JP6172345B1 - エネルギーマネジメントシステム - Google Patents

エネルギーマネジメントシステム Download PDF

Info

Publication number
JP6172345B1
JP6172345B1 JP2016120653A JP2016120653A JP6172345B1 JP 6172345 B1 JP6172345 B1 JP 6172345B1 JP 2016120653 A JP2016120653 A JP 2016120653A JP 2016120653 A JP2016120653 A JP 2016120653A JP 6172345 B1 JP6172345 B1 JP 6172345B1
Authority
JP
Japan
Prior art keywords
power
area
power generation
storage unit
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016120653A
Other languages
English (en)
Other versions
JP2017225299A (ja
Inventor
哲文 堤
哲文 堤
建一 石田
建一 石田
正憲 光岡
正憲 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2016120653A priority Critical patent/JP6172345B1/ja
Priority to AU2017204048A priority patent/AU2017204048A1/en
Application granted granted Critical
Publication of JP6172345B1 publication Critical patent/JP6172345B1/ja
Publication of JP2017225299A publication Critical patent/JP2017225299A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages

Abstract

【課題】 電力の地産地消率を高めて、経済的且つ効率的に運用することができるエネルギーマネジメントシステムを提供する。【解決手段】エネルギーマネジメントシステム1は、制御部26が、天気予報データ等に基づいて所定時間経過後の第一太陽光発電部12の発電量及び第一エリア10の総消費電力量の予測値を算出し、予測発電量データと、総消費電力量の予測値と、を含む情報に基づいて、所定時間経過後の第一エリア10の余剰電力の有無を判断し、制御部26は、第一エリア10に余剰電力がある場合に、第一エリア10から第二エリア20に電力融通可能であると判断する。【選択図】図1

Description

本発明は、複数の住宅を有する第一エリアから電力消費施設を有する第二エリアへ向けた電力融通量を制御するエネルギーマネジメントシステムに関する。
従来、太陽光発電などの宅内発電設備を備えた住宅では、宅内発電設備で発電する電力量が住宅が消費する電力量を超える場合、電力会社にその余剰電力を売り渡し、当該電力会社が電力の不足している地域にその電力を分配していた。しかし、電力会社への売電単価が低く、又、住宅の消費電力が大きい時間帯に電力会社から購入する買電単価が高い場合には、余剰電力を電力会社に売却するよりも、地域内で電力を融通しあうほうが経済効率が良い。
そこで、宅内発電設備や宅内蓄電設備を備えた住宅における余剰電力を地域内で融通しあう地域内電力融通システムが開示されている(特許文献1)。また、複数街区のエネルギー需給を調整するシステムが開示されており、1つの街区の消費エネルギーの予測値が供給エネルギーの予測値を上回る場合に他の街区から電力融通を受ける発明が開示されている(特許文献2)。
特開2012−60761号公報 特開2015−77014号公報
ところで、従来の電力融通システムは、住宅間で電力融通しあい、又は街区間で電力融通しあうシステムである。このような住宅同士や街区同士の電力需要は似通った増減となるので、1つの住宅や街区で電力が不足する場合には他の住宅や街区でも電力が不足することになりやすく、また、1つの住宅や街区で電力が余る場合には他の住宅や街区でも電力が余ることになりやすいので、電力融通によって、電力を十分に効率的に運用することが困難である。また、他のエリアに融通できる余剰電力があるか否かは、様々な要因によって変動するものであり、効率的な電力融通の妨げになりやすい。
本発明は、電力の地産地消率を高めて、経済的且つ効率的に運用することができるエネルギーマネジメントシステムを提供することを目的とする。
本発明の第1のエネルギーマネジメントシステムは、第一太陽光発電部及び宅内蓄電部を具備する複数戸の住宅を有する第一エリアから、前記住宅よりも電力消費量の大きな1以上の電力消費施設と、前記第一エリアの住宅が具備する前記宅内蓄電部よりもエネルギー効率が低い大規模蓄電部を有する第二エリアへ向けた電力融通量を制御するエネルギーマネジメントシステムであって、制御部と、少なくとも天気予報データ、宅内蓄電部の蓄電量データ、前記第一太陽光発電部の発電量の実測値、及び前記第一エリアにおける総消費電力量の実測値、を受け付けるデータ受信部と、少なくとも前記第一エリアにおける過去電力消費実績データ、前記第一エリアの位置情報、及び暦情報を記憶する記憶部と、を備え、前記制御部は、前記第一太陽光発電部の発電量の実測値、前記天気予報データ、前記第一エリアの位置情報、前記暦情報、及び時刻情報に基づいて、所定時間経過後の前記第一太陽光発電部の予測発電量データを算出するとともに、前記制御部は、前記第一エリアにおける総消費電力量の実測値、前記第一エリアにおける過去電力消費実績データ、前記天気予報データ、前記第一エリアの位置情報、前記暦情報、及び前記時刻情報に基づいて、前記所定時間経過後の前記第一エリアにおける総消費電力量の予測値を算出し、前記制御部は、前記予測発電量データと、前記総消費電力量の予測値と、を含む情報に基づいて、前記所定時間経過後の前記第一エリアの余剰電力の有無を判断し、前記制御部は、前記第一エリアに余剰電力がある場合に、前記第一エリアから前記第二エリアに電力融通可能であると判断し、前記制御部は、前記第一エリアから前記第二エリアに電力融通可能であると判断すると、前記第二エリアの電力が不足するか否か判断し、前記制御部は、前記第二エリアの電力が不足すると判断すると、前記第一エリアの余剰電力を所定基準の範囲内で前記第二エリアの前記電力消費施設に電力融通する旨決定し、前記制御部は、前記第二エリアの電力が不足しないと判断すると、前記第一エリアの住宅が具備する前記宅内蓄電部に充電余地がある場合には、前記第一エリアの余剰電力を前記宅内蓄電部に充電する旨決定し、前記制御部は、前記第二エリアの電力が不足せず、且つ、前記第一エリアの住宅が具備する前記宅内蓄電部に充電余地がなく、前記大規模蓄電部に充電余地がある場合には、前記第一エリアの余剰電力を前記大規模蓄電部に充電する旨決定し、前記制御部は、前記第二エリアの電力が不足せず、且つ、前記宅内蓄電部及び前記大規模蓄電部に充電余地がない場合には、前記第一エリアの余剰電力を売電する旨決定することを特徴としている。
さらに、本発明の第2のエネルギーマネジメントシステムは、第1のエネルギーマネジメントシステムの特徴に加えて、第二エリアは第二太陽光発電部と、天候の影響を受けずに発電できる発電設備と、を更に有するものであり、前記データ受信部は前記大規模蓄電部の蓄電量データ、前記第二太陽光発電部の発電量の実測値、及び前記第二エリアにおける総消費電力量の実測値、を更に受け付けるものであり、前記記憶部は、前記第二エリアにおける過去電力消費実績データ、前記第二エリアの位置情報、を更に記憶するものであり、前記制御部は、前記第二太陽光発電部の発電量の実測値、前記天気予報データ、前記第二エリアの位置情報、前記暦情報、及び時刻情報に基づいて、所定時間経過後の前記第二太陽光発電部の予測発電量データを算出するとともに、前記制御部は、前記第二エリアにおける総消費電力量の実測値、前記第二エリアにおける過去電力消費実績データ、前記第二エリアの位置情報、前記暦情報、及び前記時刻情報に基づいて、前記所定時間経過後の前記第二エリアにおける総消費電力量の予測値を算出し、前記制御部は、前記第二太陽光発電部の前記予測発電量データと、前記発電設備の発電容量と、前記大規模蓄電部の残量データと、前記第二エリアの前記総消費電力量の予測値と、を含む情報に基づいて、前記所定時間経過後の前記第二エリアの電力が不足するか否かを判断することを特徴としている。
本発明の第3のエネルギーマネジメントシステムは、第2のエネルギーマネジメントシステムの特徴に加えて、前記暦情報は、曜日情報、祝日情報を含む電力需要に影響がある情報を記憶しており、前記第一エリア及び前記第二エリアにおける前記総消費電力量の予測値を算出する際に、前記暦情報に基づいて算出される予測値を補正することを特徴としている。
本発明の第4のエネルギーマネジメントシステムは、第1から第3のいずれかのエネルギーマネジメントシステムの特徴に加えて、前記宅内蓄電部は、リチウムイオン蓄電池(lithium-ion rechargeable battery)であり、前記大規模蓄電部は、レドックスフロー蓄電池(redox flow battery)であることを特徴としている。
本発明の第5のエネルギーマネジメントシステムは、第1から第4のいずれかのエネルギーマネジメントシステムの特徴に加えて、制御部は、前記第一エリアに余剰電力がなく、且つ、前記第二エリアの電力が不足すると判断した場合に、前記宅内蓄電部を前記第一エリアの電力需要を超えて放電し、前記第二エリアに電力融通することを特徴としている。
本発明の第1のエネルギーマネジメントシステムは、第一太陽光発電部及び宅内蓄電部を具備する複数戸の住宅を有する第一エリアから、前記住宅よりも電力消費量の大きな1以上の電力消費施設を有する第二エリアへ向けた電力融通量を制御している。したがって、住宅を有する第一エリアと電力消費施設を有する第二エリアという性質の異なるエリア間での電力融通を行うものであるので、時間帯毎の需要の増減が近似することが無く、効率的な電力融通を行うことができ、電力の地産地消率を高めることができる。
そして、制御部は、実測発電量データ、天気予報データ、第一エリアの位置情報、暦情報、及び時刻情報に基づいて、所定時間経過後の第一太陽光発電部の予測発電量データを算出する。すなわち、制御部は、天気予報データに基づいて所定時間経過後の天気を知り、第一太陽光発電部が設置された第一エリアの位置情報や暦情報及び時刻情報に基づいて太陽の位置を知ることで、当該所定時間経過後の第一太陽光発電部に照射される日射強度を予測して、予測発電量データを算出する。このように、様々なデータによって予測発電量データをより正確に予測することができる。
また、制御部は、第一エリアにおける総消費電力量の実測値、第一エリアにおける過去電力消費実績データ、天気予報データ、第一エリアの位置情報、暦情報、及び時刻情報に基づいて、所定時間経過後の第一エリアにおける総消費電力量の予測値を算出する。具体的には、制御部は、天気予報データ、位置情報、暦情報、時刻情報から外気温や天候を判断し、また、暦情報から住人の外出の可能性を判断し、過去電力消費実績データから同様の天候・気温・曜日の場合に消費電力量がどの程度であったかを知ることで、総消費電力量の予測値を算出する。このように、様々なデータによって総消費電力量の予測値をより正確に予測することができる。そして、制御部は、予測発電量データ、総消費電力量の予測値、及び宅内蓄電部の残量データ、を含む情報に基づいて、所定時間経過後の第一エリアの余剰電力の有無を判断するので、より正確な余剰電力を予測することができ、電力融通可否の判断をより正確なものにすることができる。
さらに、本発明の第1のエネルギーマネジメントシステムによると、第二エリアは、第一エリアの住宅が具備する宅内蓄電部よりもエネルギー効率が低い大規模蓄電部を更に有しており、第一エリアから第二エリアに電力融通可能であり、且つ、第二エリアの電力が不足する場合に、第一エリアの余剰電力を所定基準の範囲内で第二エリアの電力消費施設に電力融通する。電力融通量を所定基準の範囲内に収めることで、第一エリアから既存送電網を用いて第二エリアに電力融通する場合でも、逆潮流を所定基準の範囲内に制限することができる。
そして、制御部は、第二エリアの電力が不足せず、且つ、第一エリアの住宅が具備する宅内蓄電部に充電余地がある場合には、第一エリアの余剰電力を宅内蓄電部に充電する。そして、制御部は、第二エリアの電力が不足せず、且つ、第一エリアの住宅が具備する宅内蓄電部に充電余地がなく、大規模蓄電部に充電余地がある場合には、第一エリアの余剰電力を大規模蓄電部に充電する。さらに制御部は、第二エリアの電力が不足せず、且つ、宅内蓄電部及び大規模蓄電部に充電余地がない場合には、第一エリアの余剰電力を売電する。
すなわち、第一エリアに電力の余剰がない場合には、第一エリア内での電力消費を優先し、第一エリアに電力余剰があり、第二エリアの電力が不足している場合には第二エリアの電力消費施設に電力融通する。第二エリアの電力不足もない場合には、宅内蓄電部に充電する。宅内蓄電部の充電余地もない場合には、大規模蓄電部に充電する。大規模蓄電地にも充電余地がない場合には、売電する。したがって、第一エリアでの余剰電力は、電力消費施設への電力融通、宅内蓄電部に充電、大規模蓄電部に充電、売電の順に優先的に使用される。ここで電力融通は充電せず直接使用されるので、充放電による電力ロスがなく、宅内蓄電部は大規模蓄電部に比べてエネルギー効率が高いので、充放電により電力ロスが少ない。このように、電力ロスが少ない電力融通、宅内蓄電部への充電、大規模蓄電部への充電の順に優先するので、第一エリアの余剰電力をより効率的に地産地消することができる。
本発明の第2のエネルギーマネジメントシステムによると、第二エリアは、第二太陽光発電部と、発電設備と、を更に有している。また、データ受信部は大規模蓄電部の残量データを更に受け付けている。さらに、記憶部は、第二エリアにおける過去電力消費実績データ、第二エリアの位置情報、を更に記憶している。そして、制御部は、第二太陽光発電部の実測発電量データ、天気予報データ、第二エリアの位置情報、暦情報、及び時刻情報に基づいて、所定時間経過後の第二太陽光発電部の予測発電量データを算出する。すなわち、制御部は、天気予報データに基づいて所定時間経過後の天気を知り、第二太陽光発電部が設置された第二エリアの位置情報や暦情報及び時刻情報に基づいて、所定時間経過後の太陽の位置を知ることで、当該所定時間経過後の第二太陽光発電部に照射される日射強度を予測して、第二太陽光発電部の実測発電量データにおける発電量からの変化を予測し、予測発電量データを算出する。このように、様々なデータによって予測発電量データをより正確に予測することができる。
また、制御部は、第二エリアにおける総消費電力量の実測値、第二エリアにおける過去電力消費実績データ、天気予報データ、第二エリアの位置情報、暦情報、及び時刻情報に基づいて、所定時間経過後の第二エリアにおける総消費電力量の予測値を算出する。具体的には、制御部は、天気予報データ、位置情報、暦情報、時刻情報から外気温や天候を判断し、また、暦情報等から住人の外出の可能性等を判断し、過去電力消費実績データから同様の天候・気温・曜日の場合に消費電力量がどの程度であったかを知ることで、第二エリアの総消費電力量の予測値を算出する。このように、様々なデータによって第二エリアの総消費電力量の予測値をより正確に予測することができる。そして、制御部は、予測発電量データ、総消費電力量の予測値、及び宅内蓄電部の残量データ、を含む情報に基づいて、所定時間経過後の第一エリアの余剰電力の有無を判断するので、より正確な余剰電力を予測することができ、電力融通可否の判断をより正確なものにすることができる。
そして、制御部は、第二太陽光発電部の予測発電量データと、発電設備の発電容量と、大規模蓄電部の残量データと、第二エリアの前記総消費電力量の予測値と、を含む情報に基づいて、所定時間経過後の第二エリアの電力が不足するか否かを判断するので、より正確に第二エリアの電力不足を予測することができ、第一エリアからの電力融通可否の判断をより正確なものにすることができる。
本発明の第3のエネルギーマネジメントシステムによると、第一エリア及び第二エリアの電力需要が天候や気温による変動の他、例えば電力消費施設としてのオフィスや工場などの電力需要が低下する休日や夜間の電力需要が増加する大晦日から元日にかけてなどのように、電力需要に影響がある情報に基づいて総消費電力量の予測値を補正することができ、より正確な総消費電力量の予測値を算出することができる。
本発明の第4のエネルギーマネジメントシステムによると、宅内蓄電部が、比較的放充電効率のよいリチウムイオン蓄電池であり、大規模蓄電部が、比較的、安全性・安定性に優れ、長寿命であり、大型設備に適したレドックスフロー蓄電池であるので、余剰電力を放充電におけるエネルギー効率が高いリチウムイオン蓄電池に優先的に充電することで、充放電ロスの少ない効率的な電力の運用を可能とするとともに、オフィスや商業施設のような電力消費施設を有し、大規模蓄電部が必要な第二エリアには、安全性や大型化に係るコストが低いレドックスフロー蓄電池を設置することで、リチウムイオン蓄電池に充電余地がない場合にも蓄電することができ、効率的に電力を地産地消することができる。
さらに、本発明の第5のエネルギーマネジメントシステムによると、制御部は、第一エリアに余剰電力がなく、且つ、第二エリアの電力が不足する場合でも、蓄電部が第一エリアの電力需要を超えて放電することで、第二エリアに電力融通することができ、より効率的に電力を運用することができる。
第一エリア、第二エリア、及びエネルギーマネジメントシステムの全体構成を説明するブロック図。 第一エリアの余剰電力の有無を判断する処理のルーチンを示すフローチャート。 上のグラフが第二エリアにおける総消費電力の予測値と第二太陽光発電部の発電量の予測値を示し、下のグラフが第一エリアにおける総消費電力の予測値と第一太陽光発電部の発電量の予測値を示すグラフ。 上のグラフが第二エリアにおける総消費電力の予測値と第一エリアからの電力融通、第二太陽光発電部の発電、大規模蓄電部からの放電、電力会社からの買電、発電設備による発電などの電力の供給を示し、下のグラフが第一エリアにおける総消費電力の予測値と、第一太陽光発電部の発電、宅内蓄電部からの放電、電力会社からの買電を示しすグラフ。 余剰電力処理のルーチンを示すフローチャート。 第二エリアの電力不足を予測する処理のルーチンを示すフローチャート。 第一エリアに余剰電力がない場合に行われる不足電力処理のルーチンを示すフローチャート。
以下、本発明に係るエネルギーマネジメントシステム1の最良の実施形態について、各図を参照しつつ説明する。本実施形態のエネルギーマネジメントシステム1は、複数の住宅11を有する第一エリア10から、1以上の電力消費施設を有する第二エリア20への電力融通量を制御するエネルギーマネジメントシステム1である。
図1に記載のように、第一エリア10に設けられた各住宅11には、第一太陽光発電部12及び宅内蓄電部13が設けられている。第一太陽光発電部12は、各住宅11の屋根に設置されている。第一太陽光発電部12は、本実施形態においては、容量が2kWの太陽電池及び3.5kWの太陽電池のいずれかが住宅11毎にそれぞれ選択されて設置されている。また、宅内蓄電部13は、容量が8kWhのリチウムイオン蓄電池である。なお、第一太陽光発電部12の太陽電池容量や宅内蓄電部13の容量はこれに限定されるものではなく、例えば、各住宅11毎に異なる容量の第一太陽光発電部12又は宅内蓄電部13であっても良い。
第二エリア20には、発電設備21、第二太陽光発電部22、大規模蓄電部23、電力消費施設24、及びCEMS(community energy management system)サーバ25が設けられている。発電設備21は、本実施形態においては、ガスエンジンコージェネレーション発電設備である。なお、発電設備21はこれに限定されるものではない。例えば、コージェネレーション、すなわち電気と熱を同時に供給するものに限定されず、単に電気のみを供給する発電設備21であっても良い。また、天然ガス、液化天然ガス、石油などの化石燃料を用いた発電のほか、例えば水素などを用いた燃料電池であっても良い。発電設備21は天候に影響されずに発電できるものであれば、どのような発電設備21であっても良い。
第二太陽光発電部22は、容量が900kWの太陽電池である。第二エリア20内の電力消費施設24の屋上などに設置される。また、大規模蓄電部23は、本実施形態においては、イオンの酸化還元反応(reduction-oxidation reaction)を溶液のポンプ循環によって進行させて、充電と放電を行う流動電池であるレドックスフロー蓄電池である。レドックスフロー蓄電池は、燃焼性・爆発性の物質を使用・発生しないので安全性に優れている。また、レドックスフロー蓄電池は、放充電サイクルに制限が無く、電解液の寿命が半永久的であることによって長寿命である。そして、ほぼ溶液のタンクの増設だけで電池容量を増やすことができるので大型設備に適している。
電力消費施設24は、例えばオフィスビル、商業施設、工場などの住宅11に比べて電力消費量が大きい施設である。これらの電力消費施設24は第二エリア20内に1又は複数設けられており、住宅11における電力需要とは異なるタイミングで需要が増減する。
CEMSサーバ25は、少なくとも制御部26、データ受信部27、記憶部28を有しており、これらが1台のパソコン内に存在していてもよく、または、それぞれ、物理的に分離して存在していてもよい。
データ受信部27は、インターネット3やLAN(Local Area Network)に接続されるインターフェースであり、第一エリア10及び第二エリア20の各部からそれぞれの状態を示すデータを受け付けるとともに、図示しない外部サーバからエネルギーマネジメントに必要なデータを受け付ける。具体的には、データ受信部27は、外部の天気予報サーバからインターネット3を介して天気予報データを受け付ける。また、データ受信部27は、各住宅11の宅内蓄電部13から放充電量データ及び蓄電量データを受け付ける。また、データ受信部27は、第一太陽光発電部12の発電量の実測値を受け付ける。さらにデータ受信部27は、第一エリア10における総消費電力量の実測値を受け付ける。
データ受信部27は、また、発電設備21の発電量、大規模蓄電部23の蓄電量及び放充電量データを受け付ける。さらに、データ受信部27は、第二太陽光発電部22の発電量の実測値及び第二エリア20における総消費電力量の実測値を受け付ける。
制御部26は、図示しないがCPU(Central Processing Unit)やメモリーから構成されるコンピュータであり、データ受信部27が受け付けたデータに基づいて、第一エリア10及び第二エリア20の各部を制御する。制御部26は、第一エリア10に余剰電力があるか否か判断する処理を行い、余剰電力が有る場合には第二エリア20に電力融通するか否かを判断する処理を行い、電力が不足する場合には、電力を補う処理を行う。また、記憶部28は、曜日情報や祝日情報を含む暦情報、などの情報を記憶している。
第一エリア10の各住宅11及び第二エリア20の各施設は、既存の送電網4により接続されており、各住宅11は既存の送電網4を介して、電力会社から買電できるとともに、電力会社に対して売電できる。また、第二エリア20では、電力会社から必要な電力を一括受電している。
次に、以上のように構成されるエネルギーマネジメントシステム1の主に制御部26が行う処理について説明する。まず、制御部26は、第一エリア10に余剰電力があるか否か判断する処理をおこなう。図2は、第一エリア10の余剰電力の有無を判断する処理のルーチンを示すフローチャートである。この処理では、まずデータ受信部27が第一エリア10及び第二エリア20から各種の情報を受信する処理を行う。具体的には、データ受信部27は、まず、インターネット3を介して外部のサーバから天気予報データを受け付ける(S100)。天気予報データは、少なくとも当日及び翌日の天候及び予想気温を時間帯毎に示すデータである。データ受信部27は受け付けた情報を記憶部28に記憶する。
次にデータ受信部27は、第一太陽光発電部12が現在発電している発電量の実測値をインターネット3を介して第一太陽光発電部12が設けられた住宅11のサーバーから受信する(S101)。そして、次にデータ受信部27は、第二太陽光発電部22が現在発電している発電量の実測値をインターネット3を介して第二太陽光発電部22から受信する(S102)。また、データ受信部27は、発電設備21が現在発電している発電量を受信する(S103)。そして、データ受信部27は、住宅11のサーバから宅内蓄電部13の蓄電量及び放充電量を受信する(S104)。そして、データ受信部27は、大規模蓄電部23の蓄電量及び放充電量を大規模蓄電部23から受信する(S105)。なお、これらのデータの送受信は、インターネット3を介したものに限定されるものではなく、例えばLANなどのデータ通信回線があればインターネット3を介するものに限定されるものではない。また、第一太陽光発電部12や第二太陽光発電部22の発電量の実測値や宅内蓄電部13及び大規模蓄電部23の蓄電量・放充電量は、データ通信やデータ処理の都合上、現実の発電や放充電から数分程度の多少の時間の遅れがある。
データ受信部27が各種データを受信すると、次に制御部26は、第一太陽光発電部12の所定時間経過後の予測発電量を算出する(S106)。この処理では、まず、制御部26は、天気予報データから、所定時間(例えば1時間)経過後の天候及び予想気温を把握する。そして、天候及び予想気温と、記憶部28に記憶されている第一エリア10の位置情報、暦情報、及び時刻情報とに基づいて第一太陽光発電部12への日射量や第一太陽光発電部12の温度を算出し、これらの情報と第一太陽光発電部12の容量とに基づき、所定時間経過後第一太陽光発電部12の発電量を推定し、第一太陽光発電部12の発電量の実測値に基づく補正を行って、所定時間経過後の第一太陽光発電部12の予測発電量を算出する。なお、第一太陽光発電部12の予測発電量の算出には、例えば設置方式、周辺建物の影などの情報に基づいて更に補正するものであっても良い。
このように本実施形態のエネルギーマネジメントシステム1は、所定時間経過後の第一太陽光発電部12の予測発電量データを様々なデータから算出するので、予測発電量データをより正確に予測することができる。
第一太陽光発電部12の予測発電量を算出すると、次に制御部26は、第一エリア10における総消費電力量の予想値を算出する(S107)。具体的には、制御部26は、天気予報データから所定時間経過後の天候を把握する。また、制御部26は暦情報に含まれる曜日情報や祝日情報から住宅11の居住者が平日であるか休日であるかを把握し、時刻情報を含めて居住者の在宅を判断する。また、暦情報から季節を把握する。そして、天気予報データや第一エリア10の位置情報及び季節や時刻情報から現在の気温を把握する。そしてこれらの情報と近似する日における過去電力消費実績データを参照して予想される所定時間経過後の第一エリア10の総消費電力量を算出し、さらに、総消費電力量の実測値に基づいて補正を加えて、所定時間経過後の第一エリア10における総消費電力量の予測値を算出する。
このように、様々なデータによって総消費電力量の予測値を算出するのでより正確に予測することができる。
第一太陽光発電部12の予測発電量及び第一エリア10の総消費電力量の予測値を算出すると、次に、制御部26は第一エリア10に余剰電力があるか否か判断する(S108)。具体的には、第一太陽光発電部12の予測発電量が、第一エリア10における総消費電力量の予想値を超えるか否か判断する。なお、図3においては下側のグラフに示すように、棒グラフで示す第一太陽光発電部12の予測発電量が、折れ線グラフで示す第一エリア10における総消費電力量の予想値(電力需要)を超えるか否か判断している。晴れの日の昼間は、第一太陽光発電部12の発電量が多くなるので、第一エリア10の総消費電力量の予測値を超える。このように、制御部26は、算出した第一太陽光発電部12の予測発電量データ、総消費電力量の予測値、を含む情報に基づいて、所定時間経過後の第一エリア10の余剰電力の有無を判断するので、より正確な余剰電力を予測することができ、電力融通可否の判断をより正確なものにすることができる。
制御部26は第一エリア10に余剰電力があると判断すると(S108:YES)、余剰電力がある場合の処理を開始する(S109)。一方余剰電力が無いと判断すると(S108:No)、電力が不足する場合の処理を開始する(S110)。
余剰電力がある場合の処理は(S109)、図5にそのルーチンを示す。図5は、第一エリア10に余剰電力が有る場合に行われる余剰電力処理のルーチンを示すフローチャートである。第一エリア10に余剰電力が有ると判断すると、制御部26は、第二エリア20が電力不足であるか否か判断する(S200)。
具体的には、まず図6に示すように、第二エリア20の電力不足を予測する処理を行う。図6は第二エリア20電力不足予想処理のルーチンを示すフローチャートである。第二太陽光発電部22の所定時間経過後の予測発電量を算出する(S300)。この処理では、まず、制御部26は、天気予報データから、所定時間(例えば1時間)経過後の天候及び予想気温を把握し、天候及び予想気温と、記憶部28に記憶されている第二エリア20の位置情報、暦情報、及び時刻情報とに基づいて第二太陽光発電部22への日射量や第二太陽光発電部22の温度を算出し、これらの情報と第二太陽光発電部22の容量とに基づき、所定時間経過後の第二太陽光発電部22の発電量を推定し、第二太陽光発電部22の発電量の実測値に基づく補正を行って、所定時間経過後の第二太陽光発電部22の予測発電量を算出する。
第二太陽光発電部22の予測発電量を算出すると、次に制御部26は、第二エリア20における総消費電力量の予想値を算出する(S301)。具体的には、制御部26は、天気予報データから所定時間経過後の天候を把握し、制御部26は暦情報に含まれる曜日情報や祝日情報から住宅11の居住者が平日であるか休日であるかを把握し、時刻情報を含めて居住者の在宅を判断する。また、暦情報から季節を把握する。そして、天気予報データや第二エリア20の位置情報及び季節や時刻情報から現在の気温を把握する。そしてこれらの情報と近似する日における過去電力消費実績データを参照して予想される所定時間経過後の第二エリア20の総消費電力量を算出し、さらに、総消費電力量の実測値に基づいて補正を加えて、所定時間経過後の第二エリア20における総消費電力量の予測値を算出する。
第二太陽光発電部22の予測発電量及び第二エリア20の総消費電力量の予測値を算出すると、次に、制御部26は第二エリア20の電力が不足するか否か判断する(S302)。具体的には、第二太陽光発電部22の予測発電量が、第二エリア20における総消費電力量の予想値未満か否か判断する。なお、図3においては上側のグラフに示すように、棒グラフで示す第二太陽光発電部22の予測発電量が、折れ線グラフで示す第二エリア20における総消費電力量の予想値(電力需要)を下回るか否か判断している。第二エリア20は電力消費量に比べて第二太陽光発電部22の発電容量が大きくないので、ほとんどの場合は、第二太陽光発電部22の発電量は、第二エリア20の総消費電力量の予測値を下回る。
第二エリア20に電力不足があると判断すると(S302:YES)、電力不足フラグをONにして(S303)元の処理に戻る。また、第二エリア20に電力不足がないと判断すると(S302:No)、電力不足フラグをOFFにして(S304)元の処理に戻る。
図5のステップ200に戻って、第二エリア20が電力不足であると判断すると(S200:No)、すなわち、ステップ302で第二エリア20に電力が不足すると判断されて電力不足フラグがONにされていると、第二エリア20が電力不足であると判断し、ステップ201の処理に進む。一方、第二エリア20が電力不足でないと判断すると(S200:No)、すなわち、ステップ302で第二エリア20が電力不足ではないと判断されて余剰電力フラグがOFFにされていると、第二エリア20が電力不足ではないと判断し、ステップ201,202,203の処理をスキップしてステップ204の処理に進む。
ステップ201では、電力融通が所定の制限範囲内であるか否か判断する。本実施形態では、第一エリア10の各住宅11から第二エリア20に電力会社の既存送電網4を用いて電力を託送することで電力融通するものであるので、第一エリア10から既存送電網4への逆潮流最大値を400kWとし、400kWを超える電力融通は制限している。なお、制限される逆潮流最大値は、これに限定されるものではなく、既存送電網設備への負荷を考慮して適宜定められる。電力融通が所定制限範囲内であると判断すると(S201:YES)、第一エリア10の各住宅11から第二エリア20に対して電力融通を行い(S202、次に、第二エリア20へ電力融通を行った結果、第一エリア10に余剰電力が残っているか否か判断する(S203)。一方、電力融通が所定制限範囲内でないと判断すると(S201:NO)、電力融通は行わずに、ステップ202、及び203をスキップして、ステップ204に進む。
ステップ203に戻って、第一エリア10には未だ余剰電力があると判断すると(S203:YES)、ステップ204に進む。一方、第一エリア10には余剰電力が残っていないと判断すると、この処理を終了して、図2のステップ111に進む。ステップ204に進むと、次に制御部26は、宅内蓄電部13に充電余力があるか否か判断する。すなわち制御部26は、データ受信部27が受け付けた宅内蓄電部13の蓄電量データから宅内蓄電部13の充電余力の有無を判断する。宅内蓄電部13に充電余力があると判断すると(S204:YES)、宅内蓄電部13に第一エリア10の余剰電力を充電し、更に、第一エリア10に余剰電力があるか否か判断する(S206)。一方、ステップ204で、宅内蓄電部13に充電余力がないと判断すると(S204:NO)、ステップ205、及び206をスキップして、ステップ207に処理を進める。
ステップ206で第一エリア10に余剰電力が有ると判断すると(S206:YES)、次に制御部26は、ステップ207に処理を進める。一方、第一エリア10に余剰電力が無くなったと判断すると(S206:NO)、そのままこの処理を終了し、図2のステップ111に処理を進める。
ステップ207に進むと、制御部26は、大規模蓄電部23に充電余地があるか否か判断する。すなわち制御部26は、データ受信部27が受け付けた大規模蓄電部23の蓄電量データから大規模蓄電部23の充電余力の有無を判断する。大規模蓄電部23に充電余力があると判断すると(S207:YES)、大規模蓄電部23に第一エリア10の余剰電力を充電し、更に、第一エリア10に余剰電力があるか否か判断する(S209)。一方、ステップ207で、大規模蓄電部23に充電余力がないと判断すると(S207:NO)、ステップ208、及び209をスキップして、ステップ210に処理を進める。
ステップ209で第一エリア10に余剰電力が有ると判断すると(S209:YES)、次に制御部26は、ステップ210に処理を進める。一方、第一エリア10に余剰電力が無くなったと判断すると(S209:NO)、そのままこの処理を終了し、図2のステップ111に処理を進める。ステップ210に処理を進めると、第一エリア10の余剰電力は、電力融通することができず、また、宅内蓄電部13及び大規模蓄電部23に充電することもできないので、電力会社に売電して(S210)、この処理を終了し、図2のステップ111に処理を進める。以上のように、第一エリア10の余剰電力を処理することによって、図3の下側のグラフのように、第一エリア10で発生した余剰電力は、図4に示すように、電力融通、第一エリア10の宅内蓄電部13に充電、第二エリア20の大規模蓄電部23に充電を行って、第二エリア20の電力不足を補い、さらに、太陽光発電できない日没後の電力を補うために充電することができ、第一太陽光発電部12で発電した電力を効率的に利用することができる。
以上のように本実施形態においては、第一エリア10に余剰電力が有る場合に、まず、第二エリア20が電力不足の場合は電力融通し、次に、第二エリア20の電力が不足せず、且つ、第一エリア10の宅内蓄電部13に充電余地がある場合には、宅内蓄電部13に充電する。そして、第二エリア20の電力が不足せず、且つ、宅内蓄電部13に充電余地がなく、大規模蓄電部23に充電余地がある場合には、大規模蓄電部23に充電する。さらに制御部26は、第二エリア20の電力が不足せず、且つ、宅内蓄電部13及び大規模蓄電部23に充電余地がない場合には、第一エリア10の余剰電力を売電する。このように、第一エリア10に電力の余剰がない場合には、第一エリア10内での電力消費を優先し、第一エリア10に電力余剰がある場合には、電力融通、宅内蓄電部13に充電、大規模蓄電部23に充電、売電の順で優先処理を行うことで、充電ロスのない電力融通を優先し、充放電の電力ロスが比較的小さい宅内蓄電部13への充電を次に優先し、比較的充放電の電力ロスが大きい大規模蓄電部23への充電を次に処理し、それでも余剰がある場合に売電するので、第一エリア10の余剰電力をより効率的に地産地消することができる。
図2にステップ108に戻って、余剰電力がない場合の処理は(S110)、図7にそのルーチンを示す。図7は、第一エリア10に余剰電力がない場合に行われる不足電力処理のルーチンを示すフローチャートである。第一エリア10に余剰電力がないと判断すると、制御部26は、まず、宅内蓄電部13に放電を指示する(S400)。そして、次に、宅内蓄電部13の放電により第一エリア10の電力不足が解消したか否か判断する(S401)。すなわち、所定時間経過後の第一太陽光発電部12の発電量の予測値と宅内蓄電部13の放電量の和が、第一エリア10の総消費電力量の予測値以上である場合に、第一エリア10の電力不足が解消したと判断し(S401:No)、ステップ402をスキップして、ステップ403に処理を進める。一方、第一エリア10の電力不足が解消していないと判断した場合(S401:YES)、すなわち、所定時間経過後の第一太陽光発電部12の発電量の予測値と宅内蓄電部13の放電量の和が、第一エリア10の総消費電力量の予測値未満である場合に、ステップ402に進んで、第一エリア10の電力不足を解消すべく各住宅11が個別買電する処理を行い、ステップ403に処理を進める。
ステップ403では、第二エリア20が電力不足か否か判断する。前述の通り、第二エリア20の電力不足は図6に示す第二エリア20電力不足予測処理に基づいて判断される。詳しくは前述の通りであるので説明を省略する。ステップ403において、電力不足フラグがONであると判断すると(S403:YES)、宅内蓄電部13に放電可能な電力の残量があるか否か判断し(S404)、電力の残量がある場合には(S404:YES)、宅内蓄電部13が放電をし(S405)、その結果生じた第一エリア10の余剰電力を第二エリア20に電力融通する(S406)。
このように、制御部26は、第一エリア10に余剰電力がない場合でも、宅内蓄電部13が第一エリア10の電力需要を超えて放電することで、第二エリア20に電力融通することができ、より効率的に電力を運用することができる。
第一エリア10の余剰電力を第二エリア20に電力融通すると、次に再度、第二エリア20が電力不足か否か判断する(S407)。前述の通り、第二エリア20の電力不足は図6に示す第二エリア電力不足予測処理に基づいて判断されるので、詳しくは前述の通りである。ステップS407において、電力不足フラグがONであると判断すると(S407:YES)、ステップ408に処理を進める。
一方ステップ403及びステップ407において、電力不足フラグがOFFであると判断すると(S403orS407:NO)、不足電力処理のルーチンを終了し、図2に戻ってステップ111に進む。また、ステップ404において、宅内蓄電部13に放電可能な電力の残量がないと判断すると(S404:NO)、ステップ405、406、407の処理をスキップして、ステップ408に進む。
ステップ408では、大規模蓄電部23に電力を放電する残量があるか否か判断される。残量がないと判断されると(S408:NO)、ステップ409、及び410の処理をスキップして、ステップ411に処理を進める。一方、ステップ408において、大規模蓄電部23に電力を放電する残量があると判断すると(S408:YES)、大規模蓄電部23が放電し(S409)、第二エリア20に電力を補充する。大規模蓄電部23の放電により第二エリア20に電力を補充すると、さらに、第二エリア20の電力が不足するか否か判断する(S410)。第二エリア20に未だ電力の不足があると判断すると(S410:YES)、次に、ステップ411に処理を進める。一方第二エリア20に電力不足がないと判断すると(S410:NO)、そのまま、不足電力処理のルーチンを終了し、図2に戻って、ステップ111に処理を進める。
ステップ411では、発電設備21の発電が一括受電による買電に比べて経済合理性があるか否か判断する。具体的には発電設備21の燃料代などの発電コストと電力会社からの買電コストとを比較して、発電設備21の発電に経済合理性がある場合には(S411:YES)、発電設備21で発電し(S412)、発電設備21の発電に経済合理性がない場合には(S411:NO)、電力会社から一括受電する(S413)。なお、電力会社から受電する電力の単価は、例えば深夜時間帯には安価になり、また、買電ピーク時の電力量が所定の電力量を超える場合には高くなるので、時間帯や不足電力量に応じて、発電設備21の発電と電力会社からの一括受電による買電とを組み合わせて、もっとも経済合理性があるように発電又は買電して、不足電力処理のルーチンを終了し、図2に戻って、ステップ111に処理を進める。
ステップ111では、買電の単価や電力の蓄電及び消費の動きを計算し、また、電力会社に支払う料金を計算し、記憶部28に料金データなどのデータを記憶して、処理をリターンする(S112)。
以上のように、本実施形態のエネルギーマネジメントシステム1は、第一エリア10で生じた余剰電力を効率的に運用することができ、電力の地産地消率を高め、経済的且つ効率的なエネルギーマネジメントを行うことができる。
なお、本発明の実施の形態は上述の形態に限ることなく、本発明の思想の範囲を逸脱しない範囲で適宜変更することができることは云うまでもない。
本発明に係るエネルギーマネジメントシステム1は、住宅11エリアからオフィス商業エリアに電力を融通できるシステムとして好適に適用することができる。
1 エネルギーマネジメントシステム
10 第一エリア
11 住宅
12 第一太陽光発電部
13 宅内蓄電部
20 第二エリア
21 発電設備
22 第二太陽光発電部
23 大規模蓄電部
24 電力消費施設

Claims (5)

  1. 第一太陽光発電部及び宅内蓄電部を具備する複数戸の住宅を有する第一エリアから、前記住宅よりも電力消費量の大きな1以上の電力消費施設と、前記第一エリアの住宅が具備する前記宅内蓄電部よりもエネルギー効率が低い大規模蓄電部を有する第二エリアへ向けた電力融通量を制御するエネルギーマネジメントシステムであって、
    制御部と、
    少なくとも天気予報データ、宅内蓄電部の蓄電量データ、前記第一太陽光発電部の発電量の実測値、及び前記第一エリアにおける総消費電力量の実測値、を受け付けるデータ受信部と、
    少なくとも前記第一エリアにおける過去電力消費実績データ、前記第一エリアの位置情報、及び暦情報を記憶する記憶部と、
    を備え、
    前記制御部は、前記第一太陽光発電部の発電量の実測値、前記天気予報データ、前記第一エリアの位置情報、前記暦情報、及び時刻情報に基づいて、所定時間経過後の前記第一太陽光発電部の予測発電量データを算出するとともに、
    前記制御部は、前記第一エリアにおける総消費電力量の実測値、前記第一エリアにおける過去電力消費実績データ、前記天気予報データ、前記第一エリアの位置情報、前記暦情報、及び前記時刻情報に基づいて、前記所定時間経過後の前記第一エリアにおける総消費電力量の予測値を算出し、
    前記制御部は、前記予測発電量データと、前記総消費電力量の予測値と、を含む情報に基づいて、前記所定時間経過後の前記第一エリアの余剰電力の有無を判断し、
    前記制御部は、前記第一エリアに余剰電力がある場合に、前記第一エリアから前記第二エリアに電力融通可能であると判断し、
    前記制御部は、前記第一エリアから前記第二エリアに電力融通可能であると判断すると、前記第二エリアの電力が不足するか否か判断し、
    前記制御部は、前記第二エリアの電力が不足すると判断すると、前記第一エリアの余剰電力を所定基準の範囲内で前記第二エリアの前記電力消費施設に電力融通する旨決定し、
    前記制御部は、前記第二エリアの電力が不足しないと判断すると、前記第一エリアの住宅が具備する前記宅内蓄電部に充電余地がある場合には、前記第一エリアの余剰電力を前記宅内蓄電部に充電する旨決定し、
    前記制御部は、前記第二エリアの電力が不足せず、且つ、前記第一エリアの住宅が具備する前記宅内蓄電部に充電余地がなく、前記大規模蓄電部に充電余地がある場合には、前記第一エリアの余剰電力を前記大規模蓄電部に充電する旨決定し、
    前記制御部は、前記第二エリアの電力が不足せず、且つ、前記宅内蓄電部及び前記大規模蓄電部に充電余地がない場合には、前記第一エリアの余剰電力を売電する旨決定することを特徴とするエネルギーマネジメントシステム。
  2. 第二エリアは第二太陽光発電部と、天候の影響を受けずに発電できる発電設備と、を更に有するものであり、
    前記データ受信部は前記大規模蓄電部の蓄電量データ、前記第二太陽光発電部の発電量の実測値、及び前記第二エリアにおける総消費電力量の実測値、を更に受け付けるものであり、
    前記記憶部は、前記第二エリアにおける過去電力消費実績データ、前記第二エリアの位置情報、を更に記憶するものであり、
    前記制御部は、前記第二太陽光発電部の発電量の実測値、前記天気予報データ、前記第二エリアの位置情報、前記暦情報、及び時刻情報に基づいて、所定時間経過後の前記第二太陽光発電部の予測発電量データを算出するとともに、
    前記制御部は、前記第二エリアにおける総消費電力量の実測値、前記第二エリアにおける過去電力消費実績データ、前記第二エリアの位置情報、前記暦情報、及び前記時刻情報に基づいて、前記所定時間経過後の前記第二エリアにおける総消費電力量の予測値を算出し、
    前記制御部は、前記第二太陽光発電部の前記予測発電量データと、前記第二エリアの前記総消費電力量の予測値と、を含む情報に基づいて、前記所定時間経過後の前記第二エリアの電力が不足するか否かを判断することを特徴とする請求項1に記載のエネルギーマネジメントシステム。
  3. 前記暦情報は、曜日情報、祝日情報を含む電力需要に影響がある情報を記憶しており、前記第一エリア及び前記第二エリアにおける前記総消費電力量の予測値を算出する際に、前記暦情報に基づいて算出される予測値を補正することを特徴とする請求項2に記載のエネルギーマネジメントシステム。
  4. 前記宅内蓄電部は、リチウムイオン蓄電池(lithium-ion rechargeable battery)であり、前記大規模蓄電部は、レドックスフロー蓄電池(redox flow battery)であることを特徴とする請求項1から請求項3のいずれかに記載のエネルギーマネジメントシステム。
  5. 制御部は、前記第一エリアに余剰電力がなく、且つ、前記第二エリアの電力が不足すると判断した場合に、前記宅内蓄電部を前記第一エリアの電力需要を超えて放電し、前記第二エリアに電力融通することを特徴とする請求項1から請求項4のいずれかに記載のエネルギーマネジメントシステム。
JP2016120653A 2016-06-17 2016-06-17 エネルギーマネジメントシステム Active JP6172345B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016120653A JP6172345B1 (ja) 2016-06-17 2016-06-17 エネルギーマネジメントシステム
AU2017204048A AU2017204048A1 (en) 2016-06-17 2017-06-15 Energy management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120653A JP6172345B1 (ja) 2016-06-17 2016-06-17 エネルギーマネジメントシステム

Publications (2)

Publication Number Publication Date
JP6172345B1 true JP6172345B1 (ja) 2017-08-02
JP2017225299A JP2017225299A (ja) 2017-12-21

Family

ID=59505114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120653A Active JP6172345B1 (ja) 2016-06-17 2016-06-17 エネルギーマネジメントシステム

Country Status (1)

Country Link
JP (1) JP6172345B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336743A (zh) * 2021-12-24 2022-04-12 国网江苏省电力有限公司盐城供电分公司 一种包含多个光伏发电的区域电网能量控制方法
US20220317640A1 (en) * 2021-03-31 2022-10-06 Hygge Energy Inc. Optimizing distributed energy resource value

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021067958A (ja) * 2018-01-05 2021-04-30 本田技研工業株式会社 エネルギー需給システム
JP6945723B2 (ja) * 2018-03-19 2021-10-06 本田技研工業株式会社 電力融通装置、プログラム及び電力融通方法
EP3771060B1 (en) * 2018-03-20 2023-02-22 Honda Motor Co., Ltd. Power information management system, management method, program, power information management server, communication terminal, and power system
JP7084296B2 (ja) * 2018-10-03 2022-06-14 京セラ株式会社 電力管理装置、電力管理システム及び電力管理方法
KR102633500B1 (ko) * 2021-01-29 2024-02-06 (주)코빅파워 광통신을 이용하는 하이브리드 직류전원시스템
JP2024040552A (ja) * 2022-09-13 2024-03-26 株式会社日立製作所 充電状態計算装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094648A (ja) * 2004-09-24 2006-04-06 Kansai Electric Power Co Inc:The 二次電池を用いた電力系統制御方法及び電力系統制御装置
WO2008117392A1 (ja) * 2007-03-26 2008-10-02 Vpec, Inc. 電力システム
US20110071699A1 (en) * 2009-09-23 2011-03-24 Electronics And Telecommunications Research Institute Electric power generation device, electric power demand device, and electric power control system, and method of controlling electric power
JP2012060761A (ja) * 2010-09-08 2012-03-22 Sekisui Chem Co Ltd 地域内電力融通システム
WO2012066651A1 (ja) * 2010-11-17 2012-05-24 株式会社日立製作所 電力管理システム及び電力管理方法
JP2013099140A (ja) * 2011-11-01 2013-05-20 Shimizu Corp 電力管理システム、電力管理方法、プログラム
JP2013539953A (ja) * 2010-09-10 2013-10-28 コンヴァージ,インコーポレーテッド 補給可能エネルギー源の見掛けの大きさを増大させるために補給可能エネルギー源と連動して建物負荷を制御するための方法およびシステム
JP2014014211A (ja) * 2012-07-03 2014-01-23 Toshiba Corp 電力系統監視制御システム
JP2015077014A (ja) * 2013-10-10 2015-04-20 三井不動産株式会社 複数の街区のエネルギー需給を調整するためのエネルギー管理システム、及びエネルギー管理方法
JP2015530862A (ja) * 2012-09-28 2015-10-15 エンリッチメント テクノロジー カンパニー リミテッドEnrichment Technology Company Ltd. エネルギー貯蔵システム
JP2016063592A (ja) * 2014-09-17 2016-04-25 積水化学工業株式会社 電力管理システム及び電力管理方法
JP6146624B1 (ja) * 2016-06-17 2017-06-14 積水ハウス株式会社 エネルギーマネジメントシステム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094648A (ja) * 2004-09-24 2006-04-06 Kansai Electric Power Co Inc:The 二次電池を用いた電力系統制御方法及び電力系統制御装置
WO2008117392A1 (ja) * 2007-03-26 2008-10-02 Vpec, Inc. 電力システム
US20110071699A1 (en) * 2009-09-23 2011-03-24 Electronics And Telecommunications Research Institute Electric power generation device, electric power demand device, and electric power control system, and method of controlling electric power
JP2012060761A (ja) * 2010-09-08 2012-03-22 Sekisui Chem Co Ltd 地域内電力融通システム
JP2013539953A (ja) * 2010-09-10 2013-10-28 コンヴァージ,インコーポレーテッド 補給可能エネルギー源の見掛けの大きさを増大させるために補給可能エネルギー源と連動して建物負荷を制御するための方法およびシステム
WO2012066651A1 (ja) * 2010-11-17 2012-05-24 株式会社日立製作所 電力管理システム及び電力管理方法
JP2013099140A (ja) * 2011-11-01 2013-05-20 Shimizu Corp 電力管理システム、電力管理方法、プログラム
JP2014014211A (ja) * 2012-07-03 2014-01-23 Toshiba Corp 電力系統監視制御システム
JP2015530862A (ja) * 2012-09-28 2015-10-15 エンリッチメント テクノロジー カンパニー リミテッドEnrichment Technology Company Ltd. エネルギー貯蔵システム
JP2015077014A (ja) * 2013-10-10 2015-04-20 三井不動産株式会社 複数の街区のエネルギー需給を調整するためのエネルギー管理システム、及びエネルギー管理方法
JP2016063592A (ja) * 2014-09-17 2016-04-25 積水化学工業株式会社 電力管理システム及び電力管理方法
JP6146624B1 (ja) * 2016-06-17 2017-06-14 積水ハウス株式会社 エネルギーマネジメントシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220317640A1 (en) * 2021-03-31 2022-10-06 Hygge Energy Inc. Optimizing distributed energy resource value
US11921480B2 (en) * 2021-03-31 2024-03-05 Hygge Energy Inc. Optimizing distributed energy resource value
CN114336743A (zh) * 2021-12-24 2022-04-12 国网江苏省电力有限公司盐城供电分公司 一种包含多个光伏发电的区域电网能量控制方法

Also Published As

Publication number Publication date
JP2017225299A (ja) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6172345B1 (ja) エネルギーマネジメントシステム
JP5095495B2 (ja) 電力システムおよびその制御方法
US9037307B2 (en) Supply-and-demand control apparatus, supply-and-demand control method, and supply-and-demand control system
US9824409B2 (en) Energy management system, server, energy management method, and storage medium
WO2017104161A1 (ja) 電力管理装置
JP6172346B1 (ja) エネルギーマネジメントシステム
JP2012175792A (ja) 電力供給システム
US11556102B2 (en) Off-grid electrical power system
Yilmaz et al. A model predictive control for microgrids considering battery aging
JP2017077151A (ja) 建物の消費電力予測システム、蓄電装置の制御システム、及び蓄電装置の制御方法
JP6146624B1 (ja) エネルギーマネジメントシステム
KR20200114424A (ko) 이종 신재생 에너지원이 결합된 발전원 운영 방법 및 장치
JP6985090B2 (ja) 充放電制御装置
JP6756952B2 (ja) 電力融通システム
AU2019213393B2 (en) Off-grid electrical power system
JP6705652B2 (ja) 蓄電池制御方法
JP2021057962A (ja) 電力融通システム
JP2021057180A (ja) 電力供給システム
JP6143979B1 (ja) 電力管理装置
JP2021057181A (ja) 電力供給システム
US20230121380A1 (en) Off-grid electrical power system
JP2017118711A (ja) 蓄電池制御方法
JP6637402B2 (ja) エネルギー管理装置、その制御方法及び熱電供給システム
Jozwiak et al. Smart Island Energy Systems: Case Study of Ballen Marina on Samsø
Myshkina et al. Application of Energy Storage Systems to Manage the Configuration of Consumer Load Profiles

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6172345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250