JP6188079B2 - Optical vortex generator, continuous spiral phase plate used therefor, and optical vortex generation method - Google Patents

Optical vortex generator, continuous spiral phase plate used therefor, and optical vortex generation method Download PDF

Info

Publication number
JP6188079B2
JP6188079B2 JP2014039285A JP2014039285A JP6188079B2 JP 6188079 B2 JP6188079 B2 JP 6188079B2 JP 2014039285 A JP2014039285 A JP 2014039285A JP 2014039285 A JP2014039285 A JP 2014039285A JP 6188079 B2 JP6188079 B2 JP 6188079B2
Authority
JP
Japan
Prior art keywords
phase plate
continuous spiral
optical vortex
spiral phase
thz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014039285A
Other languages
Japanese (ja)
Other versions
JP2015163912A (en
Inventor
宮本 克彦
克彦 宮本
尾松 孝茂
尾松  孝茂
朗人 工藤
朗人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2014039285A priority Critical patent/JP6188079B2/en
Publication of JP2015163912A publication Critical patent/JP2015163912A/en
Application granted granted Critical
Publication of JP6188079B2 publication Critical patent/JP6188079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光渦発生装置及びこれに用いられる連続螺旋型位相板並びに光渦発生方法に関する。より具体的には、テラヘルツ帯域において光渦を発生させる方法及びそれに用いられる光渦発生装置及び連続螺旋型位相板に好適なものである。   The present invention relates to an optical vortex generator, a continuous spiral phase plate used therefor, and an optical vortex generation method. More specifically, the present invention is suitable for a method for generating an optical vortex in the terahertz band, an optical vortex generator used in the method, and a continuous spiral phase plate.

光渦は等位相面(波面)が螺旋状であって、中央が凹んだドーナツ型の強度分布を有するレーザー光である。光渦は、光波面に直行する方向に力が作用するため、マイクロオーダーの物質を操る光ピンセット、レーザー加工、超解像顕微分光等に応用できる。   The optical vortex is a laser beam having a donut-shaped intensity distribution having an equiphase surface (wavefront) spiral and a concave center. Since the optical vortex acts in a direction perpendicular to the optical wavefront, it can be applied to optical tweezers, laser processing, super-resolution microspectroscopy light, etc. that manipulate micro-order materials.

公知の光渦発生方法として、螺旋型位相板を用いる手法が、例えば下記非特許文献1に記載されている。   As a known optical vortex generation method, a technique using a spiral phase plate is described in Non-Patent Document 1, for example.

K.Sueda, G.Miyaji, N.Miyanaga and M.Nakatsuka、OPTICS EXPRESS、Vol.12、 No.15、2004年、3548−3553K. Sueda, G.M. Miyaji, N .; Miyanaga and M.M. Nakatsuka, OPTICS EXPRESS, Vol. 12, no. 15, 2004, 3548-3553

しかしながら、周波数0.1〜30THzのテラヘルツ帯域において光渦の発生はこれまで前例がなく未踏領域として取り残されている。   However, the generation of optical vortices in the terahertz band with a frequency of 0.1 to 30 THz has been unprecedented and left as an unexplored region.

そこで、本発明は、上記課題を鑑み、テラヘルツ帯域において光渦を発生させる方法並びにこれを実現する光渦発生装置及び連続螺旋型位相板を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a method of generating an optical vortex in the terahertz band, an optical vortex generator and a continuous spiral phase plate that realize the method.

上記課題を解決する本発明の一観点に係る連続螺旋型位相板は、テラヘルツ帯域において透過性を有するオレフィンポリマー樹脂により構成されることを特徴とする。   The continuous spiral phase plate according to one aspect of the present invention that solves the above-described problems is characterized by being composed of an olefin polymer resin having transparency in the terahertz band.

また、本発明の他の一観点に係る光渦発生方法は、テラヘルツ帯域において透過性を有するオレフィンポリマー樹脂により構成される連続螺旋型位相板にテラヘルツ帯域のレーザー光を照射して光渦を発生させることを特徴とする。   An optical vortex generation method according to another aspect of the present invention generates an optical vortex by irradiating a continuous helical phase plate made of an olefin polymer resin having transparency in the terahertz band with laser light in the terahertz band. It is characterized by making it.

また、本発明の他の一観点に係る光渦発生装置は、テラヘルツ帯域のレーザー光を発生させるレーザー光源部と、レーザー光をコリメートさせるコリメータと、入射されるコリメートされたレーザー光を光渦に変化させる連続螺旋型位相板と、を有する。   An optical vortex generator according to another aspect of the present invention includes a laser light source unit that generates laser light in a terahertz band, a collimator that collimates the laser light, and incident collimated laser light into an optical vortex. And a continuous spiral phase plate to be changed.

以上、本発明により、テラヘルツ帯域において光渦を発生させる方法並びにこれを実現する光渦発生装置及び連続螺旋型位相板を提供することができる。   As described above, according to the present invention, it is possible to provide a method for generating an optical vortex in the terahertz band, an optical vortex generator and a continuous spiral phase plate that realize the method.

実施形態に係る光渦発生装置の概略を示す図である。It is a figure which shows the outline of the optical vortex generator which concerns on embodiment. 連続螺旋型位相板の概略を示す図である。It is a figure which shows the outline of a continuous helical phase plate. 連続螺旋型位相板の透過率の一例を示す図である。It is a figure which shows an example of the transmittance | permeability of a continuous spiral phase plate. 実施例に係る連続位相型位相板の写真代用図である。It is a photograph substitute figure of the continuous phase type phase plate which concerns on an Example. 実施例に係る光渦発生装置の光学系を示す図である。It is a figure which shows the optical system of the optical vortex generator which concerns on an Example. 実施例により生じた光渦の写真代用図である。It is a photograph substitute figure of the optical vortex produced by the Example. 実施例において位相板の向きを変えトポロジカルチャージmの符号を逆にした場合の光渦の写真代用図である。FIG. 5 is a photograph substitute diagram of an optical vortex when the direction of the phase plate is changed and the sign of the topological charge m is reversed in the embodiment.

以下、本発明の実施形態について、図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and is not limited to the following embodiments and examples.

図1は、本実施形態に係る光渦発生装置(以下「本装置」という。)1の概略を示す図である。本図で示すように、本装置1は、テラヘルツ帯域のレーザー光を発生させるレーザー光源部11と、レーザー光をコリメートさせるコリメータ12と、入射されるコリメートされたレーザー光を光渦に変化させる連続螺旋型位相板13と、を有する。   FIG. 1 is a diagram showing an outline of an optical vortex generator (hereinafter referred to as “the present apparatus”) 1 according to the present embodiment. As shown in the figure, the apparatus 1 includes a laser light source unit 11 that generates laser light in the terahertz band, a collimator 12 that collimates the laser light, and a continuous laser beam that changes incident collimated laser light into an optical vortex. A helical phase plate 13.

ここで本実施形態におけるテラヘルツ帯域とは、周波数0.1THz〜30THzの範囲をいい、より具体的に「テラヘルツ帯域のレーザー光」とは10μm以上300μm以下の波長範囲にあるレーザー光をいう。本実施形態に係る連続螺旋型位相板の透過範囲及び材料の加工限界を考慮すると周波数1.2THz以上12THz以下の範囲内であることがより好ましい。   Here, the terahertz band in the present embodiment refers to a frequency range of 0.1 THz to 30 THz, and more specifically “laser light in the terahertz band” refers to laser light in a wavelength range of 10 μm to 300 μm. Considering the transmission range of the continuous spiral phase plate according to the present embodiment and the processing limit of the material, it is more preferable that the frequency is in the range of 1.2 THz to 12 THz.

本実施形態において、レーザー光源部11は、テラヘルツ帯域のレーザー光を発生させることができる限りにおいて限定されず、様々な部材を用いることができる。限定されるわけではないが、例えば、Nd:YVOレーザー等の公知のレーザー光源を用い、レーザー光源から発せられたレーザー光を分割し、それぞれに対しPPSLT、PPLN等の波長変換素子によって異なる波長に変換し、DAST(4−dimethylamino−N−methyl−4−stillbazoliumtosylate)結晶等を用いて差周波を発生させることは好ましい一例である。 In the present embodiment, the laser light source unit 11 is not limited as long as it can generate laser light in the terahertz band, and various members can be used. Although not limited, for example, a known laser light source such as an Nd: YVO 4 laser is used to divide the laser light emitted from the laser light source, and each wavelength varies depending on the wavelength conversion element such as PPSLT or PPLN. It is a preferable example that a difference frequency is generated using a DAST (4-dimethylamino-N-methyl-4-stillbazolium sylate) crystal or the like.

また、本実施形態では、連続螺旋型位相板13には、所定の面積を有する平行(コリメート)な光を入射させる必要があるため、この機能を有するコリメータ12を備えていることが望ましい。コリメータの例としては限定されるわけではないが、レンズやミラーを所望の機能を有するように組み合わせたものを例示することができる。また、平行な光の面積としては、連続螺旋型位相板の面積に合わせて適宜調節可能である。   In the present embodiment, since it is necessary for the continuous spiral phase plate 13 to receive parallel (collimated) light having a predetermined area, it is desirable to include the collimator 12 having this function. An example of the collimator is not limited, but a combination of lenses and mirrors having a desired function can be exemplified. The parallel light area can be adjusted as appropriate according to the area of the continuous spiral phase plate.

また本実施形態における連続螺旋型位相板13は、入射されるコリメートされたレーザー光を光渦に変化させるものである。図2は、本実施形態に係る連続螺旋型位相板(以下「本位相板」という。)13の概略を説明するための図である。   Moreover, the continuous spiral phase plate 13 in this embodiment changes incident collimated laser light into an optical vortex. FIG. 2 is a view for explaining an outline of a continuous spiral phase plate (hereinafter referred to as “the present phase plate”) 13 according to the present embodiment.

また本連続螺旋型位相板13の材料は、限定されるわけではないが、オレフィンポリマー樹脂であることが好ましい。オレフィンポリマー樹脂はテラヘルツ帯から可視領域までほぼ屈折率が一定であるため、発生したテラヘルツ光渦は広い帯域にわたって純度の高い光渦であるといえる。また、加工が容易であるといった効果もあり、この結果無段階で連続的に厚さの変わる螺旋形状が可能となる。   The material of the continuous helical phase plate 13 is not limited, but is preferably an olefin polymer resin. Since the olefin polymer resin has a substantially constant refractive index from the terahertz band to the visible region, it can be said that the generated terahertz light vortex is a high-purity optical vortex over a wide band. In addition, there is an effect that processing is easy, and as a result, a spiral shape in which the thickness continuously changes in a stepless manner is possible.

また、本図で示すように、本位相板13は、中心軸(想定される光の進行方向)に垂直な面に沿った直線が中心軸を中心に一周回転しつつ厚み方向に移動することにより形成される面に沿って構成されている。この結果、当該面は無段階で連続的となっている一方、当該直線が中心を一周した結果、段差面Sを生じさせることとなる。なおこの段差面の形状は長方形であって、厚さd(想定される光の進行方向における段差の高さ)は、下記式で示されるものとなっており、必要とされる波長に応じて適宜調整可能であるが、本実施形態において、材料の加工限界と材料の透過性を考慮すると、段差dの大きさは、1μm以上500μm以下の範囲としておくことが好ましく、より好ましくは12μm以上500μm以下の範囲内である。なお下記式中、nは屈折率であり、mはトポロジカルチャージを示す。
Further, as shown in the figure, the phase plate 13 moves in the thickness direction while a straight line along a plane perpendicular to the central axis (assumed light traveling direction) rotates around the central axis. It is comprised along the surface formed by. As a result, the surface is stepless and continuous, but the stepped surface S is generated as a result of the straight line going around the center. The shape of the step surface is a rectangle, and the thickness d (the height of the step in the assumed light traveling direction) is represented by the following formula, depending on the required wavelength. Although it can be adjusted as appropriate, in the present embodiment, considering the processing limit of the material and the permeability of the material, the size of the step d is preferably in the range of 1 μm to 500 μm, more preferably 12 μm to 500 μm. Within the following range. In the following formula, n is a refractive index, and m is a topological charge.

なお、本位相板13において、上記無段階の連続的な螺旋が形成された面の他方の面は限定されるわけではないが平面であることが好ましい。   In the phase plate 13, the other surface on which the stepless continuous spiral is formed is not limited, but is preferably a flat surface.

以上、本実施形態ではオレフィンポリマー樹脂(Tsurupica)を用いて連続螺旋位相板を用いることで、テラヘルツ帯の光渦を発生させることが可能となる。   As described above, in this embodiment, it is possible to generate a terahertz band optical vortex by using a continuous spiral phase plate using an olefin polymer resin (Tsurupica).

ここで、本実施形態に係る光渦発生方法(以下「本方法」という。)について説明する。本方法は、テラヘルツ帯域において透過性を有するオレフィンポリマー樹脂により構成される無段階の連続螺旋型位相板にテラヘルツ波長範囲のレーザー光を照射して光渦を発生させることを特徴とする。   Here, an optical vortex generation method (hereinafter referred to as “the present method”) according to the present embodiment will be described. This method is characterized in that an optical vortex is generated by irradiating laser light in a terahertz wavelength range onto a stepless continuous spiral phase plate composed of an olefin polymer resin having transparency in the terahertz band.

本方法において、平行光が本位相板に入射されるとその透過した距離に応じて位相の変調を受ける。そして本位相板は連続的に螺旋を描いているため変調を受ける量は厚みに依存する、すなわち螺旋的に変化していくこととなる。この結果、光渦を発生させることが可能となる。なお本位相板は、中心軸はそのままとして反対向きに配置することで反対の光渦を発生させることができる。   In this method, when parallel light enters the phase plate, it undergoes phase modulation in accordance with the transmitted distance. Since this phase plate continuously spirals, the amount of modulation depends on the thickness, that is, it changes spirally. As a result, an optical vortex can be generated. In addition, this phase plate can generate an opposite optical vortex by arranging it in the opposite direction with the central axis as it is.

以上、本装置を用いることで、テラヘルツ帯の光渦を発生させることができる。具体的には、本実施形態では、オレフィンポリマー樹脂はテラヘルツ領域から可視領域までほぼ屈折率が一定であり、発生したテラヘルツ光渦は広帯域にわたって純度の高い光渦となる。なおオレフィンポリマー樹脂は金型による作成が可能であるため加工が容易であり、無段階の連続螺旋形状にでき、位相変調を滑らかにすることが可能となる。   As described above, by using this apparatus, a terahertz band optical vortex can be generated. Specifically, in this embodiment, the refractive index of the olefin polymer resin is substantially constant from the terahertz region to the visible region, and the generated terahertz light vortex becomes a high-purity optical vortex over a wide band. Since the olefin polymer resin can be prepared with a mold, it is easy to process, can be formed into a continuous spiral shape, and the phase modulation can be made smooth.

ここで実際に連続螺旋型位相板を作成し、その効果を確認した。以下具体的に説明する。   Here, a continuous spiral phase plate was actually created and the effect was confirmed. This will be specifically described below.

まず、下記式で示される化合物からなり図3に示す透過率を有するオレフィンポリマー樹脂を用い、上記図2で示される形状の連続螺旋型位相板を作成した。この連続螺旋型位相板の寸法は、直径2cm、段差厚みは約290μmとした。この結果作成した位相板の写真図を図4に示す。   First, a continuous spiral phase plate having the shape shown in FIG. 2 was prepared using an olefin polymer resin made of a compound represented by the following formula and having the transmittance shown in FIG. The continuous spiral phase plate had a diameter of 2 cm and a step thickness of about 290 μm. A photograph of the resulting phase plate is shown in FIG.

ついで、図5で示されるように、Nd:YVO4レーザー(波長1064nm、繰り返し周波数1MHz、パルス幅7.4ps、出力14W)及びDAST結晶を含む光学系を用いてテラヘルツ帯差周波を発生させ、さらにコリメータを用いて平行光にした後、上記連続螺旋型位相板に照射し、その光をテラヘルツ帯に対応したカメラで撮影した。この結果を図6に示しておく。本図は、光学系の調整によって発生させた2THz(m=1)、4THz(m=2)、6THz(m=3)それぞれのテラヘルツ光渦のビームファイルを示すものである。また、図7には、位相板の向きを変え、トポロジカルチャージmの符号を逆にした場合の結果を示す。   Next, as shown in FIG. 5, a terahertz band difference frequency is generated using an optical system including an Nd: YVO4 laser (wavelength 1064 nm, repetition frequency 1 MHz, pulse width 7.4 ps, output 14 W) and DAST crystal, After collimated light using a collimator, the continuous spiral phase plate was irradiated and the light was photographed with a camera corresponding to the terahertz band. The result is shown in FIG. This figure shows beam files of terahertz light vortices of 2 THz (m = 1), 4 THz (m = 2), and 6 THz (m = 3) generated by adjusting the optical system. FIG. 7 shows the results when the direction of the phase plate is changed and the sign of the topological charge m is reversed.

これらの結果からわかるように、ビーム中央に光渦特有の暗点すなわち位相特異点をはっきり確認することができた。すなわち、ガウシアンテラヘルツビーム帯光渦で発生させていることが確認できた。   As can be seen from these results, a dark spot peculiar to the optical vortex, that is, a phase singularity was clearly confirmed in the center of the beam. In other words, it was confirmed that the light was generated by a Gaussian terahertz beam band optical vortex.

本発明は、光渦発生装置及びこれに用いられる連続螺旋型位相板並びに光渦発生方法として産業上の利用可能性がある。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability as an optical vortex generator, a continuous spiral phase plate used therefor, and an optical vortex generation method.

Claims (3)

1.2THz以上12THz以下のテラヘルツ帯域から可視領域において透過性を有するオレフィンポリマー樹脂により構成される連続螺旋型位相板であって、
10μm以上300μm以下の波長範囲における透過率が60%以上であり、
一方の面が、中心軸に垂直な面に沿った直線が前記中心軸を中心に一周回転しつつ厚み方向に移動することにより無段階の連続的な螺旋が形成された面であり、
他方の面が平面である連続螺旋型位相板。
A continuous spiral phase plate composed of an olefin polymer resin having transparency in a visible region from a terahertz band of 1.2 THz to 12 THz ,
The transmittance in the wavelength range of 10 μm or more and 300 μm or less is 60% or more,
One of the surfaces is a surface in which a straight line along a surface perpendicular to the central axis moves in the thickness direction while rotating around the central axis in the thickness direction, thereby forming a continuous spiral without any step.
A continuous spiral phase plate whose other surface is a flat surface.
1.2THz以上12THz以下のテラヘルツ帯域から可視領域において透過性を有するオレフィンポリマー樹脂により構成される連続螺旋型位相板であって、10μm以上300μm以下の波長範囲における透過率が60%以上であり、一方の面が、中心軸に垂直な面に沿った直線が前記中心軸を中心に一周回転しつつ厚み方向に移動することにより無段階の連続的な螺旋が形成された面であり、他方の面が平面である連続螺旋型位相板にテラヘルツ波長範囲のレーザー光を照射して光渦を発生させる光渦発生方法。 A continuous spiral phase plate composed of an olefin polymer resin having transparency in a visible region from a terahertz band of 1.2 THz to 12 THz, and a transmittance in a wavelength range of 10 μm to 300 μm is 60% or more, One surface is a surface on which a straight line along a surface perpendicular to the central axis is rotated in the thickness direction while rotating around the central axis in the thickness direction, thereby forming a stepless continuous spiral. An optical vortex generating method for generating an optical vortex by irradiating a continuous helical phase plate having a flat surface with laser light in a terahertz wavelength range. テラヘルツ帯域のレーザー光を発生させるレーザー光源部と、
前記レーザー光をコリメートさせるコリメータと、
入射されるコリメートされた前記レーザー光を光渦に変化させる連続螺旋型位相板と、を有する光渦発生装置であって、
前記連続螺旋型位相板は、
1.2THz以上12THz以下のテラヘルツ帯域から可視領域において透過性を有するオレフィンポリマー樹脂により構成される連続螺旋型位相板であって、
10μm以上300μm以下の波長範囲における透過率が60%以上であり。
一方の面が、中心軸に垂直な面に沿った直線が前記中心軸を中心に一周回転しつつ厚み方向に移動することにより無段階の連続的な螺旋が形成された面であり、
他方の面が平面である連続螺旋型位相板である、光渦発生装置。


A laser light source for generating terahertz laser light;
A collimator for collimating the laser beam;
An optical vortex generator having a continuous spiral phase plate that changes the incident collimated laser light into an optical vortex ,
The continuous spiral phase plate is
A continuous spiral phase plate composed of an olefin polymer resin having transparency in a visible region from a terahertz band of 1.2 THz to 12 THz,
The transmittance in the wavelength range of 10 μm or more and 300 μm or less is 60% or more.
One of the surfaces is a surface in which a straight line along a surface perpendicular to the central axis moves in the thickness direction while rotating around the central axis in the thickness direction, thereby forming a continuous spiral without any step.
An optical vortex generator, which is a continuous spiral phase plate whose other surface is a flat surface.


JP2014039285A 2014-02-28 2014-02-28 Optical vortex generator, continuous spiral phase plate used therefor, and optical vortex generation method Active JP6188079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014039285A JP6188079B2 (en) 2014-02-28 2014-02-28 Optical vortex generator, continuous spiral phase plate used therefor, and optical vortex generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014039285A JP6188079B2 (en) 2014-02-28 2014-02-28 Optical vortex generator, continuous spiral phase plate used therefor, and optical vortex generation method

Publications (2)

Publication Number Publication Date
JP2015163912A JP2015163912A (en) 2015-09-10
JP6188079B2 true JP6188079B2 (en) 2017-08-30

Family

ID=54186867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014039285A Active JP6188079B2 (en) 2014-02-28 2014-02-28 Optical vortex generator, continuous spiral phase plate used therefor, and optical vortex generation method

Country Status (1)

Country Link
JP (1) JP6188079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560425A (en) * 2019-09-20 2019-12-13 深圳先进技术研究院 Ultrasonic cleaning device, cleaning method and application thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206900B (en) * 2015-10-10 2017-10-20 浙江大学 A kind of orbital angular momentum snail phase-plate based on phase shift surface
CN105467600B (en) * 2016-01-12 2017-09-12 南开大学 The micro- spiral device of nonlinear dielectric
CN105739132A (en) * 2016-05-04 2016-07-06 南开大学 Asymmetrical micro-medium double-helix conical device
CN106159641B (en) 2016-09-05 2017-07-18 华讯方舟科技有限公司 Carry the generating means and production method of the THz wave of orbital angular momentum
CN106353898B (en) * 2016-10-25 2023-07-28 深圳大学 Optical vortex generating system
US10108069B2 (en) * 2017-01-24 2018-10-23 The Boeing Company Electromagnetic effect resistant spatial light modulator
CN108254943B (en) * 2018-02-06 2021-04-30 桂林电子科技大学 Phase plate capable of generating optical orbital angular momentum superposition state
US10788664B2 (en) * 2018-03-22 2020-09-29 Northrop Grumman Systems Corporation Scanning an optical beam about a field of regard with no moving parts
US10323934B1 (en) * 2018-04-02 2019-06-18 Northrop Grumman Systems Corporation Optical protractor to measure roll angle on a static surface and rotating surface
CN108803064B (en) * 2018-07-25 2023-07-28 深圳大学 Terahertz vortex beam generation device and method
US11531111B2 (en) 2019-05-21 2022-12-20 Northrop Grumman Systems Corporation 360 degrees field of view scanning lidar with no movable parts
US11448732B2 (en) 2019-05-21 2022-09-20 Northrop Grumman Systems Corporation Frequency modulated scanning LIDAR with 360 degrees field of view
US11555891B2 (en) 2019-05-21 2023-01-17 Northrop Grumman Systems Corporation Methods for large angle field of view scanning LIDAR with no movable parts
CN110579280B (en) * 2019-09-06 2023-12-22 中国人民解放军国防科技大学 Vortex wave measurement system and method based on terahertz time-domain spectroscopy technology
KR102539943B1 (en) * 2019-09-10 2023-06-08 한국기초과학지원연구원 Reflective spiral phase plate and laguerre gaussian beam generating appartus comprising the same
CN110811615A (en) * 2019-11-20 2020-02-21 中国科学院电子学研究所 Terahertz imaging method and device based on spiral phase contrast imaging
CN111370994B (en) * 2020-03-18 2020-12-22 长春理工大学 Vertical cavity surface emitting semiconductor laser with upper electrode and middle electrode pair distributed in angle
CN113064228A (en) * 2021-03-11 2021-07-02 江苏师范大学 Vortex light generating device and manufacturing method thereof
CN113311528A (en) * 2021-06-07 2021-08-27 广东工业大学 Composite spiral phase plate, system and method for generating composite vortex rotation
CN114994930B (en) * 2022-06-13 2024-01-19 中国计量大学 Vortex light beam generator based on multi-circle spiral nano groove structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013648A1 (en) * 2005-07-26 2007-02-01 National University Corporation Hokkaido University Light vortex generator, microobject operating unit, astronomical probing equipment, and polarization vortex transformation element
JP4963640B2 (en) * 2006-10-10 2012-06-27 キヤノン株式会社 Object information acquisition apparatus and method
JP2009300486A (en) * 2008-06-10 2009-12-24 Ricoh Co Ltd Optical equipment and optical apparatus
JP2013076770A (en) * 2011-09-29 2013-04-25 Olympus Corp Nonlinear optical microscope and nonlinear optical microscopy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560425A (en) * 2019-09-20 2019-12-13 深圳先进技术研究院 Ultrasonic cleaning device, cleaning method and application thereof

Also Published As

Publication number Publication date
JP2015163912A (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP6188079B2 (en) Optical vortex generator, continuous spiral phase plate used therefor, and optical vortex generation method
JP6997088B2 (en) How to generate terahertz radiation and terahertz radiation sources
KR102047612B1 (en) Optical system for laser optical rectification and wave front control
JP7416561B2 (en) Method for producing terahertz radiation and terahertz radiation source
JP2017528008A5 (en)
Khonina et al. Fractional axicon as a new type of diffractive optical element with conical focal region
Porfirev et al. Non-ring perfect optical vortices with p-th order symmetry generated using composite diffractive optical elements
EP2626742B1 (en) Wavelength converting apparatus, light source apparatus and wavelength converting method
Squires et al. 3D printing of aspherical terahertz lenses and diffraction gratings
Vaičaitis et al. Formation of Bessel beams with continuously variable cone angle
Laskin et al. Refractive field mapping beam shaping optics: important features for a right choice
Haddadi et al. Use of a diaphragm for transforming a LG10 beam into a Flat-Top
Cira et al. Transmission functions of optical choppers for Gaussian beam distributions: Modeling and simulations
JP6553477B2 (en) Manufacturing method of optical functional element
Dzyubenko et al. Plane circular gradient grating that combines the functions of a spherical mirror and a focusing lens
JP7446323B2 (en) Reflection and/or diffraction-based methods and apparatus for generating high-energy terahertz pulses
GB2512323A (en) Laser beam intensity profile modulator for top hat beams
US10082720B2 (en) Wavelength conversion element and wavelength conversion light pulse waveform shaping device
RU2454760C1 (en) Planar binary microlens
Laskin et al. Creating round and square flattop laser spots in microprocessing systems with scanning optics
Kolomiets For the anniversary of professor LL Doskolovich
Currie et al. Customised low-angle refractive diffusers for high power laser applications
JP6290704B2 (en) Method for manufacturing diffractive optical element
RU196429U1 (en) Airy beam forming device
JP6480152B2 (en) Light source device and light generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170727

R150 Certificate of patent or registration of utility model

Ref document number: 6188079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250