JP6185695B2 - Multilayer wiring board and manufacturing method thereof - Google Patents

Multilayer wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP6185695B2
JP6185695B2 JP2012055222A JP2012055222A JP6185695B2 JP 6185695 B2 JP6185695 B2 JP 6185695B2 JP 2012055222 A JP2012055222 A JP 2012055222A JP 2012055222 A JP2012055222 A JP 2012055222A JP 6185695 B2 JP6185695 B2 JP 6185695B2
Authority
JP
Japan
Prior art keywords
insulating layer
layer
insulating
thin film
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012055222A
Other languages
Japanese (ja)
Other versions
JP2013191645A (en
Inventor
奈緒子 森
奈緒子 森
宗之 岩田
宗之 岩田
卓 宮本
卓 宮本
善明 長屋
善明 長屋
豊 今西
豊 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012055222A priority Critical patent/JP6185695B2/en
Publication of JP2013191645A publication Critical patent/JP2013191645A/en
Application granted granted Critical
Publication of JP6185695B2 publication Critical patent/JP6185695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、例えば、Siウェハに形成された多数の半導体素子などの電子部品の電気的特性を検査するため、樹脂からなる絶縁層と該樹脂よりも硬度が高いセラミックからなる絶縁層とのように、互いに硬度が相違する2種類以上の絶縁層を積層してなる電子部品検査用などの多層配線基板およびその製造方法に関する。   In the present invention, for example, in order to inspect the electrical characteristics of electronic components such as a large number of semiconductor elements formed on a Si wafer, an insulating layer made of a resin and an insulating layer made of a ceramic having a higher hardness than the resin are used. In particular, the present invention relates to a multilayer wiring board for electronic component inspection and the like and a manufacturing method thereof, in which two or more types of insulating layers having different hardnesses are laminated.

電子部品検査用の多層配線基板は、例えば、複数のセラミック層、該セラミック層の間に配設した内部電極、および上記セラミック層を貫通するビア導体を含むセラミック多層配線基板と、該セラミック多層配線基板の表面の上方に、複数の樹脂絶縁層、該樹脂絶縁層の間に配設した導体層、および前記樹脂絶縁層を貫通するビア導体を含む樹脂多層配線基板との硬度が異なる2つの絶縁層から構成されており、該樹脂多層配線基板の表面には、プローブを取り付けるための端子が複数形成され、且つ上記セラミック多層配線基板の表面には、樹脂多層配線基板の裏面に露出する上記ビア導体の端面に頂面が接触するように厚みが約15μmである複数の接続端子が突設されている(例えば、特許文献1参照)。   A multilayer wiring board for electronic component inspection includes, for example, a ceramic multilayer wiring board including a plurality of ceramic layers, internal electrodes disposed between the ceramic layers, and via conductors penetrating the ceramic layers, and the ceramic multilayer wiring. Two insulations different in hardness from a resin multilayer wiring board including a plurality of resin insulation layers, a conductor layer disposed between the resin insulation layers, and a via conductor penetrating the resin insulation layer above the surface of the substrate A plurality of terminals for attaching a probe are formed on the surface of the resin multilayer wiring board, and the vias exposed on the back surface of the resin multilayer wiring board are formed on the surface of the ceramic multilayer wiring board. A plurality of connection terminals having a thickness of about 15 μm are provided so as to protrude from the end face of the conductor (see, for example, Patent Document 1).

ところで、前記接続端子は、例えば、前記セラミック多層配線基板の表面にスパッタリングにより形成されたTi薄膜層およびCu薄膜層、両者の側面および後者の上面に電解金属メッキにより順次被覆したCuメッキ膜、Niメッキ膜、およびAuメッキ膜の5層構造を有している。そのため、前記セラミック多層配線基板の表面の上方に、該セラミック多層配線基板よりも軟質である前記樹脂多層配線基板を積層し、更に加熱しつつ圧着した際に、接続端子の頂面における周辺部(エッジ)が上記樹脂多層配線基板の裏面側に位置する樹脂絶縁層の内部に剪断力を伴って食い込むので、該絶縁層にクラックや破断などを生じる場合がある。該クラックなどが前記樹脂絶縁層の内部に生じると、絶縁性能の劣化や不用意な導通経路による短絡などの不具合を生じることに起因して、検査性能や電気的特性の低下を招く、という問題があった。   By the way, the connection terminal is, for example, a Ti thin film layer and a Cu thin film layer formed by sputtering on the surface of the ceramic multilayer wiring substrate, a Cu plating film in which both side surfaces and the upper surface of the latter are sequentially coated by electrolytic metal plating, Ni It has a five-layer structure of a plating film and an Au plating film. Therefore, when the resin multilayer wiring board, which is softer than the ceramic multilayer wiring board, is laminated above the surface of the ceramic multilayer wiring board, and further crimped while being heated, the peripheral portion on the top surface of the connection terminal ( The edge) bites into the resin insulating layer located on the back side of the resin multilayer wiring board with a shearing force, so that the insulating layer may be cracked or broken. If the crack or the like occurs inside the resin insulation layer, it causes a problem such as deterioration of insulation performance or short circuit due to an inadvertent conduction path, resulting in deterioration of inspection performance or electrical characteristics. was there.

特開2009−76873号公報(第1〜20頁、図3)JP 2009-76873 A (pages 1 to 20, FIG. 3)

本発明は、背景技術において説明した問題点を解決し、互いに硬度が相違する2つ以上の絶縁層を積層してなり、該複数の絶縁層が対向して隣接する硬度が低い側の絶縁層の内部にクラックが生じにくい多層配線基板およびその製造方法を確実に提供する、ことを課題とする。   The present invention solves the problems described in the background art, and is formed by laminating two or more insulating layers having different hardnesses, and the insulating layer on the side having a low hardness adjacent to the plurality of insulating layers. It is an object of the present invention to reliably provide a multilayer wiring board in which cracks are unlikely to occur and a manufacturing method thereof.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、高い硬度の絶縁層の表面に突設され、且つ硬度が低い絶縁層の裏面に露出する貫通導体の端面に接触する接続端子の厚みを2μm以下に設定する、ことに着想して成されたものである。
即ち、本発明の多層配線基板(請求項1)は、絶縁材からなる第1絶縁層と、該第1絶縁層の前記絶縁材の硬度に比べて硬度が低い絶縁材、および少なくとも上記第1絶縁層に隣接する側の表面に粘着層を有する第2絶縁層とを積層してなる基板本体と、上記第2絶縁層に形成された貫通導体と、上記第1絶縁層において上記第2絶縁層に隣接する側の表面で且つ上記貫通導体の端面に接して形成された接続導体と、を備え、上記第1絶縁層の絶縁材と上記第2絶縁層の絶縁材との硬度差は、少なくとも100Hv以上であり、上記第2絶縁層は、少なくとも前記第1絶縁層に隣接する側の表面に熱可塑性樹脂からなり且つ厚みが3μm以下の上記粘着層を含み、上記接続導体の厚みは、2μm以下であり、上記粘着層の一部には、上記接続導体の上方に押し上げられ、且つ該接続導体に対向する上記第2絶縁層の絶縁材の表面を押し上げた凸部が形成されている、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention sets the thickness of the connection terminal that protrudes from the surface of the insulating layer with high hardness and contacts the end surface of the through conductor exposed on the back surface of the insulating layer with low hardness to 2 μm or less. It was designed with the idea in mind.
That is, the multilayer wiring board of the present invention (Claim 1) includes a first insulating layer made of an insulating material, an insulating material whose hardness is lower than that of the insulating material of the first insulating layer, and at least the first insulating layer. a substrate body formed by laminating a second insulating layer having an adhesive layer on the surface of the side adjacent to the insulating layer, and the penetrations conductor formed on the second insulating layer, the first in the first insulating layer A connection conductor formed on the surface adjacent to the two insulating layers and in contact with the end face of the through conductor, and a hardness difference between the insulating material of the first insulating layer and the insulating material of the second insulating layer at least is at 100Hv or more, the second insulating layer includes at least the pressure-sensitive layer of a thermoplastic resin on the surface becomes and thickness following 3μm on the side adjacent to the first insulating layer, the thickness of the connecting conductor Is 2 μm or less, and part of the adhesive layer includes the connection conductor. A convex portion is formed by pushing up the body and pushing up the surface of the insulating material of the second insulating layer facing the connecting conductor.

これによれば、前記硬度差を有する前記第1絶縁層と第2絶縁層とを積層し且つ更に加熱しつつ厚み方向に沿って圧着した際において、第1絶縁層側の前記接続導体の頂面側が、第2絶縁層の第1絶縁層に隣接する側の表面に押し込まれる量が少ない(浅い)ため、該第2絶縁層の変形量も小さくなるので、クラックや破断などの局部破壊を生じ難くされている。その結果、絶縁性能の劣化や不用意な導通経路の成立による短絡などの不具合を生じ難くなるので、検査性能や電気的特性が安定した多層配線基板とされている。
しかも、熱硬化性樹脂の樹脂からなる前記第2絶縁層には、熱可塑性樹脂からなり且つ厚みが3μm以下の粘着層が含まれているので、該粘着層を活用して第1絶縁層との積層および接着(圧着)が成されている。更に、厚みが2μm以下の前記接続導体の頂面が第2絶縁層の樹脂層に押し込まれる押し込み量が少なく、且つ前記粘着層の一部に前記凸部を形成するに留まるため、前記クラックの発生が未然に防止され易くなっている。
前記接続導体の厚みが2μmを超えると、接続導体の頂面側が第2絶縁層に押し込まれる押し込み量が多くなり、該第2絶縁層の変形量も大きくなるので、かかる範囲を除いたものである。望ましい接続導体の前記厚みは、0.7〜1.0μmの範囲である。
According to this, when the first insulating layer and the second insulating layer having the hardness difference are stacked and further crimped along the thickness direction while further heating, the top of the connection conductor on the first insulating layer side is obtained. Since the amount of the surface side that is pushed into the surface of the second insulating layer adjacent to the first insulating layer is small (shallow), the deformation amount of the second insulating layer is also reduced, so that local destruction such as cracks and breakage is prevented. It is hard to occur. As a result, it is difficult to cause problems such as short-circuit due to deterioration of insulation performance or inadvertent establishment of a conduction path, and thus a multilayer wiring board having stable inspection performance and electrical characteristics is obtained.
In addition, since the second insulating layer made of a thermosetting resin includes an adhesive layer made of a thermoplastic resin and having a thickness of 3 μm or less, the first insulating layer is formed using the adhesive layer. lamination and adhesion (bonding) is that has been made. Because further, the Tomah to form the convex portions on a part of the top surface of the thickness 2μm or less of the connection conductor a second push amount pushed into the resin layer of the insulating layer is rather small, and the adhesive layer The occurrence of cracks is easily prevented in advance.
If the thickness of the connection conductor exceeds 2 μm, the amount of pushing the top surface side of the connection conductor into the second insulating layer increases, and the amount of deformation of the second insulating layer also increases, so this range is excluded. is there. The thickness of the desirable connecting conductor is in the range of 0.7 to 1.0 μm.

尚、前記絶縁材ごとの硬度は、例えば、絶縁材の素材がセラミックグリーンシートである場合には、該グリーンシートを焼成したセラミックの硬度であり、絶縁材の素材が合成樹脂である場合には、これを硬化処理した後の硬度である。前記2種類の絶縁材間における硬度の差は、少なくとも100Hv以上である。
また、前記第1絶縁層および第2絶縁層は、単層の絶縁層からなる形態のほか、同種である複数の絶縁層を予め積層した多層構造の形態も含む。後者の形態では、単位絶縁層相互の間に内部配線層が形成され、且つ該内部配線層を前記表面あるいは表面と対向するもう1つの表面に導出するための貫通導体が内部に形成されている。
更に、前記第1絶縁層と第2絶縁層は、相対的に硬度が相違することによる呼称であり、2種類に限らず、硬度が段階的に異なる3種類の絶縁層をも包含する。
また、前記貫通導体の直径は、前記接続導体の直径よりも比較的小径である。
更に、前記貫通導体には、ビア導体およびスルーホール導体が含まれる。
加えて、前記多層配線基板は、例えば、電子部品検査用配線基板として使用されるが、これ以外の用途にも適用可能である。
The hardness for each insulating material is, for example, the hardness of the ceramic obtained by firing the green sheet when the insulating material is a ceramic green sheet, and when the insulating material is a synthetic resin. This is the hardness after this is cured. The difference in hardness between the two types of insulating materials is at least 100 Hv or more.
The first insulating layer and the second insulating layer include not only a single insulating layer but also a multilayer structure in which a plurality of the same insulating layers are laminated in advance. In the latter form, an internal wiring layer is formed between the unit insulating layers, and a through conductor for leading the internal wiring layer to the surface or another surface facing the surface is formed inside. .
Furthermore, the first insulating layer and the second insulating layer are names due to relatively different hardness, and are not limited to two types, but also include three types of insulating layers having different degrees of hardness.
The diameter of the through conductor is relatively smaller than the diameter of the connection conductor.
Further, the through conductor includes a via conductor and a through-hole conductor.
In addition, the multilayer wiring board is used as an electronic component inspection wiring board, for example, but can be applied to other uses.

また、本発明には、前記基板本体は、第1絶縁層の絶縁材がセラミックからなり且つ前記第2絶縁層の絶縁材が樹脂からなるか、前記第1絶縁層および第2絶縁層の絶縁材の双方が互いに異なる硬度の樹脂からなるか、あるいは、前記第1絶縁層および第2絶縁層の絶縁材の双方が互いに異なる硬度のセラミックからなる、多層配線基板(請求項2)も含まれる。
これによれば、例えば、セラミックからなる第1絶縁層と樹脂からなる第2絶縁層とを積層し更に加熱しつつ圧着した際に、第1絶縁層の表面に形成された接続導体が第2絶縁層において隣接する側の表面を変形させにくくなる。あるいは、異なる硬度の樹脂同士または異なる硬度のセラミック同士からなる第1絶縁層と第2絶縁層とを積層した際にも、前記同様に接続導体が第2絶縁層側の表面を変形させにくくなる。従って、前述した信頼性に優れた多層配線基板とされている。
尚、硬度の異なる樹脂同士には、例えば、ポリイミドとポリエチレンナフタレートとが例示され、硬度の異なるセラミック同士には、例えば、アルミナとガラス−セラミックとが例示される。例えば、エポキシ系の樹脂のように、同種の樹脂同士であっても、互いの硬度が相違している場合には適用可能である。
また、樹脂同士の硬度(Hv)を測定する場合には、JIS R 1610に従って行うことが望ましい。
According to the present invention, in the substrate body, the insulating material of the first insulating layer is made of ceramic and the insulating material of the second insulating layer is made of resin, or the first insulating layer and the second insulating layer are insulated. Also included is a multilayer wiring board in which both materials are made of resins having different hardnesses, or both the insulating materials of the first insulating layer and the second insulating layer are made of ceramics having different hardnesses. .
According to this, for example, when the first insulating layer made of ceramic and the second insulating layer made of resin are laminated and further pressure-bonded while heating, the connection conductor formed on the surface of the first insulating layer is the second. It becomes difficult to deform the surface on the adjacent side in the insulating layer. Alternatively, when the first insulating layer and the second insulating layer made of resins having different hardnesses or ceramics having different hardnesses are laminated, the connection conductor is less likely to deform the surface on the second insulating layer side as described above. . Therefore, the multilayer wiring board is excellent in reliability as described above.
Examples of resins having different hardnesses include polyimide and polyethylene naphthalate, and examples of ceramics having different hardnesses include alumina and glass-ceramic. For example, even if the resins are of the same type, such as an epoxy resin, they can be applied when their hardnesses are different.
Moreover, when measuring the hardness (Hv) between resin, it is desirable to carry out according to JISR1610.

えて、本発明には、前記第1絶縁層の表面に形成される接続導体は、Ti薄膜層とCu薄膜層、Cr薄膜層とCu薄膜層、Ti薄膜層とMo薄膜層、Cr薄膜層とMo薄膜層、Ti薄膜層とMo薄膜層とCu薄膜層、あるいはCr薄膜層とMo薄膜層Cu薄膜層の何れかを積層したものからなる、多層配線基板(請求項)も含まれる。
これによれば、厚みが2μm以下と比較的均一であり且つ第2絶縁層側において隣接する表面に露出する前記貫通導体の端面との電気的接続も確実な接続端子となっている。そのため、前述した積層した後の加熱および圧着(接着)時におけるクラックなどが発生するおそれを著しく低減することができる。
尚、Ti、Cr、Mo、およびCuの薄膜層は、後述するようにスパッタリングやPVDなどの物理的蒸着法によって形成することが望ましい。
Pressurized forte, the present invention, the connection conductors formed on the surface of the first insulating layer, Ti thin film layer and the Cu thin layer, Cr thin film layer and the Cu thin layer, Ti thin film layer and the Mo thin film layer, Cr thin film layer and Mo thin film layer, Ti thin film layer and the Mo thin film layer and the Cu thin film layer, or consist of a laminate of any of Cr thin film layer and the M o thin layer Cu thin layer, multi-layer wiring board (claim 3) also includes It is.
According to this, the thickness is relatively uniform at 2 μm or less, and the electrical connection with the end face of the through conductor exposed on the adjacent surface on the second insulating layer side is also a reliable connection terminal. Therefore, it is possible to remarkably reduce the possibility of occurrence of cracks or the like during heating and pressure bonding (adhesion) after the lamination described above.
The thin film layers of Ti, Cr, Mo, and Cu are preferably formed by physical vapor deposition such as sputtering or PVD as will be described later.

一方、本発明による多層配線基板の製造方法(請求項4)は、絶縁材および第1貫通導体を有する第1絶縁層を形成する工程と、該第1絶縁層の表面に、上記第1貫通導体と接続し且つ厚みが2μm以下の接続導体を形成する工程と、第2貫通導体を備え、第1絶縁層の上記絶縁材の硬度に比べて硬度が少なくとも100Hv以上低い絶縁材、および第1絶縁層に隣接する積層側の表面に熱可塑性樹脂からなる厚みが3μm以下の粘着層を有する第2絶縁層を形成する工程と、上記接続導体に、上記第2絶縁層の積層側の表面に露出した第2貫通導体の端面が接触するように、第1絶縁層と第2絶縁層とを積層し、更に加熱および圧着して、上記粘着層の一部に、上記接続導体の上方に押し上げられ、且つ該接続導体に対向する第2絶縁層の絶縁材の表面を押し上げた凸部を有している基板本体を形成する工程と、を備える、ことを特徴とする。
これによれば、前記硬度差を有する第1絶縁層と第2絶縁層とを積層し且つ加熱ししつ圧着して基板本体を形成する工程において、第1絶縁層側の前記接続導体の頂面における周辺部(エッジ)が第2絶縁層の第1絶縁層に隣接する側の表面に食い込みにくく、且つ粘着層の一部が前記凸部となるに留まるので、クラックや破断などの局部破壊が生じ難い。その結果、絶縁性能の劣化や不用意な導通経路による短絡などの不具合を生じなくなるので、検査性能や電気的特性が安定した多層配線基板を提供することが可能となる。
しかも、前記第1絶縁層と第2絶縁層とを積層し且つ圧着した際に、両絶縁層の間に3μm以下の比較的均一な厚みで前記粘着層が残留するので、前記接続端子の頂面における周辺部(エッジ)が接触する第2絶縁層側の絶縁材に進入せず、該絶縁材が変形しにくくなる。
On the other hand, the method for manufacturing a multilayer wiring board according to the present invention (Claim 4) includes the step of forming a first insulating layer having an insulating material and a first through conductor, and the first through-hole on the surface of the first insulating layer. A step of forming a connection conductor having a thickness of 2 μm or less connected to the conductor, a second through conductor, and an insulating material having a hardness that is lower by at least 100 Hv or more than the hardness of the insulating material of the first insulating layer; Forming a second insulating layer having an adhesive layer made of a thermoplastic resin having a thickness of 3 μm or less on the surface of the laminated side adjacent to the insulating layer; and forming the second conductive layer on the laminated side surface of the second insulating layer. The first insulating layer and the second insulating layer are laminated so that the exposed end surface of the second through conductor is in contact, and further heated and pressure-bonded, and pushed up to a part of the adhesive layer above the connection conductor. It is, and absolute of the second insulating layer opposite to the connecting conductor And a step of forming a substrate body having a convex portion that pushes up the surface of the edge member .
According to this, in the step of laminating the first insulating layer and the second insulating layer having the hardness difference and heating and pressing to form the substrate body, the top of the connection conductor on the first insulating layer side is formed. Since the peripheral portion (edge) of the surface hardly bites into the surface of the second insulating layer on the side adjacent to the first insulating layer, and part of the adhesive layer remains as the convex portion, local destruction such as cracks and breaks Is unlikely to occur. As a result, it is possible to provide a multilayer wiring board with stable inspection performance and electrical characteristics, since problems such as deterioration of insulation performance and short circuits due to careless conduction paths do not occur.
Moreover, when the first insulating layer and the second insulating layer are laminated and pressure-bonded, the adhesive layer remains with a relatively uniform thickness of 3 μm or less between the two insulating layers. The peripheral portion (edge) on the surface does not enter the insulating material on the second insulating layer side, and the insulating material is not easily deformed.

尚、前記接続導体を形成する工程は、Ti、Cr、Mo、およびCuのスパッタリングを適宜組み合わせることによって行われる。
また、第1絶縁層や第2絶縁層の絶縁層の出発素材がセラミックグリーンシートである場合には、前記積層および圧着工程までの間において、該グリーンシートを焼成してセラミックとされており、出発素材が例えば、塗布したエポキシ樹脂などである場合には、上記工程の前までに硬化(キュア)処理が施されている。
更に、前記接続導体の頂面と第2貫通導体の端面との接触は、前記基板本体の形成工程において、積層後の圧着によって可能となる。
Note that the step of forming the connection conductor is performed by appropriately combining sputtering of Ti, Cr, Mo, and Cu.
Moreover, when the starting material of the insulating layer of the first insulating layer or the second insulating layer is a ceramic green sheet, the green sheet is fired into a ceramic until the laminating and pressing step, When the starting material is, for example, an applied epoxy resin or the like, a curing (curing) process is performed before the above-described step.
Furthermore, the contact between the top surface of the connection conductor and the end surface of the second through conductor is made possible by pressure bonding after lamination in the step of forming the substrate body.

また、本発明には、前記第1絶縁層の絶縁材がセラミックからなり、且つ前記第2絶縁層の絶縁材が樹脂からなる、多層配線基板の製造方法(請求項5)も含まれる。
これによれば、前述したクラックなどの発生を一層確実に抑制できると共に、生産性の向上にも寄与し得る
Further, the present invention, the insulating material of the first insulating layer is a ceramic, and insulating material of the second insulating layer is ing from the resin, a method for manufacturing a multilayer wiring board (claim 5) is also included.
According to this, the occurrence of such prior mentioned the crack can be more reliably suppressed, may also contribute to the improvement of productivity.

本発明による一形態の多層配線基板の概略を示す断面図。Sectional drawing which shows the outline of the multilayer wiring board of one form by this invention. 図1中における一点鎖線部分Xの部分拡大断面図。The partial expanded sectional view of the dashed-dotted line part X in FIG. 上記多層配線基板を得るための製造工程を示す概略図。Schematic which shows the manufacturing process for obtaining the said multilayer wiring board. 図3に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 異なる製造工程を示す概略図。Schematic which shows a different manufacturing process. 図5に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 図4,図6に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG. 4, FIG. 図7に続く製造工程を示す概略図。Schematic which shows the manufacturing process following FIG.

以下において、本発明を実施するための形態について説明する。
図1は、本発明による一形態の多層配線基板1の概略を示す断面図である。
多層配線基板1は、電子部品検査用の配線基板であり、図1に示すように、セラミック層(絶縁材)31,32からなる下層側の第1絶縁層3と、該第1絶縁層3の上記セラミック層31,32の硬度に比べて硬度が低いポリイミドなどの熱硬化性樹脂の樹脂層(絶縁材)41,42からなる上層側の第2絶縁層4と、を積層してなり、表面5および裏面8を有する基板本体2を備えている。
尚、上記セラミック層31,32と樹脂層41,42との硬度の差は、約500Hvである。
上層側の第2絶縁層4には、樹脂層41,42を個別に貫通する複数のビア導体(貫通導体)43が形成され、下層側の第1絶縁層3に隣接する側の表面7にはビア導体43の下端面が露出している。また、基板本体2の表面5には、ビア導体43の上端面が露出し、且つ該ビア導体43と表面5に形成された検査用端子9とが接続されている。該検査用端子9上には、追ってプローブ20が取り付けられる。
図1,図2に示すように、上記樹脂層41,42間には、該樹脂層41に含まれ、熱可塑性樹脂からなり、且つ樹脂層41,42を接着する粘着層14が位置していると共に、該粘着層14と同じレベルには、上下のビア導体43と接続される図示しない配線層が形成されている。また、下層側の樹脂層41において、第1絶縁層3に隣接する表面6側に含まれる粘着層14は、第1絶縁層3と第2絶縁層4とを接着している。
尚、図2は、図1中における一点鎖線部分Xの部分拡大断面図である。
Hereinafter, modes for carrying out the present invention will be described.
FIG. 1 is a sectional view schematically showing a multilayer wiring board 1 according to an embodiment of the present invention.
The multilayer wiring board 1 is a wiring board for inspecting electronic components. As shown in FIG. 1, a lower-layer first insulating layer 3 made of ceramic layers (insulating materials) 31 and 32, and the first insulating layer 3. And a second insulating layer 4 on the upper layer side composed of resin layers (insulating materials) 41, 42 of thermosetting resin such as polyimide having a hardness lower than that of the ceramic layers 31, 32, A substrate body 2 having a front surface 5 and a back surface 8 is provided.
The difference in hardness between the ceramic layers 31 and 32 and the resin layers 41 and 42 is about 500 Hv.
In the second insulating layer 4 on the upper layer side, a plurality of via conductors (penetrating conductors) 43 that individually penetrate the resin layers 41 and 42 are formed, and on the surface 7 on the side adjacent to the first insulating layer 3 on the lower layer side. The lower end surface of the via conductor 43 is exposed. Further, the upper surface of the via conductor 43 is exposed on the surface 5 of the substrate body 2, and the via conductor 43 and the inspection terminal 9 formed on the surface 5 are connected. A probe 20 is attached to the inspection terminal 9 later.
As shown in FIGS. 1 and 2, an adhesive layer 14 that is included in the resin layer 41 and is made of a thermoplastic resin and adheres the resin layers 41 and 42 is located between the resin layers 41 and 42. In addition, a wiring layer (not shown) connected to the upper and lower via conductors 43 is formed at the same level as the adhesive layer 14. In the lower resin layer 41, the adhesive layer 14 included on the surface 6 side adjacent to the first insulating layer 3 bonds the first insulating layer 3 and the second insulating layer 4.
2 is a partially enlarged cross-sectional view of a dot-and-dash line portion X in FIG.

一方、下層側の第1絶縁層3は、図1に示すように、セラミック層31,32を同心状に貫通する複数のビア導体33が形成され、該ビア導体33の下端面は、基板本体2の裏面8に形成された外部端子13と接続されている。セラミック層31,32間には、例えば、上下のビア導体Vに挟まれて後述するビアカバーが形成されている。
更に、図1,図2に示すように、第1絶縁層3において、上層側の第2絶縁層4に隣接する側の表面7には、上記ビア導体33ごとの上端面に接続された複数の接続導体10が個別に形成されている。該接続導体10は、厚み10tが2μm以下であり、例えば、下層側のTi薄膜層11と上層側のCu薄膜層12との2層構造を有する扁平な円柱状体である。該接続導体10の直径は、上下の各ビア導体33,43の各直径よりも約1.2〜3倍程度大きい。
On the other hand, the first insulating layer 3 on the lower layer side is formed with a plurality of via conductors 33 concentrically penetrating the ceramic layers 31 and 32, as shown in FIG. 2 is connected to an external terminal 13 formed on the rear surface 8 of the second. Between the ceramic layers 31 and 32, for example, a via cover described later is formed between upper and lower via conductors V.
Further, as shown in FIGS. 1 and 2, in the first insulating layer 3, a plurality of surfaces 7 adjacent to the second insulating layer 4 on the upper layer side are connected to the upper end surface of each via conductor 33. Connecting conductors 10 are individually formed. The connecting conductor 10 has a thickness 10t of 2 μm or less, and is, for example, a flat cylindrical body having a two-layer structure of a Ti thin film layer 11 on the lower layer side and a Cu thin film layer 12 on the upper layer side. The diameter of the connection conductor 10 is about 1.2 to 3 times larger than the diameters of the upper and lower via conductors 33 and 43.

尚、上記接続導体10は、Cr薄膜層とCu薄膜層12との2層、Ti薄膜層11とMo薄膜層との2層、Cr薄膜層とMo薄膜層との2層、Ti薄膜層11とMo薄膜層とCu薄膜層12との3層、あるいは、Cr薄膜層とMo薄膜層とCu薄膜層12との3層からなるものとしても良い。また、接続端子10の厚み10tは、Ti薄膜層11やCu薄膜層12などを後述するスパッタリングで形成する際に2μm以下となるように制御されている。
更に、図2に示すように、第1、第2絶縁層3,4間の前記粘着層14の一部は、接続導体10の頂面の周辺部の上方に僅かに押し上げられ、該接続導体10に対向する樹脂層41の表面をリング状に押し上げた凸部45を形成している。
The connection conductor 10 is composed of two layers, a Cr thin film layer and a Cu thin film layer 12, a Ti thin film layer 11 and a Mo thin film layer, a Cr thin film layer and a Mo thin film layer, and a Ti thin film layer 11. And three layers of Mo thin film layer and Cu thin film layer 12, or three layers of Cr thin film layer, Mo thin film layer, and Cu thin film layer 12. Further, the thickness 10t of the connection terminal 10 is controlled to be 2 μm or less when the Ti thin film layer 11 and the Cu thin film layer 12 are formed by sputtering described later.
Further, as shown in FIG. 2, a part of the adhesive layer 14 between the first and second insulating layers 3 and 4 is slightly pushed up above the peripheral portion of the top surface of the connection conductor 10, and the connection conductor The convex part 45 which pushed up the surface of the resin layer 41 facing 10 in a ring shape is formed.

以上のような多層配線基板1によれば、前記第1絶縁層3と第2絶縁層4とを積層し且つ更に加熱しつつ厚み方向に沿って圧着した際において、第1絶縁層3側の前記接続導体10の頂面における周辺部が第2絶縁層4の第1絶縁層3に隣接する側の表面6に押し込まれる量が少ないため、第2絶縁層4の変形が小さくなっているので、第2絶縁層4の前記樹脂層41,42にクラックや破断などの局部破壊が生じ難くされている。その結果、第2絶縁層4を構成する前記樹脂層j1などの絶縁性能の劣化や第2絶縁層4内における不用意な導通経路による短絡などの不具合を生じ難くなっている。従って、検査性能や電気的特性が安定した多層配線基板1となっている。
尚、第1絶縁層3および第2絶縁層4は、前記のように、双方の絶縁材が互いに異なる硬度の樹脂同士からなる組み合わせか、あるいは、双方の絶縁材が互いに異なる硬度のセラミック同士からなる組み合わせであっても良い。
また、多層配線基板1は、前記第1絶縁層3、第2絶縁層4、ビア導体33,43、および接続導体10を含むものであれば、前記の用途以外にも適用可能である。
According to the multilayer wiring board 1 as described above, when the first insulating layer 3 and the second insulating layer 4 are laminated and further pressed together in the thickness direction while further heating, the first insulating layer 3 side Since the peripheral portion of the top surface of the connection conductor 10 is less pushed into the surface 6 of the second insulating layer 4 adjacent to the first insulating layer 3, the deformation of the second insulating layer 4 is reduced. In the second insulating layer 4, the resin layers 41 and 42 are less likely to be locally broken such as cracks and breaks. As a result, problems such as deterioration of the insulating performance of the resin layer j1 and the like constituting the second insulating layer 4 and a short circuit due to an inadvertent conduction path in the second insulating layer 4 are less likely to occur. Accordingly, the multilayer wiring board 1 has stable inspection performance and electrical characteristics.
As described above, the first insulating layer 3 and the second insulating layer 4 are a combination in which both insulating materials are made of resins having different hardnesses, or ceramics in which both insulating materials are different in hardness. It may be a combination.
The multilayer wiring board 1 can be applied to applications other than the above as long as it includes the first insulating layer 3, the second insulating layer 4, the via conductors 33 and 43, and the connection conductor 10.

以下において、前記多層配線基板1の製造方法について説明する。
始めに、図3,図4に沿って、前記第2絶縁層4の製造工程を説明する。
先ず、図3(a)に示すように、予め表面に厚さ5μmの銅箔15を個別に貼り付けた厚さ30μmのポリイミドからなる樹脂層41,42を用意し、これらにおける所定の位置にレーザー光を照射して、内径が約50μmである複数の貫通孔44を形成した。尚、該貫通孔44の形成は、上記レーザー加工に替えてパンチングにより行っても良い。また、上記樹脂層41,42の裏面側には、予め、平均厚さが3μmで且つ熱可塑性樹脂の粘着層14がそれぞれ含まれていた。
次に、図3(b)に示すように、上記貫通孔hごとの内側に、Ag粉末を含む導電性ペーストをスクリーン印刷により充填して、ビア導体(第2貫通導体)43を個別に形成した。尚、上記導電性ペーストは、Ag粉末に替え、Cu粉末を含むものにしても良い。
Below, the manufacturing method of the said multilayer wiring board 1 is demonstrated.
First, the manufacturing process of the second insulating layer 4 will be described with reference to FIGS.
First, as shown in FIG. 3A, resin layers 41 and 42 made of polyimide having a thickness of 30 μm, in which a copper foil 15 having a thickness of 5 μm is individually attached to the surface in advance, are prepared. A plurality of through holes 44 having an inner diameter of about 50 μm were formed by irradiation with laser light. The through hole 44 may be formed by punching instead of the laser processing. The resin layers 41 and 42 were previously provided with a thermoplastic resin adhesive layer 14 having an average thickness of 3 μm.
Next, as shown in FIG. 3B, a conductive paste containing Ag powder is filled into each through hole h by screen printing to form via conductors (second through conductors) 43 individually. did. The conductive paste may include Cu powder instead of Ag powder.

次いで、樹脂層41,42の銅箔15ごとの全面に感光性樹脂(例えば、エポキシ系樹脂)からなるドライフィルム(図示せず)を貼り付けた後、該フィルムに対して所定のパターンに倣った露光および現像を施した。
その結果、図4(a)に示すように、樹脂層41,42の銅箔15ごとの上に、ビア導体vの上端面と接続した所定パターンのレジストパターン16,17が形成された。更に、該パターン16,16間と、該パターン17,17間の底面に露出した銅箔15をエッチングにより除去した。その結果、図4(b)に示すように、樹脂層41,42の表面には、前記銅箔15の一部が上記パターンに倣って残留し、且つ各ビア導体43と個別に接続した検査端子9、あるいは配線層18が形成された。尚、上記パターン16,17もエッチング後において剥離した。
Next, after a dry film (not shown) made of a photosensitive resin (for example, epoxy resin) is attached to the entire surface of each of the copper foils 15 of the resin layers 41 and 42, the film is copied in a predetermined pattern. Exposure and development.
As a result, as shown in FIG. 4A, resist patterns 16 and 17 having a predetermined pattern connected to the upper end surface of the via conductor v were formed on each of the copper foils 15 of the resin layers 41 and 42. Further, the copper foil 15 exposed between the patterns 16 and 16 and the bottom surface between the patterns 17 and 17 was removed by etching. As a result, as shown in FIG. 4B, on the surface of the resin layers 41 and 42, a part of the copper foil 15 remains following the pattern and is connected to each via conductor 43 individually. Terminal 9 or wiring layer 18 was formed. The patterns 16 and 17 were also peeled off after etching.

次に、図5,図6に沿って、前記第1絶縁層3の製造工程を説明する。
予め、アルミナ粉末、バインダ樹脂、溶剤、および可塑剤などをそれぞれ所定の割合で混合してセラミックスラリーを作製し、該スラリーをドクターブレード法によりシート形状に成形して、平均厚さが300μmのセラミックグリーンシート(以下、単にグリーンシートと称する)31,32を製作した。
次に、図5(a)に示すように、グリーンシート31,32における所定の位置ごとにレーザーを照射して、内径が約180μmである複数の貫通孔34を形成した。尚、該貫通孔34の形成も、レーザー加工に替え、パンチングにしても良い。
Next, the manufacturing process of the first insulating layer 3 will be described with reference to FIGS.
A ceramic slurry is prepared by previously mixing alumina powder, binder resin, solvent, plasticizer, and the like at a predetermined ratio, and the slurry is formed into a sheet shape by a doctor blade method. Green sheets (hereinafter simply referred to as green sheets) 31 and 32 were produced.
Next, as shown in FIG. 5A, a plurality of through holes 34 having an inner diameter of about 180 μm were formed by irradiating laser at each predetermined position on the green sheets 31 and 32. The through hole 34 may be formed by punching instead of laser processing.

次いで、図5(b)に示すように、上記貫通孔34ごとの内側に、W粉末を含む導電性ペーストをスクリーン印刷により充填して、未焼成のビア導体(第1貫通導体)33を個別に形成した。尚、上記導電性ペーストは、W粉末に替え、Mo粉末を含むものでも良い。また、前記グリーンシート31,32が低温焼成用のガラス−セラミックである場合には、上記導電性ペーストには、Ag粉末あるいはCu粉末を含むものが用いられる。
更に、図6(a)に示すように、下層側のグリーンシート31の表面と裏面とにおける所定の位置に前記同様の導電性ペーストをスクリーン印刷して、未焼成のビアカバー19と接続導体13とをビア導体33と個別に接続させて形成した。
次に、ビア導体33が形成された上記グリーンシート32と、ビア導体33、接続導体13、およびビアカバー19が形成された上記グリーンシート31とを積層し且つ圧着した後、得られた積層体を所定の温度で焼成した。
その結果、グリーンシート31,32は、焼成されたセラミック層31,32として一体化し、且つビア導体33などの導体も同時に焼成されて、図6(b)に示すように、前記第1絶縁層3と同様なセラミックの積層体が得られた。
Next, as shown in FIG. 5B, the inside of each through hole 34 is filled with a conductive paste containing W powder by screen printing, and unfired via conductors (first through conductors) 33 are individually provided. Formed. Note that the conductive paste may include Mo powder instead of W powder. Further, when the green sheets 31 and 32 are glass-ceramics for low-temperature firing, the conductive paste containing Ag powder or Cu powder is used.
Further, as shown in FIG. 6 (a), the conductive paste similar to the above is screen-printed at predetermined positions on the front and back surfaces of the green sheet 31 on the lower layer side, and the unfired via cover 19 and the connecting conductors 13 And via conductors 33 are individually connected.
Next, the green sheet 32 in which the via conductors 33 are formed and the green sheet 31 in which the via conductors 33, the connection conductors 13, and the via covers 19 are formed are laminated and pressure-bonded, and then the obtained laminate is obtained. Firing was performed at a predetermined temperature.
As a result, the green sheets 31 and 32 are integrated as the fired ceramic layers 31 and 32, and conductors such as the via conductors 33 are fired at the same time, and as shown in FIG. A ceramic laminate similar to 3 was obtained.

上記焼成後におけるセラミック層32の表面7を研磨により平坦面にした後、該表面7に上端面が露出するビア導体33の上方の位置に対し、2段階のスパッタリングを施した。即ち、図6(b)中の左側に示すように、最初のスパッタリングによって、厚みが1μm未満のTi薄膜層11を形成した後、図6(b)中の右側に示すように、2回目のスパッタリングによって、上記Ti薄膜層11の上方に同様な厚みのCu薄膜層12を形成した。その結果、セラミック層32の表面7に厚みが2μm以下である複数の接続導体10が形成されると共に、第1絶縁層3が得られた。
引き続いて、図7の上方に示すように、前記樹脂層41,42を両者間に位置する前記粘着層14を介して積層および圧着して、第2絶縁層4を形成した。この際、粘着層14の一部は、内部配線層18の上方に押し上げられた。
更に、図7中の矢印で示すように、第1絶縁層3の表面7上に、第2絶縁層4を積層し、接続導体10ごとの頂面に第2絶縁層4側のビア導体43の下端面が接するように、該第2絶縁層4における第1絶縁層3に隣接する側の表面6側に配置された粘着層14を介して接着した後、加熱しつつ圧着(接着)した
After the surface 7 of the ceramic layer 32 after firing was flattened by polishing, two-stage sputtering was performed on the position above the via conductor 33 where the upper end surface is exposed on the surface 7. That is, as shown on the left side in FIG. 6B, after the Ti thin film layer 11 having a thickness of less than 1 μm is formed by the first sputtering, as shown on the right side in FIG. A Cu thin film layer 12 having the same thickness was formed above the Ti thin film layer 11 by sputtering. As a result, a plurality of connection conductors 10 having a thickness of 2 μm or less were formed on the surface 7 of the ceramic layer 32, and the first insulating layer 3 was obtained.
Subsequently, as shown in the upper part of FIG. 7, the resin layers 41 and 42 were laminated and pressure-bonded via the adhesive layer 14 positioned between them to form the second insulating layer 4. At this time, a part of the adhesive layer 14 was pushed up above the internal wiring layer 18.
Further, as indicated by an arrow in FIG. 7, the second insulating layer 4 is laminated on the surface 7 of the first insulating layer 3, and the via conductor 43 on the second insulating layer 4 side is provided on the top surface of each connection conductor 10. After adhering via the adhesive layer 14 disposed on the surface 6 side of the second insulating layer 4 adjacent to the first insulating layer 3 so that the lower end surface of the second insulating layer 4 is in contact with the first insulating layer 3, it was pressure-bonded (adhered) while heating. .

その結果、図8(a)に示すように、第1絶縁層3と第2絶縁層4とからなり、表面5および裏面8を有する基板本体2を備えた多層配線基板1が形成された。しかも、前記積層に続く加熱および圧着(接着)工程では、図8(a)中の一点鎖線部分Yを拡大した図8(b)で示すように、厚み10tが2μm以下である接続導体10の頂面の上方には、第2絶縁層4の第1絶縁層3側に位置していた粘着層14の一部が、上記接続導体10によって少ない量で押し上げられ、第2絶縁層4の樹脂層41に小さく進入する変形を生じるに留まっていた。そのため、図8(b)中の一点鎖線の矢印で示すように、接続導体10の頂面における周辺部(エッジ)が第2絶縁層4の表面6を形成している樹脂層41内に大きく食い込むことによるクラックなどを生じなかった。
最後に、基板本体2の表面5に位置する検査端子9および裏面8に位置する外部端子13の表面に、電解または無電解Niメッキおよび電解または無電解Auメッキを順次施して、Niメッキ膜およびAuメッキ膜(何れも図示せず)を被覆して、電子部品検査用の多層配線基板1を得ることができた。
As a result, as shown in FIG. 8A, the multilayer wiring board 1 including the substrate body 2 having the front surface 5 and the back surface 8 composed of the first insulating layer 3 and the second insulating layer 4 was formed. In addition, in the heating and pressure bonding (adhesion) steps subsequent to the lamination, as shown in FIG. 8 (b) in which the one-dot chain line portion Y in FIG. 8 (a) is enlarged, the connection conductor 10 having a thickness 10t of 2 μm or less. Above the top surface, a part of the adhesive layer 14 located on the first insulating layer 3 side of the second insulating layer 4 is pushed up by the connecting conductor 10 in a small amount, and the resin of the second insulating layer 4 The deformation only entered the layer 41 to a small extent. Therefore, as indicated by the one-dot chain line arrow in FIG. 8B, the peripheral portion (edge) on the top surface of the connection conductor 10 is large in the resin layer 41 forming the surface 6 of the second insulating layer 4. There were no cracks caused by biting.
Finally, electrolytic or electroless Ni plating and electrolytic or electroless Au plating are sequentially applied to the surfaces of the inspection terminal 9 located on the front surface 5 of the substrate body 2 and the external terminal 13 located on the back surface 8, and the Ni plating film and A multilayer wiring board 1 for electronic component inspection could be obtained by covering an Au plating film (both not shown).

前記のような多層配線基板1の製造方法によれば、前記第1絶縁層3と第2絶縁層4とを積層し且つ加熱ししつ圧着(接着)して基板本体2を形成する工程において、第1絶縁層3側の前記接続導体10の頂面における周辺部が第2絶縁層4の樹脂層41を大きく変形させないので、クラックや破断などの局部破壊が生じなかった。その結果、樹脂層41の絶縁性能の劣化や不用意な導通経路による短絡などの不具合が低減したので、検査性能や電気的特性が安定した多層配線基板1を提供することができた。
尚、基板本体2の表面5に設ける前記検査端子9は、前記接続端子10と同様に、スパッタリングにより、例えば、Ti薄膜、Mo薄膜、およびCu薄膜を順次積層し、更にこれらの表面に電解または無電解金属メッキなどにて、Cuメッキ膜、Niメッキ膜、およびAuメッキ膜を被覆した形態として形成しても良い。
また、前記各検査端子9上には、追って前記プローブ20が取り付けられる。
According to the method for manufacturing the multilayer wiring board 1 as described above, in the step of forming the substrate body 2 by laminating the first insulating layer 3 and the second insulating layer 4 and heating and pressing (bonding) them. Since the peripheral portion of the top surface of the connection conductor 10 on the first insulating layer 3 side does not greatly deform the resin layer 41 of the second insulating layer 4, local destruction such as cracks and breakage did not occur. As a result, problems such as deterioration of the insulation performance of the resin layer 41 and short circuits due to careless conduction paths have been reduced, and the multilayer wiring board 1 having stable inspection performance and electrical characteristics can be provided.
In addition, the inspection terminal 9 provided on the surface 5 of the substrate body 2 is formed by sequentially laminating, for example, a Ti thin film, a Mo thin film, and a Cu thin film by sputtering in the same manner as the connection terminal 10, and electrolytic or You may form in the form which coat | covered Cu plating film, Ni plating film, and Au plating film by electroless metal plating.
The probe 20 is attached to each inspection terminal 9 later.

以下において、本発明の具体的な実施例を比較例と併せて説明する。
先ず、前記と同じく表面に銅箔15を有し且つ裏面に粘着層14を有する樹脂層41,42を複数組用意し、こらの同じ位置に同じ内径の貫通孔44を形成した後、該貫通孔hに前記と同じ導電性ペーストを印刷により充填してビア導体43を形成した。かかる樹脂層41,42を裏面ごとに含まれる平均厚さ3μmの粘着層14により積層および圧着して、複数組の第2絶縁層4を形成した。
一方、アルミナを主成分とし且つ厚みが300μmのグリーンシート31,32を複数組用意し、各組ごとに積層し且つ焼成して複数組の第1絶縁層3を形成した。各組の第1絶縁層3の表面7を、同じ条件で研磨した後、該表面7における所定の位置ごとに前記同様の2段階のスパッタリングを施して、Ti薄膜11およびCu薄膜12の2層からなり、全体の厚みを表1に示すように、1.0μmから5.0μmまでの間で7段階に変化させた接続導体10を形成した。
In the following, specific examples of the present invention will be described together with comparative examples.
First, a plurality of sets of resin layers 41 and 42 having the copper foil 15 on the front surface and the adhesive layer 14 on the back surface are prepared in the same manner as described above, and through holes 44 having the same inner diameter are formed at these same positions, The via conductors 43 were formed by filling the holes h with the same conductive paste as described above. The resin layers 41 and 42 were laminated and pressure-bonded with the adhesive layer 14 having an average thickness of 3 μm included in each back surface to form a plurality of sets of second insulating layers 4.
On the other hand, a plurality of sets of green sheets 31 and 32 having alumina as a main component and a thickness of 300 μm were prepared, and each set was stacked and fired to form a plurality of sets of first insulating layers 3. After polishing the surface 7 of the first insulating layer 3 in each group under the same conditions, two layers of the Ti thin film 11 and the Cu thin film 12 are formed by performing the same two-stage sputtering for each predetermined position on the surface 7. As shown in Table 1, the connection conductor 10 was formed in which the entire thickness was changed in seven steps from 1.0 μm to 5.0 μm.

次に、前記第1絶縁層3の表面7の接続導体10上に、第1絶縁層3側の接続導体10の頂面が第2絶縁層4側の表面6に露出する前記ビア導体43の端面に接するように、第1絶縁層3と第2絶縁層4とを積層した後、同じ温度で加熱しつつ同じ圧力により加圧して、複数組の多層配線基板(1)を得た。尚、前記接続導体10の厚みごとに10個ずつの多層配線基板(1)を合計70個製作した。
各多層配線基板(1)の基板本体2を接続導体10の位置で切断し、接続導体10の頂面における周辺部(エッジ)から隣接する第2絶縁層4の樹脂層41内に向かって、クラックや破断の有無を目視と拡大鏡(10倍)との双方により観察した。この観察において、クラックなどの有無(1箇所であれば「有り」と判定)およびその発生状況について、表1中に表した。尚、接続導体10の厚みが1.0〜2.0μmであった多層配線基板1を実施例とし、接続導体10の厚みが2.5μm以上であった多層配線基板を比較例とした。
Next, on the connecting conductor 10 on the surface 7 of the first insulating layer 3, the top surface of the connecting conductor 10 on the first insulating layer 3 side is exposed on the surface 6 on the second insulating layer 4 side. After laminating the first insulating layer 3 and the second insulating layer 4 so as to be in contact with the end face, a plurality of sets of multilayer wiring boards (1) were obtained by applying the same pressure while heating at the same temperature. A total of 70 multilayer wiring boards (1) for each thickness of the connecting conductor 10 were manufactured.
The substrate body 2 of each multilayer wiring board (1) is cut at the position of the connection conductor 10, and from the peripheral portion (edge) on the top surface of the connection conductor 10 toward the resin layer 41 of the adjacent second insulating layer 4, The presence or absence of cracks or breaks was observed both visually and with a magnifying glass (10 times). In this observation, the presence / absence of a crack or the like (determined as “present” if there is one) and the occurrence state thereof are shown in Table 1. In addition, the multilayer wiring board 1 whose thickness of the connection conductor 10 was 1.0-2.0 micrometers was made into the Example, and the multilayer wiring board whose thickness of the connection conductor 10 was 2.5 micrometers or more was made into the comparative example.

Figure 0006185695
Figure 0006185695

表1によれば、実施例の各多層配線基板1は、接続導体10の厚みが1.0〜2.0μmであったため、何れもクラックや破断が発生していなかった。これは、接続導体10の厚みが2μm以下のため、第1・第2絶縁層3,4を積層した後、加熱しつつ圧着した際に、各接続導体10の頂面における周辺部(エッジ)が隣接する樹脂層41を大きく変形させなかったことによるものと推定される。
一方、比較例の多層配線基板のうち、前記接続導体10の厚みが2.5μmと3.0μmのものでは、目視はできないが拡大鏡で判別できる程度の微小なクラックが発見され、前記接続導体10の厚みが4.0μmと5.0μmのものでは、目視が可能なクラックが発見された。これらは、何れも接続導体10の厚みが2μmを超えていたので、その厚みの程度によって、前記加熱および圧着時に各接続導体10の頂面における周辺部が隣接する樹脂層41に深く食い込んで大きく変形させたことによるものと推定される。
以上のような実施例の多層配線基板1によって、本発明の効果が確認された。
According to Table 1, since each multilayer wiring board 1 of the example had a thickness of the connection conductor 10 of 1.0 to 2.0 μm, no cracks or breakage occurred. This is because the thickness of the connection conductor 10 is 2 μm or less, and therefore, when the first and second insulating layers 3 and 4 are stacked and then crimped while heating, the peripheral portion (edge) on the top surface of each connection conductor 10 Is presumably because the adjacent resin layer 41 was not greatly deformed.
On the other hand, in the multilayer wiring board of the comparative example, when the thickness of the connection conductor 10 is 2.5 μm and 3.0 μm, a minute crack that is not visible but can be discriminated with a magnifying glass is found. When the thickness of 10 was 4.0 μm and 5.0 μm, a visually observable crack was found. In these cases, since the thickness of the connection conductor 10 exceeded 2 μm, the peripheral portion on the top surface of each connection conductor 10 deeply cut into the adjacent resin layer 41 during the heating and pressure bonding depending on the thickness. This is presumably due to the deformation.
The effects of the present invention were confirmed by the multilayer wiring board 1 of the above example.

本発明は、以上において説明した形態に限定されるものではない。
例えば、第1絶縁層および第2絶縁層は、それぞれ少なくとも1層でも良く、あるいは両者が2層以上である場合、互いの層数が相違していても良い。
また、第1絶縁層および第2絶縁層は、これらの絶縁材が互いに異なる硬度の樹脂同士からなる組み合わせか、あるいは、かかる絶縁材が互いに異なる硬度のセラミック同士からなる組み合わせでも良い。
更に、第1絶縁層と第2絶縁層は、硬度が3段階に異なる3つの絶縁層としても良く、例えば、セラミック層からなる第1絶縁層と、硬度が相違する2種類の樹脂からなる第2絶縁層および第3絶縁層(2つの第2絶縁層)との組み合わせにしても良い。
また、前記第1絶縁層3のセラミック層31,32間には、上下の各ビア導体33と接続する配線層を形成しても良い。
更に、前記第2絶縁層4のビア導体(貫通導体)43は、中心部に軸方向に沿った空間を内包する円筒形状のスルーホール導体としても良い。
加えて、前記多層配線基板1は、多数個取りの形態であっても良く、且つ前記製造方法も多数個取りの工程からなるプロセスとしても良い。
The present invention is not limited to the embodiment described above.
For example, the first insulating layer and the second insulating layer may each be at least one layer, or when both are two or more layers, the number of layers may be different from each other.
The first insulating layer and the second insulating layer may be a combination in which these insulating materials are made of resins having different hardnesses, or a combination in which the insulating materials are made of ceramics having different hardnesses.
Further, the first insulating layer and the second insulating layer may be three insulating layers having different hardnesses in three stages. For example, the first insulating layer made of a ceramic layer and the first insulating layer made of two kinds of resins having different hardnesses. A combination of two insulating layers and a third insulating layer (two second insulating layers) may be used.
A wiring layer connected to the upper and lower via conductors 33 may be formed between the ceramic layers 31 and 32 of the first insulating layer 3.
Furthermore, the via conductor (through conductor) 43 of the second insulating layer 4 may be a cylindrical through-hole conductor including a space along the axial direction at the center.
In addition, the multilayer wiring board 1 may be in the form of a multi-piece, and the manufacturing method may be a process comprising a multi-piece process.

本発明によれば、互いに硬度が異なる2つ以上の絶縁層を積層してなり、該複数の絶縁層が対向して隣接する硬度が低い側の絶縁層の内部にクラックなどが生じにくい多層配線基板およびその製造方法を確実に提供することができる。   According to the present invention, two or more insulating layers having different hardnesses are laminated, and a multilayer wiring that is less likely to cause cracks or the like in the insulating layer on the lower hardness side, which are adjacent to each other and face each other. It is possible to reliably provide a substrate and a manufacturing method thereof.

1……………多層配線基板
2……………基板本体
3……………第1絶縁層
4……………第2絶縁層
5〜7………表面
10…………接続導体
10t………厚み
11…………Ti薄膜層
12…………Cu薄膜層
14…………粘着層
31,32…セラミック層/グリーンシート(絶縁材)
33…………ビア導体(第1貫通導体)
41,42…樹脂層(絶縁材)
43…………ビア導体(貫通導体/第2貫通導体)
45…………凸部
1 ........... multilayer wiring board 2 ........... board body 3 .......... 1st insulating layer 4 .......... 2nd insulating layer 5-7 ..... surface 10 ......... connection Conductor 10t ……… Thickness 11 ………… Ti thin film layer 12 ………… Cu thin film layer 14 ………… Adhesive layer 31, 32… Ceramic layer / green sheet (insulating material)
33 ………… Via conductor (first through conductor)
41, 42 ... Resin layer (insulating material)
43 ………… Via conductor (through conductor / second through conductor)
45 ………… Convex

Claims (5)

絶縁材からなる第1絶縁層と、該第1絶縁層の前記絶縁材の硬度に比べて硬度が低い絶縁材、および少なくとも上記第1絶縁層に隣接する側の表面に粘着層を有する第2絶縁層とを積層してなる基板本体と、
上記第2絶縁層に形成された貫通導体と、
上記第1絶縁層において上記第2絶縁層に隣接する側の表面で且つ上記貫通導体の端面に接して形成された接続導体と、を備え、
上記第1絶縁層の絶縁材と上記第2絶縁層の絶縁材との硬度差は、少なくとも100Hv以上であり、
上記第2絶縁層は、少なくとも前記第1絶縁層に隣接する側の表面に熱可塑性樹脂からなり且つ厚みが3μm以下の上記粘着層を含み、
上記接続導体の厚みは、2μm以下であり、
上記粘着層の一部には、上記接続導体の上方に押し上げられ、且つ該接続導体に対向する上記第2絶縁層の絶縁材の表面を押し上げた凸部が形成されている、
ことを特徴とする多層配線基板。
A first insulating layer made of an insulating material; an insulating material having a lower hardness than the hardness of the insulating material of the first insulating layer; and a second layer having an adhesive layer on at least a surface adjacent to the first insulating layer. A substrate body formed by laminating an insulating layer;
And penetrations conductor formed on the second insulating layer,
A connecting conductor formed on the surface of the first insulating layer adjacent to the second insulating layer and in contact with the end face of the through conductor;
Difference in hardness between the insulating material of the insulating material and the second insulating layer of the first insulating layer is at least 100Hv or more,
The second insulating layer includes at least the pressure-sensitive layer of a thermoplastic resin on the surface becomes and thickness following 3μm on the side adjacent to the first insulating layer,
The connecting conductor has a thickness of 2 μm or less,
A part of the adhesive layer is formed with a convex portion that is pushed up above the connecting conductor and pushes up the surface of the insulating material of the second insulating layer facing the connecting conductor.
A multilayer wiring board characterized by that.
前記基板本体は、第1絶縁層の絶縁材がセラミックからなり且つ前記第2絶縁層の絶縁材が樹脂からなるか、前記第1絶縁層および第2絶縁層の絶縁材の双方が互いに異なる硬度の樹脂からなるか、あるいは、前記第1絶縁層および第2絶縁層の絶縁材の双方が互いに異なる硬度のセラミックからなる、
ことを特徴とする請求項1に記載の多層配線基板。
In the substrate body, the insulating material of the first insulating layer is made of ceramic and the insulating material of the second insulating layer is made of resin, or both the insulating materials of the first insulating layer and the second insulating layer are different in hardness. Or both of the insulating materials of the first insulating layer and the second insulating layer are made of ceramics having different hardnesses,
The multilayer wiring board according to claim 1.
前記第1絶縁層の表面に形成される接続導体は、Ti薄膜層とCu薄膜層、Cr薄膜層とCu薄膜層、Ti薄膜層とMo薄膜層、Cr薄膜層とMo薄膜層、Cr薄膜層とMo薄膜層とCu薄膜層、あるいは、Ti薄膜層とMo薄膜層とCu薄膜層の何れかを積層したものからなる、
ことを特徴とする請求項1または2に記載の多層配線基板。
The connection conductor formed on the surface of the first insulating layer includes a Ti thin film layer and a Cu thin film layer, a Cr thin film layer and a Cu thin film layer, a Ti thin film layer and a Mo thin film layer, a Cr thin film layer and a Mo thin film layer, and a Cr thin film layer. And the Mo thin film layer and the Cu thin film layer, or the Ti thin film layer, the Mo thin film layer, and the Cu thin film layer.
The multilayer wiring board according to claim 1, wherein the wiring board is a multilayer wiring board.
絶縁材および第1貫通導体を有する第1絶縁層を形成する工程と、
上記第1絶縁層の表面に、上記第1貫通導体と接続し且つ厚みが2μm以下の接続導体を形成する工程と、
第2貫通導体を備え、第1絶縁層の上記絶縁材の硬度に比べて硬度が少なくとも100Hv以上低い絶縁材、および第1絶縁層に隣接する積層側の表面に熱可塑性樹脂からなる厚みが3μm以下の粘着層を有する第2絶縁層を形成する工程と、
上記接続導体に、上記第2絶縁層の積層側の表面に露出した第2貫通導体の端面が接触するように、第1絶縁層と第2絶縁層とを積層し、更に加熱および圧着して、上記粘着層の一部に、上記接続導体の上方に押し上げられ、且つ該接続導体に対向する上記第2絶縁層の絶縁材の表面を押し上げた凸部を有している基板本体を形成する工程と、を備える、
ことを特徴とする多層配線基板の製造方法。
Forming a first insulating layer having an insulating material and a first through conductor;
Forming a connection conductor connected to the first through conductor and having a thickness of 2 μm or less on the surface of the first insulating layer;
A thickness of 3 μm comprising a second through conductor, an insulating material whose hardness is at least 100 Hv or more lower than the hardness of the insulating material of the first insulating layer, and a thermoplastic resin on the surface of the laminated side adjacent to the first insulating layer Forming a second insulating layer having the following adhesive layer;
The first insulating layer and the second insulating layer are laminated so that the end surface of the second through conductor exposed on the surface on the laminated side of the second insulating layer is in contact with the connection conductor, and further heated and pressed. And forming a substrate body having a convex portion that is pushed up above the connection conductor and that pushes up the surface of the insulating material of the second insulating layer facing the connection conductor in a part of the adhesive layer. A process comprising:
A method for manufacturing a multilayer wiring board.
前記第1絶縁層の絶縁材がセラミックからなり、且つ前記第2絶縁層の絶縁材が樹脂からなる、
ことを特徴とする請求項4に記載の多層配線基板の製造方法。
The insulating material of the first insulating layer is made of ceramic, and the insulating material of the second insulating layer is made of resin;
The method for producing a multilayer wiring board according to claim 4.
JP2012055222A 2012-03-13 2012-03-13 Multilayer wiring board and manufacturing method thereof Active JP6185695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012055222A JP6185695B2 (en) 2012-03-13 2012-03-13 Multilayer wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055222A JP6185695B2 (en) 2012-03-13 2012-03-13 Multilayer wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013191645A JP2013191645A (en) 2013-09-26
JP6185695B2 true JP6185695B2 (en) 2017-08-23

Family

ID=49391626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055222A Active JP6185695B2 (en) 2012-03-13 2012-03-13 Multilayer wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6185695B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512225B2 (en) * 1994-02-28 2004-03-29 株式会社日立製作所 Method for manufacturing multilayer wiring board
JP2002252258A (en) * 1999-12-27 2002-09-06 Hoya Corp Method for manufacturing contact component and multi- layer interconnection substrate, and wafer batch- contact board
JP5236379B2 (en) * 2007-08-24 2013-07-17 日本特殊陶業株式会社 IC inspection apparatus substrate and manufacturing method thereof
JP2009272583A (en) * 2008-05-12 2009-11-19 Toyobo Co Ltd Polyimide multilayer substrate
JP5383448B2 (en) * 2009-11-20 2014-01-08 京セラ株式会社 Wiring board, probe card and electronic device

Also Published As

Publication number Publication date
JP2013191645A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5236379B2 (en) IC inspection apparatus substrate and manufacturing method thereof
JP5744210B2 (en) Thin film wiring board and probe card board
KR102060951B1 (en) Multilayer Wiring Boards for Electronic Component Inspection
TWI712346B (en) Multilayer circuit board and method of manufacturing the same
WO2012157436A1 (en) Ceramic electronic component and manufacturing method thereof
JP6502205B2 (en) Multilayer wiring board and method of manufacturing the same
JP2015012013A (en) Multilayer wiring board and probe card including the same
JP2019149467A (en) Circuit module
TWI578864B (en) Base board for built-in parts and method of manufacturing the same
JP6100617B2 (en) Multi-layer wiring board and probe card board
JP6324669B2 (en) Multilayer wiring board and manufacturing method thereof
JP2014049509A (en) Wiring board manufacturing method
JP6058321B2 (en) Wiring board manufacturing method
JP6185695B2 (en) Multilayer wiring board and manufacturing method thereof
KR101805074B1 (en) Preparation method of ceramic multilayer circuit board
JP2015159242A (en) Wiring board, and multilayer wiring board including the same
JP2006303056A (en) Multilayer ceramic substrate and manufacturing method thereof
TW507484B (en) Method of manufacturing multi-layer ceramic circuit board and conductive paste used for the same
JP2005268672A (en) Substrate
JP2017073516A (en) Manufacturing method of one-side circuit board and manufacturing method of multilayer circuit board using the same
JP5448354B2 (en) Wiring board and manufacturing method thereof
JP4200664B2 (en) Multilayer substrate and manufacturing method thereof
JP5556984B2 (en) Multilayer wiring board and manufacturing method thereof
JP6139856B2 (en) Wiring board and manufacturing method thereof
JP2007059777A (en) Multilayered printed circuit board and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160706

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170728

R150 Certificate of patent or registration of utility model

Ref document number: 6185695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250