leftward upward gradient of the feeder N, and the conveying surface of the setting position N1-3 is formed horizontally. A cylindrical conveying surface N2 is formed in a leftward upward gradient,
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
フィダーMのチップ1列整列搬送用の溝は横断面形状縦長長方形若しくは正方形等に形成し、搬送面M1の左端部から右端部そして外部へ連続するように形成し、全長に亙り略水平に備えたものである、
請求項1のチップの整面1列整列搬送用フィダー。
The grooves for conveying and aligning one chip of the feeder M are formed in a cross-sectional shape of a vertically long rectangle or square, and are formed so as to be continuous from the left end to the right end and to the outside of the transfer surface M1, and are provided substantially horizontally over the entire length. Is,
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
フィダーMの設定位置M1−2、M1−3の溝に噴気口を備え、また、溝の上方にセンサーを備えて、センサーでチップの目的面を検出し、目的面以外のチップを噴気で供給搬送面M2へ吹き落し除去するように備えた、
請求項1のチップの整面1列整列搬送用フィダー。
A nozzle is provided in the groove of the setting positions M1-2 and M1-3 of the feeder M, and a sensor is provided above the groove, the target surface of the chip is detected by the sensor, and a chip other than the target surface is supplied by the jet. Prepared to blow off and remove onto the transfer surface M2.
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
フィダーMの設定位置M1−2、M1−5に振動式ゲートを備え、溝に1列嵌合した以外の搬送面上のチップを供給搬送面M2へ排除するようにしたるのである、
請求項1のチップの整面1列整列搬送用フィダー。
The feeder M is provided with a vibration gate at the setting positions M1-2 and M1-5, and chips on the conveyance surface other than one row fitted in the groove are excluded to the supply conveyance surface M2.
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
フィダーMの設定位置M1−5で、溝を垂直方向から水平方向へ90度捻り形成して溝内のチップを90度回転し、目的面に整面するように備えたものである、 請求項1のチップの整面1列整列搬送用フィダー。The groove is twisted 90 degrees from the vertical direction to the horizontal direction at the setting position M1-5 of the feeder M, and the chip in the groove is rotated 90 degrees to adjust the surface to the target surface. A feeder for aligning and conveying a single surface of one chip. 各1辺を近接平行して備えたフィダーM、NのフィダーMの供給搬送面M2とフィダーNの回収搬送面N3の両側辺間に、左端の移乗部を除いて、両者間を区画する突条、仕切板等を備えて、互いに反対方向に搬送されるチップが相互に接触、衝突しないように備えたものである、
請求項1のチップの整面1列整列搬送用フィダー。
Projections that divide between the two sides of the feeder transport surface M2 of the feeder M and the feeder M of the feeder N and the recovery transport surface N3 of the feeder N, except for the leftmost transfer section, each provided with one side close to each other in parallel. Provided with strips, partition plates, etc., so that the chips conveyed in opposite directions do not contact or collide with each other,
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
フィダーM、Nの上方にチップ供給用の振動式ホッパーとセンサー等を備え、センサー等による供給及び回収搬送面上のチップの貯留状況検出指示によって、ホッパーからチップを調節供給するように備えたものである、
請求項1のチップの整面1列整列搬送用フィダー。
Equipped with a vibratory hopper for supplying chips and sensors above the feeders M and N, and to adjust and supply the chips from the hopper according to the supply by the sensors and the storage status detection instruction of the chips on the recovery transport surface Is,
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
フィダーMの溝で整面1列整列搬送されてくるチップの先頭の1個から順に1個宛ローターの各凹部に装填して設定位置へ搬送し、該位置でチップテープの各チップ装填凹部へ1個宛移乗装填するように備えたものである、
請求項1のチップの整面1列整列搬送用フィダー。
Loaded into each recess of the rotor addressed in order from the first one of the chips that are aligned and transported in a single row by the groove of the feeder M and transported to the set position, to each chip loading recess of the chip tape at that position It is equipped to transfer to one.
2. A feeder for aligning and conveying a single surface of the chips according to claim 1.
JP2000252877A 2000-08-23 2000-08-23 Feeder for aligning and conveying chips in a single row Expired - Lifetime JP4660843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000252877A JP4660843B2 (en) 2000-08-23 2000-08-23 Feeder for aligning and conveying chips in a single row

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000252877A JP4660843B2 (en) 2000-08-23 2000-08-23 Feeder for aligning and conveying chips in a single row

Publications (2)

Publication Number Publication Date
JP2002068460A JP2002068460A (en) 2002-03-08
JP4660843B2 true JP4660843B2 (en) 2011-03-30

Family

ID=18742056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000252877A Expired - Lifetime JP4660843B2 (en) 2000-08-23 2000-08-23 Feeder for aligning and conveying chips in a single row

Country Status (1)

Country Link
JP (1) JP4660843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741371B1 (en) 2016-01-12 2017-05-29 가부시기가이샤 다이신 Circular conveying apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577630B2 (en) * 2004-08-09 2010-11-10 日東工業株式会社 Feeder chip high-speed transfer and surface improvement rate improvement means by the continuous supply method
JP5735247B2 (en) * 2010-09-30 2015-06-17 シミックCmo足利株式会社 Posture unification device for secant locks
CN108400027B (en) * 2018-03-06 2019-10-15 安徽麦特电子股份有限公司 A kind of capacitor aging device
CN114604580B (en) * 2022-03-24 2023-07-25 深圳市晶展鑫电子设备有限公司 Reciprocating type conveying device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104813A (en) * 1982-04-30 1983-06-22 Shinko Electric Co Ltd Vibrative parts feeder
JPS58125512A (en) * 1981-12-14 1983-07-26 Shinko Electric Co Ltd Vibrative parts supplying machine
JPS59133109A (en) * 1983-01-18 1984-07-31 Shinko Electric Co Ltd Circulation type vibrating parts feeder
JPS60122718U (en) * 1984-01-24 1985-08-19 三興精密株式会社 Straight feeder
JPS60228318A (en) * 1984-04-25 1985-11-13 Shinko Electric Co Ltd Sorting device for front and back of component part in vibration type part feeder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125512A (en) * 1981-12-14 1983-07-26 Shinko Electric Co Ltd Vibrative parts supplying machine
JPS58104813A (en) * 1982-04-30 1983-06-22 Shinko Electric Co Ltd Vibrative parts feeder
JPS59133109A (en) * 1983-01-18 1984-07-31 Shinko Electric Co Ltd Circulation type vibrating parts feeder
JPS60122718U (en) * 1984-01-24 1985-08-19 三興精密株式会社 Straight feeder
JPS60228318A (en) * 1984-04-25 1985-11-13 Shinko Electric Co Ltd Sorting device for front and back of component part in vibration type part feeder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741371B1 (en) 2016-01-12 2017-05-29 가부시기가이샤 다이신 Circular conveying apparatus

Also Published As

Publication number Publication date
JP2002068460A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP4660843B2 (en) Feeder for aligning and conveying chips in a single row
KR101533976B1 (en) Feeder for Supplying Component with Directional Nature and Method for Supplying the Same
CN214710293U (en) Tobacco leaf divides material accent shape equipment
CN105826168A (en) Substrate processing device
WO2016002703A1 (en) Vibratory component transport device
KR101409020B1 (en) Apparatus for aligning and supplying articles
KR100678604B1 (en) Parts front and back face aligning apparatus for vibratory parts feeding machine
JP4059959B2 (en) Tip orientation control, single-row alignment, single-separation transfer device
KR100664555B1 (en) Miniature part feeder by using of vibration
JPH1067419A (en) Device for aligning direction of long size agricultural product
JP2001335142A (en) Method and device for carrying parts in order
JP2003104538A (en) Article aligning and conveying device
KR100918529B1 (en) Apparatus for supplying bullet
KR100997135B1 (en) Transportation track structure of parts feeder
WO2015129514A1 (en) Aligning/feeding apparatus and aligning method
JP4577630B2 (en) Feeder chip high-speed transfer and surface improvement rate improvement means by the continuous supply method
KR101839065B1 (en) LED Chip Lens Posture Alignment Apparatus
JP2007308216A (en) Vibration type parts feeding device
JP4691848B2 (en) Vibrating feeder with two distributors
JP2002160822A (en) Container handling device
CN214568140U (en) Multilayer medicine supplementing caching device
JP2013100149A (en) Vibration feeder
JPH10175724A (en) Bidirectional feeder for chip one row regular order transfer
JPH10120155A (en) Conveying groove for chip feeder in upright attitude alignment
JP2613500B2 (en) Transfer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Ref document number: 4660843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term