JP6186832B2 - 化合物半導体装置及びその製造方法 - Google Patents

化合物半導体装置及びその製造方法 Download PDF

Info

Publication number
JP6186832B2
JP6186832B2 JP2013087736A JP2013087736A JP6186832B2 JP 6186832 B2 JP6186832 B2 JP 6186832B2 JP 2013087736 A JP2013087736 A JP 2013087736A JP 2013087736 A JP2013087736 A JP 2013087736A JP 6186832 B2 JP6186832 B2 JP 6186832B2
Authority
JP
Japan
Prior art keywords
bond
compound semiconductor
containing film
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013087736A
Other languages
English (en)
Other versions
JP2014212214A (ja
Inventor
牧山 剛三
剛三 牧山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013087736A priority Critical patent/JP6186832B2/ja
Priority to EP14159116.4A priority patent/EP2793269B1/en
Priority to US14/205,740 priority patent/US9184273B2/en
Priority to CN201410116734.6A priority patent/CN104112772B/zh
Publication of JP2014212214A publication Critical patent/JP2014212214A/ja
Application granted granted Critical
Publication of JP6186832B2 publication Critical patent/JP6186832B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、化合物半導体装置及びその製造方法等に関する。
化合物半導体装置、特にGaN等の窒化物の高電子移動度トランジスタ(HEMT:high electron mobility transistor)を用いた高出力高周波用デバイスでは、ゲート電極の周辺に高い電界が印加されやすい。この電界により加速された電子の一部がトラップに遷移及び捕獲されると、この電子が空乏層を押し広げ、電流を低下させる。トラップは、シリコン窒化膜等のパッシベーション膜と化合物半導体層との界面、並びにパッシベーション膜の内部及び表面に存在することが知られている。そして、この現象は窒化物半導体デバイスに特有のものであり、電流コラプスとよばれる。電流コラプスは、増幅器の出力及び効率等の出力特性を低下させる。また、ゲート電極の構造がオーバーハング型となっている場合、トラップの存在によってオフ時に空乏層が広がりにくくなるため、ゲートリーク電流が増大しやすい。
特開2011−192719号公報
本発明の目的は、より一層電流コラプスを抑制することができる化合物半導体装置及びその製造方法を提供することにある。
化合物半導体装置の一態様には、基板と、前記基板上方に形成された窒化物の化合物半導体積層構造と、前記化合物半導体積層構造を覆うパッシベーション膜と、前記化合物半導体積層構造上方に形成されたゲート電極、ソース電極及びドレイン電極と、Si−C結合を含有し、前記ソース電極と前記ドレイン電極との間において、前記化合物半導体積層構造の上面の少なくとも一部又は前記パッシベーション膜の上面の少なくとも一部と接する部分を有するSi−C結合含有膜と、が設けられている。前記Si−C結合含有膜及び前記パッシベーション膜は、前記ゲート電極のドレイン端直下の部分を有し、前記Si−C結合含有膜は、前記ゲート電極のドレイン端直下で前記化合物半導体積層構造の上面と接する。前記Si−C結合含有膜は、前記ゲート電極又は前記ドレイン電極の少なくとも一方から電気的に絶縁されている。
化合物半導体装置の製造方法の一態様では、基板上方に窒化物の化合物半導体積層構造を形成し、前記化合物半導体積層構造を覆うパッシベーション膜を形成し、前記化合物半導体積層構造上方にゲート電極、ソース電極及びドレイン電極を形成し、Si−C結合を含有し、前記ソース電極と前記ドレイン電極との間において、前記化合物半導体積層構造の上面の少なくとも一部又は前記パッシベーション膜の上面の少なくとも一部と接する部分を有するSi−C結合含有膜を形成する。前記Si−C結合含有膜及び前記パッシベーション膜は、前記ゲート電極のドレイン端直下の部分を有し、前記Si−C結合含有膜は、前記ゲート電極のドレイン端直下で前記化合物半導体積層構造の上面と接する。前記Si−C結合含有膜は、前記ゲート電極又は前記ドレイン電極の少なくとも一方から電気的に絶縁されている。
上記の化合物半導体装置等によれば、Si−C結合含有膜が形成されているため、より一層電流コラプスを抑制することができる。
第1の実施形態に係る化合物半導体装置の構造を示す断面図である。 第1の実施形態に係る化合物半導体装置のレイアウトを示す図である。 第1の実施形態に係る化合物半導体装置を製造する方法を工程順に示す断面図である。 図2Aに引き続き、化合物半導体装置を製造する方法を工程順に示す断面図である。 図2Bに引き続き、化合物半導体装置を製造する方法を工程順に示す断面図である。 参考例の構造を示す断面図である。 パルスIV特性を示す図である。 ゲート−ドレイン間逆方向IV特性を示す図である。 第2の実施形態に係る化合物半導体装置の構造を示す断面図である。 第2の実施形態に係る化合物半導体装置を製造する方法を工程順に示す断面図である。 図7Aに引き続き、化合物半導体装置を製造する方法を工程順に示す断面図である。 第3の実施形態に係る化合物半導体装置の構造を示す断面図である。 第4の実施形態に係る化合物半導体装置の構造を示す断面図である。 第4の実施形態に係る化合物半導体装置を製造する方法を工程順に示す断面図である。 図10Aに引き続き、化合物半導体装置を製造する方法を工程順に示す断面図である。 図10Bに引き続き、化合物半導体装置を製造する方法を工程順に示す断面図である。 第5の実施形態に係る化合物半導体装置の構造を示す断面図である。 第5の実施形態に係る化合物半導体装置を製造する方法を工程順に示す断面図である。 第6の実施形態に係る化合物半導体装置の構造を示す断面図である。 第7〜第9の実施形態に係る化合物半導体装置の構造を示す断面図である。 第10〜第12の実施形態に係る化合物半導体装置の構造を示す断面図である。 第13〜第15の実施形態に係る化合物半導体装置の構造を示す断面図である。 第16〜第18の実施形態に係る化合物半導体装置の構造を示す断面図である。 第19の実施形態に係るディスクリートパッケージを示す図である。 第20の実施形態に係るPFC回路を示す結線図である。 第21の実施形態に係る電源装置を示す結線図である。 第22の実施形態に係る増幅器を示す結線図である。
以下、実施形態について添付の図面を参照しながら具体的に説明する。
(第1の実施形態)
先ず、第1の実施形態について説明する。図1Aは、第1の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す断面図である。
第1の実施形態では、図1Aに示すように、例えば半絶縁性のSiC基板等の基板11上に、バッファ層12a、電子走行層12b、電子供給層12c及び表面層12dが形成されている。バッファ層12a、電子走行層12b、電子供給層12c及び表面層12dが窒化物の化合物半導体積層構造12に含まれる。バッファ層12a及び電子走行層12bは、例えば意図的な不純物のドーピングが行われていないGaN層(i−GaN層)であり、これらの総厚は3μm程度である。バッファ層12aは、基板11の表面に存在する格子欠陥の電子走行層12bへの伝播を防止している。電子供給層12cは、例えばn型のAlGaN層(n−AlGaN層)であり、その厚さは10nm程度である。表面層12dは、例えばn型のGaN層(n−GaN層)であり、その厚さは10nm以下である。電子走行層12bの電子供給層12cとの近傍に2次元電子ガス(2DEG)が存在する。
また、活性領域を画定する素子分離領域18がバッファ層12a、電子走行層12b、電子供給層12c及び表面層12dの周囲に形成されている。表面層12dには、電子供給層12cを露出するリセス31s及び31dが形成されており、リセス31sにソース電極14sが形成され、リセス31dにドレイン電極14dが形成されている。更に、表面層12d、ソース電極14s及びドレイン電極14dを覆うSi−C結合含有膜116及びパッシベーション膜17が形成されている。Si−C結合含有膜116としては、例えばSi−C結合を含むSiOC膜が用いられ、その厚さは、例えば10nm程度である。パッシベーション膜17としては、例えばシリコン窒化膜が用いられ、その厚さは、例えば40nm程度である。パッシベーション膜17及びSi−C結合含有膜116には、ソース電極14s及びドレイン電極14dの間において、開口部33が形成されている。そして、開口部33を介して表面層12dと接するゲート電極13がパッシベーション膜17上に形成されている。また、ゲート電極13を覆う絶縁膜15がパッシベーション膜17上に形成されている。絶縁膜15、パッシベーション膜17及びSi−C結合含有膜116に、ソース電極14sの一部を露出する開口部32が形成されており、絶縁膜15上に、開口部32を介してソース電極14sに接続されたフィールドプレート19が形成されている。フィールドプレート19は、ゲート電極13の上方を通過し、平面視で、ゲート電極13とドレイン電極14dとの間まで延在している。フィールドプレート19はソースウォールとよばれることもある。例えば、ソース電極14s及びフィールドプレート19は接地される。
このように構成されたGaN系HEMTでは、Si−C結合含有膜116がパッシベーション膜17と表面層12dとの間に形成されているため、特に表面層12dの上面近傍におけるダングリングボンドに伴うトラップが著しく低減される。このため、電流コラプス及びリーク電流が抑制される。
図1Aはディスクリートの形態を示しているが、マルチフィンガーゲート構造が採用されている場合、基板11の表面側から見たレイアウトは、例えば図1Bのようになる。つまり、ゲート電極13、ソース電極14s及びドレイン電極14dの平面形状が櫛歯状となっており、ソース電極14s及びドレイン電極14dが交互に配置されている。そして、複数のゲート電極13が互いに共通接続され、複数のソース電極14sが互いに共通接続され、複数のドレイン電極14dが互いに共通接続されている。このようなマルチフィンガーゲート構造を採用することにより、出力を向上させることができる。
次に、第1の実施形態に係るGaN系HEMTを製造する方法について説明する。図2A乃至図2Cは、第1の実施形態に係るGaN系HEMTを製造する方法を工程順に示す断面図である。
先ず、図2A(a)に示すように、例えば半絶縁性のSiC基板等の基板11上に、例えば有機金属気相成長(MOCVD:metal organic chemical vapor deposition)法により、バッファ層12a、電子走行層12b、電子供給層12c及び表面層12dをエピタキシャル成長させる。バッファ層12a、電子走行層12b、電子供給層12c及び表面層12dが化合物半導体積層構造12に含まれる。
次いで、図2A(b)に示すように、化合物半導体積層構造12に向けて選択的にArを注入することにより、活性領域を画定する素子分離領域18を化合物半導体積層構造12及び基板11の表層部に形成する。
その後、図2A(c)に示すように、ソース電極を形成する予定の領域、及びドレイン電極を形成する予定の領域に開口部21aを有するレジストパターン21を化合物半導体積層構造12上に形成する。
続いて、図2A(d)に示すように、レジストパターン21をマスクとして用い、不活性ガス及びCl2ガス等の塩素系ガスを用いたドライエッチングを表面層12dに対して行うことにより、表面層12dにリセス31s及び31dを形成する。なお、リセス31s及び31dの深さに関し、表面層12dの一部を残してもよく、また、電子供給層12cの一部を除去してもよい。つまり、リセス31s及び31dの深さは表面層12dの厚さと一致している必要はない。
次いで、図2A(e)に示すように、リセス31s内にソース電極14sを形成し、リセス31d内にドレイン電極14dを形成する。ソース電極14s及びドレイン電極14dの形成に当たっては、例えば、先ず、蒸着法によりTi層を形成し、その上に蒸着法によりAl層を形成する。Ti層の厚さは20nm程度、Al層の厚さは200nm程度とする。そして、リセス31s及び31dの形成に用いたレジストパターン21を、その上のTi層及びAl層と共に除去する。つまり、ソース電極14s及びドレイン電極14dの形成では、例えば蒸着及びリフトオフの技術を用いる。その後、550℃程度での熱処理を行うことにより、ソース電極14s及びドレイン電極14dと化合物半導体積層構造12の表面(電子供給層12cの表面)との間をオーミックコンタクトさせる。なお、リフトオフに用いるレジストパターンをリセス31s及び31dの形成に用いたレジストパターン21とは異ならせてもよい。例えば、庇構造レジストを用いてもよい。
続いて、図2B(f)に示すように、表面層12d、ソース電極14s、ドレイン電極14d及び素子分離領域18を覆うSi−C結合含有膜116を形成する。Si−C結合含有膜116の形成では、例えば、化学合成スピンオングラス(SOG:spin on glass)剤の塗布及びキュアを行う。化学合成SOG剤には、シランカップリング剤、シラノール、シロキサン等が含有されている。化学合成SOG剤の塗布では、例えば、プロピレングリコールモノメチルエーテルアセテート(PGMEA:propylene glycol monomethyl ether acetate)で希釈したPTS(ハネウェル社製)のスピンコートを行う。また、キュアの温度は、例えば350℃程度とする。
次いで、図2B(g)に示すように、Si−C結合含有膜116上にパッシベーション膜17を形成する。パッシベーション膜17としては、例えばプラズマCVD法により、窒化珪素(SiN)膜を形成する。
その後、図2B(h)に示すように、ゲート電極用の開口部を形成する予定の領域に開口部23aを有するレジストパターン23をパッシベーション膜17上に形成する。レジストパターン23の材料としては、例えば住友化学株式会社製のPFI−32を用いる。また、開口部23aを形成する際の露光では紫外線露光を行い、現像液としては、例えば東京応化工業株式会社製のNMD−Wを用いる。そして、レジストパターン23をマスクとしたドライエッチングを行うことにより、パッシベーション膜17及びSi−C結合含有膜116に開口部33を形成する。このドライエッチングでは、例えばSF6ガスを用いる。開口部33の幅は、例えば600nm程度とする。開口部33の形成後には、レジストパターン23を除去する。
続いて、図2B(i)に示すように、ゲート電極用の開口部24aを有するレジストパターン24、及び開口部24aより狭い開口部25aを有するレジストパターン25をパッシベーション膜17上に形成する。レジストパターン24の材料としては、例えばポリメチルグルタルイミド(PMGI)(例えば、米国マイクロケム社製)を用い、レジストパターン25の材料としては、例えば住友化学株式会社製のPFI−32を用いる。また、開口部24a及び25aを形成する際の露光では紫外線露光を用い、現像液としては、例えば東京応化工業株式会社製のNMD−Wを用いる。開口部25aの幅は、例えば1.5μm程度とする。これらの処理により、庇構造の多層レジストが得られる。
次いで、図2C(j)に示すように、開口部33を介して表面層12dと接するゲート電極13をパッシベーション膜17上に形成する。ゲート電極13の形成に当たっては、例えば、蒸着法によりNi層を形成し、その上に蒸着法によりAu層を形成する。Ni層の厚さは10nm程度、Au層の厚さは300nm程度とする。
その後、図2C(k)に示すように、加温した有機溶剤を用いてレジストパターン24及び25を、その上のNi層及びAu層と共に除去する。つまり、ゲート電極13の形成でも、例えば蒸着及びリフトオフの技術を用いる。続いて、パッシベーション膜17上にゲート電極13を覆う絶縁膜15を形成する。絶縁膜15としては、例えばプラズマCVD法により、窒化珪素(SiN)膜を形成する。
次いで、図2C(l)に示すように、絶縁膜15、パッシベーション膜17及びSi−C結合含有膜116に、ソース電極14sの一部を露出する開口部32を形成する。その後、開口部32を介してソース電極14sに接続されるフィールドプレート19を絶縁膜15上に、例えばAuメッキ法を用いて形成する。
そして、必要に応じて保護膜及び配線等を形成して、GaN系HEMT(半導体装置)を完成させる。
このような方法で製造されたGaN系HEMTでは、Si−C結合含有膜116が化学合成SOG剤を用いて形成されているため、表面層12dに含まれるGaとSi−C結合含有膜116に含まれるSiとの間にOが介在する結合が存在する。つまり、「Ga−O−Si」で表される結合が存在する。これは、シランカップリング剤の作用による。この結合の存在は、例えばX線光電子分光(XPS:X-ray photoelectron spectroscopy)により確認することができる。そして、この結合の生成に伴って、表面層12dの上面近傍におけるダングリングボンドが効果的に消滅する。従って、電流コラプス及びリーク電流が効果的に抑制される。また、Si−C結合含有膜116にメチル基が含まれており、水酸基が含まれていることもある。化学合成SOG剤を用いて形成されたSi−C結合含有膜116自体には実質的にダングリングボンドが含まれていない。
第1の実施形態の特性を図3に示すSi−C結合含有膜116を含まない参考例の特性と比較すると、図4及び図5に示すような相違が生じる。図4(a)は参考例のパルスIV特性を示し、図4(b)は第1の実施形態のパルスIV特性を示している。図4(a)及び(b)の横軸はドレイン電圧を示し、縦軸はソース−ドレイン間電流を示している。図4(a)及び(b)中の実線はドレイン電圧を10Vとしたときの特性を示し、破線は
ドレイン電圧を20Vとしたときの特性を示している。図4(a)及び図4(b)を互いに比較すると、第1の実施形態において電流コラプスが抑制されていることが明確である。また、図5は参考例及び第1の実施形態のゲート−ドレイン間逆方向IV特性を示している。第1の実施形態においてリーク電流が抑制されていることが明確である。
(第2の実施形態)
次に、第2の実施形態について説明する。図6は、第2の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す断面図である。
第2の実施形態では、図6に示すように、Si−C結合含有膜116が形成されておらず、Si−C結合含有膜216がパッシベーション膜17の上面上に形成されている。他の構成は第1の実施形態と同様である。
このように構成されたGaN系HEMTでは、Si−C結合含有膜216がパッシベーション膜17の上面上に形成されているため、特にパッシベーション膜17の上面近傍におけるダングリングボンドに伴うトラップが著しく低減される。このため、電流コラプス及びリーク電流が抑制される。
次に、第2の実施形態に係るGaN系HEMTを製造する方法について説明する。図7A乃至図7Bは、第2の実施形態に係るGaN系HEMTを製造する方法を工程順に示す断面図である。
先ず、第1の実施形態と同様にしてソース電極14s及びドレイン電極14dの形成までの処理を行う(図2A(e))。次いで、図7A(a)に示すように、表面層12d、ソース電極14s、ドレイン電極14d及び素子分離領域18を覆うパッシベーション膜17を形成する。
その後、図7A(b)に示すように、Si−C結合含有膜216をパッシベーション膜17上に形成する。Si−C結合含有膜216の形成では、例えば、第1の実施形態におけるSi−C結合含有膜116の形成と同様に、化学合成SOG剤の塗布及びキュアを行う。
続いて、図7A(c)に示すように、ゲート電極用の開口部を形成する予定の領域に開口部23aを有するレジストパターン23をSi−C結合含有膜216上に形成する。そして、レジストパターン23をマスクとしたドライエッチングを行うことにより、Si−C結合含有膜216及びパッシベーション膜17に開口部33を形成する。開口部33の形成後には、レジストパターン23を除去する。
次いで、図7A(d)に示すように、ゲート電極用の開口部24aを有するレジストパターン24、及び開口部24aより狭い開口部25aを有するレジストパターン25をSi−C結合含有膜216上に形成する。
その後、図7B(e)に示すように、開口部33を介して表面層12dと接するゲート電極13をSi−C結合含有膜216上に形成する。
続いて、図7B(f)に示すように、加温した有機溶剤を用いてレジストパターン24及び25を、その上のNi層及びAu層と共に除去する。次いで、Si−C結合含有膜216上にゲート電極13を覆う絶縁膜15を形成する。
その後、図7B(g)に示すように、絶縁膜15、Si−C結合含有膜216及びパッシベーション膜17に、ソース電極14sの一部を露出する開口部32を形成する。続いて、開口部32を介してソース電極14sに接続されるフィールドプレート19を絶縁膜15上に形成する。
そして、必要に応じて保護膜及び配線等を形成して、GaN系HEMT(半導体装置)を完成させる。
このような方法で製造されたGaN系HEMTでは、Si−C結合含有膜216が化学合成SOG剤を用いて形成されているため、パッシベーション膜17に含まれるSiとSi−C結合含有膜216に含まれるSiとの間にOが介在する結合が存在する。つまり、「Si−O−Si」で表される結合が存在する。この結合の存在は、例えばXPSにより確認することができる。そして、この結合の生成に伴って、パッシベーション膜17の上面近傍におけるダングリングボンドが効果的に消滅する。従って、電流コラプス及びリーク電流が効果的に抑制される。また、Si−C結合含有膜216にメチル基が含まれており、水酸基が含まれていることもある。
(第3の実施形態)
次に、第3の実施形態について説明する。図8は、第3の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す断面図である。
第3の実施形態では、図8に示すように、パッシベーション膜17の上面上にSi−C結合含有膜216が形成されている。他の構成は第1の実施形態と同様である。つまり、第1の実施形態と第2の実施形態とが組み合わされている。
このように構成されたGaN系HEMTでは、第1の実施形態、第2の実施形態と比較して、電流コラプス及びリーク電流がより一層抑制される。
第3の実施形態に係る化合物半導体装置を製造するためには、第1の実施形態と第2の実施形態とを組み合わせればよい。
(第4の実施形態)
次に、第4の実施形態について説明する。図9は、第4の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す断面図である。
第4の実施形態では、図9に示すように、Si−C結合含有膜116が形成されておらず、Si−C結合含有膜416が表面層12dの一部の上面上に形成されている。Si−C結合含有膜416は、開口部33よりもドレイン電極14d側では、平面視で、開口部33からフィールドプレート19のドレイン電極14d側の端部とドレイン電極14dとの間の位置まで延在している。Si−C結合含有膜416は、開口部33よりもソース電極14s側では、平面視で、開口部33からゲート電極13のソース電極14s側の端部とソース電極14sとの間の位置まで延在している。他の構成は第1の実施形態と同様である。
このように構成されたGaN系HEMTでは、Si−C結合含有膜416がパッシベーション膜17と表面層12dとの間の一部に形成されているため、特に表面層12dの上面近傍におけるダングリングボンドに伴うトラップが著しく低減される。第1の実施形態と比較すると、トラップを低減する効果は若干低いが、電流コラプスは十分に抑制される。これは、特に高い電界が印加される領域はゲート電極13のドレイン電極14d側の端部の下方、及びフィールドプレート19のドレイン電極14d側の端部の下方であり、これらの領域にSi−C結合含有膜416が位置しているためである。
また、第1の実施形態では、Si−C結合含有膜116がゲート電極13及びドレイン電極14dに接しているため、ゲート電極13及びドレイン電極14d間に印加された電圧によってはSi−C結合含有膜116の耐圧が不足する虞がある。これは、パッシベーション膜17と比較してSi−C結合含有膜116の耐圧が低いためである。これに対し、第4の実施形態では、Si−C結合含有膜416がドレイン電極14dから離間している。つまり、Si−C結合含有膜416がドレイン電極14dから電気的に絶縁されている。このため、第1の実施形態と比較して高い耐圧を確保することが可能である。Si−C結合含有膜416がゲート電極13から電気的に絶縁されている場合にも、高い耐圧を確保することができる。
次に、第4の実施形態に係るGaN系HEMTを製造する方法について説明する。図10A乃至図10Cは、第4の実施形態に係るGaN系HEMTを製造する方法を工程順に示す断面図である。
先ず、第1の実施形態と同様にしてソース電極14s及びドレイン電極14dの形成までの処理を行う(図2A(e))。次いで、図10A(a)に示すように、表面層12d、ソース電極14s、ドレイン電極14d及び素子分離領域18を覆うSi−C結合含有膜416aを形成する。Si−C結合含有膜416aの形成では、例えば、第1の実施形態におけるSi−C結合含有膜116の形成と同様に、化学合成SOG剤の塗布及びキュアを行う。
その後、図10A(b)に示すように、Si−C結合含有膜416を形成する予定の領域を覆い、他の領域を露出するレジストパターン26をSi−C結合含有膜416a上に形成する。続いて、レジストパターン26をマスクとしたSi−C結合含有膜416aのドライエッチングを行うことにより、Si−C結合含有膜416を形成する。このドライエッチングでは、例えば酸素を含有するガスを用いる。
次いで、図10A(c)に示すように、レジストパターン26を除去する。その後、Si−C結合含有膜416、表面層12d、ソース電極14s、ドレイン電極14d及び素子分離領域18を覆うパッシベーション膜17を形成する。
続いて、図10B(d)に示すように、ゲート電極用の開口部を形成する予定の領域に開口部23aを有するレジストパターン23をパッシベーション膜17上に形成する。そして、レジストパターン23をマスクとしたドライエッチングを行うことにより、パッシベーション膜17及びSi−C結合含有膜416に開口部33を形成する。開口部33の形成後には、レジストパターン23を除去する。
次いで、図10B(e)に示すように、ゲート電極用の開口部24aを有するレジストパターン24、及び開口部24aより狭い開口部25aを有するレジストパターン25をパッシベーション膜17上に形成する。
その後、図10B(f)に示すように、開口部33を介して表面層12dと接するゲート電極13をパッシベーション膜17上に形成する。
続いて、図10C(g)に示すように、加温した有機溶剤を用いてレジストパターン24及び25を、その上のNi層及びAu層と共に除去する。
次いで、図10C(h)に示すように、パッシベーション膜17上にゲート電極13を覆う絶縁膜15を形成する。
その後、図10C(i)に示すように、絶縁膜15及びパッシベーション膜17に、ソース電極14sの一部を露出する開口部32を形成する。続いて、開口部32を介してソース電極14sに接続されるフィールドプレート19を絶縁膜15上に形成する。
そして、必要に応じて保護膜及び配線等を形成して、GaN系HEMT(半導体装置)を完成させる。
このような方法で製造されたGaN系HEMTでは、Si−C結合含有膜416が化学合成SOG剤を用いて形成されているため、第1の実施形態と同様に、表面層12dに含まれるGaとSi−C結合含有膜416に含まれるSiとの間にOが介在する結合が存在する。つまり、「Ga−O−Si」で表される結合が存在する。そして、この結合の生成に伴って、表面層12dの上面近傍におけるダングリングボンドが効果的に消滅する。従って、電流コラプス及びリーク電流が効果的に抑制される。
(第5の実施形態)
次に、第5の実施形態について説明する。図11は、第5の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す断面図である。
第5の実施形態では、図11に示すように、Si−C結合含有膜116が形成されておらず、Si−C結合含有膜516がパッシベーション膜17の一部の上面上に形成されている。Si−C結合含有膜516は、開口部33よりもドレイン電極14d側では、平面視で、開口部33からフィールドプレート19のドレイン電極14d側の端部とドレイン電極14dとの間の位置まで延在している。Si−C結合含有膜516は、開口部33よりもソース電極14s側では、平面視で、開口部33からゲート電極13のソース電極14s側の端部とソース電極14sとの間の位置まで延在している。他の構成は第1の実施形態と同様である。
このように構成されたGaN系HEMTでは、Si−C結合含有膜516がパッシベーション膜17の上面上の一部に形成されているため、特にパッシベーション膜17の上面近傍におけるダングリングボンドに伴うトラップが著しく低減される。第2の実施形態と比較すると、トラップを低減する効果は低いが、第4の実施形態と同様に、電流コラプスは十分に抑制される。また、Si−C結合含有膜516がドレイン電極14dから電気的に絶縁されているため、第2の実施形態と比較して高い耐圧を確保することが可能である。Si−C結合含有膜516がゲート電極13から電気的に絶縁されている場合にも、高い耐圧を確保することができる。
次に、第5の実施形態に係るGaN系HEMTを製造する方法について説明する。図12は、第5の実施形態に係るGaN系HEMTを製造する方法を工程順に示す断面図である。
先ず、第2の実施形態と同様にしてパッシベーション膜17の形成までの処理を行う(図7A(a))。次いで、図12(a)に示すように、Si−C結合含有膜516aをパッシベーション膜17上に形成する。Si−C結合含有膜516aの形成では、例えば、第1の実施形態におけるSi−C結合含有膜116の形成と同様に、化学合成SOG剤の塗布及びキュアを行う。
その後、図12(b)に示すように、Si−C結合含有膜516を形成する予定の領域を覆い、他の領域を露出するレジストパターン26をSi−C結合含有膜516a上に形成する。続いて、レジストパターン26をマスクとしたSi−C結合含有膜516aのドライエッチングを行うことにより、Si−C結合含有膜516を形成する。このドライエッチングでは、例えば酸素及びSF6の混合エッチングガスを用いる。
続いて、図12(c)に示すように、レジストパターン26を除去する。次いで、第1の実施形態と同様にして、開口部33、レジストパターン24、レジストパターン25及びゲート電極13を形成する。
その後、図12(d)に示すように、レジストパターン24及び25を除去する。続いて、第4の実施形態と同様にして、絶縁膜15、開口部32及びフィールドプレート19を形成する。
そして、必要に応じて保護膜及び配線等を形成して、GaN系HEMT(半導体装置)を完成させる。
このような方法で製造されたGaN系HEMTでは、Si−C結合含有膜516が化学合成SOG剤を用いて形成されているため、第2の実施形態と同様に、パッシベーション膜17に含まれるSiとSi−C結合含有膜516に含まれるSiとの間にOが介在する結合が存在する。つまり、「Si−O−Si」で表される結合が存在する。そして、この結合の生成に伴って、パッシベーション膜17の上面近傍におけるダングリングボンドが効果的に消滅する。従って、電流コラプス及びリーク電流が効果的に抑制される。
(第6の実施形態)
次に、第6の実施形態について説明する。図13は、第6の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す断面図である。
第6の実施形態では、図13に示すように、Si−C結合含有膜516がパッシベーション膜17の一部の上面上に形成されている。他の構成は第4の実施形態と同様である。つまり、第4の実施形態と第5の実施形態とが組み合わされている。
このように構成されたGaN系HEMTでは、第4の実施形態、第5の実施形態と比較して、電流コラプス及びリーク電流がより一層抑制される。
第6の実施形態に係る化合物半導体装置を製造するためには、第4の実施形態と第5の実施形態とを組み合わせればよい。
(第7、第8、第9の実施形態)
次に、第7の実施形態、第8の実施形態、第9の実施形態について説明する。図14(a)、(b)、(c)は、それぞれ、第7の実施形態、第8の実施形態、第9の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す断面図である。
第7の実施形態では、図14(a)に示すように、Si−C結合含有膜116が形成されておらず、Si−C結合含有膜716が表面層12dの一部の上面上に形成されている。Si−C結合含有膜716は、開口部33よりもドレイン電極14d側では、平面視で、開口部33からゲート電極13のドレイン電極14d側の端部13eとドレイン電極14dとの間の位置まで延在している。Si−C結合含有膜716は、開口部33よりもソース電極14s側では、平面視で、開口部33からゲート電極13のソース電極14s側の端部とソース電極14sとの間の位置まで延在している。他の構成は第1の実施形態と同様である。
第8の実施形態では、図14(b)に示すように、Si−C結合含有膜116が形成されておらず、Si−C結合含有膜816が表面層12dの一部の上面上に形成されている。Si−C結合含有膜816は、開口部33よりもドレイン電極14d側では、平面視で、ゲート電極13の下方に存在せず、端部13eとフィールドプレート19のドレイン電極14d側の端部19eとの間の位置から、端部19eとドレイン電極14dとの間の位置まで延在している。Si−C結合含有膜816は、開口部33よりもソース電極14s側では、平面視で、開口部33からゲート電極13のソース電極14s側の端部とソース電極14sとの間の位置まで延在している。他の構成は第1の実施形態と同様である。
第9の実施形態では、図14(c)に示すように、Si−C結合含有膜116が形成されておらず、Si−C結合含有膜916が表面層12dの一部の上面上に形成されている。Si−C結合含有膜916は、開口部33よりもドレイン電極14d側では、平面視で、開口部33から、端部13eと端部19eとの間の位置まで延在する部分、及び、端部13eと端部19eとの間の位置から、端部19eとドレイン電極14dとの間の位置まで延在する部分を有している。Si−C結合含有膜916は、開口部33よりもソース電極14s側では、開口部33からゲート電極13のソース電極14s側の端部とソース電極14sとの間の位置まで延在している。他の構成は第1の実施形態と同様である。
第7の実施形態、第8の実施形態及び第9の実施形態によっても、電流コラプス及びリーク電流を抑制する効果及び高い耐圧を確保する効果を得ることができる。
上述のように、特に高い電界が印加される領域はゲート電極13のドレイン電極14d側の端部の下方、及びフィールドプレート19のドレイン電極14d側の端部の下方である。このため、いずれの実施形態においても、開口部33よりもソース電極14s側のSi−C結合含有膜が省略されていてもよい。また、特に高い電界が印加される領域のトラップを消滅させるためには、Si−C結合含有膜に、ゲート電極13のドレイン電極14d側の端部からゲート電極13側及びドレイン電極14d側の両方向にそれぞれ0.5μm程度の幅をもつ部分が設けられていることが好ましい。同様に、Si−C結合含有膜に、フィールドプレート19のドレイン電極14d側の端部からゲート電極13側及びドレイン電極14d側の両方向にそれぞれ0.5μm程度の幅をもつ部分が設けられていることが好ましい。
(第10〜第18の実施形態)
次に、第10〜第18の実施形態について説明する。図15(a)、(b)、(c)は、それぞれ、第10の実施形態、第11の実施形態、第12の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す断面図である。図16(a)、(b)、(c)は、それぞれ、第13の実施形態、第14の実施形態、第15の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す断面図である。図17(a)、(b)、(c)は、それぞれ、第16の実施形態、第17の実施形態、第18の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す断面図である。
第1の実施形態では、ゲート電極13が開口部33を介して化合物半導体積層構造12にショットキー接合しているのに対し、第10の実施形態では、ゲート電極13と化合物半導体積層構造12との間にSi−C結合含有膜116及びパッシベーション膜17が介在しており、パッシベーション膜17がゲート絶縁膜として機能する。つまり、開口部33が形成されておらず、MIS型構造が採用されている。他の構成は第1の実施形態と同様である。
このような第10の実施形態によっても、第1の実施形態と同様に、電流コラプス及びリーク電流が効果的に抑制される。
パッシベーション膜17の材料は特に限定されないが、例えばSi、Al、Hf、Zr、Ti、Ta又はWの酸化物、窒化物又は酸窒化物が好ましく、特にAl酸化物が好ましい。具体的には、SiN、SiO2、HfO、Al23、AlN等が用いられる。
第11〜第18の実施形態は、それぞれ、このようなMIS型構造を第2〜第9の実施形態に適用したものである。MIS型構造に含まれるパッシベーション膜17を得るためには、例えば、単に開口部33の形成を省略すればよい。
(第19の実施形態)
第19の実施形態は、GaN系HEMTのディスクリートパッケージに関する。図18は、第19の実施形態に係るディスクリートパッケージを示す図である。
第19の実施形態では、図18に示すように、第1〜第18の実施形態のいずれかのGaN系HEMTのHEMTチップ210の裏面がはんだ等のダイアタッチ剤234を用いてランド(ダイパッド)233に固定されている。また、ドレイン電極14dが接続されたドレインパッド226dに、Alワイヤ等のワイヤ235dが接続され、ワイヤ235dの他端が、ランド233と一体化しているドレインリード232dに接続されている。ソース電極14sに接続されたソースパッド226sにAlワイヤ等のワイヤ235sが接続され、ワイヤ235sの他端がランド233から独立したソースリード232sに接続されている。ゲート電極13に接続されたゲートパッド226gにAlワイヤ等のワイヤ235gが接続され、ワイヤ235gの他端がランド233から独立したゲートリード232gに接続されている。そして、ゲートリード232gの一部、ドレインリード232dの一部及びソースリード232sの一部が突出するようにして、ランド233及びHEMTチップ210等がモールド樹脂231によりパッケージングされている。
このようなディスクリートパッケージは、例えば、次のようにして製造することができる。先ず、HEMTチップ210をはんだ等のダイアタッチ剤234を用いてリードフレームのランド233に固定する。次いで、ワイヤ235g、235d及び235sを用いたボンディングにより、ゲートパッド226gをリードフレームのゲートリード232gに接続し、ドレインパッド226dをリードフレームのドレインリード232dに接続し、ソースパッド226sをリードフレームのソースリード232sに接続する。その後、トランスファーモールド法にてモールド樹脂231を用いた封止を行う。続いて、リードフレームを切り離す。
(第20の実施形態)
次に、第20の実施形態について説明する。第20の実施形態は、GaN系HEMTを備えたPFC(Power Factor Correction)回路に関する。図19は、第20の実施形態に係るPFC回路を示す結線図である。
PFC回路250には、スイッチ素子(トランジスタ)251、ダイオード252、チョークコイル253、コンデンサ254及び255、ダイオードブリッジ256、並びに交流電源(AC)257が設けられている。そして、スイッチ素子251のドレイン電極と、ダイオード252のアノード端子及びチョークコイル253の一端子とが接続されている。スイッチ素子251のソース電極と、コンデンサ254の一端子及びコンデンサ255の一端子とが接続されている。コンデンサ254の他端子とチョークコイル253の他端子とが接続されている。コンデンサ255の他端子とダイオード252のカソード端子とが接続されている。また、スイッチ素子251のゲート電極にはゲートドライバが接続されている。コンデンサ254の両端子間には、ダイオードブリッジ256を介してAC257が接続される。コンデンサ255の両端子間には、直流電源(DC)が接続される。そして、本実施形態では、スイッチ素子251に、第1〜第18の実施形態のいずれかのGaN系HEMTが用いられている。
PFC回路250の製造に際しては、例えば、はんだ等を用いて、スイッチ素子251をダイオード252及びチョークコイル253等に接続する。
(第21の実施形態)
次に、第21の実施形態について説明する。第21の実施形態は、GaN系HEMTを備えた電源装置に関する。図20は、第21の実施形態に係る電源装置を示す結線図である。
電源装置には、高圧の一次側回路261及び低圧の二次側回路262、並びに一次側回路261と二次側回路262との間に配設されるトランス263が設けられている。
一次側回路261には、第20の実施形態に係るPFC回路250、及びPFC回路250のコンデンサ255の両端子間に接続されたインバータ回路、例えばフルブリッジインバータ回路260が設けられている。フルブリッジインバータ回路260には、複数(ここでは4つ)のスイッチ素子264a、264b、264c及び264dが設けられている。
二次側回路262には、複数(ここでは3つ)のスイッチ素子265a、265b及び265cが設けられている。
本実施形態では、一次側回路261を構成するPFC回路250のスイッチ素子251、並びにフルブリッジインバータ回路260のスイッチ素子264a、264b、264c及び264dに、第1〜第18の実施形態のいずれかのGaN系HEMTが用いられている。一方、二次側回路262のスイッチ素子265a、265b及び265cには、シリコンを用いた通常のMIS型FET(電界効果トランジスタ)が用いられている。
(第22の実施形態)
次に、第22の実施形態について説明する。第22の実施形態は、GaN系HEMTを備えた増幅器に関する。図21は、第22の実施形態に係る増幅器を示す結線図である。
増幅器には、ディジタル・プレディストーション回路271、ミキサー272a及び272b、並びにパワーアンプ273が設けられている。
ディジタル・プレディストーション回路271は、入力信号の非線形歪みを補償する。ミキサー272aは、非線形歪みが補償された入力信号と交流信号とをミキシングする。パワーアンプ273は、第1〜第18の実施形態のいずれかのGaN系HEMTを備えており、交流信号とミキシングされた入力信号を増幅する。なお、本実施形態では、例えば、スイッチの切り替えにより、出力側の信号をミキサー272bで交流信号とミキシングしてディジタル・プレディストーション回路271に送出できる。この増幅器は、高周波増幅器、高出力増幅器として使用することができる。
なお、化合物半導体積層構造に用いられる化合物半導体層の組成は特に限定されず、例えば、GaN、AlN及びInN等の窒化物を用いることができる。また、これらの混晶を用いることもできる。
また、ゲート電極、ソース電極及びドレイン電極の構造は上述の実施形態のものに限定されない。例えば、これらが単層から構成されていてもよい。また、これらの形成方法はリフトオフ法に限定されない。更に、オーミック特性が得られるのであれば、ソース電極及びドレイン電極の形成後の熱処理を省略してもよい。また、ゲート電極に対して熱処理を行ってもよい。
基板として、SiC基板、サファイア基板、シリコン基板、GaN基板又はGaAs基板等を用いてもよい。基板が、導電性、半絶縁性又は絶縁性のいずれであってもよい。各層の厚さ及び材料等も上述の実施形態のものに限定されない。
以下、本発明の諸態様を付記としてまとめて記載する。
(付記1)
基板と、
前記基板上方に形成された窒化物の化合物半導体積層構造と、
前記化合物半導体積層構造を覆うパッシベーション膜と、
前記化合物半導体積層構造上方に形成されたゲート電極、ソース電極及びドレイン電極と、
Si−C結合を含有し、前記ソース電極と前記ドレイン電極との間において、前記化合物半導体積層構造の上面の少なくとも一部又は前記パッシベーション膜の上面の少なくも一部と接する部分を有するSi−C結合含有膜と、
を有することを特徴とする化合物半導体装置。
(付記2)
前記Si−C結合含有膜は、厚さ方向において前記ゲート電極の前記ドレイン電極側の端部と前記化合物半導体積層構造との間に位置する部分を有することを特徴とする付記1に記載の化合物半導体装置。
(付記3)
前記化合物半導体積層構造はガリウム原子を含有し、
前記Si−C結合含有膜と前記化合物半導体積層構造との間に、酸素原子を介したシリコン原子とガリウム原子との結合が存在することを特徴とする付記1又は2に記載の化合物半導体装置。
(付記4)
前記パッシベーション膜はシリコン原子を含有し、
前記Si−C結合含有膜と前記パッシベーション膜との間に、酸素原子を介したシリコン原子とシリコン原子との結合が存在することを特徴とする付記1乃至3のいずれか1項に記載の化合物半導体装置。
(付記5)
前記Si−C結合含有膜は、前記ゲート電極又は前記ドレイン電極の少なくとも一方から電気的に絶縁されていることを特徴とする付記1乃至4のいずれか1項に記載の化合物半導体装置。
(付記6)
前記ソース電極に接続され、前記ゲート電極と前記ドレイン電極との間まで延在するフィールドプレートを有し、
前記Si−C結合含有膜は、厚さ方向において前記フィールドプレートの前記ドレイン電極側の端部と前記化合物半導体積層構造との間に位置する部分を有することを特徴とする付記1乃至5のいずれか1項に記載の化合物半導体装置。
(付記7)
前記Si−C結合含有膜は、メチル基を含有することを特徴とする付記1乃至6のいずれか1項に記載の化合物半導体装置。
(付記8)
前記Si−C結合含有膜は、水酸基を含有することを特徴とする付記1乃至7のいずれか1項に記載の化合物半導体装置。
(付記9)
付記1乃至8のいずれか1項に記載の化合物半導体装置を有することを特徴とする電源装置。
(付記10)
付記1乃至8のいずれか1項に記載の化合物半導体装置を有することを特徴とする増幅器。
(付記11)
基板上方に窒化物の化合物半導体積層構造を形成する工程と、
前記化合物半導体積層構造を覆うパッシベーション膜を形成する工程と、
前記化合物半導体積層構造上方にゲート電極、ソース電極及びドレイン電極を形成する工程と、
Si−C結合を含有し、前記ソース電極と前記ドレイン電極との間において、前記化合物半導体積層構造の上面の少なくとも一部又は前記パッシベーション膜の上面の少なくも一部と接する部分を有するSi−C結合含有膜を形成する工程と、
を有することを特徴とする化合物半導体装置の製造方法。
(付記12)
前記Si−C結合含有膜は、厚さ方向において前記ゲート電極の前記ドレイン電極側の端部と前記化合物半導体積層構造との間に位置する部分を有することを特徴とする付記11に記載の化合物半導体装置の製造方法。
(付記13)
前記Si−C結合含有膜を形成する工程は、
化学合成スピンオングラス剤を塗布する工程と、
前記化学合成スピンオングラス剤をキュアする工程と、
を有することを特徴とする付記11又は12に記載の化合物半導体装置の製造方法。
(付記14)
前記ソース電極に接続され、前記ゲート電極と前記ドレイン電極との間まで延在するフィールドプレートを形成する工程を有し、
前記Si−C結合含有膜は、厚さ方向において前記フィールドプレートの前記ドレイン電極側の端部と前記化合物半導体積層構造との間に位置する部分を有することを特徴とする付記11乃至13のいずれか1項に記載の化合物半導体装置の製造方法。
(付記15)
前記化合物半導体積層構造はガリウム原子を含有し、
前記Si−C結合含有膜と前記化合物半導体積層構造との間に、酸素原子を介したシリコン原子とガリウム原子との結合が存在することを特徴とする付記11乃至14のいずれか1項に記載の化合物半導体装置の製造方法。
(付記16)
前記パッシベーション膜はシリコン原子を含有し、
前記Si−C結合含有膜と前記パッシベーション膜との間に、酸素原子を介したシリコン原子とシリコン原子との結合が存在することを特徴とする付記11乃至15のいずれか1項に記載の化合物半導体装置の製造方法。
(付記17)
前記Si−C結合含有膜は、前記ゲート電極又は前記ドレイン電極の少なくとも一方から電気的に絶縁されていることを特徴とする付記11乃至16のいずれか1項に記載の化合物半導体装置の製造方法。
11:基板
12:化合物半導体積層構造
13:ゲート電極
14s:ソース電極
14d:ドレイン電極
17:パッシベーション膜
116、216、416、516、716、816、916:Si−C結合含有膜

Claims (7)

  1. 基板と、
    前記基板上方に形成された窒化物の化合物半導体積層構造と、
    前記化合物半導体積層構造を覆うパッシベーション膜と、
    前記化合物半導体積層構造上方に形成されたゲート電極、ソース電極及びドレイン電極と、
    Si−C結合を含有し、前記ソース電極と前記ドレイン電極との間において、前記化合物半導体積層構造の上面の少なくとも一部又は前記パッシベーション膜の上面の少なくとも一部と接する部分を有するSi−C結合含有膜と、
    を有し、
    前記Si−C結合含有膜及び前記パッシベーション膜は、前記ゲート電極のドレイン端直下の部分を有し、
    前記Si−C結合含有膜は、前記ゲート電極のドレイン端直下で前記化合物半導体積層構造の上面と接し、
    前記Si−C結合含有膜は、前記ゲート電極又は前記ドレイン電極の少なくとも一方から電気的に絶縁されていることを特徴とする化合物半導体装置。
  2. 前記化合物半導体積層構造はガリウム原子を含有し、
    前記Si−C結合含有膜と前記化合物半導体積層構造との間に、酸素原子を介したシリコン原子とガリウム原子との結合が存在することを特徴とする請求項1に記載の化合物半導体装置。
  3. 前記パッシベーション膜はシリコン原子を含有し、
    前記Si−C結合含有膜と前記パッシベーション膜との間に、酸素原子を介したシリコン原子とシリコン原子との結合が存在することを特徴とする請求項1又は2に記載の化合物半導体装置。
  4. 請求項1乃至のいずれか1項に記載の化合物半導体装置を有することを特徴とする電源装置。
  5. 請求項1乃至のいずれか1項に記載の化合物半導体装置を有することを特徴とする増幅器。
  6. 基板上方に窒化物の化合物半導体積層構造を形成する工程と、
    前記化合物半導体積層構造を覆うパッシベーション膜を形成する工程と、
    前記化合物半導体積層構造上方にゲート電極、ソース電極及びドレイン電極を形成する工程と、
    Si−C結合を含有し、前記ソース電極と前記ドレイン電極との間において、前記化合物半導体積層構造の上面の少なくとも一部又は前記パッシベーション膜の上面の少なくとも一部と接する部分を有するSi−C結合含有膜を形成する工程と、
    を有し、
    前記Si−C結合含有膜及び前記パッシベーション膜は、前記ゲート電極のドレイン端直下の部分を有し、
    前記Si−C結合含有膜は、前記ゲート電極のドレイン端直下で前記化合物半導体積層構造の上面と接し、
    前記Si−C結合含有膜は、前記ゲート電極又は前記ドレイン電極の少なくとも一方から電気的に絶縁されていることを特徴とする化合物半導体装置の製造方法。
  7. 前記Si−C結合含有膜を形成する工程は、
    化学合成スピンオングラス剤を塗布する工程と、
    前記化学合成スピンオングラス剤をキュアする工程と、
    を有することを特徴とする請求項に記載の化合物半導体装置の製造方法。
JP2013087736A 2013-04-18 2013-04-18 化合物半導体装置及びその製造方法 Expired - Fee Related JP6186832B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013087736A JP6186832B2 (ja) 2013-04-18 2013-04-18 化合物半導体装置及びその製造方法
EP14159116.4A EP2793269B1 (en) 2013-04-18 2014-03-12 Compound semiconductor device and method of manufacturing the same
US14/205,740 US9184273B2 (en) 2013-04-18 2014-03-12 Compound semiconductor device and method of manufacturing the same
CN201410116734.6A CN104112772B (zh) 2013-04-18 2014-03-26 化合物半导体器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013087736A JP6186832B2 (ja) 2013-04-18 2013-04-18 化合物半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2014212214A JP2014212214A (ja) 2014-11-13
JP6186832B2 true JP6186832B2 (ja) 2017-08-30

Family

ID=50241228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087736A Expired - Fee Related JP6186832B2 (ja) 2013-04-18 2013-04-18 化合物半導体装置及びその製造方法

Country Status (4)

Country Link
US (1) US9184273B2 (ja)
EP (1) EP2793269B1 (ja)
JP (1) JP6186832B2 (ja)
CN (1) CN104112772B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178016B2 (en) * 2013-03-01 2015-11-03 Infineon Technologies Austria Ag Charge protection for III-nitride devices
CN103367403B (zh) * 2013-08-01 2019-10-08 苏州能讯高能半导体有限公司 半导体器件及其制造方法
US9590087B2 (en) 2014-11-13 2017-03-07 Infineon Technologies Austria Ag Compound gated semiconductor device having semiconductor field plate
US9559161B2 (en) * 2014-11-13 2017-01-31 Infineon Technologies Austria Ag Patterned back-barrier for III-nitride semiconductor devices
JP6767741B2 (ja) * 2015-10-08 2020-10-14 ローム株式会社 窒化物半導体装置およびその製造方法
US10056478B2 (en) * 2015-11-06 2018-08-21 Taiwan Semiconductor Manufacturing Company Ltd. High-electron-mobility transistor and manufacturing method thereof
US20190035906A1 (en) * 2016-01-27 2019-01-31 National Institute Of Advanced Industrial Science And Technology Field Effect Transistor and Method for Manufacturing Same
CN107230716A (zh) * 2016-03-25 2017-10-03 北京大学 氮化镓晶体管的制备方法
US10483356B2 (en) * 2018-02-27 2019-11-19 Siliconix Incorporated Power semiconductor device with optimized field-plate design
US11515410B2 (en) 2020-10-30 2022-11-29 Raytheon Company Group III-V semiconductor structures having crystalline regrowth layers and methods for forming such structures
WO2022110030A1 (zh) * 2020-11-27 2022-06-02 华为技术有限公司 一种半导体器件及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455869A (en) * 1987-08-27 1989-03-02 Sumitomo Electric Industries Compound semiconductor device and manufacture thereof
JP4385205B2 (ja) * 2002-12-16 2009-12-16 日本電気株式会社 電界効果トランジスタ
JP4385206B2 (ja) 2003-01-07 2009-12-16 日本電気株式会社 電界効果トランジスタ
JP2008118044A (ja) * 2006-11-07 2008-05-22 Toshiba Corp 電界効果トランジスタ及びその製造方法
WO2009012536A1 (en) * 2007-07-20 2009-01-29 Interuniversitair Microelektronica Centrum Damascene contacts on iii-v cmos devices
JP2011192719A (ja) 2010-03-12 2011-09-29 Panasonic Corp 窒化物半導体装置
US8772832B2 (en) 2010-06-04 2014-07-08 Hrl Laboratories, Llc GaN HEMTs with a back gate connected to the source
JP2014078537A (ja) * 2011-02-15 2014-05-01 Sharp Corp 横型半導体装置
JP5942371B2 (ja) * 2011-09-21 2016-06-29 富士通株式会社 化合物半導体装置及びその製造方法
JP2014007389A (ja) * 2012-05-30 2014-01-16 Sharp Corp ヘテロ接合型fet
WO2014020809A1 (ja) * 2012-08-03 2014-02-06 パナソニック株式会社 窒化物半導体装置および窒化物半導体装置の製造方法

Also Published As

Publication number Publication date
CN104112772B (zh) 2018-01-12
EP2793269A1 (en) 2014-10-22
CN104112772A (zh) 2014-10-22
US20140312362A1 (en) 2014-10-23
JP2014212214A (ja) 2014-11-13
US9184273B2 (en) 2015-11-10
EP2793269B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6186832B2 (ja) 化合物半導体装置及びその製造方法
JP5790461B2 (ja) 化合物半導体装置及びその製造方法
US9685338B2 (en) Compound semiconductor device and method of manufacturing the same
JP5775321B2 (ja) 半導体装置及びその製造方法、電源装置
JP5874173B2 (ja) 化合物半導体装置及びその製造方法
US20130193485A1 (en) Compound semiconductor device and method of manufacturing the same
US9548383B2 (en) HEMT with a metal film between the gate electrode and the drain electrode
US9306052B2 (en) Compound semiconductor device and method of manufacturing the same
TW201314906A (zh) 化合物半導體裝置及其製造方法
JP2012175089A (ja) 半導体装置及び半導体装置の製造方法
JP5890991B2 (ja) 化合物半導体装置及びその製造方法
JP2013207102A (ja) 化合物半導体装置及びその製造方法
TWI488302B (zh) 化合物半導體裝置及其製造方法
JP2014138111A (ja) 半導体装置及びその製造方法、電源装置、高周波増幅器
JP6839362B2 (ja) 半導体装置及びその製造方法
JP6194769B2 (ja) 半導体装置及び半導体装置の製造方法
JP6221345B2 (ja) 化合物半導体装置及びその製造方法
JP6216559B2 (ja) 化合物半導体装置及びその製造方法
JP2019087631A (ja) 半導体装置、電源装置、高周波増幅器、及び半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R150 Certificate of patent or registration of utility model

Ref document number: 6186832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees