JP6168378B2 - Wire ring parts - Google Patents

Wire ring parts Download PDF

Info

Publication number
JP6168378B2
JP6168378B2 JP2011104282A JP2011104282A JP6168378B2 JP 6168378 B2 JP6168378 B2 JP 6168378B2 JP 2011104282 A JP2011104282 A JP 2011104282A JP 2011104282 A JP2011104282 A JP 2011104282A JP 6168378 B2 JP6168378 B2 JP 6168378B2
Authority
JP
Japan
Prior art keywords
magnetic body
soft magnetic
heat transfer
winding
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011104282A
Other languages
Japanese (ja)
Other versions
JP2012235051A (en
Inventor
山家 孝志
孝志 山家
佐藤 浩文
浩文 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2011104282A priority Critical patent/JP6168378B2/en
Publication of JP2012235051A publication Critical patent/JP2012235051A/en
Application granted granted Critical
Publication of JP6168378B2 publication Critical patent/JP6168378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、軟磁性体にコイルの少なくとも一部を埋設した線輪部品に関する。   The present invention relates to a wire ring component in which at least a part of a coil is embedded in a soft magnetic material.

絶縁樹脂の中に磁性体の粉末が分散した磁性粉末混合樹脂からなるコアに、通電により磁束が発生するコイルが埋設されているリアクトルが特許文献1に開示されている。   Patent Document 1 discloses a reactor in which a core made of a magnetic powder mixed resin in which magnetic powder is dispersed in an insulating resin is embedded with a coil that generates a magnetic flux when energized.

また、特許文献1には、コアよりも熱伝導率が高い、アルミニウム等の材料からなる板状の放熱フィンを複数個、その主表面がコイルの軸線に平行であり、かつ該軸線を中心とした放射状となるようにコア内に設けることで、コイルから発生した熱を効果的に冷却できるとともに、インダクタンスの低下を防止できるリアクトルの構成が開示されている。   Further, Patent Document 1 discloses a plurality of plate-like heat radiation fins made of a material such as aluminum having a thermal conductivity higher than that of the core, the main surface of which is parallel to the axis of the coil, and the axis is the center. The structure of the reactor which can cool the heat | fever generate | occur | produced from the coil effectively and can prevent the fall of an inductance is provided by providing in a core so that it may become radial shape.

特開2010−182941号公報JP 2010-182941 A

特許文献1に記載があるように、円筒状に巻きまわされたコイルの周囲をコアに埋設しケースに収納する構造のリアクトルにおいて、コイルで発生した熱は、コアを介しケースに達することとなるが、このような熱流路においては熱抵抗の高いコアの部分の影響が大きくなる。   As described in Patent Document 1, in a reactor having a structure in which the periphery of a coil wound in a cylindrical shape is embedded in a core and stored in the case, heat generated in the coil reaches the case through the core. However, in such a heat flow path, the influence of the core portion having a high thermal resistance becomes large.

すなわち、コアの熱伝導率は一般のプラスチック等より高いとはいえ3〜6W/(m・K)程度であるのに対し、コイルは一般に電気抵抗が低い銅などが用いられ、その熱伝導率は400W/(m・K)と高く、ケースも例えば熱伝導率が96W/(m・K)と高いアルミなどが用いられる。従って、相対的に熱抵抗が高いコアが放熱性を阻害してしまう。   That is, the thermal conductivity of the core is about 3 to 6 W / (m · K) although it is higher than that of general plastics, while the coil is generally made of copper having a low electrical resistance, and its thermal conductivity. Is as high as 400 W / (m · K), and the case is made of, for example, aluminum having a high thermal conductivity of 96 W / (m · K). Therefore, a core having a relatively high thermal resistance hinders heat dissipation.

そこで特許文献1に記載があるように、コア内にアルミニウム等の非磁性体よりなる放熱フィンを設ける構成を用いると、コイルからケースへの放熱性を高めることはできるが、コア内部で放熱フィンが占める体積比率が増加するため、軟磁性体の占める体積比率が減少し、インダクタンスや直流重畳特性の低下が起きるという課題がある。   Therefore, as described in Patent Document 1, using a configuration in which a heat radiating fin made of a non-magnetic material such as aluminum is used in the core can improve heat dissipation from the coil to the case. Therefore, the volume ratio occupied by the soft magnetic material decreases, and there is a problem that the inductance and the direct current superimposition characteristics are degraded.

また、コイルで発生した熱が板状の放熱フィンを伝わるうち、放熱フィン表面よりコアへと散逸してしまうことから、ケースへの放熱が充分行なわれ難いという課題もある。   Further, while the heat generated in the coil is transmitted through the plate-like heat radiating fins, the heat is dissipated from the surface of the heat radiating fins to the core, so that there is a problem that it is difficult to sufficiently radiate the heat to the case.

従って本発明の目的は、インダクタンスや直流重畳特性の低下を招くことなく、コイルすなわち巻線からの放熱性を高めることにある。   Accordingly, an object of the present invention is to improve heat dissipation from a coil, that is, a winding without causing a decrease in inductance or DC superimposition characteristics.

軟磁性粉と結合材を主に含有するコンポジット磁性体と、前記コンポジット磁性体に少なくとも一部が埋設された巻線と、前記巻線の内周面全面及び外周面全面のうち少なくとも一方に接して配置する円筒状の伝熱軟磁性体を備え、前記伝熱軟磁性体は前記コンポジット磁性体外部への放熱経路と接続され、前記伝熱軟磁性体は、前記コンポジット磁性体よりも熱伝導率が高い線輪部品により、本発明は上記課題を解決する。 A composite magnetic body mainly containing soft magnetic powder and a binder, a winding embedded in at least a part of the composite magnetic body, and at least one of the entire inner peripheral surface and the entire outer peripheral surface of the winding. a cylindrical heat transfer soft magnetic material be placed in the heat transfer soft magnetic body is connected to the heat radiation path to the composite magnetic body outside, the heat transfer soft magnetic material is heat than the composite magnetic body The present invention solves the above-described problems by a wire ring component having high conductivity.

導体線を巻いた巻線を取り囲むコンポジット磁性体の一部をコンポジット磁性体よりも熱伝導率が高い伝熱軟磁性体に置き換え、高熱伝導率のケース、水冷管などの放熱経路へと伝熱軟磁性体を接続させることで、インダクタンスや直流重畳特性の低下を招くことなく、巻線から放熱経路への熱伝導性を高めることができる。   Replacing a part of the composite magnetic material surrounding the winding wound with the conductor wire with a heat transfer soft magnetic material having higher heat conductivity than the composite magnetic material, heat transfer to the heat dissipation path such as a case with high heat conductivity, water cooling tube, etc. By connecting the soft magnetic material, the thermal conductivity from the winding to the heat dissipation path can be enhanced without causing a decrease in inductance or DC superimposition characteristics.

なお、伝熱軟磁性体として例えば電磁鋼板や圧粉磁芯を用いることもでき、コンポジット磁性体よりも飽和磁化や透磁率の高い軟磁性材料を選択することができるため、インダクタンスや直流重畳特性をより向上させることも可能となる。従って伝熱軟磁性体がコンポジット磁性体に対して占める体積比率を大きく、コンポジット磁性体と接触する面積を小さくすることができるため、巻線表面からの熱が伝熱軟磁性体表面を通じてコンポジット磁性体へ散逸することが少なくなり、伝熱軟磁性体に効率よく伝達させることが可能となる。   For example, an electromagnetic steel plate or a dust core can be used as the heat transfer soft magnetic material, and a soft magnetic material having higher saturation magnetization and permeability than the composite magnetic material can be selected. It is also possible to improve. Therefore, the volume ratio of the heat transfer soft magnetic material to the composite magnetic material is large, and the area in contact with the composite magnetic material can be reduced, so that the heat from the winding surface passes through the surface of the heat transfer soft magnetic material. It is less likely to dissipate to the body, and can be efficiently transmitted to the heat transfer soft magnetic material.

すなわち、熱伝導率の低いコンポジット磁性体を熱伝導率が高い伝熱軟磁性体に置き換えることで効果的にコイルの熱をケースに伝熱することができるとともに、アルミ等の非磁性の放熱部材をコンポジット磁性体内に設けることで生じる磁気特性等の低下や渦電流損失の増加の問題もなく、充分に放熱できる熱流路を形成することが可能となる。   That is, by replacing the composite magnetic material with low thermal conductivity with a heat transfer soft magnetic material with high thermal conductivity, the heat of the coil can be effectively transferred to the case, and a non-magnetic heat radiating member such as aluminum It is possible to form a heat flow path that can sufficiently dissipate heat without causing problems such as a decrease in magnetic properties and an increase in eddy current loss caused by providing the inside of the composite magnetic body.

また、伝熱軟磁性体の隙間にコンポジット磁性体を充填した構成でもあるため、磁気特性と放熱性を兼ね備えることができるため、磁気回路や放熱回路上の特別な工夫をする必要がなく、構造設計や製造工程を単純化できることから、コスト削減にも繋がる。   In addition, since the composite magnetic material is filled in the gap between the heat transfer soft magnetic material, it can have both magnetic properties and heat dissipation, so there is no need to devise any special measures on the magnetic circuit or heat dissipation circuit. The design and manufacturing process can be simplified, leading to cost reduction.

また、伝熱軟磁性体として圧粉磁心や積層電磁鋼板を用いた場合、伝熱軟磁性体がコンポジット磁性体に埋設されるため、圧粉磁心の欠けや、積層電磁鋼板の剥がれを防ぐことができる。 Also, when a dust core or laminated magnetic steel sheet is used as the heat transfer soft magnetic body, the heat transfer soft magnetic body is embedded in the composite magnetic body, thus preventing chipping of the dust core and peeling of the laminated magnetic steel sheet. Can do.

さらに、例え軟磁性コア内部で熱が発生しても、巻線と伝熱軟磁性体を広い面積に渡って、可能な限り密接に接触させておけば、格段に熱伝導率の高い巻線と熱伝導率の高い伝熱軟磁性体とによって軟磁性コア内部の熱を迅速に放熱させることができる。   Furthermore, even if heat is generated inside the soft magnetic core, if the winding and the heat transfer soft magnetic material are in close contact with each other over a wide area as much as possible, the winding has extremely high thermal conductivity. The heat inside the soft magnetic core can be quickly radiated by the heat transfer soft magnetic material having a high thermal conductivity.

なお、前記巻線に通電する交流電流の周波数が1kHz以上、100kHz以下であり、前記巻線に通電する電流のうち、100kHzより高い周波数成分を除くピーク値が20A以上、500A以下であることが望ましい。   The frequency of the alternating current flowing through the winding is 1 kHz or more and 100 kHz or less, and the peak value excluding frequency components higher than 100 kHz is 20 A or more and 500 A or less among the current flowing through the winding. desirable.

このような昇圧回路用リアクトルなどに良く用いられる条件下では、巻線からの発熱がコンポジット磁性体からの発熱よりも大きいため、本発明による放熱効果を大きく発揮することとなる。   Under the conditions often used for such booster circuit reactors, the heat generation from the windings is larger than the heat generation from the composite magnetic material, so that the heat dissipation effect of the present invention is greatly exerted.

また、前記巻線から前記放熱経路へと流れる熱流路と垂直な前記伝熱軟磁性体の断面の最小幅が1mm以上であることが望ましい。   Moreover, it is desirable that the minimum width of the cross section of the heat transfer soft magnetic body perpendicular to the heat flow path flowing from the winding to the heat dissipation path is 1 mm or more.

伝熱軟磁性体内の熱流路と垂直な断面の最小幅を大きくすることで、伝熱軟磁性体とコンポジット磁性体の接する面積を小さくすることができ、伝熱軟磁性体内を伝達する熱がコンポジット磁性体へ散逸するのを抑えることで、巻線表面の熱が伝熱軟磁性体を介して効率よく放熱される。   By increasing the minimum width of the cross section perpendicular to the heat flow path in the heat transfer soft magnetic body, the contact area between the heat transfer soft magnetic body and the composite magnetic body can be reduced, and the heat transferred through the heat transfer soft magnetic body can be reduced. By suppressing the dissipation to the composite magnetic body, the heat of the winding surface is efficiently radiated through the heat transfer soft magnetic body.

また、前記巻線表面と近接する前記伝熱軟磁性体の表面積と、前記巻線から前記放熱経路へと流れる熱流路と垂直な前記伝熱軟磁性体の断面積は、前記巻線の内周面または外周面全体の面積の少なくとも2%以上であることが望ましい。   Further, the surface area of the heat transfer soft magnetic body adjacent to the surface of the winding and the cross-sectional area of the heat transfer soft magnetic body perpendicular to the heat flow path flowing from the winding to the heat dissipation path are It is desirable that it is at least 2% or more of the area of the peripheral surface or the entire outer peripheral surface.

前記巻線表面と近接する前記伝熱軟磁性体の表面積と、前記伝熱軟磁性体における熱流路と垂直な断面積を、前記巻線の内周面または外周面全体の面積の少なくとも2%以上とすることで、巻線表面の熱を効率良く伝熱軟磁性体に伝達させ、さらに伝熱軟磁性体内の熱流路と垂直な断面積を大きくする、すなわち伝熱軟磁性体とコンポジット磁性体の接する面積を小さくすることで、伝熱軟磁性体内を伝達する熱がコンポジット磁性体へ散逸することを抑え、巻線表面の熱が伝熱軟磁性体を介して効率よく放熱される。   The surface area of the heat transfer soft magnetic body adjacent to the surface of the winding and the cross-sectional area perpendicular to the heat flow path in the heat transfer soft magnetic body are at least 2% of the area of the entire inner peripheral surface or outer peripheral surface of the winding By doing so, the heat of the winding surface is efficiently transferred to the heat transfer soft magnetic material, and the cross-sectional area perpendicular to the heat flow path in the heat transfer soft magnetic material is increased, that is, the heat transfer soft magnetic material and the composite magnetism are increased. By reducing the contact area of the body, the heat transmitted through the heat transfer soft magnetic body is prevented from being dissipated to the composite magnetic body, and the heat on the winding surface is efficiently radiated through the heat transfer soft magnetic body.

また、前記放熱経路として前記コンポジット磁性体と前記伝熱軟磁性体を収容するケースを備え、前記伝熱軟磁性体は前記ケースと接し、前記巻線は前記伝熱軟磁性体により支持され、前記ケースには前記伝熱軟磁性体を固定する手段が設けられていることが望ましい。 Further, example Bei a case for accommodating the heat transfer soft magnetic material and said composite magnetic body as the heat dissipation path, the heat transfer soft magnetic body is in contact with the casing, the winding is supported by the heat transfer soft magnetic body Preferably, the case is provided with means for fixing the heat transfer soft magnetic material.

本発明の伝熱軟磁性体には巻線に近接する部分があるため、巻線を伝熱軟磁性体により支持する形態にすることも可能であり、伝熱軟磁性体がケースに設けた穴、突起、溝、凹凸、接着剤などにより固定されていれば、巻線が位置ずれを起こすことも無いため、コンポジット磁性体を形成する際の作業性が向上する。   Since the heat transfer soft magnetic material of the present invention has a portion close to the winding, it is also possible to support the winding with the heat transfer soft magnetic material. The heat transfer soft magnetic material is provided in the case. If it is fixed with holes, protrusions, grooves, irregularities, adhesives, etc., the windings will not be displaced, so the workability when forming a composite magnetic material is improved.

本発明により、インダクタンスや直流重畳特性の低下を招くことなく、巻線からの放熱性を高めた線輪部品を提供することができる。   According to the present invention, it is possible to provide a wire ring component with improved heat dissipation from a winding without causing a decrease in inductance or DC superimposition characteristics.

本発明における線輪部品の一例を示す巻線中心の巻き軸を含む断面図。Sectional drawing containing the winding axis | shaft of the winding center which shows an example of the wire ring components in this invention. 本発明における線輪部品の他の一例を示す巻線中心の巻き軸を含む断面図。Sectional drawing containing the winding axis | shaft of the coil | winding center which shows another example of the wire ring components in this invention. 本発明における線輪部品の別の一例を示す巻線中心の巻き軸を含む断面図。Sectional drawing containing the winding axis | shaft of the winding center which shows another example of the wire ring components in this invention. 本発明における線輪部品の別の一例を示す巻き軸に垂直な断面図。Sectional drawing perpendicular | vertical to the winding axis which shows another example of the wire ring components in this invention. 本発明における伝熱軟磁性体の熱伝導率と巻線内周面中央部の温度上昇値との関係を示す図。The figure which shows the relationship between the heat conductivity of the heat-transfer soft magnetic body in this invention, and the temperature rise value of the coil inner peripheral surface center part. 本発明における伝熱軟磁性体の厚さと巻線内周面中央部の温度上昇値との関係を示す図。The figure which shows the relationship between the thickness of the heat-transfer soft magnetic body in this invention, and the temperature rise value of the coil inner peripheral surface center part.

本発明の実施形態について説明する。   An embodiment of the present invention will be described.

図1は、本発明における線輪部品の一例を示す巻線中心の巻き軸を含む断面図を示している。円筒面を周回するよう導体線を巻いて形成した巻線1が、軟磁性粉と結合材を主に含有するコンポジット磁性体2に埋設され、巻線1の底部すなわち巻軸方向端部の全体と接するよう伝熱軟磁性体3が設けられ、巻線1、コンポジット磁性体2、伝熱軟磁性体3を収容するケース4が設けられ、ケース4内面と伝熱軟磁性体3の底部が接している。   FIG. 1 is a cross-sectional view including a winding axis at the center of a winding showing an example of a wire ring component according to the present invention. A winding 1 formed by winding a conductor wire so as to go around a cylindrical surface is embedded in a composite magnetic body 2 mainly containing soft magnetic powder and a binder, and the bottom of the winding 1, that is, the entire end in the winding axis direction. The heat transfer soft magnetic body 3 is provided so as to be in contact with the winding 1, the composite magnetic body 2, and the case 4 for housing the heat transfer soft magnetic body 3 are provided. The inner surface of the case 4 and the bottom of the heat transfer soft magnetic body 3 are provided. It touches.

図1の線輪部品は、例えば、予め伝熱軟磁性体3をケース4の底部に固定しておき、伝熱軟磁性体3の上に巻線1を固定し、未硬化のコンポジット磁性体2をケース4に注ぎ込み巻線1と伝熱軟磁性体3を埋設して、コンポジット磁性体2を硬化させることで作成することができる。固定する手段としては、接着、凹凸の形状による位置決め等を用いることができるが、これに限定されない。   The wire ring component shown in FIG. 1 has, for example, a heat transfer soft magnetic body 3 fixed to the bottom of the case 4 in advance, a winding 1 fixed on the heat transfer soft magnetic body 3, and an uncured composite magnetic body. 2 is poured into a case 4 and the composite magnetic body 2 is cured by embedding the winding 1 and the heat transfer soft magnetic body 3. As a means for fixing, adhesion, positioning by uneven shape, or the like can be used, but is not limited thereto.

なお、伝熱軟磁性体3をケース4の底部に設置しておき、伝熱軟磁性体3の一部が埋設されるまで未硬化のコンポジット磁性体2をケース4に注ぎ込み、硬化させた後、伝熱軟磁性体3の上に巻線1を載せ、未硬化のコンポジット磁性体2を巻線1と伝熱軟磁性体3が埋設されるまで注ぎ込み、硬化させることでも作成できる。   After the heat transfer soft magnetic body 3 is placed at the bottom of the case 4 and the uncured composite magnetic body 2 is poured into the case 4 and cured until a part of the heat transfer soft magnetic body 3 is buried. Alternatively, the winding 1 is placed on the heat transfer soft magnetic body 3, and the uncured composite magnetic body 2 is poured until the winding 1 and the heat transfer soft magnetic body 3 are embedded and cured.

コンポジット磁性体2は、軟磁性粉と結合材を主に含有し、ケース4に注入する際の流動性を調整するために非磁性粉等を適宜添加してもよい。   The composite magnetic body 2 mainly contains soft magnetic powder and a binder, and a non-magnetic powder or the like may be appropriately added in order to adjust the fluidity when injected into the case 4.

軟磁性粉は、Fe−Si、Fe−Si−B、Fe−Si−Al、Fe−Si−Cr等の軟磁性金属粉や、フェライト粉砕粉などが挙げられるが、放熱性が重要視される大電流用途では、軟磁性金属粉が好適に用いられる。   Examples of the soft magnetic powder include soft magnetic metal powders such as Fe-Si, Fe-Si-B, Fe-Si-Al, and Fe-Si-Cr, and ferrite pulverized powder. However, heat dissipation is regarded as important. For high current applications, soft magnetic metal powder is preferably used.

また、結合剤は、液状のエポキシ樹脂等を用いた場合に軟磁性粉末を隙間無く充填できるため、放熱性も良く、好適に用いられる。   Moreover, since a binder can be filled with a soft magnetic powder without a gap when a liquid epoxy resin or the like is used, it has good heat dissipation and is preferably used.

伝熱軟磁性体3は、コンポジット磁性体2よりも熱伝導率が大きい材料、例えば積層電磁鋼板や圧粉磁心等が挙げられる。積層電磁鋼板の面内方向の熱伝導率は83W/(m・K)、圧粉磁心の熱伝導率は組成により異なり、例えばFe−3質量%Siでは27W/(m・K)、Fe−6.5質量%Siで15W/(m・K)であるが、いずれもコンポジット磁性体の熱伝導率3〜6W/(m・K)よりも十分に高くすることができる。   Examples of the heat transfer soft magnetic body 3 include a material having a thermal conductivity higher than that of the composite magnetic body 2, such as a laminated electromagnetic steel sheet and a dust core. The thermal conductivity in the in-plane direction of the laminated electrical steel sheet is 83 W / (m · K), and the thermal conductivity of the dust core varies depending on the composition. For example, in Fe-3 mass% Si, 27 W / (m · K), Fe— Although it is 15 W / (m · K) at 6.5 mass% Si, both can be sufficiently higher than the thermal conductivity of the composite magnetic material of 3 to 6 W / (m · K).

図2は、本発明における線輪部品の他の一例を示す巻線中心の巻き軸を含む断面図を示している。円筒面を周回するよう導体線を巻いて形成した巻線1が、軟磁性粉と結合材を主に含有するコンポジット磁性体2に埋設され、巻線1の内周面全体と接するよう伝熱軟磁性体3が設けられ、巻線1、コンポジット磁性体2、伝熱軟磁性体3を収容するケース4が設けられ、ケース4内面と伝熱軟磁性体3の底部が接している。   FIG. 2 is a cross-sectional view including a winding axis at the center of winding, showing another example of the wire ring component according to the present invention. Winding 1 formed by winding a conductor wire so as to go around the cylindrical surface is embedded in a composite magnetic body 2 mainly containing soft magnetic powder and a binder, and heat transfer is made so as to be in contact with the entire inner peripheral surface of winding 1. A soft magnetic body 3 is provided, a winding 1, a composite magnetic body 2, and a case 4 that houses the heat transfer soft magnetic body 3 are provided, and the inner surface of the case 4 and the bottom of the heat transfer soft magnetic body 3 are in contact with each other.

図2の線輪部品も図1と同様の手順で作成できるが、予め巻線1を伝熱軟磁性体3に固定しておいても良い。   The wire ring component shown in FIG. 2 can be produced in the same procedure as in FIG. 1, but the winding 1 may be fixed to the heat transfer soft magnetic body 3 in advance.

図3は本発明における線輪部品の別の一例を示す巻線中心の巻き軸を含む断面図を、図4は本発明における線輪部品の別の一例を示す巻き軸に垂直な断面図を示している。   FIG. 3 is a cross-sectional view including a winding shaft at the center of winding showing another example of the wire ring component in the present invention, and FIG. 4 is a cross-sectional view perpendicular to the winding shaft showing another example of the wire ring component in the present invention. Show.

本実施形態が図1並びに図2の実施形態と異なる点は、ケース4に溝41を設け、伝熱軟磁性体3を積層電磁鋼板等の成形部材を用いる点が異なっている。   This embodiment differs from the embodiment of FIGS. 1 and 2 in that a groove 41 is provided in the case 4 and a heat transfer soft magnetic body 3 is formed of a molded member such as a laminated electrical steel sheet.

図3、図4に示す線輪部品は、例えば、ケース4の溝41に沿って伝熱軟磁性体3を挿入し、巻線1を伝熱軟磁性体3に挿入し、未硬化のコンポジット磁性体2をケース4に巻線1を埋設するまで注ぎ込み、硬化させることで作成できる。   3 and 4, for example, the heat transfer soft magnetic body 3 is inserted along the groove 41 of the case 4, the winding 1 is inserted into the heat transfer soft magnetic body 3, and an uncured composite is obtained. It can be created by pouring the magnetic body 2 into the case 4 until the winding 1 is embedded and curing.

伝熱軟磁性体3は、ケース4の溝41によって固定され、巻線1は伝熱軟磁性体によって固定されるため、未硬化のコンポジット磁性体2をケース4に注ぎ込む際に伝熱軟磁性体3や巻線1の位置ずれが起きるのを防ぐことができる。   Since the heat transfer soft magnetic body 3 is fixed by the groove 41 of the case 4 and the winding 1 is fixed by the heat transfer soft magnetic body, the heat transfer soft magnetic body 3 is poured when the uncured composite magnetic body 2 is poured into the case 4. It is possible to prevent the displacement of the body 3 and the winding 1 from occurring.

また、伝熱軟磁性体3における巻線1内周部に当たる中芯部31の高さを、線輪部品に必要なインダクタンスや直流重畳特性に合わせて設定してもよい。   Further, the height of the core portion 31 corresponding to the inner peripheral portion of the winding 1 in the heat transfer soft magnetic body 3 may be set in accordance with the inductance required for the wire ring component and the DC superposition characteristics.

なお、線輪部品に求められる耐熱温度は用途によりさまざまであるが、長期信頼性を考慮すると、発熱による温度上昇は低いほうが望ましいため、放熱性を高め、使用時の温度上昇を抑える必要がある。一般の電子部品の耐熱性は例えば80〜150℃程度で設計されることから、線輪部品の使用時の温度は、この範囲内であることが望ましい。   The heat-resistant temperature required for wire ring parts varies depending on the application, but considering long-term reliability, it is desirable that the temperature rise due to heat generation is low, so it is necessary to improve heat dissipation and suppress the temperature rise during use . Since the heat resistance of a general electronic component is designed at, for example, about 80 to 150 ° C., the temperature when the wire ring component is used is preferably within this range.

本発明の一例を、図を参照しながら説明する。   An example of the present invention will be described with reference to the drawings.

(実施例1)
図1は、本発明における線輪部品の一例を示す巻線中心の巻き軸を含む断面図である。
Example 1
FIG. 1 is a cross-sectional view including a winding axis at the center of a winding showing an example of a wire ring component according to the present invention.

巻線1は素線断面が3mmの丸線を34ターンで構成し、外径85mm、内径51mm、高さ22mmである。また、アルミ製のケース4内径は105mm、高さは40mmである。ケース4内部は全てコンポジット磁性体2で充填され、巻線はケース4内の中心に配置する構造で作成した。なお、巻線1底部とアルミケース底部の間には伝熱軟磁性体3を設置している。   Winding 1 comprises a 34-turn round wire with a cross section of 3 mm, an outer diameter of 85 mm, an inner diameter of 51 mm, and a height of 22 mm. The aluminum case 4 has an inner diameter of 105 mm and a height of 40 mm. The inside of the case 4 was filled with the composite magnetic body 2 and the winding was formed in a structure arranged in the center of the case 4. A heat transfer soft magnetic material 3 is installed between the bottom of the winding 1 and the bottom of the aluminum case.

巻線を構成する丸線の熱伝導率は400W/(m・K)、ケースの熱伝導率は96W/(m・K)、コンポジット磁性体の熱伝導率は3W/(m・K)であり、10kHz、60Ap−pの交流電流に直流電流を80A重畳させて巻線に通電したときの線輪部品の温度上昇値、すなわち本発明における伝熱軟磁性体の熱伝導率と巻線内周面中央部の温度上昇値との関係を図5に示す。   The thermal conductivity of the round wire constituting the winding is 400 W / (m · K), the thermal conductivity of the case is 96 W / (m · K), and the thermal conductivity of the composite magnetic material is 3 W / (m · K). Yes, the temperature rise value of the wire ring component when the DC current is superimposed on the AC current of 10 kHz, 60 Ap-p with 80 A, that is, the thermal conductivity of the heat transfer soft magnetic material and the inside of the winding in the present invention FIG. 5 shows the relationship with the temperature rise value at the center of the peripheral surface.

なお、素子の温度は内部に埋設した熱電対等によって測定されるが、熱電対自体の精度や取り付け位置等のばらつきもあり、伝熱軟磁性体を用いなかった熱伝導率が3W/(m・K)の場合の温度上昇値と、伝熱軟磁性体を用いた熱伝導率が3W/(m・K)より大の場合の温度上昇値の差が5K以上であれば、顕著な差があるとみることができる。   The temperature of the element is measured by a thermocouple embedded in the inside, but there are variations in the accuracy and mounting position of the thermocouple itself, and the thermal conductivity without using a heat transfer soft magnetic material is 3 W / (m · If the difference between the temperature rise value in the case of K) and the temperature rise value in the case where the thermal conductivity using the heat transfer soft magnetic material is greater than 3 W / (m · K) is 5K or more, there is a significant difference. It can be seen that there is.

図5の結果からは、伝熱軟磁性体の熱伝導率が10W/(m・K)以上であれば、伝熱軟磁性体を用いなかった場合よりも温度上昇値に5K以上の差異があるため、充分な放熱効果が得られていることが分かる。   From the result of FIG. 5, when the heat conductivity of the heat transfer soft magnetic material is 10 W / (m · K) or more, the temperature rise value is more than 5 K than when the heat transfer soft magnetic material is not used. Therefore, it can be seen that a sufficient heat dissipation effect is obtained.

なお、ケース4に冷却手段を設置することによって、温度上昇値をさらに抑制することも可能である。   In addition, it is possible to further suppress the temperature rise value by installing a cooling means in the case 4.

(実施例2)
図2は、本発明における線輪部品の一例を示す巻線中心の巻き軸を含む断面図である。
(Example 2)
FIG. 2 is a cross-sectional view including a winding axis at the center of a winding showing an example of a wire ring component according to the present invention.

巻線1は素線断面が3mmの丸線を34ターンで構成し、外径85mm、内径51mm、高さ22mmである。また、アルミ製のケース4内径は105mm、高さは40mmである。ケース4内部は全てコンポジット磁性体2で充填され、巻線はケース4内の中心に配置する構造で作成した。なお、巻線1内周面とアルミケース底部の間には円筒状の伝熱軟磁性体3を設置している。ここで、伝熱軟磁性体の巻線1からケース4へ向かう熱流路に垂直な断面は、図2における水平面となるため、断面の最小幅は円筒状の伝熱軟磁性体3の厚さと等しい。   Winding 1 comprises a 34-turn round wire with a cross section of 3 mm, an outer diameter of 85 mm, an inner diameter of 51 mm, and a height of 22 mm. The aluminum case 4 has an inner diameter of 105 mm and a height of 40 mm. The inside of the case 4 was filled with the composite magnetic body 2 and the winding was formed in a structure arranged in the center of the case 4. A cylindrical heat transfer soft magnetic body 3 is installed between the inner peripheral surface of the winding 1 and the bottom of the aluminum case. Here, since the cross section perpendicular to the heat flow path from the winding 1 of the heat transfer soft magnetic body to the case 4 is a horizontal plane in FIG. 2, the minimum width of the cross section is the thickness of the cylindrical heat transfer soft magnetic body 3. equal.

巻線を構成する丸線の熱伝導率は400W/(m・K)、ケースの熱伝導率は96W/(m・K)、コンポジット磁性体の熱伝導率は3W/(m・K)、伝熱軟磁性体の熱伝導率は20W/(m・K)であり、10kHz、60Ap−pの交流電流に直流電流を80A重畳させて巻線に通電したときの線輪部品の温度上昇値、すなわち本発明における伝熱軟磁性体の厚さと巻線内周面中央部の温度上昇値との関係を図6に示す。   The thermal conductivity of the round wire constituting the winding is 400 W / (m · K), the thermal conductivity of the case is 96 W / (m · K), the thermal conductivity of the composite magnetic material is 3 W / (m · K), The heat conductivity of the heat transfer soft magnetic material is 20 W / (m · K), and the temperature rise value of the wire ring component when the coil is energized with 80 A of DC current superimposed on AC current of 10 kHz, 60 Ap-p. That is, FIG. 6 shows the relationship between the thickness of the heat transfer soft magnetic material and the temperature rise value at the central portion of the inner surface of the winding in the present invention.

なお、実施例1と同様に、厚さが0mmの場合である伝熱軟磁性体を用いなかった場合の温度上昇値と、厚さが0mmより大きい場合である伝熱軟磁性体を用いた場合の温度上昇値の差が5K以上あれば、顕著な差があるとみることができる。   As in Example 1, the temperature rise value when the heat transfer soft magnetic material when the thickness was 0 mm and the heat transfer soft magnetic material when the thickness was greater than 0 mm were used. If the difference in temperature rise value is 5K or more, it can be considered that there is a significant difference.

図6の結果から、伝熱軟磁性体3の厚さが1mm以上、より望ましくは3mm以上であれば、伝熱軟磁性体を用いなかった場合よりも温度上昇値が5K以上低いため、充分な放熱効果が得られていることが分かる。   From the result of FIG. 6, if the thickness of the heat transfer soft magnetic body 3 is 1 mm or more, more desirably 3 mm or more, the temperature rise value is 5 K or more lower than the case where the heat transfer soft magnetic body is not used. It can be seen that a good heat dissipation effect is obtained.

すなわち、巻線1の内周面の面積は、π×51mm×40mm、すなわち約6409mmであり、熱流路は巻線1からケース4の底部に向かっていることから、熱流路の向きに垂直な伝熱軟磁性体3の断面積は、π×(51mm÷2)−π×(49mm÷2)、すなわち約157mmであるため、伝熱軟磁性体3における熱流路と垂直な断面積は、前記巻線1の内周面または外周面全体の面積の少なくとも2%以上、より望ましくは7%以上であれば、充分な放熱効果が得られることが判る。 That is, the area of the inner peripheral surface of the winding 1 is π × 51 mm × 40 mm, that is, about 6409 mm 2 , and since the heat flow path is directed from the winding 1 toward the bottom of the case 4, the direction of the heat flow path is perpendicular Since the cross-sectional area of the heat transfer soft magnetic body 3 is π × (51 mm ÷ 2) 2 −π × (49 mm / 2) 2 , that is, about 157 mm 2, it is perpendicular to the heat flow path in the heat transfer soft magnetic body 3. It can be seen that when the cross-sectional area is at least 2% or more, more preferably 7% or more, of the area of the inner peripheral surface or the entire outer peripheral surface of the winding 1, a sufficient heat dissipation effect can be obtained.

なお、巻線1表面と近接する前記伝熱軟磁性体3の表面積は、巻線1表面の熱を伝熱軟磁性体3に効率よく伝達するため、前に述べた断面積と同等以上であることが求められる。   The surface area of the heat transfer soft magnetic body 3 adjacent to the surface of the winding 1 is equal to or larger than the cross-sectional area described above in order to efficiently transfer the heat of the surface of the winding 1 to the heat transfer soft magnetic body 3. It is required to be.

また、ケース4に冷却手段を設置することによって、温度上昇値をさらに抑制することも可能である。   Moreover, it is possible to further suppress the temperature rise value by installing a cooling means in the case 4.

1 巻線
2 コンポジット磁性体
3 伝熱軟磁性体
31 中芯部
4 ケース
41 溝
1 Winding 2 Composite Magnetic Body 3 Heat Transfer Soft Magnetic Body 31 Core 4 Case 41 Groove

Claims (5)

軟磁性粉と結合材を主に含有するコンポジット磁性体と、前記コンポジット磁性体に埋設された巻線と、前記コンポジット磁性体に埋設され、前記巻線の内周面全面に接して配置する円筒状の伝熱軟磁性体を備え、前記伝熱軟磁性体は、内部に前記コンポジット磁性体が充填され、前記コンポジット磁性体外部への放熱経路と接続され、前記伝熱軟磁性体は、前記コンポジット磁性体よりも熱伝導率が高いことを特徴とする線輪部品。 And composite magnetic body containing mainly binder with soft magnetic powder, and windings set embedded in the composite magnetic body is embedded in the composite magnetic body, disposed in contact with the inner peripheral surface entire surface of the winding A cylindrical heat transfer soft magnetic body, the heat transfer soft magnetic body is filled with the composite magnetic body, and is connected to a heat dissipation path to the outside of the composite magnetic body. A wire ring component having a higher thermal conductivity than the composite magnetic material. 前記巻線に通電する交流電流の周波数が1kHz以上、100kHz以下であり、前記巻線に通電する電流のうち、100kHzより高い周波数成分を除くピーク値が20A以上、500A以下であることを特徴とする請求項1に記載の線輪部品。   The frequency of the alternating current applied to the winding is 1 kHz or more and 100 kHz or less, and the peak value excluding the frequency component higher than 100 kHz among the current supplied to the winding is 20 A or more and 500 A or less. The wire ring part according to claim 1. 前記巻線から前記放熱経路へと流れる熱流路と垂直な前記伝熱軟磁性体の断面の最小幅が1mm以上であることを特徴とする請求項1または請求項2に記載の線輪部品。   The wire ring component according to claim 1 or 2, wherein a minimum width of a cross section of the heat transfer soft magnetic material perpendicular to a heat flow path flowing from the winding to the heat dissipation path is 1 mm or more. 記巻線から前記放熱経路へと流れる熱流路と垂直な前記伝熱軟磁性体の断面積は、前記巻線の内周面または外周面全体の面積の少なくとも2%以上であることを特徴とする請求項1または請求項2に記載の線輪部品。 Sectional area of the front heat flow path flowing from Kimaki line to the heat sink path perpendicular the heat transfer soft body, characterized in that at least 2% or more of the area of the entire inner peripheral surface or outer peripheral surface of the winding The wire ring component according to claim 1 or 2. 前記放熱経路として前記コンポジット磁性体と前記伝熱軟磁性体を収容するケースを備え、前記伝熱軟磁性体は前記ケースと接し、前記巻線は前記伝熱軟磁性体により支持され、前記ケースには前記伝熱軟磁性体を固定する手段が設けられていることを特徴とする請求項1から請求項4のいずれかに記載の線輪部品。   A case for accommodating the composite magnetic body and the heat transfer soft magnetic body as the heat dissipation path; the heat transfer soft magnetic body in contact with the case; and the winding supported by the heat transfer soft magnetic body; The wire ring component according to any one of claims 1 to 4, wherein means for fixing the heat transfer soft magnetic material is provided in the wire ring component.
JP2011104282A 2011-05-09 2011-05-09 Wire ring parts Active JP6168378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104282A JP6168378B2 (en) 2011-05-09 2011-05-09 Wire ring parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104282A JP6168378B2 (en) 2011-05-09 2011-05-09 Wire ring parts

Publications (2)

Publication Number Publication Date
JP2012235051A JP2012235051A (en) 2012-11-29
JP6168378B2 true JP6168378B2 (en) 2017-07-26

Family

ID=47435076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104282A Active JP6168378B2 (en) 2011-05-09 2011-05-09 Wire ring parts

Country Status (1)

Country Link
JP (1) JP6168378B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807646B2 (en) * 2013-01-15 2015-11-10 トヨタ自動車株式会社 Reactor with cooler
JP2018056524A (en) * 2016-09-30 2018-04-05 Tdk株式会社 Coil component

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110627B2 (en) * 2007-01-31 2012-12-26 Necトーキン株式会社 Wire ring parts
JP4862751B2 (en) * 2007-06-05 2012-01-25 トヨタ自動車株式会社 Reactor and manufacturing method thereof
JP2009033051A (en) * 2007-07-30 2009-02-12 Sumitomo Electric Ind Ltd Core for reactor
JP4946775B2 (en) * 2007-10-12 2012-06-06 住友電気工業株式会社 Reactor
JP2009164326A (en) * 2008-01-07 2009-07-23 Fuji Electric Systems Co Ltd Magnetic core
JP5267181B2 (en) * 2009-02-06 2013-08-21 株式会社デンソー Reactor
JP2010225841A (en) * 2009-03-24 2010-10-07 Denso Corp Reactor
JP5083258B2 (en) * 2009-03-24 2012-11-28 株式会社デンソー Reactor
US8525632B2 (en) * 2009-07-29 2013-09-03 Sumitomo Electric Industries, Ltd. Reactor
JP5640507B2 (en) * 2010-07-08 2014-12-17 株式会社デンソー Reactor device

Also Published As

Publication number Publication date
JP2012235051A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5083258B2 (en) Reactor
JP5333294B2 (en) Assembly of induction equipment
JP2008021688A (en) Core for reactor
JP2012209333A (en) Reactor and manufacturing method of the same
JP6211028B2 (en) Reactor device
JP2011142193A (en) Reactor
JP5246601B2 (en) Reactor
JP6168378B2 (en) Wire ring parts
JP2011124245A (en) Reactor device
JP2011124242A (en) Reactor device
JP6229839B2 (en) Winding parts
JP6064943B2 (en) Electronics
JP6409706B2 (en) Reactor
JP7110863B2 (en) Reactor
JP6610903B2 (en) Reactor
JP5875760B2 (en) Wire ring parts
JP7022342B2 (en) Reactor
JP2009253105A (en) Reactor device
JP2018190910A (en) Reactor device and method for manufacturing the same
JP2021057460A (en) Inductor
JP7311010B2 (en) ferrite core
WO2019044835A1 (en) Heat-sink-mounted inductor
JP6359244B2 (en) Reactor
JP7187905B2 (en) Ferrite core and coil parts using the same
WO2019171940A1 (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170615

R150 Certificate of patent or registration of utility model

Ref document number: 6168378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250