JP6169913B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP6169913B2
JP6169913B2 JP2013155740A JP2013155740A JP6169913B2 JP 6169913 B2 JP6169913 B2 JP 6169913B2 JP 2013155740 A JP2013155740 A JP 2013155740A JP 2013155740 A JP2013155740 A JP 2013155740A JP 6169913 B2 JP6169913 B2 JP 6169913B2
Authority
JP
Japan
Prior art keywords
layer
substrate
cutting tool
particles
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013155740A
Other languages
Japanese (ja)
Other versions
JP2015024468A (en
Inventor
晃 李
晃 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013155740A priority Critical patent/JP6169913B2/en
Publication of JP2015024468A publication Critical patent/JP2015024468A/en
Application granted granted Critical
Publication of JP6169913B2 publication Critical patent/JP6169913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は超硬合金からなる基体の表面が被覆層で被覆された切削工具に関する。   The present invention relates to a cutting tool in which the surface of a substrate made of a cemented carbide is coated with a coating layer.

従来から金属等の切削加工に広く用いられている切削工具は、超硬合金に被覆層が被覆されたものが好適に利用されている。例えば、特許文献1には、プラズマCVD法を用いて、成膜する際の基体を載置する位置を適正化し、切刃に被覆される被覆層とすくい面および逃げ面に被覆される被覆層との膜質を異ならせた構成が開示されている。また、特許文献2では、被覆層を成膜した後に被覆層の表面を研摩処理して、すくい面側に被覆される被覆層と逃げ面側に被覆される被覆層との表面状態を異ならせた構成が開示されている。いずれも、各部位に求められる切削性能を最適化させ、長く使用できる切削工具とすることが記載されている。   2. Description of the Related Art Conventionally, as a cutting tool that has been widely used for cutting metal or the like, a cemented carbide coated with a coating layer is preferably used. For example, Patent Document 1 discloses that a plasma CVD method is used to optimize the position on which a substrate is placed when forming a film, and a coating layer that covers the cutting blade and a coating layer that covers the rake and flank surfaces. The structure which varied the film quality is disclosed. Further, in Patent Document 2, after the coating layer is formed, the surface of the coating layer is polished so that the surface state of the coating layer coated on the rake face side and the coating layer coated on the flank face side are different. The configuration is disclosed. In either case, it is described that the cutting performance required for each part is optimized to provide a cutting tool that can be used for a long time.

特開平7−80703号公報Japanese Patent Laid-Open No. 7-80703 特開2011−230286号公報JP 2011-230286 A

しかしながら、特許文献1、2に記載された被覆層の膜質または表面状態を各部位に応じて異ならせた切削工具では、基体と被覆層との間の密着性を改善するものではなく、被覆層が剥離したり、チッピングしたりする場合があった。   However, in the cutting tool described in Patent Documents 1 and 2, the film quality or surface state of the coating layer is different depending on each part, the adhesion between the substrate and the coating layer is not improved. Sometimes peeled off or chipped.

本発明の目的は、基体と被覆層との密着性を改善して、すくい面および逃げ面に求められる切削性能を最適化して、長く使用できる切削工具を提供することにある。   An object of the present invention is to provide a cutting tool that can be used for a long time by improving the adhesion between the substrate and the coating layer, optimizing the cutting performance required for the rake face and the flank face.

本発明の切削工具は、すくい面と逃げ面との交差稜線を切刃とし、WC粒子を含有する超硬合金からなる基体の表面が被覆層で被覆されたものであって、前記すくい面側の前記基体の表面における前記切刃から300μm以上離れた領域での前記WC粒子の平均粒径drが0.5〜2.5μmであり、前記逃げ面側の前記基体の表面における前記WC粒子の平均粒径dfが0.6〜3.5μmであるとともに、前記dfが前記drよりも大きいものである。 The cutting tool of the present invention is such that the surface of the substrate made of a cemented carbide containing WC particles is coated with a coating layer, with the intersection ridge line between the rake face and the flank face as the cutting edge, and the rake face side The average particle diameter dr of the WC particles in a region 300 μm or more away from the cutting edge on the surface of the substrate is 0.5 to 2.5 μm, and the WC particles on the surface of the substrate on the flank side The average particle diameter df is 0.6 to 3.5 μm, and the df is larger than the dr.

本発明の切削工具によれば、すくい面側における基体表面のWC粒子の平均粒径drが所定の範囲内にあるとともに、drが逃げ面側における基体表面のWC粒子の平均粒径dfよりも小さいことによって、すくい面側の基体表面の硬度が高くて変形しにくい。これによって、耐摩耗性が要求されるすくい面において、基体と被覆層との硬度差を小さくして、基体が変形する際に被覆層がその変形に追従できずに、被覆層が剥離することを抑制する。その結果、すくい面に求められる被覆層の摩耗の進行を抑制できる。また、dfは所定の範囲内であるとともにdrよりも大きいので、逃げ面側の基体の靭性が高く、すくい面よりも断続切削にて衝撃がかかる逃げ面の被覆層において、被覆層の表面から衝撃がかかった場合であっても、逃げ面の基体が衝撃を吸収して、欠損およびチッピングが抑制される。   According to the cutting tool of the present invention, the average particle diameter dr of the WC particles on the base surface on the rake face side is within a predetermined range, and dr is larger than the average particle diameter df of the WC particles on the base surface on the flank face side. By being small, the hardness of the substrate surface on the rake face side is high and hardly deforms. This reduces the hardness difference between the substrate and the coating layer on the rake face where wear resistance is required, and the coating layer cannot follow the deformation when the substrate deforms, and the coating layer peels off. Suppress. As a result, the progress of wear of the coating layer required for the rake face can be suppressed. In addition, since df is within a predetermined range and larger than dr, the toughness of the base on the flank side is high, and in the flank coating layer on which impact is applied by intermittent cutting rather than the rake face, Even when an impact is applied, the base of the flank surface absorbs the impact and suppresses chipping and chipping.

本発明の好適例について、(a)概略斜視図であり、(b)X−X断面図である。About the suitable example of this invention, (a) It is a schematic perspective view, (b) It is XX sectional drawing.

本実施態様の切削工具1は、図1(a)(b)に示すように、すくい面2と逃げ面3との交差稜線を切刃4とし、基体5の表面が被覆層6で被覆されている。基体5は、WC粒子を含有する硬質相と、硬質相を結合する結合相を有する超硬合金からなる。なお、本実施態様の超硬合金中の硬質相が、WC粒子からなるか、またはWC粒子を主体として、それ以外の周期表4、5、6族金属のいずれか1種以上の金属元素を含有する炭化物、窒化物および炭窒化物のいずれか1種以上のB1型固溶体相を含有する。また、本実施態様の超硬合金中の結合相は、Coを主成分として、硬質相中の金属元素が固溶したものからなる。   In the cutting tool 1 of this embodiment, as shown in FIGS. 1A and 1B, the intersecting ridge line between the rake face 2 and the flank face 3 is a cutting edge 4, and the surface of the base 5 is covered with a coating layer 6. ing. The substrate 5 is made of a cemented carbide having a hard phase containing WC particles and a binder phase that binds the hard phase. In addition, the hard phase in the cemented carbide of the present embodiment is composed of WC particles, or mainly composed of WC particles, and any one or more metal elements of the other periodic tables 4, 5, and 6 metals. It contains at least one B1 type solid solution phase of carbide, nitride and carbonitride. In addition, the binder phase in the cemented carbide according to the present embodiment is composed of Co as a main component and a metal element in the hard phase in solid solution.

そして、本実施態様によれば、すくい面2側の基体5の表面におけるWC粒子の平均粒径drが0.5〜2.5μmであり、逃げ面3側の基体5の表面におけるWC粒子の平均粒径dfが0.6〜3.5μmである。また、dfがdrよりも大きいものである。なお、本発明における前記基体の表面におけるWC粒子の平均粒径は、切削工具1の断面写真において、基体5の表面から10μm以内の領域に存在するWC粒子の平均粒径を測定することによって算出される。   According to this embodiment, the average particle diameter dr of the WC particles on the surface of the substrate 5 on the rake face 2 side is 0.5 to 2.5 μm, and the WC particles on the surface of the substrate 5 on the flank 3 side are The average particle size df is 0.6 to 3.5 μm. Also, df is larger than dr. In the present invention, the average particle diameter of the WC particles on the surface of the substrate is calculated by measuring the average particle size of the WC particles existing in a region within 10 μm from the surface of the substrate 5 in the cross-sectional photograph of the cutting tool 1. Is done.

この範囲からなる本実施態様の切削工具1は、基体5の硬度が高くて変形しにくい。また、drがdfよりも小さいので、耐摩耗性が要求されるすくい面2において、基体5および被覆層6の硬度差による変形しやすさの差を小さくして、基体5と被覆層6との変形度合の違いによる被覆層6の剥離を抑制する。その結果、すくい面2に求められる被覆層6の摩耗の進行を抑制できる。さらに、dfが大きいので、基体5の逃げ面3における靭性が高い。そのため、すくい面2よりも断続切削にて衝撃がかかる逃げ面3の被覆層6において、被覆層6の表面から衝撃がかかった場合であっても、逃げ面3の基体5が衝撃を吸収できる。その結果、逃げ面3における被覆層6の欠損およびチッピングを抑制できる。   The cutting tool 1 according to this embodiment having this range is hard to be deformed because the base 5 has a high hardness. In addition, since dr is smaller than df, the difference in ease of deformation due to the difference in hardness between the base body 5 and the coating layer 6 is reduced on the rake face 2 where wear resistance is required. The peeling of the coating layer 6 due to the difference in the degree of deformation is suppressed. As a result, the progress of wear of the coating layer 6 required for the rake face 2 can be suppressed. Furthermore, since df is large, the toughness of the flank 3 of the substrate 5 is high. Therefore, in the coating layer 6 of the flank 3 that receives an impact by interrupted cutting rather than the rake face 2, the base 5 of the flank 3 can absorb the impact even when the impact is applied from the surface of the coating layer 6. . As a result, chipping and chipping of the coating layer 6 on the flank 3 can be suppressed.

すなわち、drが0.5μmよりも小さいと、すくい面3側における基体5の表面の靭性が低下し、耐欠損性が低下する。逆に、drが2.5μmよりも大きいと、基体5の硬度が低下して変形しやすく、耐摩耗性が要求されるすくい面2において、基体5および被覆層6の硬度差が大きく、被覆層6が剥離しやすくなる。drの望ましい範囲は、0.7〜2μmである。   That is, when dr is smaller than 0.5 μm, the toughness of the surface of the substrate 5 on the rake face 3 side is lowered, and the fracture resistance is lowered. On the other hand, if dr is larger than 2.5 μm, the hardness of the substrate 5 is lowered and easily deformed, and the rake face 2 requiring wear resistance has a large hardness difference between the substrate 5 and the coating layer 6. The layer 6 is easily peeled off. A desirable range of dr is 0.7-2 μm.

また、dfが0.6μmよりも小さいと、被覆層6の表面から衝撃がかかった場合に、逃げ面3側の基体5の衝撃を吸収する能力が低下して、欠損やチッピングが発生しやすくなる。さらに、dfが3.5μmより大きいと、基体5の硬度が低下して変形しやすく、被覆層6が剥離しやすくなる。dfの望ましい範囲は、0.8〜2.5μmである。   If df is smaller than 0.6 μm, when an impact is applied from the surface of the coating layer 6, the ability to absorb the impact of the substrate 5 on the flank 3 side is reduced, and defects and chipping are likely to occur. Become. Further, if df is larger than 3.5 μm, the hardness of the substrate 5 is lowered and easily deformed, and the coating layer 6 is easily peeled off. A desirable range of df is 0.8 to 2.5 μm.

さらに、drがdf以上であると、すくい面2に求められる被覆層6の摩耗の進行を抑制する効果と、逃げ面3における被覆層6の衝撃吸収能力を両立させることができず、すくい面2側の被覆層6が剥離するか、または、逃げ面3において被覆層6の欠損やチッピングが発生しやすくなる。   Furthermore, if dr is not less than df, the effect of suppressing the progress of wear of the coating layer 6 required for the rake face 2 and the impact absorbing ability of the coating layer 6 on the flank face 3 cannot be made compatible. The coating layer 6 on the second side peels off, or the coating layer 6 is easily damaged or chipped on the flank 3.

ここで、本実施態様では、df/dr(すくい面2側の基体5の表面におけるWC粒子の平均粒径drに対する、逃げ面3側の基体5の表面におけるWC粒子の平均粒径dfの比)が1.05〜1.2である。この範囲であれば、すくい面2における耐摩耗性および逃げ面3における耐欠損性を最適化できる。df/drの望ましい範囲は1.1〜1.1
5である。
Here, in the present embodiment, df / dr (ratio of the average particle diameter df of the WC particles on the surface of the substrate 5 on the flank 3 side to the average particle diameter dr of the WC particles on the surface of the substrate 5 on the rake face 2 side). ) Is 1.05 to 1.2. Within this range, the wear resistance on the rake face 2 and the fracture resistance on the flank face 3 can be optimized. A desirable range of df / dr is 1.1 to 1.1.
5.

さらに、本実施態様では、dfが、基体5の内部のWC粒子の平均粒径に対して、WC粒子の平均粒径が大きい領域が、基体5の表面から100〜300μmの厚みで存在している。これによって、基体5の衝撃吸収能力がより高くなる。なお、本発明における基体5の内部とは、基体5の表面からの深さが500μm以上の領域を指す。   Furthermore, in this embodiment, a region where the average particle diameter of the WC particles is larger than the average particle diameter of the WC particles inside the substrate 5 is present at a thickness of 100 to 300 μm from the surface of the substrate 5. Yes. As a result, the shock absorbing capacity of the substrate 5 is further increased. In the present invention, the inside of the substrate 5 refers to a region having a depth of 500 μm or more from the surface of the substrate 5.

また、本実施態様では、逃げ面3側の基体5の表面における結合相の含有割合が、すくい面2側の基体5の表面における結合相の含有割合よりも多い。これによって、すくい面2側における基体5の変形を抑制して、被覆層6の耐剥離性を高めることができる。また、逃げ面3側における基体5の衝撃吸収力を高めて、逃げ面3側における耐欠損性を高めることができる。   Moreover, in this embodiment, the content rate of the binder phase in the surface of the base | substrate 5 by the side of the flank 3 is larger than the content rate of the binder phase in the surface of the base | substrate 5 by the side of the rake face 2. FIG. Thereby, the deformation of the substrate 5 on the rake face 2 side can be suppressed, and the peel resistance of the coating layer 6 can be improved. Further, it is possible to increase the impact absorbing ability of the base body 5 on the flank 3 side and to improve the fracture resistance on the flank 3 side.

さらに、本実施態様によれば、結合相中にはタングステン(W)が固溶し、逃げ面3側の基体5の表面近傍において、前記結合相中のタングステンの固溶比率が表面から内部に向かって一旦増加し、最大値を取った後、基体5の内部に向かって減少する濃度分布からなる。これによって、切削時に発生する熱が効率よく伝播するという効果がある。なお、本実施態様では、結合相中のタングステンの固溶比率が最大値を取る位置が、基体の表面からの深さが50〜200μmである。   Furthermore, according to this embodiment, tungsten (W) is dissolved in the binder phase, and the solid solution ratio of tungsten in the binder phase is increased from the surface to the inside in the vicinity of the surface of the base 5 on the flank 3 side. It consists of a concentration distribution that increases once, takes a maximum value, and decreases toward the inside of the substrate 5. As a result, there is an effect that heat generated during cutting is efficiently propagated. In this embodiment, the position where the solid solution ratio of tungsten in the binder phase takes the maximum value is 50 to 200 μm in depth from the surface of the substrate.

また、本実施態様では、被覆層6が、基体5の表面に対して垂直な方向に延びた柱状のTiCN結晶からなるTiCN層を含有している。本実施態様においては、この被覆層6はCVD法によって成膜されたものからなる。これによって、基体5と被覆層6との密着力が高く、かつ、被覆層6の耐摩耗性および耐欠損性も高いものである。さらに、被覆層6は、平均厚みが0〜0.7μmのTiN層と、平均厚みが3〜15μmの前記TiCN層と、平均厚みが0〜0.1μmのTiCO、TiNOおよびTiCNOのうちのいずれかからなる中間層と、平均厚みが2〜8μmのAl層と、平均厚みが0〜0.7μmのTiC層(0≦x、0.5≦y、x+y=1)からなる最表層とが、基体の表面に順に積層された構成からなる。この構成であれば、被覆層6の耐摩耗性および耐欠損性が高い。 In the present embodiment, the coating layer 6 contains a TiCN layer made of columnar TiCN crystals extending in a direction perpendicular to the surface of the substrate 5. In this embodiment, the coating layer 6 is formed by a CVD method. As a result, the adhesion between the substrate 5 and the coating layer 6 is high, and the coating layer 6 has high wear resistance and chipping resistance. Furthermore, the covering layer 6 is any one of TiN layers having an average thickness of 0 to 0.7 μm, the TiCN layer having an average thickness of 3 to 15 μm, and TiCO, TiNO, and TiCNO having an average thickness of 0 to 0.1 μm. An intermediate layer composed of the above, an Al 2 O 3 layer having an average thickness of 2 to 8 μm, and a TiC x N y layer having an average thickness of 0 to 0.7 μm (0 ≦ x, 0.5 ≦ y, x + y = 1) The outermost layer is made of a structure in which the surface layer is sequentially laminated on the surface of the substrate. With this configuration, the wear resistance and fracture resistance of the coating layer 6 are high.

上記実施態様の被覆層のより好適な構成を具体的に説明すると、上記超硬合金からなる基体の表面に被覆されて、基体側から、TiN層と、TiCN層と、中間層と、Al層と、最表層の順に設けられている。中間層は、TiCO、TiNOおよびTiCNOのうちのいずれかからなる。最表層は、TiC層(0≦x、0.5≦y、x+y=1)からなる。被覆層6の各層のより好適な平均厚みは、TiN層が0.1〜0.7μm、TiCN層が4〜13μm、中間層が0.01〜0.1μm、Al層が3〜6μm、最表層が0.3〜0.7μmである。なお、各層の平均厚みは、各層の任意の位置において10μm以上の幅に亘って1μm間隔で10箇所以上の測定点において厚みを測定し、その平均値を取って算出する。 A more preferable configuration of the coating layer of the above embodiment will be described in detail. The surface of the substrate made of the cemented carbide is coated, and from the substrate side, the TiN layer, the TiCN layer, the intermediate layer, and Al 2 The O 3 layer and the outermost layer are provided in this order. The intermediate layer is made of any one of TiCO, TiNO, and TiCNO. The outermost layer is composed of a TiC x N y layer (0 ≦ x, 0.5 ≦ y, x + y = 1). More preferable average thickness of each layer of the covering layer 6 is 0.1 to 0.7 μm for the TiN layer, 4 to 13 μm for the TiCN layer, 0.01 to 0.1 μm for the intermediate layer, 3 to 3 for the Al 2 O 3 layer. 6 μm and the outermost layer is 0.3 to 0.7 μm. The average thickness of each layer is calculated by measuring the thickness at 10 or more measurement points at 1 μm intervals over a width of 10 μm or more at an arbitrary position of each layer, and taking the average value.

ここで、TiCN層が上記範囲であれば、十分な耐摩耗性を維持できるとともに耐欠損性も高い。TiCN層のより好適な範囲は、5〜10μmである。Al層が上記範囲であれば、十分な耐酸化性を維持して、耐摩耗性が高いとともに、耐チッピング性も高い。Al層のさらに好適な範囲は、4〜5μmである。なお、TiN層、中間層および最表層は省略することもできる。 Here, if the TiCN layer is in the above range, sufficient wear resistance can be maintained and the fracture resistance is high. A more preferable range of the TiCN layer is 5 to 10 μm. When the Al 2 O 3 layer is in the above range, sufficient oxidation resistance is maintained, wear resistance is high, and chipping resistance is also high. A more preferable range of the Al 2 O 3 layer is 4 to 5 μm. The TiN layer, the intermediate layer, and the outermost layer can be omitted.

TiN層は基体5と被覆層6との密着性を高めるものであり、TiN層の平均厚みが0.1〜0.7μmであると、被覆層6は基体5との密着性が良く、かつ、被覆層6はチッピングしにくい。TiN層のさらに好適な範囲は、0.4〜0.5μmである。さらに、
TiCN層とAl層との間の中間層はTiCN層とAl層との密着性を高める効果がある。中間層の平均厚みが0.01〜0.1μmであると、Al層が剥離しにくく、かつAl層がチッピングしにくい。中間層のさらに好適な範囲は、0.03〜0.08μmである。TiC層(0≦x、0.5≦y、x+y=1)からなる最表層は、切削工具の表面を金色等の鮮やかな色として、切刃の未使用、使用済みの判定を容易にするために設けたものであり、0.3〜0.7μmであれば、目視で識別できる。なお、最表層には、酸素を全量中10質量%以下の割合で含有してもよい。
The TiN layer enhances the adhesion between the substrate 5 and the coating layer 6. When the average thickness of the TiN layer is 0.1 to 0.7 μm, the coating layer 6 has good adhesion with the substrate 5, and The coating layer 6 is difficult to chip. A more preferable range of the TiN layer is 0.4 to 0.5 μm. further,
An intermediate layer between the TiCN layer and the Al 2 O 3 layer has an effect of enhancing the adhesion between the TiCN layer and the Al 2 O 3 layer. When the average thickness of the intermediate layer is 0.01 to 0.1 μm, the Al 2 O 3 layer is difficult to peel and the Al 2 O 3 layer is difficult to chip. A more preferable range of the intermediate layer is 0.03 to 0.08 μm. The outermost layer consisting of TiC x N y layers (0 ≤ x, 0.5 ≤ y, x + y = 1) makes the cutting tool surface bright, such as gold, and determines whether the cutting blade is unused or used. It is provided for the sake of ease. If it is 0.3 to 0.7 μm, it can be visually identified. The outermost layer may contain oxygen at a ratio of 10% by mass or less based on the total amount.

上記基体と被覆層との組み合わせによって、切削時にすくい面に求められる被覆層の密着性および逃げ面に求められる被覆層の耐チッピング性をともに高めることができる。   The combination of the substrate and the coating layer can enhance both the adhesion of the coating layer required for the rake face during cutting and the chipping resistance of the coating layer required for the flank surface.

(製造方法)
本発明の被覆工具を作製する方法について説明する。
(Production method)
A method for producing the coated tool of the present invention will be described.

まず、マイクロトラック法による平均粒径が0.2〜10μmのWC原料粉末およびマイクロトラック法による平均粒径が0.2〜3μmのCr原料粉末を、粉砕混合機に投入し、水または溶剤を添加し、撹拌してスラリーを作製する。ここで、上記平均粒径のWC原料粉末を用いて、スラリーを撹拌しながら、混合粉末のマイクロトラック法による平均粒径が0.2〜3μmになるまで粉砕する。また、Co原料粉末は、WC原料粉末およびCr原料粉末の投入時に添加せず、スラリーを撹拌しながら、混合粉末のマイクロトラック法による平均粒径が0.2〜2.5μmになるまで粉砕した後に、Co原料粉末をスラリーの中に添加する。すなわち、Co原料粉末を初期から投入すると、粉砕時間が終了する頃にはCo原料粉末同士が凝集してしまう。また、所望により、スラリー中には、焼成後の超硬合金の飽和磁化の調整するために、WC原料粉末およびCr原料粉末の投入時に、金属粉末、カーボン粉末を添加する。なお、VC原料粉末やTaC原料粉末を添加する場合には、WC原料粉末およびCr原料粉末の投入時に添加する。また、スラリーには有機バインダ、分散剤等を添加して調整し、スプレードライにて顆粒とする。 First, a WC raw material powder having an average particle size of 0.2 to 10 μm by a microtrack method and a Cr 3 C 2 raw material powder having an average particle size of 0.2 to 3 μm by a microtrack method are charged into a pulverizer and mixed with water. Alternatively, a solvent is added and stirred to prepare a slurry. Here, using the WC raw material powder having the above average particle diameter, the mixed powder is pulverized until the average particle diameter by the microtrack method becomes 0.2 to 3 μm while stirring the slurry. Further, the Co raw material powder is not added when the WC raw material powder and the Cr 3 C 2 raw material powder are added, and the average particle diameter of the mixed powder by the microtrack method becomes 0.2 to 2.5 μm while stirring the slurry. Then, the Co raw material powder is added to the slurry. That is, when the Co raw material powder is introduced from the beginning, the Co raw material powders are aggregated around the end of the pulverization time. If desired, metal powder and carbon powder are added to the slurry at the time of charging the WC raw material powder and Cr 3 C 2 raw material powder in order to adjust the saturation magnetization of the cemented carbide after firing. In the case of addition of VC material powder and TaC raw material powder is added at the time of turn-on of WC raw material powder and Cr 3 C 2 raw powder. Moreover, an organic binder, a dispersing agent, etc. are added and adjusted to a slurry, and it is set as a granule by spray drying.

この顆粒を用いて、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形する。本実施態様では、成形された成形体の逃げ面側の表面に、炭素粉末を含有するペーストを塗布して乾燥させる。その後、真空中または非酸化性雰囲気中にて1350〜1550℃で焼成することによって上述した超硬合金を作製する。このとき、炭素粉末を塗布した部分は、他の部分に比べて焼結が進行するので、逃げ面側の基体表面における超硬合金中のWC粒子の平均粒径を、すくい面2側における基体5の表面の超硬合金中のWC粒子の平均粒径よりも大きくすることができる。また、本発明では、この製造方法に限定されるものではなく、例えば、炭素粉末を含有するペーストを成形体の全面に塗布するか、または別の方法で、基体の表面全体における超硬合金中のWC粒子の平均粒径を、基体の内部における超硬合金中のWC粒子の平均粒径よりも大きい状態とした後、すくい面側のみ、表面のWC粒子の平均粒径が大きい領域を研磨する方法も適用することができる。   Using this granule, it is molded into a predetermined tool shape by a known molding method such as press molding, casting molding, extrusion molding, cold isostatic pressing. In this embodiment, a paste containing carbon powder is applied to the flank side surface of the molded body and dried. Then, the cemented carbide mentioned above is produced by baking at 1350-1550 degreeC in a vacuum or non-oxidizing atmosphere. At this time, since the portion where the carbon powder is applied is sintered more than the other portions, the average particle size of the WC particles in the cemented carbide on the base surface on the flank side is set to the base on the rake face 2 side. 5 can be made larger than the average particle diameter of the WC particles in the cemented carbide on the surface. In the present invention, the present invention is not limited to this production method. For example, a paste containing carbon powder is applied to the entire surface of the molded body, or by another method, in the cemented carbide on the entire surface of the substrate. After making the average particle diameter of the WC particles larger than the average particle diameter of the WC particles in the cemented carbide inside the substrate, the region where the average particle diameter of the surface WC particles is large is polished only on the rake face side. The method of doing can also be applied.

その後、この超硬合金に、所望によって、dr、dfを調整しながら、すくい面、またはすくい面および逃げ面に研磨加工や切刃部のホーニング加工を施す。   Thereafter, the rake face or the rake face and the flank face are subjected to polishing or honing of the cutting edge while adjusting dr and df as desired.

そして、この超硬合金からなる基体の表面に所望により、被覆層を成膜する。
化学気相蒸着(CVD)法によって被覆層を成膜する方法の一例について説明する。
まず、反応ガス組成として四塩化チタン(TiCl)ガスを0.5〜10.0体積%、窒素(N)ガスを10〜60体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜940℃、8〜50kPaの条件で
TiN層を成膜する。
Then, if desired, a coating layer is formed on the surface of the substrate made of the cemented carbide.
An example of a method for forming a coating layer by chemical vapor deposition (CVD) will be described.
First, as a reaction gas composition, titanium tetrachloride (TiCl 4 ) gas is 0.5 to 10.0% by volume, nitrogen (N 2 ) gas is 10 to 60% by volume, and the balance is hydrogen (H 2 ) gas. Are introduced into the reaction chamber, and a TiN layer is formed in the chamber under conditions of 800 to 940 ° C. and 8 to 50 kPa.

次に、反応ガス組成として、体積%で四塩化チタン(TiCl)ガスを0.5〜10.0体積%、窒素(N)ガスを10〜60体積%、アセトニトリル(CHCN)ガスを0.1〜3.0体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を780〜880℃、5〜25kPaにてTiCN層の下側部分を成膜する。ここで、上記成膜条件のうち、反応ガス中のアセトニトリルガスの割合が0.1〜0.4体積%に調整すること、および成膜温度を780℃〜880℃とすることが、断面観察において下側部分が微細な柱状晶(MT−TiCN)からなるTiCN層を形成できるために望ましい。 Next, as a reaction gas composition, titanium tetrachloride (TiCl 4 ) gas is 0.5 to 10.0 vol%, nitrogen (N 2 ) gas is 10 to 60 vol%, and acetonitrile (CH 3 CN) gas is vol%. A mixed gas consisting of 0.1 to 3.0% by volume and the remainder of hydrogen (H 2 ) gas is prepared and introduced into the reaction chamber, and the TiCN layer is formed at a film forming temperature of 780 to 880 ° C. and 5 to 25 kPa. The lower part of the film is formed. Here, of the above film forming conditions, the ratio of acetonitrile gas in the reaction gas is adjusted to 0.1 to 0.4% by volume, and the film forming temperature is set to 780 ° C. to 880 ° C. In this case, the lower portion is desirable because a TiCN layer composed of fine columnar crystals (MT-TiCN) can be formed.

なお、TiCN層の下側部分の成膜条件は単一条件で形成しても良いが、TiCN層の成膜条件を途中で変更して組織状態を変えることもできる。例えば、アセトニトリル(CHCN)ガスの比率を増してTiCN層の上側の結晶を下側の結晶よりも幅の広い柱状結晶とすることができる。または、上記TiCN層の成膜途中から、成膜条件を、四塩化チタン(TiCl)ガスを1.0〜5.0体積%、アセトニトリル(CHCN)ガスを0.5〜5.0体積%、窒素(N)ガスを10.0〜30.0体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、5〜40kPaの条件に変更することによって、TiCN層の上側の結晶を下側の結晶よりも幅の広い柱状結晶とすることができる。この条件において、混合するアセトニトリル(CHCN)ガスの一部をメタン(CH)ガスに変更して混合する条件であっても、所望のTiCN層を形成することが可能である。なお、アセトニトリル(CHCN)ガスの混合比率は、段階的に変えてもよいが、連続的に変えることもできる。 In addition, although the film-forming conditions of the lower part of a TiCN layer may be formed on a single condition, the film-forming conditions of a TiCN layer can be changed on the way and a structure state can also be changed. For example, the ratio of acetonitrile (CH 3 CN) gas can be increased to make the upper crystal of the TiCN layer into a columnar crystal having a width wider than that of the lower crystal. Alternatively, during the film formation of the TiCN layer, the film formation conditions are as follows: titanium tetrachloride (TiCl 4 ) gas is 1.0 to 5.0% by volume, and acetonitrile (CH 3 CN) gas is 0.5 to 5.0. A mixed gas consisting of volume%, nitrogen (N 2 ) gas of 10.0 to 30.0 volume% and the remainder of hydrogen (H 2 ) gas is prepared and introduced into the reaction chamber, and the chamber is 950 to 1100 ° C. By changing the condition to 5 to 40 kPa, the upper crystal of the TiCN layer can be made columnar crystal wider than the lower crystal. Under this condition, a desired TiCN layer can be formed even under a condition in which a part of the mixed acetonitrile (CH 3 CN) gas is changed to methane (CH 4 ) gas and mixed. The mixing ratio of acetonitrile (CH 3 CN) gas may be changed stepwise, but can also be changed continuously.

次に、TiCN層の上側部分を構成するHT−TiCN層を成膜する。HT−TiCN層の具体的な成膜条件は、例えば、四塩化チタン(TiCl)ガスを2.5〜4.0体積%、メタン(CH)ガスを0.1〜10.0体積%、窒素(N)ガスを5.0〜20.0体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を900〜1050℃、5〜40kPaとする。 Next, an HT-TiCN layer constituting the upper part of the TiCN layer is formed. Specific film forming conditions for the HT-TiCN layer include, for example, titanium tetrachloride (TiCl 4 ) gas of 2.5 to 4.0% by volume and methane (CH 4 ) gas of 0.1 to 10.0% by volume. Then, a mixed gas composed of 5.0 to 20.0% by volume of nitrogen (N 2 ) gas and the remaining hydrogen (H 2 ) gas is prepared and introduced into the reaction chamber, and the inside of the chamber is 900 to 1050 ° C., 5 ˜40 kPa.

さらに、中間層を成膜する。具体的な成膜条件は、例えば、四塩化チタン(TiCl)ガスを1.0〜4.0体積%、メタン(CH)ガスを0〜7.0体積%、窒素(N)ガスを0〜20.0体積%、二酸化炭素(CO)ガスを1.0〜5.0体積%、残りが水素(H)ガスからなる混合ガスを調整する。これらの混合ガスを調整して反応チャンバ内に導入し、チャンバ内を900〜1050℃、5〜40kPaとする。 Further, an intermediate layer is formed. Specific film forming conditions include, for example, titanium tetrachloride (TiCl 4 ) gas of 1.0 to 4.0% by volume, methane (CH 4 ) gas of 0 to 7.0% by volume, and nitrogen (N 2 ) gas. 0 to 20.0% by volume, carbon dioxide (CO 2 ) gas 1.0 to 5.0% by volume, and the remainder consisting of hydrogen (H 2 ) gas. These mixed gases are adjusted and introduced into the reaction chamber, and the inside of the chamber is set to 900 to 1050 ° C. and 5 to 40 kPa.

そして、引き続き、Al層を成膜する。Al層の成膜方法としては、三塩化アルミニウム(AlCl)ガスを0.5〜5.0体積%、塩化水素(HCl)ガスを0.5〜3.5体積%、二酸化炭素(CO)ガスを0.5〜5.0体積%、硫化水素(HS)ガスを0.0〜0.5体積%、残りが水素(H)ガスからなる混合ガスを用い、950〜1100℃、5〜10kPaとすることが望ましい。 Subsequently, an Al 2 O 3 layer is formed. As a method for forming the Al 2 O 3 layer, 0.5 to 5.0% by volume of aluminum trichloride (AlCl 3 ) gas, 0.5 to 3.5% by volume of hydrogen chloride (HCl) gas, carbon dioxide Using a mixed gas composed of 0.5 to 5.0% by volume of (CO 2 ) gas, 0.0 to 0.5% by volume of hydrogen sulfide (H 2 S) gas, and the remainder consisting of hydrogen (H 2 ) gas, It is desirable to set it as 950-1100 degreeC and 5-10kPa.

また、所望により、TiC層(0≦x、0.5≦y、x+y=1)からなる最表層を成膜する。具体的な成膜条件は、反応ガス組成として四塩化チタン(TiCl)ガスを0.1〜10.0体積%、窒素(N)ガスを0〜60.0体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を960〜1100℃、10〜85kPaとすればよい。 If desired, an outermost layer composed of a TiC x N y layer (0 ≦ x, 0.5 ≦ y, x + y = 1) is formed. Specific film forming conditions are as follows: titanium tetrachloride (TiCl 4 ) gas is 0.1 to 10.0% by volume, nitrogen (N 2 ) gas is 0 to 60.0% by volume, and the remainder is hydrogen (reaction gas composition). A mixed gas composed of H 2 ) gas is adjusted and introduced into the reaction chamber, and the inside of the chamber may be set to 960 to 1100 ° C. and 10 to 85 kPa.

平均粒径5μmの炭化タングステン(WC)粉末、平均粒径1.2μmの金属コバルト
(Co)粉末、平均粒径2.5μmのCr粉末、平均粒径2.0μmのNbC粉末、平均粒径2.0μmのTaC粉末、平均粒径2.0μmのZrC粉末、平均粒径2.5μmのTiC粉末とを表1の比率で添加、混合して、混合粉末の平均粒径が0.9〜1.1μmの範囲になるまで粉砕を振動ミルにて行った。この時、Coの添加については、粉砕途中の混合粉末の平均粒径が1.0〜2.0μmの範囲になった時点でCo粉末を添加した。
Tungsten carbide (WC) powder with an average particle size of 5 μm, metallic cobalt (Co) powder with an average particle size of 1.2 μm, Cr 3 C 2 powder with an average particle size of 2.5 μm, NbC powder with an average particle size of 2.0 μm, average A TaC powder having a particle diameter of 2.0 μm, a ZrC powder having an average particle diameter of 2.0 μm, and a TiC powder having an average particle diameter of 2.5 μm are added and mixed at a ratio shown in Table 1, and the average particle diameter of the mixed powder is 0.00. Grinding was carried out with a vibration mill until it was in the range of 9 to 1.1 μm. At this time, regarding the addition of Co, the Co powder was added when the average particle diameter of the mixed powder in the middle of pulverization was in the range of 1.0 to 2.0 μm.

その後、スプレードライによって造粒して得られた混合粉末を、プレス成形により切削工具形状に成形した。一方、平均粒径0.05μmの炭素粉末を10質量%含有するペースト(Cペースト)を作製し、作製した成形体の表1に示す部位の表面に、ペーストを5.0μmの平均厚みで塗布し、乾燥させた。なお、表1の側面は逃げ面を指し、主面はすくい面を指す。   Thereafter, the mixed powder obtained by granulation by spray drying was formed into a cutting tool shape by press molding. On the other hand, a paste (C paste) containing 10% by mass of carbon powder having an average particle diameter of 0.05 μm was prepared, and the paste was applied to the surface of the part shown in Table 1 with an average thickness of 5.0 μm. And dried. In addition, the side surface of Table 1 indicates a flank, and the main surface indicates a rake face.

そして、この成形体に脱バインダ処理を施し、0.5〜100Paの真空中、表1に示す温度で1時間焼成した。なお、焼成後の超硬合金中の各金属含有量は原料調合組成と同じであった。さらに、作製した超硬合金に両頭加工にてすくい面側の基体の表面を平滑にした後、切刃部に対してブラスト加工にて刃先処理(Rホーニング)を施した。   Then, the molded body was subjected to binder removal treatment and fired at a temperature shown in Table 1 for 1 hour in a vacuum of 0.5 to 100 Pa. In addition, each metal content in the cemented carbide after baking was the same as a raw material preparation composition. Furthermore, the surface of the base on the rake face side was smoothed by double-head processing on the manufactured cemented carbide, and then the cutting edge portion was subjected to blade edge processing (R honing) by blast processing.

次に、上記超硬合金に対して、CVD法により被覆層を成膜した。成膜条件は、まず、880℃、16kPaの成膜条件で、TiCl:2.0体積%、N:33.0体積%、残りがHの混合ガスを流してTiN層を0.1μmの厚さで成膜した。次に、825℃、9kPaの成膜条件で、TiCl:2.5体積%、N:23.0体積%、CHCN:0.4体積%、残りがHの混合ガスを流して、基体の表面に対して垂直な方向に延びた柱状で平均結晶幅が0.3μmの第1のTiCN層を3.5μmの厚さで成膜した。それから、CHCN:0.8体積%に変更して、基体の表面に対して垂直な方向に延びた柱状で平均結晶幅が0.8μmの第2のTiCN層を2.5μmの厚さで成膜した。その後、950℃、10kPaの成膜条件で、TiClガスを3.0体積%、CHガスを3.0体積%、Nガスを10.0体積%、残りがHガスからなる混合ガスを流して、HT−TiCN層を0.3μm成膜した。そして、1010℃、20kPaの成膜条件で、TiCl:3.5体積%、CH:2.0体積%、N:5.0体積%、CO:2.0体積%、残りがHの混合ガスを流して中間層を0.1μmの厚さで形成した。その後、1005℃、9kPaの成膜条件で、AlCl:1.5体積%、HCl:2.0体積%、CO:4.0体積%、HS:0.3体積%、残りがHの混合ガスを流してαAl層を5μmの厚さで成膜した。最後に、1010℃、30Paの成膜条件で、TiCl:3.0体積%、N:30.0体積%、残りがHの混合ガスを流してTiNからなる最表層を0.5μmの厚さで成膜した。 Next, a coating layer was formed on the cemented carbide by a CVD method. The film forming conditions were as follows. First, TiCl 4 : 2.0% by volume, N 2 : 33.0% by volume, and the remaining H 2 was allowed to flow to a TiN layer of 0.1% at 880 ° C. and 16 kPa. The film was formed with a thickness of 1 μm. Next, under the film forming conditions of 825 ° C. and 9 kPa, a mixed gas of TiCl 4 : 2.5% by volume, N 2 : 23.0% by volume, CH 3 CN: 0.4% by volume, and the remainder is H 2 was flowed. A first TiCN layer having a columnar shape extending in a direction perpendicular to the surface of the substrate and having an average crystal width of 0.3 μm was formed to a thickness of 3.5 μm. Then, CH 3 CN is changed to 0.8% by volume, and a second TiCN layer extending in a direction perpendicular to the surface of the substrate and having an average crystal width of 0.8 μm is formed to a thickness of 2.5 μm. The film was formed. After that, under film formation conditions of 950 ° C. and 10 kPa, mixing is performed with 3.0% by volume of TiCl 4 gas, 3.0% by volume of CH 4 gas, 10.0% by volume of N 2 gas, and the remainder of H 2 gas. Gas was allowed to flow to form a 0.3 μm thick HT-TiCN layer. And, under the film forming conditions of 1010 ° C. and 20 kPa, TiCl 4 : 3.5% by volume, CH 4 : 2.0% by volume, N 2 : 5.0% by volume, CO 2 : 2.0% by volume, and the rest An intermediate layer was formed to a thickness of 0.1 μm by flowing a mixed gas of H 2 . Then, under the film forming conditions of 1005 ° C. and 9 kPa, AlCl 3 : 1.5% by volume, HCl: 2.0% by volume, CO 2 : 4.0% by volume, H 2 S: 0.3% by volume, and the rest An αAl 2 O 3 layer was formed to a thickness of 5 μm by flowing a mixed gas of H 2 . Finally, under the film forming conditions of 1010 ° C. and 30 Pa, the outermost layer made of TiN is 0.5 μm by flowing a mixed gas of TiCl 4 : 3.0% by volume, N 2 : 30.0% by volume, and the remaining H 2. The film was formed with a thickness of.

得られた切削工具について、切断研磨面を走査型電子顕微鏡(SEM)にて観察し、すくい面および逃げ面の基体の表面から10μm厚み領域におけるWC粒子の平均粒径を画像解析ソフトSEMVIEWでそれぞれ測定し、すくい面側および逃げ面側の基体の表面におけ
るWC粒子の平均粒径(dr、df)とした。表2に、dr、dfとして記載した。さらに、drまたはdfが、基体の内部におけるWC粒子の平均粒径よりも大きい場合には、基体の表面近傍について、10μm×10μmの領域におけるWC粒子の平均粒径を測定し、drまたはdfが大きい領域を特定して、基体の表面からの厚みを見積もった。表2に厚みとして記載した。
For the obtained cutting tool, the cut and polished surface was observed with a scanning electron microscope (SEM), and the average particle diameter of WC particles in the 10 μm thickness region from the surface of the rake face and flank face was measured with image analysis software SEMVIEW. The average particle diameter (dr, df) of the WC particles on the surface of the substrate on the rake face side and flank face side was measured. In Table 2, it described as dr and df. Further, when dr or df is larger than the average particle diameter of WC particles inside the substrate, the average particle diameter of WC particles in the region of 10 μm × 10 μm is measured in the vicinity of the surface of the substrate, and dr or df is A large area was identified and the thickness from the surface of the substrate was estimated. The thickness is shown in Table 2.

また、波長分散型X線分析(WDS)にて、すくい面側または逃げ面側の基体の表面付近における結合相の含有量を測定し、表2に記載した。さらに、WDSにて、結合相の組成分析を行い、結合相内のタングステンの固溶量を確認した。そして、基体の表面からの深さが500μm〜600μmの範囲内で各結合相中のタングステンの固溶量を、この範
囲内に点在する結合相のそれぞれの位置について測定し、その平均値を、基体の内部のそれぞれの位置における超硬合金の結合相中のタングステンの固溶量とした。また、基体の表面〜表面からの深さが300μmまでの範囲内で点在する各結合相中のタングステンの固溶量についても測定した。そして、表面〜深さ300μmの範囲でのタングステンの固溶量が、基体の内部(表面から500μm〜600μmの深さの範囲内)でのタングステンの固溶量よりも高くなる領域が存在する場合には、タングステンの固溶量が最大となる深さを確認した。表2に、タングステンの固溶量が最大となる深さをW分布深さとして記載した。なお、内部から表面までタングステン量に変化のない、すなわち表面〜深さ300μmの範囲にタングステンの固溶量よりも高くなる領域が存在しない試料については、表中、一定と記載した。
Further, the content of the binder phase in the vicinity of the surface of the substrate on the rake face side or the flank face side was measured by wavelength dispersion X-ray analysis (WDS) and listed in Table 2. Further, the composition analysis of the binder phase was performed by WDS, and the solid solution amount of tungsten in the binder phase was confirmed. Then, the solid solution amount of tungsten in each binder phase within a range of 500 μm to 600 μm in depth from the surface of the substrate is measured for each position of the binder phase scattered within this range, and the average value is calculated. The solid solution amount of tungsten in the binder phase of the cemented carbide at each position inside the substrate. Further, the solid solution amount of tungsten in each binder phase interspersed within the range from the surface of the substrate to the depth from the surface up to 300 μm was also measured. When there is a region where the solid solution amount of tungsten in the range of the surface to a depth of 300 μm is higher than the solid solution amount of tungsten in the substrate (within a depth of 500 μm to 600 μm from the surface). The depth at which the solid solution amount of tungsten was maximized was confirmed. Table 2 shows the depth at which the solid solution amount of tungsten is maximized as the W distribution depth. In addition, a sample in which the amount of tungsten does not change from the inside to the surface, that is, a region where the region higher than the solid solution amount of tungsten does not exist in the range of the surface to a depth of 300 μm is described as being constant in the table.

そして、この切削工具を用いて下記の条件により、旋削試験を行い、切削性能を評価した。結果は表2に示した。
(切削条件)
被削材 :SCM440 φ200×400cm、4本溝付(耐欠損性評価用)
SCM435 φ200×400cm(摩耗評価用)
工具形状:CNMG120408
切削速度:250m/分
送り速度:0.20mm/rev
切り込み:2.0mm
その他 :水溶性切削液使用
評価項目:耐欠損評価は、各試料6コーナーずつ切削を行い欠損に至るまでの衝撃回数を測定した。また、耐摩耗評価は切削時間15分における逃げ面摩耗量を測定した。
Then, using this cutting tool, a turning test was performed under the following conditions to evaluate the cutting performance. The results are shown in Table 2.
(Cutting conditions)
Work material: SCM440 φ200 × 400cm, with 4 grooves (for fracture resistance evaluation)
SCM435 φ200 × 400cm (for wear evaluation)
Tool shape: CNMG120408
Cutting speed: 250 m / min Feeding speed: 0.20 mm / rev
Cutting depth: 2.0mm
Others: Use of water-soluble cutting fluid Evaluation item: Evaluation of chipping resistance was performed by cutting six corners of each sample and measuring the number of impacts until chipping occurred. In the wear resistance evaluation, the flank wear amount at a cutting time of 15 minutes was measured.

Figure 0006169913
Figure 0006169913

Figure 0006169913
Figure 0006169913

表1、2より、drとdfが同じ試料No.5、およびdrがdfよりも大きい試料No.6では、欠損に至る衝撃回数が短く、摩耗量も大きいものであった。これに対して、本発明の範囲内である試料No.1〜4では、チッピングや欠損が抑制され、かつ摩耗の進行も抑制されていた。   From Tables 1 and 2, sample no. 5 and dr No. df larger than df In No. 6, the number of impacts leading to the chip was short and the amount of wear was large. On the other hand, sample No. which is within the scope of the present invention. In 1-4, chipping and chipping were suppressed, and the progress of wear was also suppressed.

実施例1の原料粉末を用いて表3の組成に調合し、表1と同様に成形した。この成形体に実施例1と同じ炭素粉末を含有するペーストを表3に示す部位の表面に塗布し、乾燥させた。次に、表3の焼成温度で実施例1と同様に焼成し、作製した超硬合金にブラスト加工にてすくい面側について刃先処理(Rホーニング)を施した。なお、焼成後の超硬合金中の各金属含有量は原料調合組成と同じであった。そして、上記超硬合金に対して、実施例1と同じ条件で被覆層を成膜した。   The raw material powder of Example 1 was used to prepare the composition shown in Table 3 and molded in the same manner as in Table 1. A paste containing the same carbon powder as in Example 1 was applied to the surface of the part shown in Table 3 and dried. Next, firing was performed in the same manner as in Example 1 at the firing temperature shown in Table 3, and the prepared cemented carbide was subjected to blade edge processing (R honing) on the rake face side by blasting. In addition, each metal content in the cemented carbide after baking was the same as a raw material preparation composition. Then, a coating layer was formed on the above cemented carbide under the same conditions as in Example 1.

得られた切削工具について、実施例1と同様に評価した。また、この切削工具を用いて下記の条件により、旋削試験を行い、切削性能を評価した。結果は表3に示した。
(切削条件)
被削材 :FCD450 φ125×80×300mm、4ケ穴付(耐欠損性評価用)
工具形状:CNMG120408
切削速度:300m/分
送り速度:0.20mm/刃
切り込み:2.0mm
その他 :水溶性切削液使用
評価項目:切削不能に至る切削時間
The obtained cutting tool was evaluated in the same manner as in Example 1. Further, a turning test was performed using the cutting tool under the following conditions to evaluate the cutting performance. The results are shown in Table 3.
(Cutting conditions)
Work material: FCD450 φ125 × 80 × 300mm, with 4 holes (for fracture resistance evaluation)
Tool shape: CNMG120408
Cutting speed: 300 m / min Feeding speed: 0.20 mm / blade cutting: 2.0 mm
Others: Use of water-soluble cutting fluid Evaluation item: Cutting time until cutting becomes impossible

Figure 0006169913
Figure 0006169913

表3より、drとdfが同じ試料No.8では、欠損に至る衝撃回数が短く、摩耗量も大きいものであった。これに対して、本発明の範囲内である試料No.7では、チッピングや欠損が抑制され、かつ摩耗の進行も抑制されていた。   From Table 3, the sample Nos. With the same dr and df. In No. 8, the number of impacts leading to the breakage was short and the amount of wear was large. On the other hand, sample No. which is within the scope of the present invention. In No. 7, chipping and chipping were suppressed, and progress of wear was also suppressed.

1 切削工具
2 すくい面
3 逃げ面
4 切刃
5 基体
6 被覆層
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 Rake face 3 Relief face 4 Cutting edge 5 Base body 6 Coating layer

Claims (8)

すくい面と逃げ面との交差稜線を切刃とし、WC粒子を含有する超硬合金からなる基体の表面が被覆層で被覆された切削工具であって、前記すくい面側の前記基体の表面における前記切刃から300μm以上離れた領域での前記WC粒子の平均粒径drが0.5〜2.5μmであり、前記逃げ面側の前記基体の表面における前記WC粒子の平均粒径dfが0.6〜3.5μmであるとともに、前記dfが前記drよりも大きい切削工具。 A cutting tool in which the surface of the substrate made of a cemented carbide containing WC particles is coated with a coating layer, with the intersection ridge line between the rake surface and the flank as a cutting edge, and the surface of the substrate on the rake surface side The average particle diameter dr of the WC particles in the region 300 μm or more away from the cutting edge is 0.5 to 2.5 μm, and the average particle diameter df of the WC particles on the surface of the base on the flank side is 0. A cutting tool having a diameter of 6 to 3.5 μm and a larger df than the dr. 前記drに対する前記dfの比(df/dr)が1.05〜1.2である請求項1記載の切削工具。   The cutting tool according to claim 1, wherein a ratio of the df to the dr (df / dr) is 1.05 to 1.2. 前記被覆層が、前記基体の表面に対して垂直な方向に延びた柱状のTiCN結晶からなるTiCN層を含有する請求項1または2記載の切削工具。   The cutting tool according to claim 1 or 2, wherein the coating layer includes a TiCN layer made of columnar TiCN crystals extending in a direction perpendicular to the surface of the substrate. 前記被覆層が、平均厚みが0〜0.7μmのTiN層と、平均厚みが3〜15μmの前記TiCN層と、平均厚みが0〜0.1μmのTiCO、TiNOおよびTiCNOのうちのいずれかからなる中間層と、平均厚みが2〜8μmのAl2O3層と、平均厚みが0〜0.7μmのTiCxNy層(0≦x、0.5≦y、x+y=1)からなる最表層とが順に積層された構成からなる請求項3記載の切削工具。   The coating layer is any one of a TiN layer having an average thickness of 0 to 0.7 μm, a TiCN layer having an average thickness of 3 to 15 μm, and TiCO, TiNO, and TiCNO having an average thickness of 0 to 0.1 μm. An intermediate layer, an Al 2 O 3 layer having an average thickness of 2 to 8 μm, and an outermost layer made of a TiCxNy layer (0 ≦ x, 0.5 ≦ y, x + y = 1) having an average thickness of 0 to 0.7 μm are sequentially stacked. The cutting tool according to claim 3, wherein the cutting tool is configured as described above. 前記逃げ面側の前記基体の表面側における前記WC粒子の平均粒径が、前記基体の内部における前記WC粒子の平均粒径よりも大きい領域が、前記基体の表面から100〜300μmの厚みで存在する請求項1乃至4のいずれか記載の切削工具。   A region where the average particle diameter of the WC particles on the surface side of the base on the flank side is larger than the average particle diameter of the WC particles inside the base is present in a thickness of 100 to 300 μm from the surface of the base. The cutting tool according to any one of claims 1 to 4. 前記逃げ面側の前記基体の表面における結合相の含有割合が、前記すくい面側の前記基体の表面における結合相の含有割合よりも多い請求項1乃至5のいずれか記載の切削工具。   The cutting tool according to any one of claims 1 to 5, wherein a content ratio of the binder phase on the surface of the base on the flank side is larger than a content ratio of the binder phase on the surface of the base on the rake face side. 前記結合相中にはタングステン(W)が固溶し、前記逃げ面側の前記基体の表面側において、前記結合相中のタングステンの固溶比率が、前記基体の表面から内部に向かって一旦増加し、最大値を取った後、前記基体の内部に向かって減少する濃度分布からなる請求項6記載の切削工具。   Tungsten (W) is dissolved in the binder phase, and the solid solution ratio of tungsten in the binder phase once increases from the surface of the substrate toward the inside on the surface side of the substrate on the flank side. The cutting tool according to claim 6, comprising a concentration distribution that decreases toward the inside of the substrate after taking a maximum value. 前記結合相中のタングステンの固溶比率が最大値を取る位置が、前記逃げ面側の前記基体の表面から50〜200μmの深さで存在する請求項7記載の切削工具。   The cutting tool according to claim 7, wherein the position where the solid solution ratio of tungsten in the binder phase takes a maximum value exists at a depth of 50 to 200 μm from the surface of the base on the flank side.
JP2013155740A 2013-07-26 2013-07-26 Cutting tools Active JP6169913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155740A JP6169913B2 (en) 2013-07-26 2013-07-26 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155740A JP6169913B2 (en) 2013-07-26 2013-07-26 Cutting tools

Publications (2)

Publication Number Publication Date
JP2015024468A JP2015024468A (en) 2015-02-05
JP6169913B2 true JP6169913B2 (en) 2017-07-26

Family

ID=52489567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155740A Active JP6169913B2 (en) 2013-07-26 2013-07-26 Cutting tools

Country Status (1)

Country Link
JP (1) JP6169913B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111122A1 (en) * 2018-11-29 2020-06-04 京セラ株式会社 Coated tool and cutting tool comprising same
JP6882416B2 (en) * 2019-10-10 2021-06-02 京セラ株式会社 Cermet and cutting tools
WO2021241021A1 (en) * 2020-05-26 2021-12-02 住友電気工業株式会社 Cutting tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703122B2 (en) * 2004-03-23 2011-06-15 京セラ株式会社 Method for producing TiCN-based cermet
JP4841201B2 (en) * 2005-08-25 2011-12-21 京セラ株式会社 Throwaway tip
JP5038017B2 (en) * 2007-05-16 2012-10-03 住友電気工業株式会社 Coated cutting tool
JP5185032B2 (en) * 2007-09-14 2013-04-17 住友電気工業株式会社 Cutting tools
JP5276392B2 (en) * 2007-09-21 2013-08-28 住友電気工業株式会社 Cutting tool and method of manufacturing cutting tool
EP2725111B1 (en) * 2011-06-27 2019-10-02 Kyocera Corporation Hard alloy and cutting tool

Also Published As

Publication number Publication date
JP2015024468A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
EP3336218B1 (en) Surface coated member
WO2017146200A1 (en) Coated tool
US10174421B2 (en) Coated tool
JP5902865B2 (en) Coated tool
CN109500414B (en) Coated cutting tool
CN108290223A (en) Cutting element
US10370758B2 (en) Coated tool
KR20110100621A (en) Improved coated cutting insert for rough turning
US10744568B2 (en) Coated tool
CN112770858B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP6169913B2 (en) Cutting tools
JPWO2015080149A1 (en) Cutting tools
JP6556246B2 (en) Coated tool
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP5597469B2 (en) Cutting tools
CN112839761B (en) cutting tool
US10369632B2 (en) Coated tool
JP5864826B1 (en) Coated and cutting tools
CN113474111B (en) Surface-coated cutting tool
JP2005034912A (en) Surface coated cemented carbide cutting tool having hard surface coating layer which is excellent in wear resistance and chipping resistance under high-speed and heavy-cutting condition
JP5898051B2 (en) Coated tool
JP6139211B2 (en) Cutting inserts and cutting tools
JP3963136B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2007168029A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2010221334A (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170629

R150 Certificate of patent or registration of utility model

Ref document number: 6169913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150