WO2007013648A1 - Light vortex generator, microobject operating unit, astronomical probing equipment, and polarization vortex transformation element - Google Patents

Light vortex generator, microobject operating unit, astronomical probing equipment, and polarization vortex transformation element Download PDF

Info

Publication number
WO2007013648A1
WO2007013648A1 PCT/JP2006/315092 JP2006315092W WO2007013648A1 WO 2007013648 A1 WO2007013648 A1 WO 2007013648A1 JP 2006315092 W JP2006315092 W JP 2006315092W WO 2007013648 A1 WO2007013648 A1 WO 2007013648A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
vortex
conversion element
optical
azimuth
Prior art date
Application number
PCT/JP2006/315092
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Oka
Ryuji Morita
Satoshi Tanda
Norihiko Nishiguchi
Atsushi Taniguchi
Taisuke Ogoshi
Original Assignee
National University Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University filed Critical National University Corporation Hokkaido University
Priority to JP2007526937A priority Critical patent/JP5017659B2/en
Publication of WO2007013648A1 publication Critical patent/WO2007013648A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another

Definitions

  • the present invention relates to an optical vortex generating device, a minute object manipulating device using an optical vortex, an astronomical exploration device, and a polarization vortex conversion element suitable for use in the optical vortex generating device.
  • An optical vortex is light (light flux) having a spiral wavefront (phase distribution).
  • the phase of the light at each point on this circle is the azimuth angle ⁇ (Fig. 1B).
  • the optical vortex is characterized by having an orbital angular momentum (torque) quantized around the optical axis and a dark line (a line where the light intensity becomes 0) along the optical axis.
  • the arrows in Fig. 2 indicate the pointing vector.
  • the first method uses a pair of cylindrical lenses (see, for example, Miles Padgett, Johannes Courtial, and Les Allen, May 2004 Physics Today 35).
  • high-order mode Hermite-Gaussian (HG) mode
  • HG Hermite-Gaussian
  • LG Laguerre-Gaussian
  • a vortex 1 0 4 is generated.
  • the second method uses a glass plate having a spiral thickness distribution.
  • the laser beam 1 1 1 emitted from the laser device 1 1 1 is passed through a collimator 1 1 3 consisting of two lenses 1 1 3 a and 1 1 3 b in parallel.
  • a light vortex 1 15 is generated by passing the light through a glass plate 1 1 4 having a spiral thickness distribution.
  • FIG. 6 shows an example of the glass plate 1 1 4. As shown in Fig. 6, in this glass plate 1 1 4, the thickness and hence the light transmission distance is from ho to h with respect to the azimuth angle ⁇ . It has a spiral distribution that changes to + h s. Reflecting this, the phase distribution of transmitted light is also spiral.
  • the third method uses a reflector having a spiral thickness distribution.
  • this reflector is used instead of the glass plate 1 1 4 in FIG.
  • the phase distribution of the reflected light is also spiraled, reflecting the spiral distribution of this mirror.
  • the fourth method uses holography (see, for example, Miles Padgett, Johannes Courtial, and Les Allen, May 2004 Physics Today 35).
  • This method uses a hologram in which the refractive index distribution is helical, and the phase distribution of transmitted light is also helical to reflect this.
  • this hologram for example, a triple dislocation hologram is used. Then, by making a plane wave incident on this hologram, an optical vortex is generated as first-order diffracted light. .
  • phase discontinuities almost always exist, and this causes noise generation, which is one of the obstacles to the application of optical vortices.
  • the phase change width when making a round around the central axis is TL [(n-1) h s / ⁇ ] (where ⁇ is the refractive index of the glass plate 1 1 4 and ⁇ is the wavelength of the laser beam 1 1 2).
  • is the refractive index of the glass plate 1 1 4
  • is the wavelength of the laser beam 1 1 2).
  • the conventional optical vortex generation method described above has a drawback that the orbital angular momentum of the obtained optical vortex varies greatly depending on the wavelength.
  • the phase change width when making a round around the central axis is 2; [(n ⁇ 1) h s / e] Yes, even if the wavelength dependence of n is ignored, it varies greatly in inverse proportion to the wavelength.
  • the orbital angular momentum is blurred, and the efficiency of photoexcitation is unavoidable. Also, when using optical vortices for exploring extrasolar planets in astronomy, it is required to use light in a wide wavelength band in order to effectively use light from weak planets. Dependency causes a decrease in exploration accuracy. .
  • the problem to be solved by the present invention is based on a novel operating principle, which is achromatic and has no phase discontinuity line regardless of the wavelength of the light source.
  • An optical vortex generator that can easily generate an optical vortex with extremely small wavelength dependency of the step, and an astronomical exploration device such as a micro object manipulation device and a planetary exploration device to which this optical vortex generator is applied. That is.
  • Another problem to be solved by the present invention is to provide a polarization vortex conversion element suitable for use in the above-described optical vortex generator. Disclosure of the invention
  • the first invention is:
  • a polarization vortex conversion element arranged so that circularly polarized light emitted from the first optical system is incident, and has linear birefringence and / or linear dichroism, and the polarization characteristic is the center of coordinates.
  • Each point on the same radius is constant except for the main axis azimuth, and the main axis azimuth of each point above it is proportional to the coordinate azimuth.
  • a second optical system arranged so that light emitted from the polarization vortex conversion element is incident thereon, wherein the circular polarization component has a direction opposite to the circular polarization from the light emitted from the polarization vortex conversion element. It is an optical vortex generator characterized by having an extractor.
  • This optical vortex generator does not require a light source when generating optical vortices using coherent light incident from the outside of the device, for example, when inputting stellar light and planetary light as coherent light in planetary exploration. Otherwise, it further has a light source that generates coherent light.
  • a laser light source is typically used as this light source, but is not limited to this.
  • the polarization vortex conversion element described above has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the main axis at each point on the same radius from the coordinate center.
  • the azimuth angle of the principal axis of each point above it is proportional to the azimuth angle of the coordinates.
  • This is a normal polarizer that converts the incident light into linear polarization in one direction, and the long axis of the incident light.
  • Elliptical polarization in one direction It is a special one that is different from ordinary phase shifters that convert to.
  • the polarization vortex is elliptically polarized light (including linearly polarized light and circularly polarized light) having the same ellipticity on the same coordinate radius, and the major axis azimuth of the polarized ellipse is the coordinate. It is proportional to the azimuth angle.
  • Having linear birefringence and / or linear dichroism means having at least one of linear birefringence or linear dichroism, but circular birefringence or circular dichroism. May further be included.
  • the fact that the azimuth angle of the principal axis of each point is proportional to the azimuth angle of the coordinate means that the direction of the coordinate axis for describing the polarization characteristics is different for each point.
  • ⁇ ⁇ / 2 (where ⁇ is an integer other than 0), where the azimuth of the principal axis of each point on this polarization vortex transducer is ⁇ and the azimuth of the coordinates is 6.
  • the light transmitted through the polarization vortex conversion element is swirled around the optical axis, that is, a polarization vortex (the optical axis becomes a singular point at this time). Then, when this light passes through the second optical system, the wavefront becomes a vortex around the optical axis, and an optical vortex is obtained.
  • the phase of each point of the optical vortex generated in this way is determined by the azimuth angle of each point of the polarization vortex converter, and does not depend on the wavelength of the light source.
  • phase discontinuity lines may not be generated as in the conventional optical vortex generation method using a glass plate with a spiral thickness distribution. Even so, the wavelength dependence of the phase difference in the discontinuous line is extremely small. .
  • polarization vortex conversion elements can be used. Specifically, for example, one using a photoelastic material, one using a birefringent medium such as a liquid crystal, one having a plurality of wedge-shaped polarizing plates arranged radially, and having an interval smaller than the wavelength of coherent light. It has a periodic structure with radial orientation.
  • a polarization vortex conversion element using a birefringent medium such as a photoelastic material or liquid crystal has linear birefringence, and has a plurality of A polarization vortex conversion element in which wedge-shaped polarizing plates are arranged radially has a linear dichroism (however, one component is completely attenuated), and a polarization vortex having a periodic structure with radial azimuth smaller than the wavelength of coherent light.
  • the conversion element has linear birefringence and linear dichroism.
  • the first optical system may have any configuration as long as it can convert coherent light into circularly polarized light.
  • a polarizer that converts coherent light into linearly polarized light in one direction and the polarizer One with a quarter-wave plate in the latter stage and one with a circular dichroic material.
  • the second optical system is not limited in its configuration as long as it can extract a circularly polarized component in the direction opposite to the circularly polarized light from the light emitted from the polarization vortex conversion element.
  • it has a quarter-wave plate on which light emitted from the polarization vortex conversion element is incident and an analyzer at the subsequent stage of the quarter-wave plate. .
  • the second invention is a first invention.
  • a polarization vortex conversion element arranged so that circularly polarized light emitted from the first optical system is incident, and has linear birefringence and / or linear dichroism, and the polarization characteristic is the center of coordinates.
  • Each point on the same radius is constant except for the main axis azimuth, and the main axis azimuth of each point above it is proportional to the coordinate azimuth.
  • a second optical system arranged so that light emitted from the polarization vortex conversion element is incident thereon, wherein a circular polarization component in a direction opposite to the circular polarization is obtained from the light emitted from the polarization vortex conversion element;
  • a device for manipulating a micro object characterized by having an extractor.
  • an optical vortex is generated by the same configuration as the optical vortex generator according to the first invention, and a micro object, for example, a micro Particles (such as atoms) can be trapped and rotated.
  • a micro object for example, a micro Particles (such as atoms) can be trapped and rotated.
  • the third invention is a first invention.
  • a polarization vortex conversion element arranged so that circularly polarized light emitted from the first optical system is incident, and has linear birefringence and / or linear dichroism, and the polarization characteristic is the center of coordinates.
  • Each point on the same radius is constant except for the main axis azimuth, and the main axis azimuth of each point above it is proportional to the coordinate azimuth.
  • a second optical system arranged so that light emitted from the polarization vortex conversion element is incident thereon, wherein a circular polarization component in a direction opposite to the circular polarization is obtained from the light emitted from the polarization vortex conversion element;
  • An astronomical exploration device characterized by having an extractor.
  • this astronomical exploration device for example, the same configuration as the optical vortex generator according to the first invention, that is, the optical axes of the first optical system, the polarization vortex conversion element, and the second optical system are made to coincide with the stellar light.
  • the optical vortex has a dark line along the optical axis, strong star light can be extinguished, so weak planetary light can be detected and exoplanet exploration can be performed with high accuracy. Can be done.
  • this astronomical exploration device can also detect, for example, binary stars (multiple stars that are coupled by gravity and are orbiting) (called high-contrast imaging). Can be done.
  • the fourth invention is: It has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the principal axis at each point on the same radius from the center of the coordinates, and the azimuth angle of the principal axis of each point is A polarization vortex conversion element proportional to the azimuth angle of coordinates,
  • a photoelastic material is used.
  • the fifth invention is:
  • This is characterized in that a medium having birefringence is used.
  • the sixth invention is:
  • a plurality of wedge-shaped polarizing plates are arranged radially.
  • the seventh invention is a.
  • FIG. 1A and 1B are schematic diagrams for explaining optical vortices
  • FIG. 1 is a schematic diagram showing an example of optical vortices
  • FIG. 3 is a schematic diagram of a conventional optical vortex generation method.
  • FIG. 4 is a schematic diagram illustrating a double prism used in place of the cylindrical lens pair in the conventional optical vortex generator shown in FIG. 3, and
  • FIG. 5 is a schematic diagram illustrating the example of 1.
  • Fig. 6 is a schematic diagram for explaining a second example of the conventional optical vortex generation method. Fig. 6 shows the spiral thickness distribution used in the second example of the conventional optical vortex generation method.
  • FIG. 7 is a schematic diagram showing an optical vortex generator according to the first embodiment of the present invention, and FIG.
  • FIG. 8 is an optical vortex generation according to the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a polarization vortex conversion element used in the apparatus.
  • FIG. 9 is a diagram used in the optical vortex generator according to the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a first example of a polarization vortex conversion element to be manufactured, and
  • FIG. 10 is a diagram of a first example of a polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention.
  • FIG. 11 and FIG. 12 are schematic diagrams for explaining a manufacturing method.
  • FIG. 11 shows a second example of the polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention.
  • FIG. 13 and 14 are schematic diagrams illustrating a third example of a polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention.
  • FIG. FIGS. 15 and 16 are schematic diagrams showing a fourth example of the polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention
  • FIG. FIG. 4 is a schematic diagram for explaining the principle of a fourth example of the polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the invention
  • FIG. 18 shows circularly polarized light incident on the polarization vortex conversion element in the optical vortex generator according to the first embodiment of the present invention.
  • FIG. 19 is a schematic diagram for explaining the function of the polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention
  • FIG. FIG. 2 is a schematic diagram for explaining the function of a polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention
  • FIG. 21 shows an optical vortex according to the first embodiment of the present invention
  • Fig. 22 is a schematic diagram for explaining an example in which the generator is applied to the operation of fine particles.
  • Fig. 22 is a schematic diagram showing the experimental system used in Example 1 of the present invention.
  • Fig. 24 is a schematic diagram showing the interference pattern between the optical vortex and the plane wave obtained in Example 1 of the present invention.
  • FIG. 24 shows the interference between the optical vortex and the spherical wave obtained in Example 1 of the present invention.
  • FIG. 25 is a schematic diagram showing the polarization vortex conversion element used in Example 1 of the present invention.
  • FIG. 16 is a schematic diagram showing an experimental system used in Example 2 of the present invention.
  • FIGS. 27A and 27B are optical vortices obtained in Example 2 of the present invention.
  • Fig. 28A and Fig. 28B are schematic diagrams showing the interference pattern between the optical vortex and the spherical wave obtained in Example 1 of the present invention.
  • FIG. 29 is a schematic diagram showing an optical vortex generator according to a second embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 7 shows an optical vortex generator according to the first embodiment of the present invention.
  • this optical vortex generator includes a coherent light source 1, an optical system 3 that converts coherent light 2 emitted from the coherent light source 1 into circularly polarized light, and a linear compound.
  • polarization characteristics are constant at each point on the same radius from the center of the coordinate except for the main axis azimuth, and the main axis azimuth of each point is the coordinate Proportional to azimuth
  • a light vortex 6 is emitted from 5.
  • the coherent light source 1 includes a laser device 1 1 and a collimator 1 2 composed of two lenses 1 2 a and 1 2 b.
  • the optical system 3 includes a polarizer 3 1 that converts coherent light 2 into linearly polarized light in one direction, and a quarter-wave plate 3 2 at the subsequent stage.
  • the optical system 5 includes a 1/4 wavelength plate 5 1 and an analyzer 5 2 at the subsequent stage.
  • FIG. 9 shows the first example, which is a polarization vortex conversion element 4 made of a photoelastic material.
  • this polarization vortex conversion element 4 can be manufactured by preparing a disk-like photoelastic material 71 and applying uniform compression in the radial direction from the outside.
  • the photoelastic material 71 conventionally known materials such as glass, epoxy resin, and optical crystal can be used.
  • a polarization vortex conversion element 4 is artificially made using a birefringent medium such as a liquid crystal or a crystal, and the radial main axis is formed by combining the birefringent medium in a radiant form.
  • a birefringent medium such as a liquid crystal or a crystal
  • the radial main axis is formed by combining the birefringent medium in a radiant form.
  • the first A polarization vortex conversion element 4 shown in FIG. 1 is a nematic liquid crystal cell in which liquid crystal molecules 72 are aligned using a radially rubbed substrate.
  • the polarization vortex conversion element 4 shown in FIG. 11 has an azimuth angle (change of ⁇ is one revolution of four, but may be of any number of revolutions (however, two redundant integer multiples), for example, FIG. As shown in Fig. 4, the change in azimuth may be 8 ⁇ .
  • a polarization vortex conversion element 4 having a radial orientation distribution is configured by arranging a plurality of wedge-shaped polarizing plates 73 in a radial pattern so as to form a circular shape as a whole.
  • a polarization vortex conversion element 4 having any number of laps can be configured.
  • the outer shape of the polarization vortex conversion element 4 is not limited to a circle, and may be, for example, a square.
  • the polarization vortex conversion element 4 is configured by a sub-wavelength periodic structure having a radial direction with an interval smaller than the wavelength of the coherent light 2. For example, as shown in FIG. 15, by preparing a disk-shaped transparent substrate and irradiating it with an electron beam, etc., by forming grooves 4 1 at intervals smaller than the wavelength of the coherent light 2, A polarization vortex conversion element 4 having a principal axis (one of them) in the direction of the groove 41 can be produced. As shown in Fig. 16, a polarization vortex transducer 4 with any number of laps (however, two redundant integers) can be fabricated.
  • the condition ⁇ ⁇ is necessary. In other words, if ⁇ ; L, no diffracted light is emitted. At this time, the complex refractive index for the electric field of light differs between the direction parallel to the grating and the direction perpendicular to the grating.
  • this diffraction grating that is, the sub-wavelength periodic structure, works as a polarization vortex conversion element.
  • this sub-wavelength periodic structure a ring-like crystal (see, for example, Japanese Patent Laid-Open No. 2000-0175 579) can also be used.
  • the Jones vector of the light emitted from the optical system 3 is the clockwise circularly polarized light.
  • optical system 5 The function to extract clockwise circularly polarized light of optical system 5 is
  • J is the Jones matrix of the polarization vortex transducer 4 when the coordinate axis is taken in the principal axis direction.
  • the polarization vortex conversion element 4 is J can depend on the radius (r in Fig. 8) and wavelength; L because it has the same polarization characteristics except for the principal axis direction on the same radius of the mark.
  • R ( ⁇ ) does not depend on the radius or wavelength.
  • the polarization vortex conversion element 4 according to the first and second examples described above has linear birefringence
  • the polarization vortex conversion element '4 according to the fourth example can have both linear birefringence and linear dichroism.
  • this optical vortex generator is described by Jones calculation.
  • the circularly polarized light incident on the polarization vortex conversion element 4 is a clockwise circularly polarized light and the optical system 5 extracts a counterclockwise circularly polarized light component.
  • the electric field of the light emitted from the analyzer 5 2 of the optical system 5 is
  • Figure 18 shows right-handed circularly polarized light incident on the polarization vortex transducer 4.
  • the X component of this clockwise circularly polarized electric field is expressed as a c 0 s ( ⁇ t), and the y component is expressed as a c o s ( ⁇ t + 7/2).
  • a is amplitude
  • is angular frequency
  • t is time.
  • the y component has a phase advance of / 2 relative to the X component. If the coordinates are ( ⁇ rotated for this clockwise circularly polarized light, the phase shifts. For the counterclockwise circularly polarized light, the phase shifts.
  • the light emitted from the polarization vortex conversion element 4 can be viewed as a superposition of a clockwise circularly polarized component and a counterclockwise circularly polarized component.
  • the point at P 2 towards the right-handed circularly polarized light component, the point at P 2 have the same initial phase. This is because the phase shift in the principal axis direction between the point P 2 and the point described above is canceled by the coordinate rotation when converting to clockwise circularly polarized light.
  • the result towards the point P 2 is the sub-routine proceeds + 2 with respect to the point P i as. This is the reason why the phase of the counterclockwise circularly polarized component of the light emitted from the polarization vortex conversion element 4 is an optical vortex.
  • the phase of the optical vortex generated by this optical vortex generator does not depend on the wavelength of the coherent light 2 in principle. That is, according to this optical vortex generator, an agromatic optical vortex can be generated. Actually, there may be some wavelength dependence due to the dispersion of the quarter-wave plates 3 2 and 5 1, etc., but at least the wavelength dependence is significantly higher than that of conventional optical vortex generators. In addition, the wavelength dependence can be further reduced by using an achromatic material such as the quarter-wave plate 3 2 or 5 1. Note that the light intensity of the optical vortex itself is affected by the dispersion of the polarization vortex conversion element 4.
  • the polarization vortex conversion element 4 is not dependent on the wavelength; L, in other words, if the matrix J is independent of the wavelength, an achromatic optical vortex including the light intensity can be created.
  • L in other words, if the matrix J is independent of the wavelength, an achromatic optical vortex including the light intensity can be created.
  • a polarization vortex conversion element 4 there can be mentioned one in which a plurality of wedge-shaped polarizing plates 73 as shown in FIG. 13 are arranged radially.
  • the polarization vortex conversion element 4 has an azimuth angle ( ⁇ direction is continuous everywhere except for a plurality of wedge-shaped polarizing plates 7 3 arranged in a radial pattern.
  • This optical vortex generator can generate a good optical vortex even when, for example, a laser device 11 having a wide band (such as a Super Continuum light source) is used.
  • This optical vortex generator can be used, for example, as a minute object manipulation device (manipulator). That is, as shown in Fig. 21, the micro-particles 74 are optically trapped by the optical vortex 6 generated by this optical vortex generator (optical tweezers), and the orbital angular momentum ( Torque) can be transferred to the microparticles 74 and rotated.
  • manipulator minute object manipulation device
  • the first example made of a photoelastic material was used. Prepare a disk-shaped photoelastic material 7 1 as a disk-shaped epoxy resin with a diameter of 48 mm and a thickness of 3 mm, and support it at four points 90 ° apart from each other. A polarization vortex conversion element 4 as shown in Fig. 9 was produced by compressing in the radial direction.
  • FIG. 12 shows the experimental system.
  • a coherent light 2 it passes through a collimator 1 2 consisting of two lenses 1 2 a and 1 2 b to form a parallel light beam, which is incident on a beam splitter 8 1 and divided into two.
  • One of the coherent lights 2 divided by the beam splitter 8 1 is reflected by the reflecting mirror 82 and sequentially passed through the polarizer 3 1 and the quarter-wave plate 3 2 of the optical system 3 as described above.
  • the light is incident on the produced polarization vortex conversion element 4 and emitted from the polarization vortex conversion element 4.
  • the coherent light 2 is sequentially passed through the quarter-wave plate 5 1 and the analyzer 5 2 of the optical system 5 and then extracted through the beam splitter 8 3.
  • the other coherent light 2 divided into two by the beam split 8 1 is sequentially reflected by the reflecting mirror 84 4 and the beam splitter 8 3 and taken out.
  • Figure 23 shows an image of the interference pattern between the optical vortex and the plane wave obtained by the above experimental system. As can be seen from Fig. 23, an inverted Y-shaped fringe characteristic of the interference fringe between the optical vortex and the plane wave was observed near the center of the image.
  • Figure 24 shows an image of the interference between the optical vortex and the spherical wave obtained by the above experimental system. As can be seen from Fig. 24, a vortex interference fringe, which is a feature of the interference fringe between the optical vortex and the spherical wave, was observed near the center of the image.
  • each wedge-shaped polarizing plate 73 has a bottom length of 15 mm and a thickness of about 0.3 mm, and was formed by cutting a sheet polarizer.
  • Figure 26 shows the experimental system.
  • a He-Ne laser was used as the laser device 1 1 and this He-N e Laser light generated by the laser is made coherent light 2 and incident on the beam splitter 8 1 to be split into two.
  • One beam of light 2 divided into two by this beam split 8 1 is reflected by a reflecting mirror 8 2 and is sequentially passed through the polarizer 3 1 and the quarter wave plate 3 2 of the optical system 3.
  • the coherent light 2 incident on the polarization vortex conversion element 4 manufactured as described above and emitted from the polarization vortex conversion element 4 is applied to the quarter wave plate 5 1 and the analyzer 5 2 of the optical system 5.
  • the spatial frequency filtering device 86 After passing sequentially and further passing through the spatial frequency filtering device 86, the convex lens 87 and the beam splitter 83 are sequentially passed through and taken out.
  • the spatial frequency filtering device 8 6 includes a convex lens 8 6 a and a pinhole 8 6 b.
  • the other coherent light 2 divided into two by the beam splitter 8 1 is sequentially reflected by the reflecting mirror 8 4 and the beam splitter 8 3 and extracted.
  • An image of the interference pattern between the optical vortex and the plane wave obtained by the above experimental system is shown.
  • Fig. 27A and Fig. 27B as the interference fringes are traced, a place where the number of fringes changes near the center of the image can be seen. This is the interference fringe between the optical vortex and the plane wave, the red wavelength and the green wavelength It was observable in the rainy day.
  • Figure 6 shows an image of the interference pattern between the optical vortex and the spherical wave obtained by the above experimental system. As can be seen from Fig. 28A and Fig. 28B, vortex interference fringes are visible near the center of the image. This is an interference fringe between an optical vortex and a spherical wave, and was observed at both red and green wavelengths.
  • FIG. 29 shows an optical vortex generator according to a second embodiment of the present invention.
  • this optical vortex generator has the same configuration as the optical vortex generator according to the first embodiment, except that it does not have a coherent light source 1.
  • the coherent light 2 enters the optical system 3 from the outside of the optical vortex generator.
  • This optical vortex generator can be used, for example, for astronomical exploration, specifically for exploring extrasolar planets.
  • powerful star light can be extinguished by aligning it with the optical axis of this optical vortex generator, so it is possible to detect faint planetary light that deviates from the optical axis with high accuracy and to perform planetary exploration with high accuracy. Can be done.
  • the polarization vortex conversion element has linear birefringence and / or linear dichroism
  • the polarization characteristic is the azimuth angle of the principal axis at each point on the same radius from the center of the coordinates.
  • the azimuth angle of the principal axis of each point above it is proportional to the azimuth angle of the coordinates
  • the phase shifter is an element having linear birefringence
  • the polarizer is a straight line Extremely dichroic, that is, an element that almost completely eliminates one polarization component, but the phase shifter and polarizer itself do not use linear birefringence or linear dichroism.
  • the condition of having linear birefringence and / or linear dichroism is that the amplitude ratio between two linearly polarized light components orthogonal to the transmitted light and / Or the condition of having the property of changing the phase difference It is also possible to extend.
  • this optical vortex generation principle it is possible to realize a high-performance micro-object manipulation device or an astronomical exploration device such as an extrasolar planet exploration device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

A light vortex generator comprising a first optical system for transforming coherent light into circularly polarized light, a polarization vortex transformation element arranged to receive circularly polarized light exiting from the first optical system, and a second optical system arranged to receive light exiting from the polarization vortex transformation element. The polarization vortex transformation element has linear birefringence and/or linear dichroism, its polarization characteristics are constant at each point on the same radius from the center of coordinate excluding the azimuth of main axis, and the azimuth of main axis at each point thereon is proportional to the azimuth of coordinate. The second optical system extracts the circularly polarized light component of reverse direction to that of the above-mentioned circularly polarized light from the light exiting from the polarization vortex transformation element.

Description

明 細 書 光渦発生装置、 微小物体操作装置、 天体探査装置および偏光渦変換 素子 技術分野  Technical Document Optical Vortex Generator, Micro Object Manipulator, Astronomical Exploration Device, and Polarized Vortex Transformer Technical Field
この発明は、 光渦発生装置ならびに光渦を用いる微小物体操作装置 および天体探査装置ならびにこの光渦発生装置に用いて好適な偏光渦 変換素子に関する。 背景技術  The present invention relates to an optical vortex generating device, a minute object manipulating device using an optical vortex, an astronomical exploration device, and a polarization vortex conversion element suitable for use in the optical vortex generating device. Background art
光渦はらせん状の波面 (位相分布) を有する光 (光束) である。 光 渦では、 光軸 (光の進行軸) に垂直な面内に光軸を中心とする円を考 えた場合 (第 1図 A) 、 この円上の各点の光の位相は方位角 Θに比例 する (第 1図 B ) 。 光渦は、 光軸の周りに量子化された軌道角運動量 (トルク) を有し、 また、 光軸に沿って暗線 (光強度が 0となる線) を有することが特徴である。 この軌道角運動量は一光子当たり L = 1 ( h/ 2 π ) (ただし、 hはプランク定数、 1 は量子数で任意の整数 を取る) である。 一例として 1 =_ 1の光渦を第 2図に示す (例えば、 Miles Padgett, Johannes Courtial, and Les Al len, May 2004 Phys ics Today 35参照。 ) 。 第 2図中の矢印はボインティング ·ベク トル を示す。  An optical vortex is light (light flux) having a spiral wavefront (phase distribution). In the optical vortex, when a circle centered on the optical axis is considered in a plane perpendicular to the optical axis (light traveling axis) (Fig. 1A), the phase of the light at each point on this circle is the azimuth angle Θ (Fig. 1B). The optical vortex is characterized by having an orbital angular momentum (torque) quantized around the optical axis and a dark line (a line where the light intensity becomes 0) along the optical axis. This orbital angular momentum is L = 1 (h / 2 π) per photon (where h is Planck's constant, 1 is a quantum number and an arbitrary integer). As an example, the optical vortex with 1 = _ 1 is shown in Fig. 2 (see, for example, Miles Padgett, Johannes Courtial, and Les Allen, May 2004 Physics Today 35). The arrows in Fig. 2 indicate the pointing vector.
上記のような光渦の特異な性質を使うと、 例えば、 光卜ラップされ た微粒子の回転、 リング状結晶やカーボンナノチューブなどの円環 · 円筒構造を持つナノ物質の光励起、 太陽系外惑星探査のためのコロナ グラフ (強力な恒星光を暗線を使って消し、 光軸からずれた微弱な惑 星光を検出する) などが可能となる。 このため、 様々な分野で、 この 光渦の性質を積極的に利用する試みが精力的に行われている。 Using the unique properties of the optical vortex as described above, for example, rotation of microscopically wrapped fine particles, photoexcitation of nanomaterials with ring / cylindrical structures such as ring crystals and carbon nanotubes, and exploration of extrasolar planets Corona graph for faint stellar light that is off the optical axis Detecting starlight). For this reason, in various fields, attempts to positively use the properties of this optical vortex are being made energetically.
従来、 光渦の発生方法としてはいくつかの方法が提案されている。 第 1の方法はシリンドリカルレンズ対を用いる方法である (例えば、 Miles Padgett, Johannes Courtial, and Les Allen, May 2004 Phys ics Today 35参照。 ) 。 この方法では、 第 3図に示すように、 κ / 1 モード変換器を構成するシリ ンドリカルレンズ対 1 0 1 に高次モード (Hermite-Gaussian (H G) モード) のレーザ光 1 0 2を入射させて 低次モード (Laguerre- Gaussian ( L G) モード) に変換し、 さらに これを冗モード変換器を構成するシリ ンドリカルレンズ対 1 0 3に入 射させて逆 L Gモードに変換することにより光渦 1 0 4を発生させる。 実用的には、 シリンドリカルレンズ対 1 0 3の代わりに、 第 4図に示 すようなダブ ( Dove) プリズムを用いるのが簡便である。  Conventionally, several methods have been proposed as methods for generating optical vortices. The first method uses a pair of cylindrical lenses (see, for example, Miles Padgett, Johannes Courtial, and Les Allen, May 2004 Physics Today 35). In this method, as shown in Fig. 3, high-order mode (Hermite-Gaussian (HG) mode) laser light 10 2 is incident on the cylindrical lens pair 10 1 constituting the κ / 1 mode converter. To a low-order mode (Laguerre-Gaussian (LG) mode), which is then incident on the cylindrical lens pair 10 3 constituting the redundant mode converter and converted to the inverse LG mode. A vortex 1 0 4 is generated. Practically, it is convenient to use a Dove prism as shown in Fig. 4 instead of the cylindrical lens pair 103.
第 2の方法はらせん状の厚さ分布を有するガラス板を用いる方法で ある。 この方法では、 第 5図に示すように、 レーザ装置 1 1 1から射 出されるレーザ光 1 1 1を二枚のレンズ 1 1 3 a、 1 1 3 bからなる コリメータ 1 1 3に通して平行光束とし、 これをらせん状の厚さ分布 を有するガラス板 1 1 4に通すことにより光渦 1 1 5を発生させる。 第 6図にガラス板 1 1 4の一例を示す。 第 6図に示すように、 このガ ラス板 1 1 4では、 厚さ、 従って光の透過距離が方位角 Θに対して ho から h。 + hs に変化する、 らせん状の分布を有しており、 これを反 映して透過光の位相分布もらせん状になる。 The second method uses a glass plate having a spiral thickness distribution. In this method, as shown in FIG. 5, the laser beam 1 1 1 emitted from the laser device 1 1 1 is passed through a collimator 1 1 3 consisting of two lenses 1 1 3 a and 1 1 3 b in parallel. A light vortex 1 15 is generated by passing the light through a glass plate 1 1 4 having a spiral thickness distribution. FIG. 6 shows an example of the glass plate 1 1 4. As shown in Fig. 6, in this glass plate 1 1 4, the thickness and hence the light transmission distance is from ho to h with respect to the azimuth angle Θ. It has a spiral distribution that changes to + h s. Reflecting this, the phase distribution of transmitted light is also spiral.
第 3の方法はらせん状の厚さ分布を有する反射鏡を用いる方法であ る。 この方法では、 第 5図において、 ガラス板 1 1 4の代わりにこの 反射鏡を用いる。 この反射鏡では、 この鏡の高き分布がらせん状にな つていることを反映して反射光の位相分布もらせん状になる。 第 4の方法はホログラフィを用いる方法である (例えば、 Miles Pa dgett, Johannes Courtial, and Les Allen, May 2004 Physics Toda y 35参照。 ) 。 この方法では、 屈折率の分布がらせん状になっており、 これを反映して透過光の位相分布もらせん状になっているホログラム を用いる。 このホログラムとしては、 例えば、 三重の転位ホログラム を用いる。 そして、 このホログラムに平面波を入射させることにより、 一次'回折光として光渦を発生させる。 . The third method uses a reflector having a spiral thickness distribution. In this method, this reflector is used instead of the glass plate 1 1 4 in FIG. In this reflector, the phase distribution of the reflected light is also spiraled, reflecting the spiral distribution of this mirror. The fourth method uses holography (see, for example, Miles Padgett, Johannes Courtial, and Les Allen, May 2004 Physics Today 35). This method uses a hologram in which the refractive index distribution is helical, and the phase distribution of transmitted light is also helical to reflect this. As this hologram, for example, a triple dislocation hologram is used. Then, by making a plane wave incident on this hologram, an optical vortex is generated as first-order diffracted light. .
Gabriel Biener, Avi Niv, Vladimir Kleiner, and Erez Hasman, OPTICS LETTERS, 27, 1875 (2002)には、 Pancharatnam-Berry位相光学 素子を用いてらせん状ビーム、 すなわち光渦を発生する方法が提案さ れているが、 この発明による光渦発生装置の構成については開示され ていない。  Gabriel Biener, Avi Niv, Vladimir Kleiner, and Erez Hasman, OPTICS LETTERS, 27, 1875 (2002) proposed a method of generating a spiral beam, that is, an optical vortex, using a Pancharatnam-Berry phase optical element. However, the configuration of the optical vortex generator according to the present invention is not disclosed.
上述の従来の光渦発生方法では、 位相の不連続線がほぼ必ず存在し、 これが雑音発生の原因になることにより、 光渦の応用の上で障害の一 つとなっていた。 例えば、 第 6図に示すような厚さ分布を有するガラ ス板 1 1 4を用いる場合には、 中心軸の周りに一周したときの位相変 化幅は TL [ (n— 1 ) hs / λ] (ただし、 ηはガラス板 1 1 4の 屈折率、 λはレーザ光 1 1 2の波長) となる。 この値を 2冗の整数倍 に正確に合わせるには、 ガラス板に nmクラスの精度での加工を施す ことが必須となる。 これは極めて困難であり、 結果として位相の不連 続線の存在が不可避となる。 In the conventional optical vortex generation method described above, phase discontinuities almost always exist, and this causes noise generation, which is one of the obstacles to the application of optical vortices. For example, when a glass plate 1 1 4 having a thickness distribution as shown in Fig. 6 is used, the phase change width when making a round around the central axis is TL [(n-1) h s / λ] (where η is the refractive index of the glass plate 1 1 4 and λ is the wavelength of the laser beam 1 1 2). To accurately match this value to an integer multiple of 2 redundant, it is essential to process the glass plate with nm-class accuracy. This is extremely difficult, and as a result, the existence of phase discontinuities is inevitable.
また、 上述の従来の光渦発生方法では、 得られる光渦の軌道角運動 量が波長によって大きく変化する欠点がある。 例えば、 第 6図に示す ような厚さ分布を有するガラス板 1 1 4を用いる場合、 中心軸の周り に一周したときの位相変化幅は 2 ; [ (n— 1 ) hs /え] であり、 nの波長依存性を無視しても波長えに反比例して大きく変化する。 具 体的には、 例えば、 ガラス板 1 1 4にえ = 6 0 0 n m (赤) の光を透 過させた場合において、 一周したときの位相変化幅が 2 X 1 . 2で ある場合には、 λ = 4 5 0 n m (青) の光を透過させると、 一周した ときの位相変化幅は 2 ^ X 1 . 6となり、 雨者は位相変化幅が大きく 異なる。 これは両者の光渦の軌道角運動量が互いに大きく異なること を意味する。 この欠点は光渦の応用の上で大きな障害となっていた。 例えば、 微小粒子の光励起に、 尖頭値強度が高い超短パルスレーザに より得られる光渦を使おうとしても、 従来のパルスレーザでは得られ る光スぺク トルが広いため、 光渦の軌道角運動量がぼけて光励起の効 率の低下が避けられない。 また、 天文学で太陽系外惑星探査に光渦を 利用する場合にも、 微弱な惑星からの光を有効活用するためには広い 波長帯域の光を用いることが求められるが、 この場合も上記の波長依 存性は探査精度の低下の原因となる。 . In addition, the conventional optical vortex generation method described above has a drawback that the orbital angular momentum of the obtained optical vortex varies greatly depending on the wavelength. For example, when a glass plate 1 14 having a thickness distribution as shown in FIG. 6 is used, the phase change width when making a round around the central axis is 2; [(n− 1) h s / e] Yes, even if the wavelength dependence of n is ignored, it varies greatly in inverse proportion to the wavelength. Ingredients Specifically, for example, when the light of 60 nm (red) is transmitted through the glass plate 1 14, and the phase change width after one round is 2 X 1.2 When light of λ = 4500 nm (blue) is transmitted, the phase change width after one round becomes 2 ^ X 1.6, and the rainy person has a different phase change width. This means that the orbital angular momentums of both optical vortices are very different from each other. This drawback has become a major obstacle to the application of optical vortices. For example, even if an optical vortex obtained by an ultrashort pulse laser with a high peak intensity is used for optical excitation of fine particles, the optical spectrum obtained by a conventional pulse laser is wide. The orbital angular momentum is blurred, and the efficiency of photoexcitation is unavoidable. Also, when using optical vortices for exploring extrasolar planets in astronomy, it is required to use light in a wide wavelength band in order to effectively use light from weak planets. Dependency causes a decrease in exploration accuracy. .
さらに、 この軌道角運動量が、 すなわち光渦の位相の変化幅が、 波 長にほぼ反比例して強く依存するという事実は、 上記の位相の不連続 線の問題をさらに顕著にする。 中心軸の周りに一周したときの位相変 化量が波長におおよそ反比例するため、 たとえある特定の波長でこの 位相変化量が 2 の整数倍に一致したとしても、 そのほかの波長では 2 の整数倍には一致できず、 時として非常に大きな位相の不連続量 を持ち得ることとなる。  Furthermore, the fact that the orbital angular momentum, that is, the change width of the phase of the optical vortex depends strongly in inverse proportion to the wavelength, makes the above-mentioned phase discontinuity problem more remarkable. Since the amount of phase change when making a round around the central axis is roughly inversely proportional to the wavelength, even if this phase change is an integer multiple of 2 at a specific wavelength, it is an integer multiple of 2 at other wavelengths. And sometimes can have very large phase discontinuities.
そこで、 この発明が解決しょうとする課題は、 新規な動作原理に基 づき、 光源の波長によらずァクロマティックでしかも位相の不連続線 が存在しないか、 存在するとしても不連続線での位相の段差の波長依 存性が極めて小さい光渦を容易に発生させることができる光渦発生装 置ならびにこの光渦発生装置を応用した微小物体操作装置および惑星 探査装置などの天体探査装置を提供することである。 この発明が解決しょうとする他の課題は、 上記の光渦発生装置に用 いて好適な偏光渦変換素子を提供することである。 発明の開示 Therefore, the problem to be solved by the present invention is based on a novel operating principle, which is achromatic and has no phase discontinuity line regardless of the wavelength of the light source. An optical vortex generator that can easily generate an optical vortex with extremely small wavelength dependency of the step, and an astronomical exploration device such as a micro object manipulation device and a planetary exploration device to which this optical vortex generator is applied. That is. Another problem to be solved by the present invention is to provide a polarization vortex conversion element suitable for use in the above-described optical vortex generator. Disclosure of the invention
上記課題を解決するために、 第 1の発明は、  In order to solve the above problem, the first invention is:
コヒーレント光を円偏光に変換する第 1 の光学系と、  A first optical system for converting coherent light into circularly polarized light;
上記第 1 の光学系から射出される円偏光が入射するように配置され た偏光渦変換素子であって、 直線複屈折性および/または直線二色性 を有し、 その偏光特性は座標の中心から同一半径上にある各点では主 軸の方位角を除いて一定であり、 かつその上の各点の主軸の方位角が 座標の方位角に比例するものと、  A polarization vortex conversion element arranged so that circularly polarized light emitted from the first optical system is incident, and has linear birefringence and / or linear dichroism, and the polarization characteristic is the center of coordinates. Each point on the same radius is constant except for the main axis azimuth, and the main axis azimuth of each point above it is proportional to the coordinate azimuth.
上記偏光渦変換素子から射出される光が入射するように配置された 第 の光学系であって、 上記偏光渦変換素子か.ら射出される光から上 記円偏光と逆向きの円偏光成分を抽出するものとを有することを特徴 とする光渦発生装置である。  A second optical system arranged so that light emitted from the polarization vortex conversion element is incident thereon, wherein the circular polarization component has a direction opposite to the circular polarization from the light emitted from the polarization vortex conversion element. It is an optical vortex generator characterized by having an extractor.
この光渦発生装置は、 装置の外部から入射するコヒーレント光を用 いて光渦を発生させる場合、 例えば惑星探査において恒星光および惑 星光をコヒーレント光として入射させる場合には光源は不要であるが、 そうでない場合には、 コヒーレント光を発生する光源をさらに有する。 この光源としては、 典型的にはレーザ光源が用いられるが、 これに限 定されるものではない。  This optical vortex generator does not require a light source when generating optical vortices using coherent light incident from the outside of the device, for example, when inputting stellar light and planetary light as coherent light in planetary exploration. Otherwise, it further has a light source that generates coherent light. A laser light source is typically used as this light source, but is not limited to this.
上記の偏光渦変換素子は、 直線複屈折性および/または直線二色性 を有し、 その偏光特性は座標の中心から同一半径上にある各点では主 軸の方位角を除いて一定であり、 その上の各点の主軸の方位角が座標 の方位角に比例するものであるが、 これは、 入射光を一方向の直線偏 光に変換する通常の偏光子や、 入射光を長軸方向が一方向の楕円偏光 に変換する通常の移相子などとは異なる特殊なものである。 ここで、 偏光渦とは、 座標の同一半径上において、 同一の楕円率を持った楕円 偏光 (直線偏光や円偏光を含む) となっており、 その偏光の楕円の長 軸の方位角が座標の方位角に比例するものである。 直線複屈折性およ び/または直線二色性を有するとは、 直線複屈折性または直線二色性 の少なく ともいずれか一方を有することを意味するが、 円複屈折性や 円二色性をさらに有してもよい。 また、 .各点の主軸の方位角が座標の 方位角に比例するとは、 各点ごとに偏光特性を記述するための座標軸 の方向が異なっていることを意味する。 この偏光渦変換素子の上の各 点の主軸の方位角を^、 座標の方位角を 6としたとき、 φ = η θ / 2 (ただし、 ηは 0を除く整数) である。 The polarization vortex conversion element described above has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the main axis at each point on the same radius from the coordinate center. The azimuth angle of the principal axis of each point above it is proportional to the azimuth angle of the coordinates. This is a normal polarizer that converts the incident light into linear polarization in one direction, and the long axis of the incident light. Elliptical polarization in one direction It is a special one that is different from ordinary phase shifters that convert to. Here, the polarization vortex is elliptically polarized light (including linearly polarized light and circularly polarized light) having the same ellipticity on the same coordinate radius, and the major axis azimuth of the polarized ellipse is the coordinate. It is proportional to the azimuth angle. Having linear birefringence and / or linear dichroism means having at least one of linear birefringence or linear dichroism, but circular birefringence or circular dichroism. May further be included. In addition, the fact that the azimuth angle of the principal axis of each point is proportional to the azimuth angle of the coordinate means that the direction of the coordinate axis for describing the polarization characteristics is different for each point. Φ = η θ / 2 (where η is an integer other than 0), where the azimuth of the principal axis of each point on this polarization vortex transducer is ^ and the azimuth of the coordinates is 6.
この光渦発生装置においては、 偏光渦変換素子を透過した光は、 偏 光方向が光軸を中心に渦を巻く、 すなわち偏光渦となる (このとき光 軸が特異点となる) 。 そして、 この光が第 2の光学系を透過すると、 光軸を中心に波面が渦状になり、 光渦が得られる。 こう して発生され る光渦の各点の位相は、 偏光渦変換素子の各点の方位角で決まり、 光 源の波長によらない。 また、 使用する偏光渦変換素子にもよるが、 ら せん状の厚さ分布を有するガラス板などを用いる従来の光渦発生方法 のように位相の不連続線が発生することがないか、 発生するとしても 不連続線での位相の段差の波長依存性は極めて小さい。 .  In this optical vortex generator, the light transmitted through the polarization vortex conversion element is swirled around the optical axis, that is, a polarization vortex (the optical axis becomes a singular point at this time). Then, when this light passes through the second optical system, the wavefront becomes a vortex around the optical axis, and an optical vortex is obtained. The phase of each point of the optical vortex generated in this way is determined by the azimuth angle of each point of the polarization vortex converter, and does not depend on the wavelength of the light source. Depending on the polarization vortex conversion element used, phase discontinuity lines may not be generated as in the conventional optical vortex generation method using a glass plate with a spiral thickness distribution. Even so, the wavelength dependence of the phase difference in the discontinuous line is extremely small. .
この偏光渦変換素子としては種々のものを用いることができる。 具 体的には、 例えば、 光弾性材料を用いたもの、 液晶などの複屈折性を 有する媒質を用いたもの、 複数の楔形偏光板を放射状に配置したもの、 コヒーレント光の波長より小さい間隔の放射状方位の周期構造を有す るものなどである。 ここで、 光弾性材料あるいは液晶などの複屈折性 を有する媒質を用いた偏光渦変換素子は直線複屈折性を有し、 複数の 楔形偏光板を放射状に配置した偏光渦変換素子は直線二色性 (ただし、 一方の成分は完全に減衰させる) を有し、 コヒーレント光の波長より 小さい間隔の放射状方位の周期構造を有する偏光渦変換素子は直線複 屈折性および直線二色性を有する。 Various types of polarization vortex conversion elements can be used. Specifically, for example, one using a photoelastic material, one using a birefringent medium such as a liquid crystal, one having a plurality of wedge-shaped polarizing plates arranged radially, and having an interval smaller than the wavelength of coherent light. It has a periodic structure with radial orientation. Here, a polarization vortex conversion element using a birefringent medium such as a photoelastic material or liquid crystal has linear birefringence, and has a plurality of A polarization vortex conversion element in which wedge-shaped polarizing plates are arranged radially has a linear dichroism (however, one component is completely attenuated), and a polarization vortex having a periodic structure with radial azimuth smaller than the wavelength of coherent light. The conversion element has linear birefringence and linear dichroism.
第 1 の光学系は、 コヒーレント光を円偏光に変換することができる 限りその構成は問わないが、 具体例を挙げると、 コヒーレント光を一 方向の直線偏光に変換する偏光子とこの偏光子の後段の 1 / 4波長板 とを有するものや、 円二色性を有する材料を用いたものなどである。 また、 第 2の光学系は、 上記の偏光渦変換素子から射出される光から、 上記の円偏光と逆向きの円偏光成分を抽出することができる限りその 構成は問わないが、 具体例を挙げると、 上記の偏光渦変換素子から射 出される光が入射する 1 / 4波長板とこの 1 / 4波長板の後段の検光 子とを有するものである。 .  The first optical system may have any configuration as long as it can convert coherent light into circularly polarized light. To give a specific example, a polarizer that converts coherent light into linearly polarized light in one direction and the polarizer One with a quarter-wave plate in the latter stage and one with a circular dichroic material. The second optical system is not limited in its configuration as long as it can extract a circularly polarized component in the direction opposite to the circularly polarized light from the light emitted from the polarization vortex conversion element. For example, it has a quarter-wave plate on which light emitted from the polarization vortex conversion element is incident and an analyzer at the subsequent stage of the quarter-wave plate. .
第 の発明は、  The second invention is
コヒーレント光を円偏光に変換する第 1 の光学系と、  A first optical system for converting coherent light into circularly polarized light;
上記第 1の光学系から射出される円偏光が入射するように配置され た偏光渦変換素子であって、 直線複屈折性および/または直線二色性 を有し、 その偏光特性は座標の中心から同一半径上にある各点では主 軸の方位角を除いて一定であり、 かつその上の各点の主軸の方位角が 座標の方位角に比例するものと、  A polarization vortex conversion element arranged so that circularly polarized light emitted from the first optical system is incident, and has linear birefringence and / or linear dichroism, and the polarization characteristic is the center of coordinates. Each point on the same radius is constant except for the main axis azimuth, and the main axis azimuth of each point above it is proportional to the coordinate azimuth.
上記偏光渦変換素子から射出される光が入射するように配置された 第 2の光学系であって、 上記偏光渦変換素子から射出される光から上 記円偏光と逆向きの円偏光成分を抽出するものとを有することを特徴 とする微小物体操作装置である。  A second optical system arranged so that light emitted from the polarization vortex conversion element is incident thereon, wherein a circular polarization component in a direction opposite to the circular polarization is obtained from the light emitted from the polarization vortex conversion element; A device for manipulating a micro object characterized by having an extractor.
この微小物体操作装置では、 第 1の発明による光渦発生装置と同様 な構成により光渦を発生させ、 この光渦により微小物体、 例えば微小 粒子 (原子など) を光トラップして回転させることができる。 In this micro object operating device, an optical vortex is generated by the same configuration as the optical vortex generator according to the first invention, and a micro object, for example, a micro Particles (such as atoms) can be trapped and rotated.
この第 2の発明においては、 第 1の発明に関連して説明したことが 成立する。  In the second invention, what has been described in relation to the first invention is valid.
第 3の発明は、  The third invention is
コヒーレント光を円偏光に変換する第 1 の光学系と、  A first optical system for converting coherent light into circularly polarized light;
上記第 1の光学系から射出される円偏光が入射するように配置され た偏光渦変換素子であって、 直線複屈折性および/または直線二色性 を有し、 その偏光特性は座標の中心から同一半径上にある各点では主 軸の方位角を除いて一定であり、 かつその上の各点の主軸の方位角が 座標の方位角に比例するものと、  A polarization vortex conversion element arranged so that circularly polarized light emitted from the first optical system is incident, and has linear birefringence and / or linear dichroism, and the polarization characteristic is the center of coordinates. Each point on the same radius is constant except for the main axis azimuth, and the main axis azimuth of each point above it is proportional to the coordinate azimuth.
上記偏光渦変換素子から射出される光が入射するように配置された 第 2の光学系であって、 上記偏光渦変換素子から射出される光から上 記円偏光と逆向きの円偏光成分を抽出するもの.とを有することを特徴 とする天体探査装置である。  A second optical system arranged so that light emitted from the polarization vortex conversion element is incident thereon, wherein a circular polarization component in a direction opposite to the circular polarization is obtained from the light emitted from the polarization vortex conversion element; An astronomical exploration device characterized by having an extractor.
· この天体探査装置では、 例えば、 第 1 の発明による光渦発生装置と 同様な構成、 すなわち第 1 の光学系と偏光渦変換素子と第 2の光学系 との光軸を恒星光に一致させることで、 光渦が光軸に沿って暗線を有 する性質を利用して強力な恒星光を消すことができ、 このため微弱な 惑星光を検出することができ、 太陽系外惑星探査を高精度に行うこと ができる。 この天体探査装置では、 太陽系外惑星探査に加え、 例えば、 連星 (互いの重力で結合し、 軌道運動をしている複数個の星) の検出 (ハイコントラスト · イメージングと呼ばれる) なども高精度に行う ことができる。 In this astronomical exploration device, for example, the same configuration as the optical vortex generator according to the first invention, that is, the optical axes of the first optical system, the polarization vortex conversion element, and the second optical system are made to coincide with the stellar light. By using the property that the optical vortex has a dark line along the optical axis, strong star light can be extinguished, so weak planetary light can be detected and exoplanet exploration can be performed with high accuracy. Can be done. In addition to exploring extrasolar planets, this astronomical exploration device can also detect, for example, binary stars (multiple stars that are coupled by gravity and are orbiting) (called high-contrast imaging). Can be done.
この第 3の発明においては、 第 1の発明に関連して説明したことが 成立する。  In the third invention, what has been described in relation to the first invention is valid.
第 4の発明は、 直線複屈折性および/または直線二色性を有し、 偏光特性は座標の 中心から同一半径上にある各点では主軸の方位角を除いて一定であり、 かつ各点の主軸の方位角が座標の方位角に比例する偏光渦変換素子で あって、 The fourth invention is: It has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the principal axis at each point on the same radius from the center of the coordinates, and the azimuth angle of the principal axis of each point is A polarization vortex conversion element proportional to the azimuth angle of coordinates,
光弾性材料を用いたことを特徴とするものである。  A photoelastic material is used.
第 5の発明は、  The fifth invention is:
直線複屈折性および/または直線二色性を有し、 偏光特性は座標の 中心から同一半径上にある各点では主軸の方位角を除いて一定であり、 かつ各点の主軸の方位角が座標の方位角に比例する偏光渦変換素子で あって、  It has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the principal axis at each point on the same radius from the center of the coordinates, and the azimuth angle of the principal axis of each point is A polarization vortex conversion element proportional to the azimuth angle of coordinates,
複屈折性を有する媒質を用いたことを特徴とするものである。  This is characterized in that a medium having birefringence is used.
第 6の発明は、  The sixth invention is:
直線複屈折性およぴ または直線二色性を有し、 偏光特性は座標の 中心から同一半径上にある各点では主軸の方位角を除いて一定であり、 かつ各点の主軸の方位角が座標の方位角に比例する偏光渦変換素子で あっ 、  It has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the main axis at each point on the same radius from the coordinate center, and the azimuth angle of the main axis of each point Is a polarization vortex transducer that is proportional to the azimuth angle of the coordinates,
複数の楔形偏光板が放射状に配置されていることを特徴とするもの である。  A plurality of wedge-shaped polarizing plates are arranged radially.
第 7の発明は、  The seventh invention
直線複屈折性および/または直線二色性を有し、 偏光特性は座標の 中心から同一半径上にある各点では主軸の方位角を除いて一定であり、 かつ各点の主軸の方位角が座標の方位角に比例する偏光渦変換素子で あって、  It has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the principal axis at each point on the same radius from the center of the coordinates, and the azimuth angle of the principal axis of each point is A polarization vortex conversion element proportional to the azimuth angle of coordinates,
コヒーレント光の波長より小さい間隔の放射状方位の周期構造を有 することを特徴とするものである。  It is characterized by having a periodic structure with a radial orientation at intervals smaller than the wavelength of coherent light.
第 4〜第 7の発明においては、 その性質に反しない限り、 第 1の発 明に関連して説明したことが成立する。 図面の簡単な説明 In the fourth to seventh inventions, the first invention is provided unless it is contrary to its nature. What has been explained in connection with Ming holds. Brief Description of Drawings
第 1図 Aおよび第 1図 Bは、 光渦を説明するための略線図、 第 1図 は、 光渦の一例を示す略線図、 第 3図は、 従来の光渦発生方法の第 1 の例を説明するための略線図、 第 4図は、 第 3図に示す従来の光渦発 生装置におけるシリンドリカルレンズ対の代わりに用いられるダブプ リズムを示す略線図、 第 5図は、 従来の光渦発生方法の第 2の例を説 明するための略線図、 第 6図は、 従来の光渦発生方法の第 2の例にお いて用いられるらせん状の厚さ分布を有するガラス板を示す略線図、 第 7図は、 この発明の第 1の実施形態による光渦発生装置を示す略線 図、 第 8図は、 この発明の第 1の実施形態による光渦発生装置におい て用いられる偏光渦変換素子を示す略線図、 第.9図は、 この発明の第 1 の実施形態による光渦発生装置において用いられる偏光渦変換素子 の第 1の例を示す略線図、 第 1 0図は、 この発明の第 1の実施形態に よる光渦発生装置において用いられる偏光渦変換素子の第 1の例の作 製方法を説明するための略線図、 第 1 1図および第 1 2図は、 この発 明の第 1の実施形態による光渦発生装置において用いられる偏光渦変 換素子の第 2の例を示す略線図、 第 1 3図および第 1 4図は、 この発 明の第 1の実施形態による光渦発生装置において用いられる偏光渦変 換素子の第 3の例を示す略線図、 第 1 5図および第 1 6図は、 この発 明の第 1の実施形態による光渦発生装置において用いられる偏光渦変 換素子の第 4の例を示す略線図、 第 1 7図は、 この発明の第 1の実施 形態による光渦発生装置において用いられる偏光渦変換素子の第 4の 例の原理を説明するための略線図、 第 1 8図は、 この発明の第 1の実 施形態による光渦発生装置において偏光渦変換素子に入射する円偏光 の一例を示す略線図、 第 1 9図は、 この発明の第 1の実施形態による 光渦発生装置において用いられる偏光渦変換素子の機能を説明するた めの略線図、 第 2 0図は、 この発明の第 1の実施形態による光渦発生 装置において用いられる偏光渦変換素子の機能を説明するための略線 図、 第 2 1図は、 この発明の第 1の実施形態による光渦発生装置を微 小粒子の操作に適用した例を説明するための略線図、 第 2 2図は、 こ の発明の実施例 1において用いられた実験系を示す略線図、 第 2 3図 は、 この発明の実施例 1において得られた光渦と平面波との干渉模様 を示す略線図、 第 2 4図は、 この発明の実施例 1 において得られた光 渦と球面波との干渉模様を示す略線図、 第 2 5図は、 この発明の実施 例 1において用いた偏光渦変換素子を示す略線図、 第 1 6図は、 この 発明の実施例 2において用いられた実験系を示す略線図、 第 2 7図 A および第 2 7図 Bは、 この発明の実施例 2において得られた光渦と平 面波との干渉模様を示す略線図、 第 2 8図 Aおよび第 2 8図 Bは、 こ の発明の実施例 1において得られた光渦と球面波との干渉模様を示す 略線図、 第 2 9図は、 この発明の第 2の実施形態による光渦発生装置 を示す略線図である。 発明を実施するための最良の形態 1A and 1B are schematic diagrams for explaining optical vortices, FIG. 1 is a schematic diagram showing an example of optical vortices, and FIG. 3 is a schematic diagram of a conventional optical vortex generation method. FIG. 4 is a schematic diagram illustrating a double prism used in place of the cylindrical lens pair in the conventional optical vortex generator shown in FIG. 3, and FIG. 5 is a schematic diagram illustrating the example of 1. Fig. 6 is a schematic diagram for explaining a second example of the conventional optical vortex generation method. Fig. 6 shows the spiral thickness distribution used in the second example of the conventional optical vortex generation method. FIG. 7 is a schematic diagram showing an optical vortex generator according to the first embodiment of the present invention, and FIG. 8 is an optical vortex generation according to the first embodiment of the present invention. FIG. 9 is a schematic diagram showing a polarization vortex conversion element used in the apparatus. FIG. 9 is a diagram used in the optical vortex generator according to the first embodiment of the present invention. FIG. 10 is a schematic diagram showing a first example of a polarization vortex conversion element to be manufactured, and FIG. 10 is a diagram of a first example of a polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention. FIG. 11 and FIG. 12 are schematic diagrams for explaining a manufacturing method. FIG. 11 shows a second example of the polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention. FIGS. 13 and 14 are schematic diagrams illustrating a third example of a polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention. FIG. FIGS. 15 and 16 are schematic diagrams showing a fourth example of the polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention, and FIG. FIG. 4 is a schematic diagram for explaining the principle of a fourth example of the polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the invention; FIG. 18 shows circularly polarized light incident on the polarization vortex conversion element in the optical vortex generator according to the first embodiment of the present invention. FIG. 19 is a schematic diagram for explaining the function of the polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention, and FIG. FIG. 2 is a schematic diagram for explaining the function of a polarization vortex conversion element used in the optical vortex generator according to the first embodiment of the present invention; FIG. 21 shows an optical vortex according to the first embodiment of the present invention; Fig. 22 is a schematic diagram for explaining an example in which the generator is applied to the operation of fine particles. Fig. 22 is a schematic diagram showing the experimental system used in Example 1 of the present invention. Fig. 24 is a schematic diagram showing the interference pattern between the optical vortex and the plane wave obtained in Example 1 of the present invention. Fig. 24 shows the interference between the optical vortex and the spherical wave obtained in Example 1 of the present invention. FIG. 25 is a schematic diagram showing the polarization vortex conversion element used in Example 1 of the present invention. FIG. 16 is a schematic diagram showing an experimental system used in Example 2 of the present invention. FIGS. 27A and 27B are optical vortices obtained in Example 2 of the present invention. Fig. 28A and Fig. 28B are schematic diagrams showing the interference pattern between the optical vortex and the spherical wave obtained in Example 1 of the present invention. FIG. 29 is a schematic diagram showing an optical vortex generator according to a second embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施形態について図面を参照しながら説明する。 第 7図はこの発明の第 1の実施形態による光渦発生装置を示す。 第 7図に示すように、 この光渦発生装置は、 コヒーレント光源 1 と、 こ のコヒ一レント光源 1から射出されるコヒ一レント光 2を円偏光に変 換する光学系 3と、 直線複屈折性および/または直線二色性を有し、 偏光特性は座標の中心から同一半径上にある各点では主軸の方位角を 除いて一定であり、 かつ各点の主軸の方位角が座標の方位角に比例す る偏光渦変換素子 4と、 この偏光渦変換素子 4から射出される光から、 光学系 3から射出される円偏光と逆向きの円偏光成分を抽出する光学 系 5 とにより構成され、 光学系 5から光渦 6が射出される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 7 shows an optical vortex generator according to the first embodiment of the present invention. As shown in FIG. 7, this optical vortex generator includes a coherent light source 1, an optical system 3 that converts coherent light 2 emitted from the coherent light source 1 into circularly polarized light, and a linear compound. Refractive and / or linear dichroism, polarization characteristics are constant at each point on the same radius from the center of the coordinate except for the main axis azimuth, and the main axis azimuth of each point is the coordinate Proportional to azimuth A polarization vortex conversion element 4 and an optical system 5 that extracts a circular polarization component in a direction opposite to the circular polarization emitted from the optical system 3 from the light emitted from the polarization vortex conversion element 4. A light vortex 6 is emitted from 5.
コヒ一レント光源 1 は、 レーザ装置 1 1 と二枚のレンズ 1 2 a、 1 2 bからなるコリメ一夕 1 2 とを含む。 光学系 3は、 コヒーレント光 2を一方向の直線偏光に変換する偏光子 3 1 とその後段の 1 / 4波長 板 3 2 とからなる。 光学系 5は、 1 / 4.波長板 5 1 とその後段の検光 子 5 2 とからなる。  The coherent light source 1 includes a laser device 1 1 and a collimator 1 2 composed of two lenses 1 2 a and 1 2 b. The optical system 3 includes a polarizer 3 1 that converts coherent light 2 into linearly polarized light in one direction, and a quarter-wave plate 3 2 at the subsequent stage. The optical system 5 includes a 1/4 wavelength plate 5 1 and an analyzer 5 2 at the subsequent stage.
光学系 5からは、 光学系 3から射出される円偏光とは逆向きの円偏 光成分が抽出されるが、 これは、 偏光渦変換素子 4を抜き取ったとき に真っ暗になるようにすること、 すなわち暗視野にすることを意味す る。  From the optical system 5, a circularly polarized component in the direction opposite to the circularly polarized light emitted from the optical system 3 is extracted, but this is to make it completely dark when the polarization vortex conversion element 4 is extracted. That means dark field.
第 8図に偏光渦変換素子 4における各点の主軸の方位角 φおよび座 標の方位角 Sを示す。 一周して主軸方位が戻るためには、 Φ # ( Θ / 2 ) の整数倍、 すなわち^ = η θ / 2 (ただし、 ηは 0を除く整数) でなければならない。  Figure 8 shows the azimuth angle φ of the principal axis of each point and the azimuth angle S of the coordinate in the polarization vortex transducer 4. In order to return to the main axis after one round, it must be an integral multiple of Φ # (Θ / 2), ie ^ = η θ / 2 (where η is an integer other than 0).
偏光渦変換素子 4としては、 具体的には、 例えば次のようなものを 用いる。 第 9図は第 1 の例を示し、 光弾性材料により構成した偏光渦 変換素子 4である。 この偏光渦変換素子 4は、 第 1 0図に示すように、 円板状の光弾性材料 7 1を用意し、 これに外部から半径方向に一様な 圧縮をかけることにより作製することができる。 光弾性材料 7 1 とし ては従来公知のもの、 例えばガラス、 エポキシ樹脂、 光学結晶などを 用いることができる。  Specifically, for example, the following is used as the polarization vortex conversion element 4. FIG. 9 shows the first example, which is a polarization vortex conversion element 4 made of a photoelastic material. As shown in FIG. 10, this polarization vortex conversion element 4 can be manufactured by preparing a disk-like photoelastic material 71 and applying uniform compression in the radial direction from the outside. . As the photoelastic material 71, conventionally known materials such as glass, epoxy resin, and optical crystal can be used.
第 2の例は、 液晶や結晶などの複屈折性を有する媒質を用いて偏光 渦変換素子 4を人工的に作るもので、 この複屈折性を有する媒質を放 射状に組み合わせて放射状の主軸分布を持たせる。 具体的には、 第 1 1図に示す偏光渦変換素子 4は、 放射状にラビングされた基板を用い て液晶分子 7 2を配向させたネマティック液晶セルにより構成したも のである。 この第 1 1図に示す偏光渦変換素子 4は方位角 (^の変化が 一周 4 であるが、 任意の周回 (ただし、 2 冗の整数倍) のものであ つてよく、 例えば第 1 2図に示すように方位角 の変化が一周 8 πの ものであってもよい。 In the second example, a polarization vortex conversion element 4 is artificially made using a birefringent medium such as a liquid crystal or a crystal, and the radial main axis is formed by combining the birefringent medium in a radiant form. Have a distribution. Specifically, the first A polarization vortex conversion element 4 shown in FIG. 1 is a nematic liquid crystal cell in which liquid crystal molecules 72 are aligned using a radially rubbed substrate. The polarization vortex conversion element 4 shown in FIG. 11 has an azimuth angle (change of ^ is one revolution of four, but may be of any number of revolutions (however, two redundant integer multiples), for example, FIG. As shown in Fig. 4, the change in azimuth may be 8 π.
第 3の例では、 第 1 3図に示すように、 楔形偏光板 7 3を放射状に 複数並べて全体として円形になるようにし、 放射状の方位分布を有す る偏光渦変換素子 4を構成する。 第 1 4図に示すように、 任意の周回 (ただし、 2 冗の整数倍) の偏光渦変換素子 4を構成することもでき る。 偏光渦変換素子 4の外形は円形に限定されず、 例えば正方形であ つてもよい。  In the third example, as shown in FIG. 13, a polarization vortex conversion element 4 having a radial orientation distribution is configured by arranging a plurality of wedge-shaped polarizing plates 73 in a radial pattern so as to form a circular shape as a whole. As shown in FIG. 14, a polarization vortex conversion element 4 having any number of laps (however, two redundant integer multiples) can be configured. The outer shape of the polarization vortex conversion element 4 is not limited to a circle, and may be, for example, a square.
第 4の例では、 コヒ一レント光 2の波長より小さい間隔の放射状方 位のサブ波長周期構造により偏光渦変換素子 4を構成する。 例えば、 第 1 5図に示すように、 円板状の透明基板を用意し、 これに電子ビー ムを照射することなどによりコヒーレント光 2の波長より細かい間隔 で溝 4 1 を形成することにより、 この溝 4 1の方向に主軸 (の一方) を持つ偏光渦変換素子 4を作製することができる。 第 1 6図に示すよ うに、 任意の周回 (ただし、 2 冗の.整数倍) の偏光渦変換素子 4 も作 製することができる。 これらのサブ波長周期構造により偏光渦変換素 子 4が得られる理由は次のとおりである。 すなわち、 サブ波長周期構 造は回折格子と考えることができるが、 第 1 7図に示すように、 周期 Λの回折格子に波長; Lの光が入射する場合、 A s i n 0 = m ;L ( mは 整数) である。 この式が成立するためには Λ≥义なる条件が必要であ る。 逆に言えば、 Λく; Lであると回折光は出ない。 このとき、 格子に 平行な方向と垂直な方向とでは、 光の電場に対する複素屈折率が異な る。 この事実は、 この回折格子、 すなわちサブ波長周期構造は偏光渦 変換素子として働く ことを意味する。 このサブ波長周期構造としては リング状結晶 (例えば、 特開 2 0 0 4— 1 7 5 5 7 9号公報参照。 ) を用いることもできる。 In the fourth example, the polarization vortex conversion element 4 is configured by a sub-wavelength periodic structure having a radial direction with an interval smaller than the wavelength of the coherent light 2. For example, as shown in FIG. 15, by preparing a disk-shaped transparent substrate and irradiating it with an electron beam, etc., by forming grooves 4 1 at intervals smaller than the wavelength of the coherent light 2, A polarization vortex conversion element 4 having a principal axis (one of them) in the direction of the groove 41 can be produced. As shown in Fig. 16, a polarization vortex transducer 4 with any number of laps (however, two redundant integers) can be fabricated. The reason why the polarization vortex conversion element 4 can be obtained by these subwavelength periodic structures is as follows. That is, the subwavelength periodic structure can be considered as a diffraction grating, but as shown in Fig. 17, when light of wavelength; L is incident on the diffraction grating of period Λ, A sin 0 = m; L ( m is an integer). In order for this equation to hold, the condition Λ≥ 义 is necessary. In other words, if Λ; L, no diffracted light is emitted. At this time, the complex refractive index for the electric field of light differs between the direction parallel to the grating and the direction perpendicular to the grating. The This fact means that this diffraction grating, that is, the sub-wavelength periodic structure, works as a polarization vortex conversion element. As this sub-wavelength periodic structure, a ring-like crystal (see, for example, Japanese Patent Laid-Open No. 2000-0175 579) can also be used.
次に、 この光渦発生装置の動作原理について説明する。  Next, the operating principle of this optical vortex generator will be described.
光学系 3から射出される光の Jonesべク トルは、 右回り円偏光は
Figure imgf000016_0001
The Jones vector of the light emitted from the optical system 3 is the clockwise circularly polarized light.
Figure imgf000016_0001
と表され、 左回り円偏光は
Figure imgf000016_0002
The counterclockwise circular polarization is
Figure imgf000016_0002
と表される。 It is expressed.
光学系 5の右回り円偏光を抽出する機能は、 . Jones計算において
Figure imgf000016_0003
The function to extract clockwise circularly polarized light of optical system 5 is
Figure imgf000016_0003
を左から乗算することと表され、 左回り円偏光を抽出する機能は To extract counterclockwise circularly polarized light.
を左から乗算することと表される。 It is expressed as multiplying from the left.
偏光渦変換素子 4の主軸の方位角が øの点での Jones行列は、  The Jones matrix at the point where the principal axis of the polarization vortex transducer 4 is ø is
R(-^)-J(r, ) -R(^)
Figure imgf000016_0004
R (-^)-J (r,) -R (^)
Figure imgf000016_0004
と表される。 ただし、 Jは主軸方向に座標軸を取ったときの、 その偏 光渦変換素子 4の Jones行列である。 ここで、 偏光渦変換素子 4が座 標の同一半径上では主軸方位を除いて同一の偏光特性を有しているこ とより、 Jは半径 (第 8図の r ) や波長; Lに依存し得る。 しかし、 R (Φ ) は半径や波長には依存しない。 It is expressed. However, J is the Jones matrix of the polarization vortex transducer 4 when the coordinate axis is taken in the principal axis direction. Here, the polarization vortex conversion element 4 is J can depend on the radius (r in Fig. 8) and wavelength; L because it has the same polarization characteristics except for the principal axis direction on the same radius of the mark. However, R (Φ) does not depend on the radius or wavelength.
この Jones行列における ) )  )) In this Jones matrix
J(r, ) J (r,)
) の例を挙げると、 上述の第 1および第 2の例による偏光渦変換素子 4 は直線複屈折性を有していることより、  ), The polarization vortex conversion element 4 according to the first and second examples described above has linear birefringence,
 One
1 0  Ten
0 e— (r ) であり ( 5 ( Γ, λ ) はリ タデ一ション) 、 第 3の例による偏光渦変 換素子 4は直線二色性により一方の直線偏光成分が消滅することより、
Figure imgf000017_0001
であり、 第 4の例による偏光渦変換素子' 4は直線複屈折性および直線 二色性のいずれも持ち得ることより、 ) 0
0 e— (r) (5 (Γ, λ) is retardation), and in the polarization vortex conversion element 4 in the third example, one linear polarization component disappears due to linear dichroism.
Figure imgf000017_0001
The polarization vortex conversion element '4 according to the fourth example can have both linear birefringence and linear dichroism.
0 ty{r, )e i3^ である。 0 t y {r,) e i3 ^.
以上のことを前提としてこの光渦発生装置の動作を Jones計算によ り記述する。 一例として、 偏光渦変換素子 4に入射する円偏光が右回 り円偏光で、 光学系 5により左回り円偏光成分を抽出する場合を考え る。 この場合、 光学系 5の検光子 5 2から射出される光の電場は Based on the above assumptions, the operation of this optical vortex generator is described by Jones calculation. As an example, consider the case where the circularly polarized light incident on the polarization vortex conversion element 4 is a clockwise circularly polarized light and the optical system 5 extracts a counterclockwise circularly polarized light component. The In this case, the electric field of the light emitted from the analyzer 5 2 of the optical system 5 is
Figure imgf000018_0001
Figure imgf000018_0003
Figure imgf000018_0001
Figure imgf000018_0003
( )- ^( )]- , + (/%Λ)]}。(Γ).β- '( ί+2(ί) と表される。 ()-^ ()]-, + (/% Λ)]}. (Γ) .β- '( ί + 2 (ί ).
ここで、 主軸の方位角 が座標の方位角 0の (ηΖ2 ) 倍、 すなわ ち 0/2であるとすると、 k ^, )― , Λ)]— , ) + ^ ) —' の となり、 光渦となっていることが分かる。 この式の下線を引いた部分 が 0にならないために、 . ≠ もしく〖ま Jvx≠ が必要である。 この条件式は、 偏光渦変換素子 4が直線複屈折性ない し直線二色性の少なく ともいずれか一方を有すれば成立する。 If the azimuth angle of the main axis is (ηΖ2) times the azimuth angle 0 of the coordinate, that is, 0/2, that is, k ^,)-, Λ )] —,) + ^) — ' You can see that it is a light vortex. In order for the underlined part of this expression not to be 0,. ≠ or just Jvx ≠ is necessary. This conditional expression is valid if the polarization vortex conversion element 4 has at least one of linear birefringence and linear dichroism.
なお、 上記の Jones計算の経過における位相の扱いを示すと  In addition, the handling of the phase in the course of the above Jones calculation is shown
EiC R(-^) . J(r, λ) · R (め - RC\ a0 (r)e
Figure imgf000018_0004
Figure imgf000018_0002
のようになる。 この式の二重の下線を引いた部分と一重の下線を引い た部分とから、 それぞれ、 入射時と射出時とにおいて、 主軸方位によ る (座標回転による) 位相が付与されていることが分かる。
E iC R (-^). J (r, λ) R (Me- RC \ a 0 (r) e
Figure imgf000018_0004
Figure imgf000018_0002
become that way. From the double underlined part and the single underlined part of this formula, depending on the principal axis direction at the time of incidence and at the time of emission, respectively. It can be seen that a phase is given (by coordinate rotation).
次に、 この光渦発生装置の動作原理を定性的に説明する。  Next, the operating principle of this optical vortex generator will be described qualitatively.
一例として、 偏光渦変換素子 4に入射する円偏光が右回り円偏光で、 光学系 5により左回り円偏光成分を抽出する場合を考える。  As an example, let us consider a case where the circularly polarized light incident on the polarization vortex conversion element 4 is clockwise circularly polarized light and the optical system 5 extracts a counterclockwise circularly polarized light component.
第 1 8図に、 偏光渦変換素子 4に入射する右回り円偏光を示す。 こ の右回り円偏光の電場の X成分は a c 0 s ( ω t ) 、 y成分は a c o s ( ω t + 7 / 2 ) と表される。 ただし、 aは振幅、 ωは角周波数、 tは時間を示す。 y成分は X成分に対して位相が / 2進んでいる。 この右回り円偏光に対して座標を (^回転させると、 位相が ずれる。 なお、 左回り円偏光に対しては位相が一 ずれる。  Figure 18 shows right-handed circularly polarized light incident on the polarization vortex transducer 4. The X component of this clockwise circularly polarized electric field is expressed as a c 0 s (ω t), and the y component is expressed as a c o s (ω t + 7/2). Where a is amplitude, ω is angular frequency, and t is time. The y component has a phase advance of / 2 relative to the X component. If the coordinates are (^ rotated for this clockwise circularly polarized light, the phase shifts. For the counterclockwise circularly polarized light, the phase shifts.
いま、 第 1 9図に示すように、 偏光渦変換素子 4上に同一半径上の 2点 、 P 2 を考え、 この 2点を通過した後の左回り円偏光成分の 位相を比べる。 は水平軸上の点で方位角 Θ 0、 P 2 は方位角 S 0 ) の点である。 偏光の主軸の方位角は = n 0 / 2である。 '偏光渦変換素子 4へ入射した時点では、 点 P i 、 P 2 とも同一の右 回り円偏光である。 ところが、 それぞれの主軸方向での光の位相を比 ベると、 上記の事実より点 P 2 の方が点 P i に対して + 進んでいる ことが分かる。 この光が偏光渦変換素子 4を通過すると、 点 P i 、 P 2 それぞれを透過した光は楕円率が同一で、 長軸方向が ζ だけ異なる楕 円偏光となる。 ここでも、 それぞれの主軸方向での位相を比べると、 点 Ρ 2 の方が点 に対して + 進んでいる。 Now, as shown in Fig. 19, we consider two points P 2 on the polarization vortex conversion element 4 on the same radius, and compare the phases of the counterclockwise circularly polarized components after passing through these two points. Is a point on the horizontal axis, azimuth angle Θ 0, P 2 is azimuth angle S 0). The azimuth angle of the main axis of polarization is = n 0/2. 'At the point of incidence on the polarization vortex transducer 4, the points P i and P 2 are the same clockwise circularly polarized light. However, comparing the phase of the light in each principal axis direction, it can be seen that the point P 2 is more advanced than the point P i than the above fact. When this light passes through the polarization vortex conversion element 4, the light transmitted through the points P i and P 2 becomes elliptically polarized light having the same ellipticity and different major axis directions by ζ. Again, when comparing the phase of the respective main axis direction, towards the point [rho 2 is advanced + against the point.
さて、 この偏光渦変換素子 4を射出した光は、 右回り円偏光成分と 左回り円偏光成分との重ね合わせと見ることができる。 このうち、 右 回り円偏光成分の方は、 点 、 P 2 で同一の初期位相を持つ。 なぜ なら、 上述の点 P 2 と点 との主軸方向での位相のずれ は、 右 回り円偏光に直す際に座標回転により打ち消されるからである。 一方、 左回り円偏光成分の方は、 座標回転の際に逆向きの位相が付くため、 結果として点 P 2 の方が点 P i に対して + 2 進むこととなる。 これ が、 偏光渦変換素子 4を射出した光の左回り円偏光成分の位相が光渦 になっていることの理由である。 Now, the light emitted from the polarization vortex conversion element 4 can be viewed as a superposition of a clockwise circularly polarized component and a counterclockwise circularly polarized component. Among them, towards the right-handed circularly polarized light component, the point at P 2 have the same initial phase. This is because the phase shift in the principal axis direction between the point P 2 and the point described above is canceled by the coordinate rotation when converting to clockwise circularly polarized light. on the other hand, Towards the left-handed circularly polarized light component, because the reverse phase stick during coordinate rotation, the result towards the point P 2 is the sub-routine proceeds + 2 with respect to the point P i as. This is the reason why the phase of the counterclockwise circularly polarized component of the light emitted from the polarization vortex conversion element 4 is an optical vortex.
以上のことから明らかなように、 この光渦発生装置により発生され る光渦の位相は原理的にコヒーレント光 2の波長に依存しない。 すな わち、 この光渦発生装置によれば、 ァグロマティックな光渦を発生さ せることができる。 実際には、 1 / 4波長板 3 2、 5 1などの分散な どで若干波長依存性が出る可能性もあるが、 少なく とも従来の光渦発 生装置に比べると波長依存性は格段に小さく、 また、 1 / 4波長板 3 2、 5 1 などとしてァクロマテイツクなものを使用することにより波 長依存性をさらに小さくすることができる。 なお、 光渦の光強度自体 は、 偏光渦変換素子 4の分散の影響を受ける。 しかし、 この偏光渦変 換素子 4として波長; Lに依存しないもの、 言い換えると行列 Jが波長 に依存しないものを選べば光強度も含めてァクロマティックな光渦を つくることができる。 このような偏光渦変換素子 4の一例として、 第 1 3図に示すような楔形偏光板 7 3を放射状に複数並べたものを挙げ ることができる。 また、 偏光渦変換素子 4は、 楔形偏光板 7 3 を放射 状に複数並べたものを除いて方位角 (^の方向はどこでも連続であるた め、 この光渦発生装置により発生される光渦は、 位相の不連続線が存 在せず、 これに起因する雑音が発生しない点でも有利である。 さらに、 たとえ位相の不連続線が存在する場合でも、 この不連続線での位相の 段差の波長依存性は極めて小さいため、 特に波長走査や広帯域光を利 用する用途において不連続線での位相の段差を極力小さくすることが でき、 この位相の段差に起因する雑音を十分に低レベルに抑えること ができる。 この光渦発生装置は、 例えば、 レーザ装置 1 1 として広帯域なもの ( Super Cont i nuum光源など) を用いる場合にも良好な光渦を発生さ せることができる。 As is apparent from the above, the phase of the optical vortex generated by this optical vortex generator does not depend on the wavelength of the coherent light 2 in principle. That is, according to this optical vortex generator, an agromatic optical vortex can be generated. Actually, there may be some wavelength dependence due to the dispersion of the quarter-wave plates 3 2 and 5 1, etc., but at least the wavelength dependence is significantly higher than that of conventional optical vortex generators. In addition, the wavelength dependence can be further reduced by using an achromatic material such as the quarter-wave plate 3 2 or 5 1. Note that the light intensity of the optical vortex itself is affected by the dispersion of the polarization vortex conversion element 4. However, if the polarization vortex conversion element 4 is not dependent on the wavelength; L, in other words, if the matrix J is independent of the wavelength, an achromatic optical vortex including the light intensity can be created. As an example of such a polarization vortex conversion element 4, there can be mentioned one in which a plurality of wedge-shaped polarizing plates 73 as shown in FIG. 13 are arranged radially. The polarization vortex conversion element 4 has an azimuth angle (^ direction is continuous everywhere except for a plurality of wedge-shaped polarizing plates 7 3 arranged in a radial pattern. It is also advantageous in that there is no phase discontinuity line and no noise is generated due to this, and even if there is a phase discontinuity line, the phase step at this discontinuity line Since the wavelength dependence of the phase difference is extremely small, it is possible to minimize the phase step at the discontinuous line, especially in applications that use wavelength scanning and broadband light, and the noise caused by this phase step is sufficiently low. It can be suppressed to. This optical vortex generator can generate a good optical vortex even when, for example, a laser device 11 having a wide band (such as a Super Continuum light source) is used.
この光渦発生装置は、 例えば、 微小物体操作装置 (マニピュレータ) として使用することができる。 すなわち、 第 2 1図に示すように、 こ の光渦発生装置により発生される光渦 6により微小粒子 7 4を光トラ ップし (光ピンセッ ト) 、 この光渦 6の軌道角運動量 (トルク) をそ の微小粒子 7 4に移して回転させることができる。  This optical vortex generator can be used, for example, as a minute object manipulation device (manipulator). That is, as shown in Fig. 21, the micro-particles 74 are optically trapped by the optical vortex 6 generated by this optical vortex generator (optical tweezers), and the orbital angular momentum ( Torque) can be transferred to the microparticles 74 and rotated.
この光渦発生装置の実施例について説明する。  An embodiment of this optical vortex generator will be described.
実施例 1 Example 1
偏光渦変換素子 4として、 光弾性材料により構成した第 1の例のも のを用いた。 円板状の光弾性材料 7 1 として直径 4 8 m m . 厚さ 3 m mの円板状のエポキシ樹脂を用意し、 これを互いに 9 0 ° 離れた 4点 で支持し、 万力を使つて外部から半径方向に圧縮をかけることにより、 第 9図に示すような偏光渦変換素子 4を作製した。  As the polarization vortex conversion element 4, the first example made of a photoelastic material was used. Prepare a disk-shaped photoelastic material 7 1 as a disk-shaped epoxy resin with a diameter of 48 mm and a thickness of 3 mm, and support it at four points 90 ° apart from each other. A polarization vortex conversion element 4 as shown in Fig. 9 was produced by compressing in the radial direction.
こう して作製された偏光渦変換素子 4を用いた光渦発生装置により 光渦が生成されることを確かめるために、 光渦と平面波および球面波 との干渉実験を行った。 実験系を第 1 2図に示す。 第 2 2図に示すよ うに、 レーザ装置 1 1 として H e — N e レーザを用い、 この H e — N e レーザにより発生される; L = 6 3 2 . 8 n m (赤) のレーザ光をコ ヒーレント光 2として二枚のレンズ 1 2 a、 1 2 bからなるコリメ一 夕 1 2に通して平行光束とし、 これをビ一ムスプリッタ一 8 1 に入射 させて二分割する。 このビームスプリツター 8 1により二分割された 一方のコヒーレント光 2を反射鏡 8 2により反射させて光学系 3の偏 光子 3 1および 1 / 4波長板 3 2に順次通して上記のようにして作製 した偏光渦変換素子 4に入射させ、 この偏光渦変換素子 4から射出さ れるコヒーレント光 2を光学系 5の 1 / 4波長板 5 1および検光子 5 2に順次通した後、 ビームスプリ ッター 8 3を通して取り出す。 一方、 ビームスプリツ夕一 8 1により二分割された他方のコヒーレン ト光 2 を反射鏡 8 4およびビ一ムスプリ ッター 8 3により順次反射させて取 り出す。 こう してビ一ムスプリッ夕一 8 3から取り出される、 互いに 異なる経路を通った二つのコヒーレント光 2を C C D (電荷結合素子) に入射させて干渉縞を観察した。 光渦と.平面波との干渉実験を行う場 合はこの第 2 2図に示す実験系を用いるが、 光渦と球面波との干渉実 験を行う場合はビ一ムスプリッター 8 1 と反射鏡 8 4 との間に凸レン ズ 8 5を挿入する。 In order to confirm that the optical vortex was generated by the optical vortex generator using the polarization vortex conversion element 4 thus fabricated, an interference experiment between the optical vortex and the plane wave and spherical wave was performed. Figure 12 shows the experimental system. As shown in Fig. 22, a He-Ne laser is used as the laser device 1 1 and is generated by this He-Ne laser; L = 6 3 2.8 nm (red) laser light As a coherent light 2, it passes through a collimator 1 2 consisting of two lenses 1 2 a and 1 2 b to form a parallel light beam, which is incident on a beam splitter 8 1 and divided into two. One of the coherent lights 2 divided by the beam splitter 8 1 is reflected by the reflecting mirror 82 and sequentially passed through the polarizer 3 1 and the quarter-wave plate 3 2 of the optical system 3 as described above. The light is incident on the produced polarization vortex conversion element 4 and emitted from the polarization vortex conversion element 4. The coherent light 2 is sequentially passed through the quarter-wave plate 5 1 and the analyzer 5 2 of the optical system 5 and then extracted through the beam splitter 8 3. On the other hand, the other coherent light 2 divided into two by the beam split 8 1 is sequentially reflected by the reflecting mirror 84 4 and the beam splitter 8 3 and taken out. In this way, two coherent lights 2 that have been extracted from the Beam Split 83 and passed through different paths were made incident on a CCD (Charge Coupled Device), and interference fringes were observed. The experiment system shown in Fig. 22 is used when conducting an interference experiment between an optical vortex and a plane wave. However, when conducting an interference experiment between an optical vortex and a spherical wave, a beam splitter 8 1 and a reflecting mirror are used. Insert convex lens 8 5 between 8 4 and 8 4.
第 2 3図に、 上記の実験系により得られた光渦と平面波との干渉模 様の画像を示す。 第 2 3図から分かるように、 光渦と平面波との干渉 縞の特徴である逆 Y字型の干渉縞が画像の中央付近に観測された。 第 2 4図に、 上記の実験系により得られた光渦と球面波との干渉模 様の画像を示す。 第 2 4図から分かるように、 光渦と球面波との干渉 縞の特徴である渦型の干渉縞が画像の中央付近に観測された。  Figure 23 shows an image of the interference pattern between the optical vortex and the plane wave obtained by the above experimental system. As can be seen from Fig. 23, an inverted Y-shaped fringe characteristic of the interference fringe between the optical vortex and the plane wave was observed near the center of the image. Figure 24 shows an image of the interference between the optical vortex and the spherical wave obtained by the above experimental system. As can be seen from Fig. 24, a vortex interference fringe, which is a feature of the interference fringe between the optical vortex and the spherical wave, was observed near the center of the image.
実施例 2 Example 2
偏光渦変換素子 4として、 第 2 5図に示すように、 八枚の直角二等 辺三角形状の楔形偏光板 7 3を放射状に並べて全体として正方形にな るようにした第 3の例のものを用いた。 各楔形偏光板 7 3は底辺の長 さが 1 5 m m、 厚さが約 0 . レ mmであり、 シートポーラライザを切 断して形成した。  As the polarization vortex conversion element 4, as shown in Fig. 25, in the third example, eight right-angled isosceles triangular wedge-shaped polarizing plates 73 are arranged radially to form a square as a whole. Was used. Each wedge-shaped polarizing plate 73 has a bottom length of 15 mm and a thickness of about 0.3 mm, and was formed by cutting a sheet polarizer.
こうして作製された偏光渦変換素子 4を用いた光渦発生装置により 光渦が生成されることを確かめるために、 光渦と平面波およぴ球面波 との干渉実験を行った。 実験系を第 2 6図に示す。 第 2 6図に示すよ うに、 レーザ装置 1 1 として H e— N e レーザを用い、 この H e— N e レーザにより発生されるレーザ光をコヒ一レント光 2 と してビーム スプリ ツター 8 1 に入射させて二分割する。 このビームスプリ ツ夕一 8 1により二分割された一方のコヒ一レン ト光 2を反射鏡 8 2により 反射させて光学系 3の偏光子 3 1および 1 / 4波長板 3 2に順次通し て上記のようにして作製した偏光渦変換素子 4に入射させ、 この偏光 渦変換素子 4から射出されるコヒ一レント光 2を光学系 5の 1 / 4波 長板 5 1および検光子 5 2に順次通し、 さらに空間周波数フィルタリ ング装置 8 6に通した後、 凸レンズ 8 7およびビームスプリッター 8 3を順次通して取り出す。 空間周波数フィルタリング装置 8 6は、 凸 レンズ 8 6 aおよびピンホール 8 6 bからなる。 一方、 ビームスプリ ッター 8 1により二分割された他方のコヒーレント光 2を反射鏡 8 4 およびビームスプリッ夕一 8 3により順次反射させて取り出す。 こう してビームスプリツター 8 3から取り出される 互いに異なる経路を 通った二つのコヒーレント光 2を C C Dに入射させて干渉縞を観察し た。 光渦と球面波との干渉実験を行う場合はこの第 2 6図に示す実験 系を用いるが、 光渦と平面波との干渉実験を行う場合はビームスプリ ッター 8 1 と反射鏡 8 4 との間に凸レンズ 8 8を挿入する。 H e— N Θ レーザにより発生されるレーザ光としては、 ぇ= 6 3 2 . 8 n m (赤) のレーザ光と; L = 5 4 3 . 5 n m (緑) のレーザ光との二種類 を用いた。 In order to confirm that the optical vortex was generated by the optical vortex generator using the polarization vortex conversion element 4 thus fabricated, an interference experiment between the optical vortex and a plane wave and a spherical wave was conducted. Figure 26 shows the experimental system. As shown in Fig. 26, a He-Ne laser was used as the laser device 1 1 and this He-N e Laser light generated by the laser is made coherent light 2 and incident on the beam splitter 8 1 to be split into two. One beam of light 2 divided into two by this beam split 8 1 is reflected by a reflecting mirror 8 2 and is sequentially passed through the polarizer 3 1 and the quarter wave plate 3 2 of the optical system 3. The coherent light 2 incident on the polarization vortex conversion element 4 manufactured as described above and emitted from the polarization vortex conversion element 4 is applied to the quarter wave plate 5 1 and the analyzer 5 2 of the optical system 5. After passing sequentially and further passing through the spatial frequency filtering device 86, the convex lens 87 and the beam splitter 83 are sequentially passed through and taken out. The spatial frequency filtering device 8 6 includes a convex lens 8 6 a and a pinhole 8 6 b. On the other hand, the other coherent light 2 divided into two by the beam splitter 8 1 is sequentially reflected by the reflecting mirror 8 4 and the beam splitter 8 3 and extracted. In this way, two coherent lights 2 that have been extracted from the beam splitter 83 and passed through different paths were incident on the CCD and the interference fringes were observed. The experiment system shown in Fig. 26 is used when conducting an interference experiment between an optical vortex and a spherical wave. However, when performing an interference experiment between an optical vortex and a plane wave, the beam splitter 8 1 and the reflector 8 4 Insert a convex lens 8 8 between them. There are two types of laser light generated by the He-N Θ laser: a laser beam with a = 6 32.8 nm (red) and a laser beam with L = 5 43.5 nm (green). Using.
第 2 7図 Aおよび第 2 7図 Bに、 それぞれ; L = 6 3 2 . 8 n mの赤 色のレーザ光および; I = 5 4 3 . 5 n mの緑色のレーザ光を用いた場 合に上記の実験系により得られた光渦と平面波との干渉模様の画像を 示す。 第 2 7図 Aおよび第 2 7図 Bから分かるように、 干渉縞を追つ ていく と、 画像の中央付近に縞の本数が変化している箇所が見える。 これは光渦と平面波との干渉縞であり、 赤色の波長および緑色の波長 の雨方で観測できた。 Figure 27 A and Figure 27 B show the following: when L = 6 3 2.8 nm red laser light and I = 5 4 3.5 nm green laser light are used, respectively. An image of the interference pattern between the optical vortex and the plane wave obtained by the above experimental system is shown. As can be seen from Fig. 27A and Fig. 27B, as the interference fringes are traced, a place where the number of fringes changes near the center of the image can be seen. This is the interference fringe between the optical vortex and the plane wave, the red wavelength and the green wavelength It was observable in the rainy day.
第 2 8図 Aおよぴ第 1 8図 Bに、 それぞれ; I = 6 3 2 . 8 n mの赤 色のレーザ光およびえ = 5 4 3 . 5 n mの緑色のレーザ光を用いた場 合に上記の実験系により得られた光渦と球面波との干渉模様の画像を 示す。 第 2 8図 Aおよび第 2 8図 Bから分かるように、 画像の中央付 近に渦型の干渉縞が見える。 これは光渦と球面波との干渉縞であり、 赤色の波長および緑色の波長の両方で観測できた。  Figures 28A and 18B show the following: red light with I = 6 3 2.8 nm and green light with green = 5 4 3.5 nm Figure 6 shows an image of the interference pattern between the optical vortex and the spherical wave obtained by the above experimental system. As can be seen from Fig. 28A and Fig. 28B, vortex interference fringes are visible near the center of the image. This is an interference fringe between an optical vortex and a spherical wave, and was observed at both red and green wavelengths.
この実験では、 第 2 7図 Aおよび第 2 7図 Bと第 2 8図 Aおよび第 2 8図 Bとから分かるように、 赤色のレーザ光と緑色のレーザ光との 結果が類似していること、 例えば第 2 7図 Aおよび第 2 7図 Bでの干 渉縞の分岐数が同じことなどは、 本方法で波長によらない光渦が生成 されていることに関係している。 なお、 赤色のレーザ光と緑色のレー ザ光とで干渉縞の本数が異なっているのは光渦自体の性質ではなく、 例えば凸レンズ 8 8の調整の不完全さによるものである。  In this experiment, as can be seen from Fig. 27 A and Fig. 27 B and Fig. 28 A and Fig. 28 B, the results of red laser light and green laser light are similar. For example, the fact that the number of interference fringes in Fig. 27A and Fig. 27B is the same is related to the generation of optical vortices independent of wavelength in this method. The difference in the number of interference fringes between the red laser beam and the green laser beam is not due to the nature of the optical vortex itself, but, for example, due to imperfect adjustment of the convex lens 88.
第 2 9図はこの発明の第 2の実施形態による光渦発生装置を示す。 第 2 9図に示すように、 この光渦発生装置は、 コヒーレント光源 1 を 有していないことを除いて、 第 1の実施形態による光渦発生装置と同 様な構成を有する。 この場合、 この光渦発生装置の外部からコヒ一レ ント光 2が光学系 3に入射する。  FIG. 29 shows an optical vortex generator according to a second embodiment of the present invention. As shown in FIG. 29, this optical vortex generator has the same configuration as the optical vortex generator according to the first embodiment, except that it does not have a coherent light source 1. In this case, the coherent light 2 enters the optical system 3 from the outside of the optical vortex generator.
この光渦発生装置は、 例えば、 天体探査、 具体的には太陽系外惑星 探査に利用することができる。 すなわち、 強力な恒星光をこの光渦発 生装置の光軸に合わせることで消すことができるので、 光軸からずれ た微弱な惑星光を高精度で検出することができ、 惑星探査を高精度で 行うことができる。  This optical vortex generator can be used, for example, for astronomical exploration, specifically for exploring extrasolar planets. In other words, powerful star light can be extinguished by aligning it with the optical axis of this optical vortex generator, so it is possible to detect faint planetary light that deviates from the optical axis with high accuracy and to perform planetary exploration with high accuracy. Can be done.
以上、 この発明の実施形態について具体的に説明したが、 この発明 は、 上述の実施形態に限定されるものではなく、 この発明の技術的思 想に基づく各種の変形が可能である。 ' The embodiment of the present invention has been specifically described above, but the present invention is not limited to the above-described embodiment, and the technical idea of the present invention. Various modifications based on the idea are possible. '
例えば、 上述の実施形態において挙げた数値、 構成、 配置、 材料な どはあくまでも例に過ぎず、 必要に応じて、 これらと異なる数値、 構 成、 配置、 材料などを用いてもよい。  For example, the numerical values, configurations, arrangements, materials, and the like given in the above-described embodiments are merely examples, and different numerical values, configurations, arrangements, materials, and the like may be used as necessary.
なお、 偏光渦変換素子は、 上述のように、 直線複屈折性および/ま たは直線二色性を有し、 その偏光特性は座標の中心から同一半径上に ある各点では主軸の方位角を除いて一定であり、 かつその上の各点の 主軸の方位角が座標の方位角に比例するものであり、 一方、 移相子は 直線複屈折性を有する素子であり、 偏光子は直線二色性の極端なもの、 すなわち一方の偏光成分をほぼ完全に消す素子であるが、 移相子や偏 光子自体は直線複屈折性や直線二色性を使わず、 例えば反射や屈折の 偏光特性を利用することによりつく ることができるので、 直線複屈折 性および/または直線二色性を有するという条件は、 透過する光の互 ■ いに直交する 2つの直線偏光成分間の振幅比および/または位相差を 変化させる性質を有するという条件に拡張することも可能である。 以上説明したように、 この発明によれば、 光源の波長によらずァク ロマティックでしかも位相の不連続線が存在しないか、 存在するとし ても不連続線での位相の段差の波長依存性が極めて小さく、 従って特 に波長走査や広帯域光を利用する用途において不連続線での位相の段 差を極力小さくすることができる光渦を容易に発生させることができ る。 そして、 この光渦発生原理を用いて高性能の微小物体操作装置あ るいは太陽系外惑星探査装置などの天体探査装置を実現することがで きる。  As described above, the polarization vortex conversion element has linear birefringence and / or linear dichroism, and the polarization characteristic is the azimuth angle of the principal axis at each point on the same radius from the center of the coordinates. The azimuth angle of the principal axis of each point above it is proportional to the azimuth angle of the coordinates, while the phase shifter is an element having linear birefringence, and the polarizer is a straight line Extremely dichroic, that is, an element that almost completely eliminates one polarization component, but the phase shifter and polarizer itself do not use linear birefringence or linear dichroism. Since it can be created by utilizing the characteristics, the condition of having linear birefringence and / or linear dichroism is that the amplitude ratio between two linearly polarized light components orthogonal to the transmitted light and / Or the condition of having the property of changing the phase difference It is also possible to extend. As described above, according to the present invention, there is no achromatic discontinuity line regardless of the wavelength of the light source, or even if it exists, the wavelength dependence of the phase step at the discontinuous line exists. Therefore, it is possible to easily generate an optical vortex that can minimize the phase difference in the discontinuous line, particularly in applications using wavelength scanning or broadband light. By using this optical vortex generation principle, it is possible to realize a high-performance micro-object manipulation device or an astronomical exploration device such as an extrasolar planet exploration device.

Claims

1 . コヒーレン ト光を円偏光に変換する第 1の光学系と、 1. a first optical system that converts coherent light into circularly polarized light;
上記第 1 の光学系から射出される円偏光が入射するように配置され た偏光渦変換素子であって、 直線複屈折性および/または直線二色性 を有し、 その偏光特性は座標の中心から同一半径上にある各点では主 軸の方位角を除いて一定請であり、 かつその上の各点の主軸の方位角が 座標の方位角に比例するものと、  A polarization vortex conversion element arranged so that circularly polarized light emitted from the first optical system is incident, and has linear birefringence and / or linear dichroism, and the polarization characteristic is the center of coordinates. Each point on the same radius is a fixed number except for the azimuth angle of the main axis, and the azimuth angle of the main axis of each point above it is proportional to the azimuth angle of the coordinates.
上記偏光渦変換素子から射出されのる光が入射するように配置された 第 2の光学系であって、 上記偏光渦変換素子から射出される光から上 記円偏光と逆向きの円偏光成分を抽出する囲ものとを有することを特徴 とする光渦発生装置。  A second optical system arranged so that light emitted from the polarization vortex conversion element is incident thereon, wherein the circular polarization component has a direction opposite to the circular polarization from the light emitted from the polarization vortex conversion element. An optical vortex generator characterized by having an enclosure for extracting the light.
2 . 上記'偏光渦変換素子の上記主軸の方位角を φ、 上記座標の方位角 を S としたとき、 φ = η Θ / 2 (ただし、 nは 0を除く整数) である とを特瓒とする請求の範囲第 1項記載の光渦発生装置。  2. When the azimuth angle of the main axis of the polarization vortex transducer is φ and the azimuth angle of the coordinates is S, φ = η Θ / 2 (where n is an integer other than 0) The optical vortex generator according to claim 1.
3 . 上記コヒーレント光を発生する光源をさらに有することを特徴と する請求の範囲第 1項記載の光渦発生装置。  3. The optical vortex generator according to claim 1, further comprising a light source that generates the coherent light.
4 . 上記偏光渦変換素子は光弾性材料を用いて作製されたものである ことを特徴とする請求の範囲第 1項記載の光渦発生装置。  4. The optical vortex generator according to claim 1, wherein the polarization vortex conversion element is manufactured using a photoelastic material.
5 . 上記偏光渦変換素子は複屈折性を有する媒質を用いて作製された ものであることを特徴とする請求の範囲第 1項記載の光渦発生装置。 5. The optical vortex generator according to claim 1, wherein the polarization vortex conversion element is manufactured using a birefringent medium.
6 . 上記偏光渦変換素子は放射状に配置された複数の楔形偏光板から なることを特徴とする請求の範囲第' 1項記載の光渦発生装置。 6. The optical vortex generator according to claim 1, wherein the polarization vortex conversion element comprises a plurality of wedge-shaped polarizing plates arranged radially.
7 . 上記偏光渦変換素子は上記コヒーレント光の波長より小さい間隔 の放射状方位の周期構造を有することを特徴とする請求の範囲第 1項 記載の光渦発生装置。 7. The optical vortex generator according to claim 1, wherein the polarization vortex conversion element has a periodic structure with a radial orientation at intervals smaller than the wavelength of the coherent light.
8 . 上記第 1の光学系は上記コヒ一レント光を一方向の直線偏光に変 換する偏光子とこの偏光子の後段の 1 / 4波長板とを有することを特 徴とする請求の範囲第 1項記載の光渦発生装置。 8. The first optical system includes: a polarizer that converts the coherent light into linearly polarized light in one direction; and a quarter-wave plate at the subsequent stage of the polarizer. The optical vortex generator according to item 1.
9 . 上記第 1の光学系は円二色性を有する材料を用いたものであるこ とを特徴とする請求の範囲第 1項記載の光渦発生装置。  9. The optical vortex generator according to claim 1, wherein the first optical system is made of a material having circular dichroism.
1 0 . 上記第 2の光学系は上記偏光渦変換素子から射出される光が入 射する 1 / 4波長板とこの 1 / 4波長板の後段の検光子とを有するこ とを特徴とする請求の範囲第 1項記載の光渦発生装置。  10. The second optical system is characterized in that it has a quarter-wave plate on which light emitted from the polarization vortex conversion element is incident and an analyzer subsequent to the quarter-wave plate. The optical vortex generator according to claim 1.
1 1 . コヒーレント光を円偏光に変換する第 1 の光学系と、  1 1. A first optical system that converts coherent light into circularly polarized light;
上記第 1 の光学系から射出される円偏光が入射するように配置され た偏光渦変換素子であって、 直線複屈折性および/または直線二色性 を有し、 その偏光特性は座標の中心から同一半径上にある各点では主 軸の方位角を除いて一定であり、 かつその上の各点の主軸の方位角が 座標の方位角に比例するものと、  A polarization vortex conversion element arranged so that circularly polarized light emitted from the first optical system is incident, and has linear birefringence and / or linear dichroism, and the polarization characteristic is the center of coordinates. Each point on the same radius is constant except for the main axis azimuth, and the main axis azimuth of each point above it is proportional to the coordinate azimuth.
上記偏光渦変換素子から射出される光が入射するように配置された 第 2の光学系であって、 上記偏光渦変換素子から射出される光から上 記円偏光と逆向きの円偏光成分を抽出するものとを有することを特徴 とする微小物体操作装置。  A second optical system arranged so that light emitted from the polarization vortex conversion element is incident thereon, wherein a circular polarization component in a direction opposite to the circular polarization is obtained from the light emitted from the polarization vortex conversion element; A device for manipulating a micro object characterized by having an extractor.
1 2 . コヒーレント光を円偏光に変換する第 1 の光学系と、  1 2. A first optical system for converting coherent light into circularly polarized light;
上記第 1 の光学系から射出される円偏光が入射するように配置され た偏光渦変換素子であって、 直線複屈折性および/または直線二色性 を有し、 その偏光特性は座標の中心から同一半径上にある各点では主 軸の方位角を除いて一定であり、 かつその上の各点の主軸の方位角が 座標の方位角に比例するものと、  A polarization vortex conversion element arranged so that circularly polarized light emitted from the first optical system is incident, and has linear birefringence and / or linear dichroism, and the polarization characteristic is the center of coordinates. Each point on the same radius is constant except for the main axis azimuth, and the main axis azimuth of each point above it is proportional to the coordinate azimuth.
上記偏光渦変換素子から射出される光が入射するように配置された 第 2の光学系であって、 上記偏光渦変換素子から射出される光から上 記円偏光と逆向きの円偏光成分を抽出するものとを有することを特徴 とする天体探査装置。 A second optical system arranged so that light emitted from the polarization vortex conversion element is incident on the second optical system; A celestial body exploration device characterized by having a device for extracting circularly polarized light components in the direction opposite to the circularly polarized light.
1 3 . 直線複屈折性および/または直線二色性を有し、 偏光特性は座 標の中心から同一半径上にある各点では主軸の方位角を除いて一定で あり、 かつ各点の主軸の方位角が座標の方位角に比例する偏光渦変換 素十であって、  1 3. It has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the principal axis at each point on the same radius from the center of the coordinate, and the principal axis of each point. Is a polarization vortex transformation whose azimuth is proportional to the azimuth of coordinates,
光弾性材料を用いたことを特徴とする偏光渦変換素子。  A polarization vortex conversion element characterized by using a photoelastic material.
1 4 . 直線複屈折性および/または直線二色性を有し、 偏光特性は座 標の中心から同一半径上にある各点では主軸の方位角を除いて一定で あり、 かつ各点の主軸の方位角が座標の方位角に比例する偏光渦変換 素子であつて、  1 4. It has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the principal axis at each point on the same radius from the center of the coordinate, and the principal axis of each point. Is a polarization vortex transducer whose azimuth is proportional to the azimuth of coordinates,
複屈折性を有する媒質を用いたことを特徴とする偏光渦変換素子。 A polarization vortex conversion element using a birefringent medium.
1 5 . 直線複屈折性および/または直線二色性を有し、 偏光特性は座 標の中心から同一半径上にある各点では主軸の方位角を除いて一定で あり、 かつ各点の主軸の方位角が座標の方位角に比例する偏光渦変換 素子であって、 1 5. It has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the principal axis at each point on the same radius from the center of the coordinate, and the principal axis of each point. Is a polarization vortex transducer whose azimuth is proportional to the azimuth of coordinates,
複数の楔形偏光板が放射状に配置されていることを特徴とする偏光 渦変換素子。  A polarization vortex conversion element comprising a plurality of wedge-shaped polarizing plates arranged radially.
1 6 . 直線複屈折性および/または直線二色性を有し、 偏光特性は座 標の中心から同一半径上にある各点では主軸の方位角を除いて一定で あり、 かつ各点の主軸の方位角が座標の方位角に比例する偏光渦変換 素子であつて、  1 6. It has linear birefringence and / or linear dichroism, and its polarization characteristic is constant except for the azimuth angle of the principal axis at each point on the same radius from the center of the coordinate, and the principal axis of each point. Is a polarization vortex transducer whose azimuth is proportional to the azimuth of coordinates,
コヒーレント光の波長より小さい間隔の放射状方位の周期構造を有 することを特徴とする偏光渦変換素子。  A polarization vortex conversion element characterized by having a periodic structure with a radial orientation at intervals smaller than the wavelength of coherent light.
PCT/JP2006/315092 2005-07-26 2006-07-25 Light vortex generator, microobject operating unit, astronomical probing equipment, and polarization vortex transformation element WO2007013648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526937A JP5017659B2 (en) 2005-07-26 2006-07-25 Optical vortex generator, micro object operating device, astronomical exploration device, and polarized vortex transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-216263 2005-07-26
JP2005216263 2005-07-26

Publications (1)

Publication Number Publication Date
WO2007013648A1 true WO2007013648A1 (en) 2007-02-01

Family

ID=37683529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315092 WO2007013648A1 (en) 2005-07-26 2006-07-25 Light vortex generator, microobject operating unit, astronomical probing equipment, and polarization vortex transformation element

Country Status (2)

Country Link
JP (1) JP5017659B2 (en)
WO (1) WO2007013648A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193066A (en) * 2007-01-09 2008-08-21 Chiba Univ Optical vortex laser beam oscillation method and optical vortex laser beam oscillation apparatus
WO2009016769A1 (en) * 2007-08-01 2009-02-05 Nalux Co., Ltd. Optical micro motor
WO2009066755A1 (en) * 2007-11-22 2009-05-28 National University Corporation Tokyo University Of Agriculture And Technology Vortex producing device, body controller, and vortex producing method
JP2010507125A (en) * 2006-10-20 2010-03-04 クリスタライズ リミテッド Optical device based on internal cone diffraction
JP2010066765A (en) * 2008-09-12 2010-03-25 Jds Uniphase Corp Optical vortex retarder micro-array
JP2010199308A (en) * 2009-02-25 2010-09-09 Chiba Univ Optical vortex generation device and method
JP2015027042A (en) * 2013-07-29 2015-02-05 富士通株式会社 Device for reflecting and transmitting electromagnetic wave, and antenna device
JP2015085300A (en) * 2013-11-01 2015-05-07 浜松ホトニクス株式会社 Particle-controlling device
JP2015163912A (en) * 2014-02-28 2015-09-10 国立大学法人 千葉大学 Optical vortex generator, continuous spiral phase plate used therefor, and optical vortex generation method
US10034939B2 (en) 2012-10-26 2018-07-31 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
CN109709682A (en) * 2019-01-25 2019-05-03 电子科技大学 A kind of device generating combined vortex light beam
WO2019098262A1 (en) * 2017-11-16 2019-05-23 国立大学法人長岡技術科学大学 Light generation device, exposure device comprising light generation device, exposure system, light generation method, and exposed photoresist production method
CN111239882A (en) * 2020-01-15 2020-06-05 南京大学 Terahertz Bessel beam generator, preparation method and generation system
JP7470716B2 (en) 2019-05-21 2024-04-18 ノースロップ グラマン システムズ コーポレーション 360° field-scanning LIDAR with no moving parts
JP7470715B2 (en) 2019-05-21 2024-04-18 ノースロップ グラマン システムズ コーポレーション Method for wide-angle field-of-view scanning LIDAR with no moving parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102563955B1 (en) * 2020-11-04 2023-08-04 경희대학교 산학협력단 Optical tweezer device and method for trapping using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297218A (en) * 1992-04-22 1993-11-12 Shinko Electric Co Ltd Device for manufacture of multi-axis polarizing film
JPH09184918A (en) * 1995-09-23 1997-07-15 Carl Zeiss:Fa Radiation polarizing optical structure and microlithography projection exposure device provided with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297218A (en) * 1992-04-22 1993-11-12 Shinko Electric Co Ltd Device for manufacture of multi-axis polarizing film
JPH09184918A (en) * 1995-09-23 1997-07-15 Carl Zeiss:Fa Radiation polarizing optical structure and microlithography projection exposure device provided with the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOMZON Z. ET AL.: "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings", OPTICS LETTERS, vol. 27, no. 5, 1 March 2002 (2002-03-01), pages 285 - 287, XP003006587 *
VOLYAR A.V. ET AL.: "QUASI-MONOCHROMATIC OPTICAL VORTICES", ADVANCED OPTOELECTRONICS AND LASERS, 2003. PROCEEDINGS OF CAOL 2003, vol. 2, 2003, pages 51 - 53, XP010673043 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507125A (en) * 2006-10-20 2010-03-04 クリスタライズ リミテッド Optical device based on internal cone diffraction
JP2008193066A (en) * 2007-01-09 2008-08-21 Chiba Univ Optical vortex laser beam oscillation method and optical vortex laser beam oscillation apparatus
WO2009016769A1 (en) * 2007-08-01 2009-02-05 Nalux Co., Ltd. Optical micro motor
JPWO2009016769A1 (en) * 2007-08-01 2010-10-14 ナルックス株式会社 Optical micromotor
WO2009066755A1 (en) * 2007-11-22 2009-05-28 National University Corporation Tokyo University Of Agriculture And Technology Vortex producing device, body controller, and vortex producing method
JP5207257B2 (en) * 2007-11-22 2013-06-12 国立大学法人宇都宮大学 Vortex generator and vortex generator method
JP2010066765A (en) * 2008-09-12 2010-03-25 Jds Uniphase Corp Optical vortex retarder micro-array
JP2010199308A (en) * 2009-02-25 2010-09-09 Chiba Univ Optical vortex generation device and method
US10034939B2 (en) 2012-10-26 2018-07-31 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
US10967060B2 (en) 2012-10-26 2021-04-06 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
JP2015027042A (en) * 2013-07-29 2015-02-05 富士通株式会社 Device for reflecting and transmitting electromagnetic wave, and antenna device
US9965867B2 (en) 2013-11-01 2018-05-08 Hamamatsu Photonics K.K. Particle control device
JP2015085300A (en) * 2013-11-01 2015-05-07 浜松ホトニクス株式会社 Particle-controlling device
JP2015163912A (en) * 2014-02-28 2015-09-10 国立大学法人 千葉大学 Optical vortex generator, continuous spiral phase plate used therefor, and optical vortex generation method
JPWO2019098262A1 (en) * 2017-11-16 2020-12-03 国立大学法人長岡技術科学大学 A light generator, an exposure device including a light generator, an exposure system, a light generation method, and an exposure photoresist manufacturing method.
CN111356957A (en) * 2017-11-16 2020-06-30 国立大学法人长冈技术科学大学 Light generating device, exposure device provided with light generating device, exposure system, light generating method, and method for producing exposed photoresist
WO2019098262A1 (en) * 2017-11-16 2019-05-23 国立大学法人長岡技術科学大学 Light generation device, exposure device comprising light generation device, exposure system, light generation method, and exposed photoresist production method
CN111356957B (en) * 2017-11-16 2022-10-11 国立大学法人长冈技术科学大学 Light generating device, exposure device provided with light generating device, exposure system, light generating method, and method for producing exposed photoresist
JP7199669B2 (en) 2017-11-16 2023-01-06 国立大学法人長岡技術科学大学 Light-generating device, exposure apparatus provided with light-generating device, exposure system, light-generating method, and exposure photoresist manufacturing method
CN109709682A (en) * 2019-01-25 2019-05-03 电子科技大学 A kind of device generating combined vortex light beam
JP7470716B2 (en) 2019-05-21 2024-04-18 ノースロップ グラマン システムズ コーポレーション 360° field-scanning LIDAR with no moving parts
JP7470715B2 (en) 2019-05-21 2024-04-18 ノースロップ グラマン システムズ コーポレーション Method for wide-angle field-of-view scanning LIDAR with no moving parts
CN111239882A (en) * 2020-01-15 2020-06-05 南京大学 Terahertz Bessel beam generator, preparation method and generation system
CN111239882B (en) * 2020-01-15 2021-09-28 南京大学 Terahertz Bessel beam generator, preparation method and generation system

Also Published As

Publication number Publication date
JP5017659B2 (en) 2012-09-05
JPWO2007013648A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
WO2007013648A1 (en) Light vortex generator, microobject operating unit, astronomical probing equipment, and polarization vortex transformation element
JP7377310B2 (en) Simultaneous control of polarization and wavefront using planar devices
Xu et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control
Hsiao et al. Fundamentals and applications of metasurfaces
Jin et al. Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin Hall effect
Ding et al. Recent advances in polarization‐encoded optical metasurfaces
Fadeyeva et al. Spatially engineered polarization states and optical vortices in uniaxial crystals
Zhan et al. Fabrication of Pancharatnam-Berry phase optical elements with highly stable polarization holography
Niv et al. Spiral phase elements obtained by use of discrete space-variant subwavelength gratings
EP2088456A2 (en) Achromatic converter of a spatial distribution of polarization of light
Karpeev et al. Generation of a controlled double-ring-shaped radially polarized spiral laser beam using a combination of a binary axicon with an interference polarizer
Bouchard et al. Achromatic orbital angular momentum generator
Ruane et al. Scalar vortex coronagraph mask design and predicted performance
Galvez Light beams with spatially variable polarization
US9829717B1 (en) Pancharatnam-berry optical element/diffractive waveplate angular momentum sorter
CN108107498B (en) Nonlinear phase gradient super surface based on rotating crystal orientation
Wu et al. Ultra‐broadband terahertz polarization conversion enabled by all‐dielectric grating structures
Wang et al. Polarization-insensitive filter for incidence between classic and full conical mountings
Javed et al. Broadband multifunctional achromatic metalens
US9612449B2 (en) Axially symmetric polarization conversion element
Romanov Light diffraction features in an ordered monolayer of spheres
Murakami et al. Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy
Li et al. Broadband orbital angular momentum manipulation using liquid crystal thin films
Kim et al. A compact holographic recording setup for tuning pitch using polarizing prisms
Wang et al. Optically polarized selection in atomic vapor and its application in mapping the polarization distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007526937

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768399

Country of ref document: EP

Kind code of ref document: A1