JP6169930B2 - 固体酸化物形燃料電池セル - Google Patents

固体酸化物形燃料電池セル Download PDF

Info

Publication number
JP6169930B2
JP6169930B2 JP2013198496A JP2013198496A JP6169930B2 JP 6169930 B2 JP6169930 B2 JP 6169930B2 JP 2013198496 A JP2013198496 A JP 2013198496A JP 2013198496 A JP2013198496 A JP 2013198496A JP 6169930 B2 JP6169930 B2 JP 6169930B2
Authority
JP
Japan
Prior art keywords
fuel electrode
current collector
power generation
recess
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013198496A
Other languages
English (en)
Other versions
JP2015065047A (ja
Inventor
修身 井上
修身 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013198496A priority Critical patent/JP6169930B2/ja
Publication of JP2015065047A publication Critical patent/JP2015065047A/ja
Application granted granted Critical
Publication of JP6169930B2 publication Critical patent/JP6169930B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体酸化物形燃料電池セルに関するものである。
従来、ガス流路が内部に形成された平板状の多孔質の支持基板と、この平板状の支持基板の主面における互いに離れた複数の箇所にそれぞれ設けられた複数の発電素子部と、隣り合う発電素子部の一方の燃料極と他方の空気極とを電気的に接続する電気的接続部とを備えてなるとともに、平板状の支持基板の主面における複数の箇所に、底壁と周方向に閉じた側壁とを有する第1凹部がそれぞれ形成され、該各第1凹部に、対応する発電素子部の燃料極集電部がそれぞれ埋設された固体酸化物形燃料電池セルが知られている(例えば、特許文献1参照)。
この特許文献1では、各第1凹部に埋設された燃料極集電部には第2凹部が形成されており、この第2凹部には燃料極活性部が埋設され、また、燃料極集電部には第3凹部が形成されており、この第3凹部にはインターコネクタが埋設されている。
そして、インターコネクタにおけるセルの長手方向中央部を除いて、支持基板表面に固体電解質膜が形成され、インターコネクタと固体電解質膜とで緻密膜からなるガスシール層を形成し、燃料極に供給される燃料ガスと、空気極に供給される空気との混合を防止している。
特開2012−38718号公報
しかしながら、上記した特許文献1においては、支持基板の第1凹部には燃料極集電部が埋設され、燃料極集電部の第2凹部には燃料極活性部が埋設され、燃料極集電部の第3凹部にはインターコネクタが埋設され、この状態で焼成されて固体酸化物形燃料電池セルが作製されていたため、凹部を構成する材料と凹部内に埋設される材料との焼成収縮挙動、熱膨張係数等の相違により、凹部を構成する壁面と、凹部内に埋設される材料との間に隙間が生じるおそれがある。
この隙間の生成に起因して、凹部を構成する壁面と埋設材料との境界上に積層された固体電解質に応力が生じ、固体電解質にクラックが生じ、またはインターコネクタ上に積層された固体電解質が剥離し、支持基板内を流れる燃料ガスが支持基板外に漏出し、燃料極に供給される燃料ガスと、空気極に供給される空気とのガス遮断性能が低下するという問題があった。
本発明は、ガス遮断性能を向上できる固体酸化物形燃料電池セルを提供することを目的とする。
本発明の固体酸化物形燃料電池セルは、ガス流路が内部に形成された平板状の多孔質の支持基板と、該支持基板の主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質、および空気極が積層されてなる複数の発電素子部と、隣り合う前記発電素子部の間にそれぞれ設けられ、一方の前記発電素子部の燃料極と他方の前記発電素子部の空気極とを電気的に接続する電気的接続部とを備えるとともに、前記燃料極が、燃料極集電部と、該燃料極集電部よりもイオン伝導性を有する物質の含有割合が多い燃料極活性部とからなり、前記支持基板の主面における前記複数の箇所に、底壁と周方向に閉じた側壁とを有する第1凹部がそれぞれ設けられ、該各第1凹部に前記燃料極集電部がそれぞれ埋設され、該第1凹部に埋設された燃料極集電部の外側面に形成された第2凹部に前記燃料極活性部が埋設され、前記第1凹部に埋設された燃料極集電部の前記第2凹部が形成された位置と異なる位置の外側面に形成された第3凹部に、前記電気的接続部の一部を構成する導電性緻密質体が埋設され、前記燃料極活性部に積層された固体電解質が、前記一方および他方の発電素子部の両側から延設されて前記導電性緻密質体の両端部、もしくは前記導電性緻密質体の両端に設けられた絶縁性シール部の両端部に積層され、さらに、前記電気的接続部の一部を構成する空気極集電部が、前記他方の発電素子部の空気極表面から前記一方の発電素子部側に延設されて前記導電性緻密質体表面に積層されており、前記一方の発電素子部の前記固体電解質の前記導電性緻密質体側における端面および端部表面が絶縁性の被覆シール層で被覆され、該被覆シール層が前記導電性緻密質体もしくは前記絶縁性シール部の表面に接合していることを特徴とする。
本発明の固体酸化物形燃料電池セルでは、一方の発電素子部の固体電解質の導電性緻密質体側における端面および端部表面が被覆シール層で被覆され、該被覆シール層が導電性緻密質体もしくは絶縁性シール部の表面に接合しているため、固体電解質と、導電性緻密質体もしくは絶縁性シール部との間、および導電性緻密質体側における固体電解質の端部表面からのガスの漏出を抑制し、ガス遮断性能を向上できる。
(a)は固体酸化物形燃料電池セルを示す斜視図、(b)は凹部内に燃料極、インターコネクタ(導電性緻密質体)が埋設された状態を示す平面図である。 (a)は図1(a)に示す固体酸化物形燃料電池セルの2−2線に対応する断面図、(b)は第1凹部およびその近傍を示す断面図である。 図1に示す固体酸化物形燃料電池セルの作動状態を説明するための図である。 第3凹部の4つの側面に、インターコネクタ(導電性緻密質体)を囲むように絶縁性シール層を形成した状態を示す断面図である。 他方の燃料電池セルの空気極集電部が、インターコネクタ(導電性緻密質体)の一方の燃料電池セル側端を超えて延設され、被覆シール層の表面に積層されている形態を示す断面図である。 図1の支持基板の成形体を示す斜視図である。 (a)は図6の7−7線に対応する断面図、(b)は第1凹部内に各層を形成した状態を示す断面図である。 4つの側面が燃料極集電部の材料からなる第3凹部に埋設されたインターコネクタを示す平面図である。
図1(a)は、本発明の実施形態に係る固体酸化物形燃料電池セル(以下、セルということがある)を示すもので、このセルは、長手方向(x軸方向)を有する平板状の多孔質の支持基板10の上下面(互いに平行な両側の主面(平面))のそれぞれに、電気的に直列に接続された複数(本形態では、4つ)の同形の発電素子部Aが長手方向において所定の間隔をおいて配列された、所謂「横縞型」と呼ばれる構造を有している。
このセルを上方からみた形状は、例えば、長手方向の辺の長さが5〜50cmで、長手
方向に直交する幅方向(y軸方向)の長さが1〜10cmの長方形である。このセルの厚さは、1〜5mmである。このセルは、厚さ方向の中心を通り且つ支持基板10の主面に平行な面に対して上下対称の形状を有する。以下、図1(a)に加えて、このセルの図1(a)に示す2−2線に対応する部分断面図である図2(a)を参照しながら、このセルの詳細について説明する。
図2(a)は、代表的な1組の隣り合う発電素子部A、Aのそれぞれの構成(の一部)、並びに発電素子部A、A間の構成を示す部分断面図である。その他の組の隣り合う発電素子部A、A間の構成も、図2(a)に示す構成と同様である。
支持基板10は、電子伝導性を有さない(絶縁性)多孔質の材料からなる平板状の焼成体である。支持基板10の内部には、長手方向に延びる複数(本形態では、6本)の燃料ガス流路11(貫通孔)が幅方向において所定の間隔をおいて形成されている。本形態では、支持基板10の主面における複数の箇所に、それぞれ第1凹部12が形成されており、各第1凹部12は、支持基板10の材料からなる底壁と、全周に亘って支持基板10の材料からなる周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。
支持基板10は、「遷移金属酸化物又は遷移金属」と、絶縁性セラミックスとからなる。「遷移金属酸化物又は遷移金属」としては、NiO(酸化ニッケル)又はNi(ニッケル)が好適である。遷移金属は、燃料ガスの改質反応を促す触媒(炭化水素系のガスの改質触媒)として機能し得る。
また、絶縁性セラミックスとしては、MgO(酸化マグネシウム)、又は、「MgAl(マグネシアアルミナスピネル)とMgO(酸化マグネシウム)の混合物」が好適である。また、絶縁性セラミックスとして、CSZ(カルシア安定化ジルコニア)、YSZ(8YSZ)(イットリア安定化ジルコニア)、Y(イットリア)が使用されてもよい。
このように、支持基板10が「遷移金属酸化物又は遷移金属」を含むことによって、改質前の残存ガス成分を含んだガスが多孔質の支持基板10の内部の多数の気孔を介して燃料ガス流路11から燃料極に供給される過程において、上記触媒作用によって改質前の残存ガス成分の改質を促すことができる。加えて、支持基板10が絶縁性セラミックスを含むことによって、支持基板10の絶縁性を確保することができる。この結果、隣り合う燃料極間における絶縁性が確保され得る。
支持基板10の厚さは、1〜5mmである。以下、この構造体の形状が上下対称となっていることを考慮し、説明の簡便化のため、支持基板10の上面側の構成についてのみ説明していく。支持基板10の下面側の構成についても同様である。
図2に示すように、支持基板10の上面(上側の主面)に形成された各第1凹部12内には、燃料極集電部21の全体が埋設(充填)されている。従って、各燃料極集電部21は直方体状を呈している。各燃料極集電部21の上面(外側面)には、第2凹部21aが形成されている。各第2凹部21aは、図1(b)に示すように、燃料極集電部21の材料からなる底壁と、周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。周方向に閉じた側壁のうち、長手方向(x軸方向)に沿う2つの側壁は支持基板10の材料からなり、幅方向(y軸方向)に沿う2つの側壁は燃料極集電部21の材料からなる。
各第2凹部21aには、燃料極活性部22の全体が埋設(充填)されている。従って、
各燃料極活性部22は直方体状を呈している。燃料極集電部21と燃料極活性部22とにより燃料極20が構成される。燃料極20(燃料極集電部21+燃料極活性部22)は、電子伝導性を有する多孔質の材料からなる焼成体である。各燃料極活性部22の幅方向(y軸方向)に沿う2つの側面と底面とは、第2凹部21a内で燃料極集電部21と接触している。
各燃料極集電部21の上面(外側面)における第2凹部21aを除いた部分には、第3凹部21bが形成されている。各第3凹部21bは、燃料極集電部21の材料からなる底壁と、周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。周方向に閉じた側壁のうち、長手方向(x軸方向)に沿う2つの側壁は支持基板10の材料からなり、幅方向(y軸方向)に沿う2つの側壁は燃料極集電部21の材料からなる。
各第3凹部21bには、インターコネクタ(導電性緻密質体)30が埋設(充填)されている。従って、各インターコネクタ30は直方体状を呈している。インターコネクタ30は、電子伝導性を有する緻密な材料からなる焼成体である。各インターコネクタ30の幅方向(y軸方向)に沿う2つの側面と底面とは、第3凹部21b内で燃料極集電部21と接触している。
燃料極20(燃料極集電部21および燃料極活性部22)の上面(外側面)と、インターコネクタ30の上面(外側面)と、支持基板10の主面とにより、1つの平面(凹部12が形成されていない場合の支持基板10の主面と同じ平面)が構成されている。即ち、燃料極20の上面とインターコネクタ30の上面と支持基板10の主面との間で、段差が形成されていない。
燃料極活性部22は、例えば、NiO(酸化ニッケル)とYSZ(イットリア安定化ジルコニア)とから構成され得る。あるいは、NiO(酸化ニッケル)とGDC(ガドリニウムドープセリア)とから構成されてもよい。燃料極集電部21は、例えば、NiO(酸化ニッケル)とYSZ(イットリア安定化ジルコニア)とから構成され得る。あるいは、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、NiO(酸化ニッケル)とCSZ(カルシア安定化ジルコニア)とから構成されてもよい。燃料極活性部22の厚さは、5〜30μmであり、燃料極集電部21の厚さ(即ち、第1凹部12の深さ)は、50〜500μmである。
このように、燃料極集電部21は、電子伝導性を有する物質を含んで構成される。燃料極活性部22は、電子伝導性を有する物質と酸化性イオン(酸素イオン)伝導性を有する物質とを含んで構成される。燃料極活性部22における「気孔部分を除いた全体積に対する酸化性イオン伝導性を有する物質の体積割合」は、燃料極集電部21における「気孔部分を除いた全体積に対する酸化性イオン伝導性を有する物質の体積割合」よりも多い。
インターコネクタ30は、例えば、LaCrO(ランタンクロマイト)から構成され得る。あるいは、(Sr,La)TiO(ストロンチウムチタネート)から構成されてもよい。インターコネクタ30の厚さは、10〜100μmである。
燃料極20がそれぞれの第1凹部12に埋設された状態の支持基板10における長手方向(発電素子部Aの配列方向)に延びる外周面において、複数のインターコネクタ30が形成されたそれぞれの部分の長手方向中央部を除いた全面は、固体電解質膜40により覆われている。固体電解質膜40は、イオン伝導性を有し且つ電子伝導性を有さない緻密な材料からなる焼成体である。固体電解質膜40は、例えば、YSZ(イットリア安定化ジルコニア)から構成され得る。あるいは、LSGM(ランタンガレート)から構成されて
もよい。固体電解質膜40の厚さは、3〜50μmである。
即ち、燃料極20がそれぞれの第1凹部12に埋設された状態の支持基板10における長手方向に延びる外周面の全面は、インターコネクタ30と固体電解質膜40とからなる緻密層により覆われている。この緻密層は、緻密層の内側の空間を流れる燃料ガスと緻密層の外側の空間を流れる空気との混合を防止するガスシール機能を発揮する。
なお、図2(a)に示すように、本形態では、固体電解質膜40が、燃料極20(燃料極集電部21+燃料極活性部22)の上面、インターコネクタ30の上面における長手方向の両側端部、および支持基板10の主面を覆っている。ここで、上述したように、燃料極20の上面とインターコネクタ30の上面と支持基板10の主面との間で段差が形成されていない。従って、固体電解質膜40が平坦化されている。この結果、固体電解質膜40に段差が形成される場合に比して、応力集中に起因する固体電解質膜40でのクラックの発生が抑制され得、固体電解質膜40が有するガスシール機能の低下が抑制され得る。
固体電解質膜40における各燃料極活性部22と接している箇所の上面には、反応防止膜50を介して空気極60が形成されている。反応防止膜50は、緻密な材料からなる焼成体であり、空気極60は、電子伝導性を有する多孔質の材料からなる焼成体である。反応防止膜50および空気極60を上方からみた形状は、燃料極活性部22と略同一の長方形、または、反応防止膜50が燃料極活性部22よりも僅かに広い長方形状である。
反応防止膜50は、例えば、GDC=(Ce,Gd)O(ガドリニウムドープセリア)から構成され得る。反応防止膜50の厚さは、3〜50μmである。空気極60は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。あるいは、LSF=(La,Sr)FeO(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等から構成されてもよい。また、空気極60は、LSCFからなる第1層(内側層)とLSCからなる第2層(外側層)との2層によって構成されてもよい。空気極60の厚さは、10〜100μmである。
なお、反応防止膜50が介装されるのは、セル作製時又は作動中のセル内において固体電解質膜40内のYSZと空気極60内のSrとが反応して固体電解質膜40と空気極60との界面に電気抵抗が大きい反応層が形成される現象の発生を抑制するためである。
ここで、燃料極20と、固体電解質膜40と、反応防止膜50と、空気極60とが積層されてなる積層体が、「発電素子部A」に対応する(図2を参照)。即ち、支持基板10の上面には、複数(本形態では、4つ)の発電素子部Aが、長手方向において所定の間隔をおいて配置されている。
隣り合う発電素子部A、Aについて、他方の(図2(a)では、左側の)発電素子部Aの空気極60と、一方の(図2(a)では、右側の)発電素子部Aのインターコネクタ30とを跨ぐように、空気極60およびインターコネクタ30の上面に、空気極集電部である空気極集電膜70が形成されている。空気極集電膜70は、電子伝導性を有する多孔質の材料からなる焼成体である。空気極集電膜70を上方からみた形状は、長方形である。
空気極集電膜70は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。あるいは、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)から構成されてもよい。あるいは、Ag(銀)、Ag−Pd(銀パラジウム合金)から構成されてもよい。空気極集電膜
70の厚さは、50〜500μmである。
このように各空気極集電膜70が形成されることにより、隣り合う発電素子部A、Aについて、他方の(図2(a)では、左側の)発電素子部Aの空気極60と、一方の(図2(a)では、右側の)発電素子部Aの燃料極20(特に、燃料極集電部21)とが、電子伝導性を有する「空気極集電膜70およびインターコネクタ30」を介して電気的に接続される。
この結果、支持基板10の上面に配置されている複数(本形態では、4つ)の発電素子部Aが電気的に直列に接続される。ここで、電子伝導性を有する「空気極集電膜70およびインターコネクタ30」が、前記「電気的接続部」に対応する。
なお、インターコネクタ30は、「電気的接続部」における「緻密な材料で構成された第1部分」に対応し、気孔率は10%以下である。空気極集電膜70は、「電気的接続部」における「多孔質の材料で構成された第2部分」に対応し、気孔率は20〜60%である。
以上、説明した「横縞型」のセルに対して、図3に示すように、支持基板10の燃料ガス流路11内に燃料ガス(水素ガス等)を流すとともに、支持基板10の上下面(特に、各空気極集電膜70)を「酸素を含むガス」(空気等)に曝す(あるいは、支持基板10の上下面に沿って酸素を含むガスを流す)ことにより、固体電解質膜40の両側面間に生じる酸素分圧差によって起電力が発生する。更に、この構造体を外部の負荷に接続すると、下記(1)、(2)式に示す化学反応が起こり、電流が流れる(発電状態)。
(1/2)・O+2e→O2−(於:空気極60) …(1)
+O2−→HO+2e(於:燃料極20) …(2)
発電状態においては、図2(a)に示すように、隣り合う発電素子部A,Aについて、電流が、矢印で示すように流れる。この結果、セル全体から(具体的には、図3において最も手前側の発電素子部Aのインターコネクタ30と最も奥側の発電素子部Aの空気極60とを介して)電力が取り出される。
そして、本形態では、図2(a)に示すように、一方の発電素子部Aの固体電解質膜40のインターコネクタ30側における端面および端部表面が被覆シール層71で被覆され、該被覆シール層71がインターコネクタ30の表面に接合している。
すなわち、固体電解質膜40が、一方および他方の発電素子部Aの両側から延設されてインターコネクタ30の両端部に積層され、空気極集電部70が、他方の発電素子部Aの空気極60表面から一方の発電素子部A側に延設されてインターコネクタ30表面に積層されており、インターコネクタ30表面には、一方の発電素子部Aから延設された固体電解質膜40の端部が積層され、このインターコネクタ30表面の固体電解質膜40の端部表面および端面が被覆シール層71で被覆されている。
また、反応防止膜50のインターコネクタ30側の端部表面および端面についても被覆シール層71で被覆されている。
これにより、固体電解質膜40とインターコネクタ30との間の界面、および固体電解質膜40の端部表面からのガスの漏出を抑制し、ガス遮断性能を向上できる。
すなわち、従来、支持基板10の第1凹部12には燃料極集電部21が埋設され、燃料極集電部21の第2凹部21aには燃料極活性部22が埋設され、燃料極集電部21の第3凹部21bにはインターコネクタ30が埋設され、この状態で焼成されて固体酸化物形
燃料電池セルが作製されていたため、凹部12、21a、21bを構成する支持基板材料と、凹部12、21a、21b内に埋設される燃料極集電部21、燃料極活性部22、インターコネクタ30を構成する材料との焼成収縮挙動、熱膨張係数等の相違により、凹部12、21a、21bを構成する壁面と、凹部12、21a、21b内に埋設される材料との間に隙間が生じ、これに起因して、固体電解質膜40にクラックが生じ、または固体電解質膜40とインターコネクタ30とが剥離し、支持基板10内を流れる燃料ガスが支持基板10外に漏出し、燃料極20に供給される燃料ガスと、空気極60に供給される空気とのガス遮断性能が低下するおそれがあった。
これに対して、この形態では、一方の発電素子部Aの固体電解質膜40のインターコネクタ30側における端面および端部表面が被覆シール層71で被覆され、該被覆シール層71がインターコネクタ30の表面に接合しているため、固体電解質膜40とインターコネクタ30との剥離を抑制でき、これらの間の界面からの燃料ガスの漏出を抑制できるとともに、凹部12、21a、21bを構成する壁面と、凹部12、21a、21b内に埋設される材料との間において、焼成収縮挙動、熱膨張係数等の相違により、これらの間に隙間が形成し、固体電解質膜40の端部表面にクラックが発生したとしても被覆シール層71で被覆されているため、固体電解質膜40の端部表面からの燃料ガスの漏出を抑制でき、ガス遮断性能を向上できる。
また、反応防止膜50のインターコネクタ30側の端部表面および端面についても被覆シール層71で被覆されているため、反応防止膜50の固体電解質膜40からの剥離をも防止できる。
被覆シール層71は、例えば、フォルステライト、ガラス等からなるものである。
図4は、インターコネクタ30の周囲に緻密質な絶縁性シール部78が配置されており、この絶縁性シール部78の外側面の周縁部の全周が固体電解質膜40で覆われている形態を示すもので、この形態では、固体電解質膜40の端部が絶縁性シール部78の上面に配置され、一方の発電素子部Aの固体電解質膜40のインターコネクタ30側における端面および端部表面が被覆シール層71で被覆され、該被覆シール層71が絶縁性シール部78の表面に接合している。
すなわち、図4に示すように、第3凹部21bの側壁とインターコネクタ30との間には、インターコネクタ30、固体電解質膜40とは異なる材料からなる絶縁性シール部78が形成されている。固体電解質膜40は、絶縁性シール部78に積層されており、インターコネクタ30には積層されていない。図2(a)と異なる点は、絶縁性シール部78が、インターコネクタ30の周囲を取り囲んでいる点である。
絶縁性シール部78は、電気絶縁性を有する緻密な材料からなる焼成体である。絶縁性シール部78は、例えば、金属酸化物を含有し、好ましくは金属酸化物を主成分とする。具体的には、上記金属酸化物として、(AE)ZrO、MgO、MgAl、及び
CeLn1−xからなる群より選択される少なくとも1種類の酸化物を含有してもよい。ここで、AEは、アルカリ土類金属であり、Lnは、Y及びランタノイドからなる群より選択される少なくとも1種類の元素であり、xは0<x≦0.3を満たす。AEに該当する元素としては、Mg、Ca、Sr、及びBaが挙げられる。また、微量成分として、遷移金属酸化物(例えば、NiO、Mn、Fe、Cr、CoO)
が含まれても良い。
これらの成分は、酸化物として存在していても良いし、上記「(AE)ZrO、Mg
O、MgAl、及びCeLn1−xからなる群より選択される少なくとも1
種類の酸化物」に固溶する形で存在していても良い。金属酸化物の平均粒径は0.1〜5.0μmが好ましく、さらに好ましくは0.3〜4.0μmである。絶縁性シール部78の厚さは、10〜100μmである。
一般に、インターコネクタ(特に、ランタンクロマイトで構成されるインターコネクタ)は、上述した還元処理の際に膨張する性質を有する(還元膨張)。この還元膨張に起因して、インターコネクタの外側面の周縁部と固体電解質膜の内側面との界面において剥離が発生し、「ガスシール機能」の低下が発生し易いという問題があった。これに対し、上記実施形態では、上述のように、インターコネクタ30の外側面上には緻密膜(固体電解質膜40)が設けられていない。従って、上述したインターコネクタの還元膨張による剥離に起因する「ガスシール機能」の低下が発生しない。即ち、「ガスシール機能」の低下を抑制し得る。
図5は、図2に示す形態において、被覆シール層71の表面に、空気極集電部70の一方の発電素子部A側が積層している形態を示す。
この形態では、固体電解質膜40の内側に燃料極集電部21、外側に空気極集電部70が存在していても、固体電解質膜40と空気極集電膜70との間には絶縁性でイオン非伝導性の被覆シール層71が介在しており、固体電解質膜40の表面には空気極集電膜70が積層されていないため、正常な発電素子部Aにおける電流の流れ(図2)とは逆に電流が流れる電池が構成されることがなく、発電性能を向上できる。
(製造方法)
次に、図1に示した「横縞型」のセルの製造方法の一例について図6〜図7を参照しながら簡単に説明する。図6〜図7において、各部材の符号の末尾の「g」は、その部材が「焼成前」であることを表す。
先ず、図6に示す形状を有する支持基板の成形体10gを製する。この支持基板の成形体10gは、例えば、支持基板10の材料(例えば、NiO+MgO)の粉末にバインダー等が添加されて得られるスラリーを用いて、押し出し成形、切削等の手法を利用して作製する。
次に、図7(b)に示すように、支持基板の成形体10gの上下面に形成された各第1凹部内に、燃料極集電部の成形体21gをそれぞれ埋設・形成する。次いで、各燃料極集電部の成形体21gの外側面に形成された各第2凹部に、燃料極活性部の成形体22gをそれぞれ埋設・形成する。また、各燃料極集電部の成形体21g、および各燃料極活性部22gは、例えば、燃料極20の材料(例えば、NiとYSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成する。
続いて、各燃料極集電部の成形体21gの外側面における「燃料極活性部の成形体22gが埋設された部分を除いた部分」に形成された各第3凹部に、インターコネクタの成形体30gをそれぞれ埋設・形成する。各インターコネクタの成形体30gは、例えば、インターコネクタ30の材料(例えば、LaCrO)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成する。
次に、複数の燃料極の成形体(21g+22g)および複数のインターコネクタの成形体30gがそれぞれ埋設・形成された状態の支持基板の成形体10gにおける長手方向に延びる外周面において複数のインターコネクタの成形体30gが形成されたそれぞれの部分の長手方向中央部を除いた全面に、固体電解質膜の成形膜を形成する。固体電解質膜の成形膜は、例えば、固体電解質膜40の材料(例えば、YSZ)の粉末にバインダー等が
添加されて得られるスラリーを用いて、印刷法、ディッピング法等を利用して形成する。
次に、固体電解質膜の成形体における各燃料極の成形体と接している箇所の外側面に、反応防止膜の成形膜を形成する。各反応防止膜の成形膜は、例えば、反応防止膜50の材料(例えば、GDC)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成する。
そして、このように種々の成形膜が形成された状態の支持基板の成形体10gを、例えば、空気中にて1500℃で3時間焼成する。これにより、図1、2に示したセルにおいて空気極60および空気極集電部70が形成されていない状態の構造体を得る。
この後、インターコネクタ30表面の固体電解質膜40の端部表面および端面に、例えば、フォルステライト、ガラス等のスラリーを塗布し、熱処理し、被覆シール層71を形成する。また、反応防止膜50の端部表面および端面に上記スラリーを塗布し、被覆シール層71を形成する。
次に、各反応防止膜50の外側面に、空気極の成形膜を形成する。各空気極の成形膜は、例えば、空気極60の材料(例えば、LSCF)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成する。
次に、各組の隣り合う発電素子部について、他方の発電素子部Aの空気極の成形膜と、一方の発電素子部Aのインターコネクタ30とを跨ぐように、空気極の成形膜、インターコネクタ30の外側面に、空気極集電部の成形膜を形成する。
各空気極集電部の成形膜は、例えば、空気極集電部70の材料(例えば、LSCF)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成する。
そして、このように成形膜が形成された状態の支持基板10を、例えば、空気中にて1050℃で3時間焼成する。これにより、図2に示したセルを得る。
なお、被覆シール層71の焼成温度が空気極60、空気極集電部70の焼成温度よりも低い場合には、空気極60、空気極集電部70を形成した後、被覆シール層71を形成することができる。
(作用・効果)
以上、説明したように、上記本発明の実施形態に係る「横縞型」のセルでは、一方の発電素子部Aの固体電解質膜40のインターコネクタ30側における端面および端部表面が被覆シール層71で被覆され、該被覆シール層71がインターコネクタ30の表面に接合しているため、固体電解質膜40とインターコネクタ30との剥離を抑制でき、これらの間の界面からの燃料ガスの漏出を抑制できるとともに、固体電解質膜40の端部表面にクラックが発生したとしても被覆シール層71で被覆されているため、固体電解質膜40の端部表面からの燃料ガスの漏出を抑制でき、ガス遮断性能を向上できる。
また、支持基板10の上下面に形成されている、燃料極20(集電部21)を埋設するための複数の第1凹部12のそれぞれが、全周に亘って支持基板10の材料からなる周方向に閉じた側壁を有している。換言すれば、支持基板10において各第1凹部12を囲む枠体がそれぞれ形成されている。従って、この構造体は、支持基板10が外力を受けた場合に変形し難い。
また、支持基板10の各第1凹部12内に燃料極20(燃料極集電部21+燃料極活性部22)およびインターコネクタ30等の部材が隙間なく充填・埋設された状態で、支持基板10と前記埋設された部材とが共焼結される。従って、部材間の接合性が高く且つ信頼性の高い焼結体が得られる。
また、インターコネクタ30が、燃料極集電部21の外側面に形成された第3凹部21bに埋設され、この結果、直方体状のインターコネクタ30の幅方向(y軸方向)に沿う2つの側面と底面とが凹部21b内で燃料極集電部21と接触している。従って、燃料極集電部21の外側平面上に直方体状のインターコネクタ30が積層される(接触する)構成が採用される場合に比べて、燃料極20(集電部21)とインターコネクタ30との界面の面積を大きくできる。従って、燃料極20とインターコネクタ30との間における電子伝導性を高めることができ、この結果、燃料電池の発電出力を高めることができる。
また、上記実施形態では、平板状の支持基板10の上下面のそれぞれに、複数の発電素子部Aが設けられている。これにより、支持基板の片側面のみに複数の発電素子部が設けられる場合に比して、構造体中における発電素子部の数を多くでき、燃料電池の発電出力を高めることができる。
また、上記実施形態では、固体電解質膜40が、燃料極20(集電部21+活性部22)の外側面、インターコネクタ30の外側面における長手方向の両側端部、および支持基板10の主面を覆っている。ここで、燃料極20の外側面とインターコネクタ30の外側面と支持基板10の主面との間で段差が形成されていない。従って、固体電解質膜40が平坦化されている。この結果、固体電解質膜40に段差が形成される場合に比して、応力集中に起因する固体電解質膜40でのクラックの発生が抑制され得、固体電解質膜40が有するガスシール機能の低下が抑制され得る。
なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、図6等に示すように、支持基板10に形成された凹部12の平面形状(支持基板10の主面に垂直の方向からみた場合の形状)が、長方形になっているが、例えば、正方形、円形、楕円形、長穴形状等であってもよい。
また、上記実施形態においては、各第3凹部21bにはインターコネクタ30の全体が埋設されているが、インターコネクタ30の一部のみが各第3凹部21bに埋設され、インターコネクタ30の残りの部分が第3凹部21bの外に突出(即ち、支持基板10の主面から突出)していてもよい。
また、上記実施形態においては、平板状の支持基板10の上下面のそれぞれに複数の第1凹部12が形成され且つ複数の発電素子部Aが設けられているが、支持基板10の片側面のみに複数の第1凹部12が形成され且つ複数の発電素子部Aが設けられていてもよい。
また、上記実施形態においては、燃料極20が燃料極集電部21と燃料極活性部22との2層で構成されているが、燃料極20が燃料極活性部22に相当する1層で構成されてもよい。
加えて、上記実施形態においては、図1(b)に示すように、燃料極集電部21の外側面に形成された凹部21bが、燃料極集電部21の材料からなる底壁と、周方向に閉じた側壁(支持基板10の材料からなる長手方向に沿う2つの側壁と、燃料極集電部21の材料からなる幅方向に沿う2つの側壁)と、で画定された直方体状の窪みとなっている。こ
の結果、第3凹部21bに埋設されたインターコネクタ30の幅方向に沿う2つの側面と底面とが凹部21b内で燃料極集電部21と接触している。
これに対し、図8に示すように、燃料極集電部21の外側面に形成された第3凹部21bが、燃料極集電部21の材料からなる底壁と、全周に亘って燃料極集電部21の材料からなる周方向に閉じた側壁(長手方向に沿う2つの側壁と、幅方向に沿う2つの側壁)と、で画定された直方体状の窪みであってもよい。
10・・・支持基板
11・・・燃料ガス流路
12・・・第1凹部
20・・・燃料極
21・・・燃料極集電部
21a・・・第2凹部
21b・・・第3凹部
22・・・燃料極活性部
30・・・インターコネクタ(導電性緻密質体)
60・・・空気極
70・・・空気極集電部
71・・・被覆シール層
78・・・絶縁性シール部
A・・・発電素子

Claims (3)

  1. ガス流路が内部に形成された平板状の多孔質の支持基板と、
    該支持基板の主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質、および空気極が積層されてなる複数の発電素子部と、
    隣り合う前記発電素子部の間にそれぞれ設けられ、一方の前記発電素子部の燃料極と他方の前記発電素子部の空気極とを電気的に接続する電気的接続部とを備えるとともに、
    前記燃料極が、燃料極集電部と、該燃料極集電部よりもイオン伝導性を有する物質の含有割合が多い燃料極活性部とからなり、
    前記支持基板の主面における前記複数の箇所に、底壁と周方向に閉じた側壁とを有する第1凹部がそれぞれ設けられ、該各第1凹部に前記燃料極集電部がそれぞれ埋設され、
    該第1凹部に埋設された燃料極集電部の外側面に形成された第2凹部に前記燃料極活性部が埋設され、
    前記第1凹部に埋設された燃料極集電部の前記第2凹部が形成された位置と異なる位置の外側面に形成された第3凹部に、前記電気的接続部の一部を構成する導電性緻密質体が埋設され、
    前記燃料極活性部に積層された固体電解質が、前記一方および他方の発電素子部の両側から延設されて前記導電性緻密質体の両端部、もしくは前記導電性緻密質体の両端に設けられた絶縁性シール部の両端部に積層され、さらに、前記電気的接続部の一部を構成する空気極集電部が、前記他方の発電素子部の空気極表面から前記一方の発電素子部側に延設されて前記導電性緻密質体表面に積層されており、前記一方の発電素子部の前記固体電解質の前記導電性緻密質体側における端面および端部表面が絶縁性の被覆シール層で被覆され、該被覆シール層が前記導電性緻密質体もしくは前記絶縁性シール部の表面に接合していることを特徴とする固体酸化物形燃料電池セル。
  2. 前記固体電解質と前記空気極集電層との間には反応防止層が介在しており、該反応防止層の前記導電性緻密質体側における端面および端部表面が前記被覆シール層で被覆されていることを特徴とする請求項1に記載の固体酸化物形燃料電池セル。
  3. 前記空気極集電部が、前記導電性緻密質体よりも前記一方の発電素子部側に延設されて前記被覆シール層の表面に積層されていることを特徴とする請求項1または2に記載の固体酸化物形燃料電池セル。
JP2013198496A 2013-09-25 2013-09-25 固体酸化物形燃料電池セル Active JP6169930B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013198496A JP6169930B2 (ja) 2013-09-25 2013-09-25 固体酸化物形燃料電池セル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198496A JP6169930B2 (ja) 2013-09-25 2013-09-25 固体酸化物形燃料電池セル

Publications (2)

Publication Number Publication Date
JP2015065047A JP2015065047A (ja) 2015-04-09
JP6169930B2 true JP6169930B2 (ja) 2017-07-26

Family

ID=52832774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198496A Active JP6169930B2 (ja) 2013-09-25 2013-09-25 固体酸化物形燃料電池セル

Country Status (1)

Country Link
JP (1) JP6169930B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9907664B2 (en) 2001-08-27 2018-03-06 Zimmer, Inc. Methods for augmenting a tibial component of a knee joint prosthesis
US10085841B2 (en) 2001-08-27 2018-10-02 Zimmer, Inc. Femoral implant systems
US10092404B2 (en) 2001-08-27 2018-10-09 Zimmer, Inc. Prosthetic implant support structure
US11141276B2 (en) 2017-01-20 2021-10-12 Biomet Manufacturing, Llc Modular augment component

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10003088B2 (en) 2014-09-30 2018-06-19 Toto Ltd. Solid oxide fuel cell stack
US9755249B2 (en) 2014-09-30 2017-09-05 Toto Ltd. Solid oxide fuel cell stack
JP7051292B2 (ja) * 2016-12-26 2022-04-11 三菱重工業株式会社 燃料電池の製造方法および燃料電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038701A (ja) * 2010-07-15 2012-02-23 Ngk Insulators Ltd 燃料電池の構造体
JP4872027B1 (ja) * 2010-11-01 2012-02-08 日本碍子株式会社 固体酸化物型燃料電池
JP5116184B1 (ja) * 2011-10-25 2013-01-09 日本碍子株式会社 燃料電池の構造体
JP5646779B2 (ja) * 2013-04-19 2014-12-24 日本碍子株式会社 燃料電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9907664B2 (en) 2001-08-27 2018-03-06 Zimmer, Inc. Methods for augmenting a tibial component of a knee joint prosthesis
US10085841B2 (en) 2001-08-27 2018-10-02 Zimmer, Inc. Femoral implant systems
US10092404B2 (en) 2001-08-27 2018-10-09 Zimmer, Inc. Prosthetic implant support structure
US10098743B2 (en) 2001-08-27 2018-10-16 Zimmer, Inc. Prosthetic implant support structure
US10646346B2 (en) 2001-08-27 2020-05-12 Zimmer, Inc. Prosthetic implant support structure
US10653526B2 (en) 2001-08-27 2020-05-19 Zimmer, Inc. Prosthetic implant support structure
US10806587B2 (en) 2001-08-27 2020-10-20 Zimmer, Inc. Prosthetic implant support structure
US10893947B2 (en) 2001-08-27 2021-01-19 Zimmer, Inc. Femoral augments for use with knee joint prosthesis
US11141276B2 (en) 2017-01-20 2021-10-12 Biomet Manufacturing, Llc Modular augment component
US11559403B2 (en) 2017-01-20 2023-01-24 Biomet Manufacturing, Llc Modular augment component

Also Published As

Publication number Publication date
JP2015065047A (ja) 2015-04-09

Similar Documents

Publication Publication Date Title
JP4850980B1 (ja) 燃料電池の構造体
JP6169930B2 (ja) 固体酸化物形燃料電池セル
JP5116184B1 (ja) 燃料電池の構造体
JP5646779B2 (ja) 燃料電池
JP6158659B2 (ja) 固体酸化物形燃料電池セル
JP6039459B2 (ja) 固体酸化物形燃料電池セル
JP5443648B1 (ja) 燃料電池の構造体
JP5116182B1 (ja) 燃料電池の構造体
JP2012226828A (ja) 燃料電池の構造体
JP4846061B1 (ja) 燃料電池の構造体
JP5601673B1 (ja) 燃料電池
JP6169932B2 (ja) 固体酸化物形燃料電池セル
JP2014165000A (ja) 固体酸化物形燃料電池セル
JP5417548B2 (ja) 燃料電池の構造体
JP2015064931A (ja) 燃料電池
JP7270703B2 (ja) セル
JP5062786B1 (ja) 燃料電池の構造体
JP2013093177A (ja) 燃料電池の構造体
JP6039461B2 (ja) 固体酸化物形燃料電池セル
JP6039463B2 (ja) 固体酸化物形燃料電池セル
JP5621029B1 (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170629

R150 Certificate of patent or registration of utility model

Ref document number: 6169930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150