WO2019044835A1 - Heat-sink-mounted inductor - Google Patents

Heat-sink-mounted inductor Download PDF

Info

Publication number
WO2019044835A1
WO2019044835A1 PCT/JP2018/031773 JP2018031773W WO2019044835A1 WO 2019044835 A1 WO2019044835 A1 WO 2019044835A1 JP 2018031773 W JP2018031773 W JP 2018031773W WO 2019044835 A1 WO2019044835 A1 WO 2019044835A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
heat
coil
inductor
core
Prior art date
Application number
PCT/JP2018/031773
Other languages
French (fr)
Japanese (ja)
Inventor
祥吾 神戸
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019044835A1 publication Critical patent/WO2019044835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present invention relates to an inductor with a heat sink used for large-sized electric equipment such as a power plant.
  • An object of the present invention is to provide an inductor with a heat sink which suppresses the heat generation of the heat sink due to the electromagnetic induction of the leakage flux and is excellent in the temperature lowering effect.
  • the inductor with a heat sink according to the present invention is a core, a coil wound around the core, and a heat sink which is in direct or indirect contact with the coil to release the heat of the core and the coil to the outside,
  • a heat dissipation plate made of a magnetic material is provided, and the heat dissipation plate has at least one opening communicating with the surface facing the coil side and the opposite surface to reduce heat generation due to electromagnetic induction of the heat dissipation plate.
  • the heat sink since the heat sink has at least one opening, the amount of heat generation of the electromagnetic induction generated when the leakage magnetic flux which has deviated from the magnetic circuit of the core flows through the heat sink is reduced. For this reason, the heat radiation from the heat sink is favorably performed, and the temperature rise of the inductor can be suppressed.
  • the at least one opening may be a plurality of slits arranged parallel to one another. If at least one opening is a slit, machining of the at least one opening is easy.
  • a thermally conductive resin may be interposed between the coil and the heat sink. Thereby, the insulation of the inductor can be improved without impairing the heat conduction from the coil to the heat sink.
  • FIG. 1 is a perspective view of an inductor with a heat sink according to an embodiment of the present invention cut away in a longitudinal section
  • FIG. 2 is a plan view of the inductor with a heat sink.
  • This inductor with a heat sink is comprised of an inductor body 1 and a heat sink 5 for radiating the heat of the inductor body 1 to the outside.
  • the inductor body 1 has a core 2, a bobbin 3 and a coil 4.
  • the coil 4 is wound around the core 2 via the bobbin 3.
  • the core 2 of this embodiment is a UU-shaped core in which the respective tips of two U-shaped core segments 2A and 2B are joined to each other.
  • a magnetic circuit L consisting of a closed circuit is formed.
  • the bobbins 3 are assembled to the outer periphery of the central portion 2a of each of the core divided bodies 2A and 2B, and the coil 4 is wound around each bobbin 3.
  • the central portion 2a is cylindrical.
  • the core 2 may have other shapes.
  • Each core divided body 2A, 2B is a magnetic body formed of the same magnetic material.
  • sinterable pure iron or the like is applied as the magnetic substance.
  • it is not limited to sinterable pure iron.
  • a powder magnetic core material of amorphous type, pure iron type or the like can be used as another magnetic material.
  • the bobbin 3 is formed by joining two bobbin split bodies 3A and 3B of the same shape to each other.
  • the divided bodies 3A and 3B are each incorporated in the core 2 as shown in FIGS. 3 and 4, and the cylindrical portion 3a fitted to the central portion 2a of the core 2 And 3b.
  • the bobbin 3 is made of an insulating material.
  • a resin material such as polyphenylene sulfide (PPS) is applied.
  • PPS polyphenylene sulfide
  • the coil 4 may be directly wound around the core 2 without the bobbin 3.
  • the coil 4 is obtained by winding a conducting wire (not shown) around the outer periphery of the cylindrical portion 3a across the flange portions 3b and 3b on both sides of the bobbin 3.
  • the conducting wire is wound up to the outer diameter end of the flange 3b.
  • a copper enameled wire is used as the wire of the coil 4.
  • urethane wire UEW
  • formal wire PVF
  • PET polyester wire
  • EIW polyesterimide wire
  • AIW polyamideimide wire
  • PIW polyimide wire
  • a round wire or a square wire can be used as the cross-sectional shape of the copper enameled wire.
  • the heat sink 5 is made of a material having high thermal conductivity, such as a metal plate such as an iron plate. Therefore, the heat sink 5 is a magnetic body. As shown in FIG. 2, the heat sink 5 is disposed so as to surround the inductor body 1. In the case of the illustrated example, the heat sink 5 has a rectangular planar shape, and the upper and lower surfaces are open. Then, the coil 4 is in contact with a plurality of locations on the inner surface of the heat sink 5 via the heat conductive resin 6. The thermally conductive resin 6 is in surface contact with each of the coil 4 and the heat sink 5.
  • the thermally conductive resin 6 is a resin having an insulating property and a high thermal conductivity. The heat conductive resin 6 has a certain thickness so that the insulation between the coil 4 and the heat sink 5 is not impaired.
  • the heat sink 5 may be in contact with only a part of the outer periphery of the coil 4 as shown in FIG. 2 or the heat sink 5 may be in contact with the entire outer periphery of the coil 4.
  • the heat conductive resin 6 for example, a silicone resin such as silicone rubber, an acrylic resin, or the like is used.
  • the resin formed into a tape or sheet is cut into an appropriate shape and size for use.
  • the heat dissipating plate 5 is provided with an opening for communicating the surface facing the coil side with the surface on the opposite side. This opening is provided to reduce the heat generation of the electromagnetic induction due to the leakage flux.
  • the openings are, for example, a plurality of slits 7 and 8 arranged in parallel with each other as shown in FIGS. 7 and 8, respectively.
  • the slits 7 are arranged in parallel to a plane perpendicular to the axis O of the coil.
  • the slits 8 are arranged in parallel with the axis O of the coil.
  • the slits 7 and 8 are provided substantially in the entire area of the surface 5 a that constitutes the long side of the rectangular shape of the heat sink 5.
  • the openings may be circular or rectangular through holes other than the slits 7 and 8.
  • the inductor body 1 When the inductor body 1 is energized, heat is generated due to copper loss and iron loss. This heat is conducted to the heat sink 5 through the heat conductive resin 6 and is released from the heat sink 5 to the atmosphere.
  • the insulation of the inductor main body 1 can be improved without impairing the heat conduction from the coil 4 to the heat dissipation plate 5.
  • the heat sink 5 When the leakage magnetic flux which deviated from the magnetic circuit L flows through the heat sink 5 which is a magnetic body, the heat sink 5 generates heat by electromagnetic induction. Specifically, in the case of the heat sink 5 having no opening, magnetic flux flows as shown in FIG. 9 to FIG. That is, the density of the magnetic flux is high at the portions A, B, C, and D adjacent to the coil 4, and the amount of heat generation is large.
  • the amount of heat generation due to electromagnetic induction is reduced by providing the opening composed of the plurality of slits 7 (or 8) as shown in FIG. 7 or FIG. .
  • the heat radiation from the heat sink 5 is favorably performed, and the temperature rise of the inductor main body 1 can be suppressed.
  • Table 1 shows the calorific value and temperature of each part when the inductor body of the model is energized under certain conditions. The description of the specifications of the inductor body, the detailed shape and dimensions of the heat sink, the calculation conditions, and the like will be omitted.
  • the heat dissipation plate having the vertical slits has a smaller amount of heat generation than the heat dissipation plate having the horizontal slits. As the reason for this, it is considered that the heat dissipation plate having the vertical slits has a smaller cross-sectional area through which the leakage magnetic flux passes than the heat dissipation plate having the horizontal slits, so that the occurrence of the eddy loss is affected.
  • the heat dissipating plate having the horizontal slits has a heat dissipating effect higher than the heat dissipating plate having the vertical slits, because the heat is easily transmitted to the corner portion (bent portion) which is a portion farther from the heat source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Transformer Cooling (AREA)

Abstract

Provided is a heat-sink-mounted inductor that exhibits an excellent temperature-lowering effect by suppressing heat generation in a heat sink due to electromagnetic induction of magnetic flux leakage. This heat-sink-mounted inductor is provided with: a core (2); a coil (4) wound around the core (2); and a heat sink (5) which is made of a magnetic material and which is disposed directly or indirectly in contact with the coil (4) so as to release heat from the core (2) and the coil (4) to outside. The heat sink (5) has at least one opening that connects the coil side-facing surface thereof and the surface opposite thereto, and that reduces the heat generated by electromagnetic induction of the heat sink (5).

Description

放熱板付インダクタRadiator with inductor 関連出願Related application
 本出願は、2017年9月4日出願の特願2017-169101の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-169101 filed on Sep. 4, 2017, which is incorporated by reference in its entirety.
 この発明は、発電所等の大型の電気設備に用いられる放熱板付インダクタに関する。 The present invention relates to an inductor with a heat sink used for large-sized electric equipment such as a power plant.
 インダクタでは、通電によるコイルの発熱(銅損)およびコアの発熱(鉄損)が発生する。このような発熱によってインダクタが過度に温度上昇することを避けるために、放熱板を取り付けて放熱性を高めること(例えば特許文献1,2)や、空冷や水冷により強制的に冷却することが行われている。 In the inductor, heat generation of the coil (copper loss) and heat generation of the core (iron loss) occur due to energization. In order to prevent the inductor from excessively rising in temperature due to such heat generation, it is necessary to attach a heat sink to enhance heat dissipation (for example, Patent Documents 1 and 2), or to force cooling by air cooling or water cooling. It is
特開2016-139699号公報JP, 2016-139699, A 特開2002-208521号公報JP 2002-208521 A
 インダクタに通電すると、磁気回路を流れる主磁束とは別に、磁気回路から外れた漏れ磁束が生じる。インダクタに放熱板が取り付けてある場合、前記漏れ磁束が放熱板を流れることにより、放熱板が電磁誘導を起こして自己発熱する。その結果、放熱板を設けたことによるインダクタの温度低下効果が低減する。特に、発電所等の大型の電気設備に用いられるインダクタの場合、磁気回路中にギャップが設けられるため、漏れ磁束が多く、放熱板の電磁誘導現象が強くなる。 When the inductor is energized, a leakage flux out of the magnetic circuit is generated separately from the main magnetic flux flowing through the magnetic circuit. When the heat sink is attached to the inductor, the leaked magnetic flux flows through the heat sink, causing the heat sink to generate electromagnetic induction to generate heat. As a result, the temperature reduction effect of the inductor due to the provision of the heat sink is reduced. In particular, in the case of an inductor used for a large-sized electrical installation such as a power plant, a gap is provided in the magnetic circuit, so that the leakage flux is large and the electromagnetic induction phenomenon of the heat sink becomes strong.
 この発明の目的は、漏れ磁束の電磁誘導による放熱板の発熱を抑えて、温度低下効果に優れた放熱板付インダクタを提供することである。 An object of the present invention is to provide an inductor with a heat sink which suppresses the heat generation of the heat sink due to the electromagnetic induction of the leakage flux and is excellent in the temperature lowering effect.
 この発明の放熱板付インダクタは、コアと、このコアに巻回されたコイルと、このコイルに直接または間接的に接触して前記コアおよび前記コイルの熱を外部に放出する放熱板であって、磁性体からなる放熱板とを備え、前記放熱板は、前記コイル側を向く面とその反対側の面とに連通しこの放熱板の電磁誘導による発熱を低減させる少なくとも1つの開口を有する。 The inductor with a heat sink according to the present invention is a core, a coil wound around the core, and a heat sink which is in direct or indirect contact with the coil to release the heat of the core and the coil to the outside, A heat dissipation plate made of a magnetic material is provided, and the heat dissipation plate has at least one opening communicating with the surface facing the coil side and the opposite surface to reduce heat generation due to electromagnetic induction of the heat dissipation plate.
 この構成によると、放熱板が少なくとも1つの開口を有するため、コアの磁気回路から外れた漏れ磁束が放熱板を流れることで生じる電磁誘導の発熱量が低減される。このため、放熱板からの放熱が良好に行われ、インダクタの温度上昇を抑えることができる。 According to this configuration, since the heat sink has at least one opening, the amount of heat generation of the electromagnetic induction generated when the leakage magnetic flux which has deviated from the magnetic circuit of the core flows through the heat sink is reduced. For this reason, the heat radiation from the heat sink is favorably performed, and the temperature rise of the inductor can be suppressed.
 前記少なくとも1つの開口は、互いに平行に並ぶ複数のスリットであってもよい。少なくとも1つの開口がスリットであると、少なくとも1つの開口の加工が容易である。 The at least one opening may be a plurality of slits arranged parallel to one another. If at least one opening is a slit, machining of the at least one opening is easy.
 前記コイルと前記放熱板との間に熱伝導性樹脂が介在していてもよい。これにより、コイルから放熱板への熱伝導を損なうことなく、インダクタの絶縁性を向上させることができる。 A thermally conductive resin may be interposed between the coil and the heat sink. Thereby, the insulation of the inductor can be improved without impairing the heat conduction from the coil to the heat sink.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態に係る放熱板付インダクタを縦断面で破断した斜視図である。 図1の放熱板付インダクタの平面図である。 図1の放熱板付インダクタのインダクタ本体の外観斜視図である。 図3のインダクタ本体を縦断面で破断した斜視図である。 図3のインダクタ本体のコアの分解斜視図である。 図3のインダクタ本体のボビンの分解斜視図である。 図1の放熱板付インダクタの放熱板の第1の例の一部の斜視図である。 図1の放熱板付インダクタの放熱板の第2の例の一部の斜視図である。 開口を有しない放熱板を流れる磁束を示す放熱板の斜視図である。 図9の放熱板を流れる磁束を示す放熱板の正面図である。 図9の放熱板を流れる磁束を示す放熱板の側面図である。
The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
It is the perspective view which broken the inductor with a heat sink concerning one embodiment of this invention by a longitudinal section. It is a top view of the inductor with a heat sink of FIG. It is an external appearance perspective view of the inductor main body of the inductor with a heat sink of FIG. It is the perspective view which broken the inductor main body of FIG. 3 by the longitudinal cross-section. It is a disassembled perspective view of the core of the inductor main body of FIG. It is a disassembled perspective view of the bobbin of the inductor main body of FIG. It is a perspective view of a part of 1st example of the heat sink of the inductor with a heat sink of FIG. It is a perspective view of a part of 2nd example of the heat sink of the inductor with a heat sink of FIG. It is a perspective view of the heat sink which shows the magnetic flux which flows through the heat sink which does not have an opening. It is a front view of the heat sink which shows the magnetic flux which flows through the heat sink of FIG. It is a side view of the heat sink which shows the magnetic flux which flows through the heat sink of FIG.
 この発明の一実施形態を図面と共に説明する。図1はこの発明の一実施形態に係る放熱板付インダクタを縦断面で破断した斜視図、図2はその放熱板付インダクタの平面図である。この放熱板付インダクタは、インダクタ本体1と、このインダクタ本体1の熱を外部に放出する放熱板5とからなる。インダクタ本体1のみを示す図3、図4に示すように、インダクタ本体1は、コア2、ボビン3およびコイル4を有する。コア2に、ボビン3を介してコイル4が巻回されている。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an inductor with a heat sink according to an embodiment of the present invention cut away in a longitudinal section, and FIG. 2 is a plan view of the inductor with a heat sink. This inductor with a heat sink is comprised of an inductor body 1 and a heat sink 5 for radiating the heat of the inductor body 1 to the outside. As shown in FIGS. 3 and 4 showing only the inductor body 1, the inductor body 1 has a core 2, a bobbin 3 and a coil 4. The coil 4 is wound around the core 2 via the bobbin 3.
 図5に示すように、この実施形態のコア2は、U字状をした2つのコア分割体2A,2Bの各先端同士を互いに接合したUU形コアである。図1のように2つのコア分割体2A,2Bを接合した状態において、閉回路からなる磁気回路Lが形成される。各コア分割体2A,2Bの中央部2aの外周にそれぞれボビン3が組み付けられ、各ボビン3にコイル4が巻回される。前記中央部2aは円柱状である。コア2は他の形状であってもよい。 As shown in FIG. 5, the core 2 of this embodiment is a UU-shaped core in which the respective tips of two U-shaped core segments 2A and 2B are joined to each other. In the state where two core divisions 2A and 2B are joined as shown in FIG. 1, a magnetic circuit L consisting of a closed circuit is formed. The bobbins 3 are assembled to the outer periphery of the central portion 2a of each of the core divided bodies 2A and 2B, and the coil 4 is wound around each bobbin 3. The central portion 2a is cylindrical. The core 2 may have other shapes.
 各コア分割体2A,2Bは、同一の磁性材料から形成された磁性体である。前記磁性体としては、例えば、焼結性純鉄等が適用される。但し、焼結性純鉄に限定されるものではない。他の磁性体として、アモルファス系、純鉄系等の圧粉磁心材が使用可能である。 Each core divided body 2A, 2B is a magnetic body formed of the same magnetic material. For example, sinterable pure iron or the like is applied as the magnetic substance. However, it is not limited to sinterable pure iron. As another magnetic material, a powder magnetic core material of amorphous type, pure iron type or the like can be used.
 図6に示すように、ボビン3は、同一形状の2つボビン分割体3A,3Bを互いに接合して形成されている。分割体3A,3Bはそれぞれ、図3、図4のようにコア2に組み込んだ状態で、コア2の中央部2aに嵌合する筒部3aと、この筒部3aの両側の位置するつば部3bとを有する。ボビン3は、絶縁性の材料からなる。絶縁性の材料として、例えば、ポリフェニレンサルファイド(PPS)等の樹脂材料が適用される。なお、ボビン3を有さず、コア2にコイル4が直接巻回されていてもよい。 As shown in FIG. 6, the bobbin 3 is formed by joining two bobbin split bodies 3A and 3B of the same shape to each other. The divided bodies 3A and 3B are each incorporated in the core 2 as shown in FIGS. 3 and 4, and the cylindrical portion 3a fitted to the central portion 2a of the core 2 And 3b. The bobbin 3 is made of an insulating material. As the insulating material, for example, a resin material such as polyphenylene sulfide (PPS) is applied. The coil 4 may be directly wound around the core 2 without the bobbin 3.
 コイル4は、ボビン3の両側のつば部3b,3b間に亘って、筒部3aの外周に導線(図示せず)を巻回したものである。導線は、つば部3bの外径端まで巻回されている。 The coil 4 is obtained by winding a conducting wire (not shown) around the outer periphery of the cylindrical portion 3a across the flange portions 3b and 3b on both sides of the bobbin 3. The conducting wire is wound up to the outer diameter end of the flange 3b.
 コイル4の導線として、例えば銅エナメル線が用いられる。詳しくは、ウレタン線(UEW)、ホルマール線(PVF)、ポリエステル線(PEW)、ポリエステルイミド線(EIW)、ポリアミドイミド線(AIW)、ポリイミド線(PIW)、これらを組み合わせた二重被覆線、または自己融着線、リッツ線等を使用できる。銅エナメル線の断面形状としては、丸線または角線を使用可能である。 For example, a copper enameled wire is used as the wire of the coil 4. Specifically, urethane wire (UEW), formal wire (PVF), polyester wire (PEW), polyesterimide wire (EIW), polyamideimide wire (AIW), polyimide wire (PIW), a double-coated wire combining these, Or self fusion wire, litz wire, etc. can be used. A round wire or a square wire can be used as the cross-sectional shape of the copper enameled wire.
 放熱板5は、熱伝導率の高い材料、例えば鉄板等の金属板からなる。よって、放熱板5は磁性体である。図2に示すように、放熱板5はインダクタ本体1を囲むように配置されている。図の例の場合、放熱板5は、平面形状が長方形で、上下の面は開口している。そして、放熱板5の内面の複数箇所に、熱伝導性樹脂6を介してコイル4が接触している。熱伝導性樹脂6は、コイル4および放熱板5のそれぞれに面接触している。熱伝導性樹脂6は、絶縁性を有し、熱伝導率の高い樹脂である。コイル4と放熱板5との間の絶縁性が損なわれないように、熱伝導性樹脂6はある程度の厚みを有している。 The heat sink 5 is made of a material having high thermal conductivity, such as a metal plate such as an iron plate. Therefore, the heat sink 5 is a magnetic body. As shown in FIG. 2, the heat sink 5 is disposed so as to surround the inductor body 1. In the case of the illustrated example, the heat sink 5 has a rectangular planar shape, and the upper and lower surfaces are open. Then, the coil 4 is in contact with a plurality of locations on the inner surface of the heat sink 5 via the heat conductive resin 6. The thermally conductive resin 6 is in surface contact with each of the coil 4 and the heat sink 5. The thermally conductive resin 6 is a resin having an insulating property and a high thermal conductivity. The heat conductive resin 6 has a certain thickness so that the insulation between the coil 4 and the heat sink 5 is not impaired.
 なお、図2のようにコイル4の外周の一部にだけ放熱板5が接触していてもよく、またコイル4の外周のすべてに放熱板5が接触していてもよい。 The heat sink 5 may be in contact with only a part of the outer periphery of the coil 4 as shown in FIG. 2 or the heat sink 5 may be in contact with the entire outer periphery of the coil 4.
 前記熱伝導性樹脂6として、例えばシリコーンゴム等のシリコーン系樹脂、アクリル系樹脂等が用いられる。これらの樹脂がテープ状やシート状に成形されたものを適正な形状および大きさに裁断して使用する。 As the heat conductive resin 6, for example, a silicone resin such as silicone rubber, an acrylic resin, or the like is used. The resin formed into a tape or sheet is cut into an appropriate shape and size for use.
 放熱板5には、コイル側を向く面とその反対側の面とを連通する開口が設けられている。この開口は、漏れ磁束による電磁誘導の発熱を低減させるために設けられる。開口は、例えば図7、図8にそれぞれ示すように、互いに平行に並ぶ複数のスリット7,8とされる。図7の例は、コイルの軸心Oに垂直な平面と平行に各スリット7が並んでいる。図8の例は、コイルの軸心Oと平行に各スリット8が並んでいる。図7、図8の例では、スリット7,8は、放熱板5における長方形の長辺部を構成する面5aのほぼ全域に設けられている。開口は、スリット7,8以外に、円形や矩形等の貫通孔であってもよい。 The heat dissipating plate 5 is provided with an opening for communicating the surface facing the coil side with the surface on the opposite side. This opening is provided to reduce the heat generation of the electromagnetic induction due to the leakage flux. The openings are, for example, a plurality of slits 7 and 8 arranged in parallel with each other as shown in FIGS. 7 and 8, respectively. In the example of FIG. 7, the slits 7 are arranged in parallel to a plane perpendicular to the axis O of the coil. In the example of FIG. 8, the slits 8 are arranged in parallel with the axis O of the coil. In the example of FIGS. 7 and 8, the slits 7 and 8 are provided substantially in the entire area of the surface 5 a that constitutes the long side of the rectangular shape of the heat sink 5. The openings may be circular or rectangular through holes other than the slits 7 and 8.
 この放熱板付インダクタの作用について説明する。 The operation of this inductor with a heat sink will be described.
 インダクタ本体1に通電すると、銅損および鉄損による発熱が生じる。この熱は、熱伝導性樹脂6を介して放熱板5に伝導され、放熱板5から大気中に放出される。コイル4と放熱板5との間に熱伝導性樹脂6を介在させたことにより、コイル4から放熱板5への熱伝導を損なうことなく、インダクタ本体1の絶縁性を向上させることができる。 When the inductor body 1 is energized, heat is generated due to copper loss and iron loss. This heat is conducted to the heat sink 5 through the heat conductive resin 6 and is released from the heat sink 5 to the atmosphere. By interposing the thermally conductive resin 6 between the coil 4 and the heat dissipation plate 5, the insulation of the inductor main body 1 can be improved without impairing the heat conduction from the coil 4 to the heat dissipation plate 5.
 ところで、通電時には、磁気回路Lから外れた漏れ磁束が磁性体である放熱板5を流れることで、放熱板5が電磁誘導により発熱する。具体的には、開口を有しない放熱板5の場合、図9~図11のように磁束が流れる。つまり、コイル4に近接する部分A,B,C,Dで磁束の密度が高く、発熱量が大きい。 By the way, at the time of electricity supply, when the leakage magnetic flux which deviated from the magnetic circuit L flows through the heat sink 5 which is a magnetic body, the heat sink 5 generates heat by electromagnetic induction. Specifically, in the case of the heat sink 5 having no opening, magnetic flux flows as shown in FIG. 9 to FIG. That is, the density of the magnetic flux is high at the portions A, B, C, and D adjacent to the coil 4, and the amount of heat generation is large.
 しかし、本実施形態に係るインダクタの放熱板5は、図7または図8のように複数のスリット7(または8)からなる開口が設けられていることにより、電磁誘導による発熱量が低減される。このため、放熱板5からの放熱が良好に行われ、インダクタ本体1の温度上昇を抑えることができる。 However, in the heat sink 5 of the inductor according to the present embodiment, the amount of heat generation due to electromagnetic induction is reduced by providing the opening composed of the plurality of slits 7 (or 8) as shown in FIG. 7 or FIG. . For this reason, the heat radiation from the heat sink 5 is favorably performed, and the temperature rise of the inductor main body 1 can be suppressed.
 図3に示すインダクタ本体1をモデルにして、放熱板による温度低下効果を計算により確かめた。ある条件下でモデルのインダクタ本体に通電したときの、各部の発熱量と温度を表1に示す。なお、インダクタ本体の仕様、放熱板の詳細な形状・寸法、計算条件等については記載を省略する。 Using the inductor body 1 shown in FIG. 3 as a model, the temperature reduction effect by the heat sink was confirmed by calculation. Table 1 shows the calorific value and temperature of each part when the inductor body of the model is energized under certain conditions. The description of the specifications of the inductor body, the detailed shape and dimensions of the heat sink, the calculation conditions, and the like will be omitted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[発熱量について]
 インダクタ本体に通電時におけるコイルの銅損は226.9、コアの鉄損は103.7、漏れ磁束の損失は123.2である。このインダクタ本体にスリットなしの放熱板を取り付けた場合の同放熱板の発熱量は169.7である。同様に、横スリットを有する放熱板(図7)を取り付けた場合の同放熱板の発熱量は70.5、縦スリットを有する放熱板(図8)を取り付けた場合の同放熱板の発熱量は63.6である。これらのことから、スリットを有すると放熱板の発熱量が著しく低下することが分かる。
[About calorific value]
When the inductor body is energized, the copper loss of the coil is 226.9, the core loss of the core is 103.7, and the loss of the leakage flux is 123.2. The amount of heat generation of the heat sink when the heat sink without slits is attached to the inductor main body is 169.7. Similarly, the amount of heat generation of the heat sink when the heat sink having the horizontal slit (FIG. 7) is attached is 70.5, and the amount of heat generation of the heat sink when the heat sink having the vertical slit (FIG. 8) is attached Is 63.6. From these facts, it can be seen that the heat generation amount of the heat sink is significantly reduced when the slit is provided.
 また、横スリットを有する放熱板よりも縦スリットを有する放熱板の方が、発熱量が少ないことが分かる。この理由として、縦スリットを有する放熱板は横スリットを有する放熱板よりも漏れ磁束の通過する断面積が小さいため、渦損失が発生し難くなることが影響していると考えられる。 Further, it can be seen that the heat dissipation plate having the vertical slits has a smaller amount of heat generation than the heat dissipation plate having the horizontal slits. As the reason for this, it is considered that the heat dissipation plate having the vertical slits has a smaller cross-sectional area through which the leakage magnetic flux passes than the heat dissipation plate having the horizontal slits, so that the occurrence of the eddy loss is affected.
[温度について]
 放熱板が取り付けられていないインダクタ本体のコイルの温度が140°程度であるのに対し、放熱板が取り付けられるとコイルの温度が120°前後まで低下するという効果が認められた。中でも、放熱板がスリットを有すると、スリットを有しないものに比べて、コイルの温度が3~4°程度低くなることが分かる。これは、スリットによって放熱板の発熱が抑えられ、その結果としてコイルの温度が下がったと考えられる。また、横スリットを有する放熱板と縦スリットを有する放熱板とを比較した場合、前者の方が後者よりも、発熱量が多いにもかかわらず温度は低くなっている。その理由として、横スリットを有する放熱板は、縦スリットを有する放熱板よりも、発熱源から遠い部分である隅部(屈曲部)へ熱が伝わりやすく、放熱効果が高いことが考えられる。
[About temperature]
While the temperature of the coil of the inductor main body to which the heat sink was not attached was about 140 °, when the heat sink was attached, the temperature of the coil was lowered to around 120 °. In particular, it can be seen that when the heat sink has a slit, the temperature of the coil is lower by about 3 to 4 ° as compared with the one without the slit. This is considered to be that the heat generation of the heat sink was suppressed by the slits, and as a result, the temperature of the coil was lowered. Moreover, when the heat sink having a lateral slit and the heat sink having a vertical slit are compared, the temperature is lower although the former has a larger amount of heat generation than the latter. As the reason, it is considered that the heat dissipating plate having the horizontal slits has a heat dissipating effect higher than the heat dissipating plate having the vertical slits, because the heat is easily transmitted to the corner portion (bent portion) which is a portion farther from the heat source.
 以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although the form for implementing this invention was demonstrated based on embodiment, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is indicated not by the above description but by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
1…インダクタ本体
2…コア
3…ボビン
4…コイル
5…放熱板
6…熱伝導性樹脂
7,8…スリット(開口)
DESCRIPTION OF SYMBOLS 1 ... Inductor main body 2 ... Core 3 ... Bobbin 4 ... Coil 5 ... Heat sink 6 ... Thermally conductive resin 7, 8 ... Slit (opening)

Claims (3)

  1.  コアと、このコアに巻回されたコイルと、このコイルに直接または間接的に接触して前記コアおよび前記コイルの熱を外部に放出する放熱板であって、磁性体からなる放熱板とを備え、前記放熱板は、前記コイル側を向く面とその反対側の面とに連通しこの放熱板の電磁誘導による発熱を低減させる少なくとも1つの開口を有する放熱板付インダクタ。 A core, a coil wound around the core, and a heat sink which directly or indirectly contacts the coil to release the heat of the core and the coil to the outside, the heat sink comprising a magnetic material; The inductor with a heat sink, wherein the heat sink is in communication with the surface facing the coil and the opposite surface to reduce heat generation due to electromagnetic induction of the heat sink.
  2.  請求項1に記載の放熱板付インダクタにおいて、前記少なくとも1つの開口は、互いに平行に並ぶ複数のスリットである放熱板付インダクタ。 The inductor with a heat sink according to claim 1, wherein the at least one opening is a plurality of slits aligned in parallel to one another.
  3.  請求項1または請求項2に記載の放熱板付インダクタにおいて、前記コイルと前記放熱板との間に熱伝導性樹脂が介在する放熱板付インダクタ。 The inductor with heat sink according to claim 1 or 2, wherein the thermally conductive resin intervenes between the coil and the heat sink.
PCT/JP2018/031773 2017-09-04 2018-08-28 Heat-sink-mounted inductor WO2019044835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-169101 2017-09-04
JP2017169101A JP2019046983A (en) 2017-09-04 2017-09-04 Inductor with radiator

Publications (1)

Publication Number Publication Date
WO2019044835A1 true WO2019044835A1 (en) 2019-03-07

Family

ID=65527462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031773 WO2019044835A1 (en) 2017-09-04 2018-08-28 Heat-sink-mounted inductor

Country Status (2)

Country Link
JP (1) JP2019046983A (en)
WO (1) WO2019044835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992997A1 (en) * 2020-10-28 2022-05-04 ETA Green Power Ltd. An inductor coil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143821U (en) * 1980-03-28 1981-10-30
JPS6057115U (en) * 1983-09-26 1985-04-20 北芝電機株式会社 Magnetic shield structure of transformer
JPH07201581A (en) * 1993-12-29 1995-08-04 Okaya Electric Ind Co Ltd Noise filter
JPH0935937A (en) * 1995-05-17 1997-02-07 Alps Electric Co Ltd Inductive element
JP2002208521A (en) * 2001-01-11 2002-07-26 Denso Corp Smoothing coil for smoothing large current
WO2011018957A1 (en) * 2009-08-12 2011-02-17 株式会社 日立メディコ High voltage generating device, and x-ray ct device using the same
JP2016213383A (en) * 2015-05-12 2016-12-15 パナソニックIpマネジメント株式会社 Magnetic component and power supply circuit using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143821U (en) * 1980-03-28 1981-10-30
JPS6057115U (en) * 1983-09-26 1985-04-20 北芝電機株式会社 Magnetic shield structure of transformer
JPH07201581A (en) * 1993-12-29 1995-08-04 Okaya Electric Ind Co Ltd Noise filter
JPH0935937A (en) * 1995-05-17 1997-02-07 Alps Electric Co Ltd Inductive element
JP2002208521A (en) * 2001-01-11 2002-07-26 Denso Corp Smoothing coil for smoothing large current
WO2011018957A1 (en) * 2009-08-12 2011-02-17 株式会社 日立メディコ High voltage generating device, and x-ray ct device using the same
JP2016213383A (en) * 2015-05-12 2016-12-15 パナソニックIpマネジメント株式会社 Magnetic component and power supply circuit using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992997A1 (en) * 2020-10-28 2022-05-04 ETA Green Power Ltd. An inductor coil
WO2022090278A1 (en) * 2020-10-28 2022-05-05 Eta Green Power Ltd. An inductor coil

Also Published As

Publication number Publication date
JP2019046983A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US20140368059A1 (en) Transformer, electronic apparatus, and method for controlling transformer
JP6356465B2 (en) Winding parts and heat dissipation structure
EP3067903A1 (en) Electromagnetic induction apparatus
JP6150844B2 (en) Electromagnetic induction equipment
US20130293330A1 (en) Magnetic device having thermally-conductive bobbin
US10354792B2 (en) Transformer structure
US11621113B2 (en) Electromagnetic device with thermally conductive former
JP2015130372A (en) Reactor coil bobbin and winding core holder, and reactor
JP2015090912A (en) Reactor
US20160307684A1 (en) Winding component
WO2019044835A1 (en) Heat-sink-mounted inductor
JP5844766B2 (en) Coupled inductor
JP6064943B2 (en) Electronics
US10580561B2 (en) Transformer and power converter
JP2009105164A (en) Transformer
JP2006294787A (en) Reactor
JP2016127109A (en) Reactor cooling structure
WO2018099137A1 (en) Magnetic core assembly of transformer, transformer and electrical apparatus
JP2010177439A (en) Inductor
US20140085040A1 (en) Power supply apparatus with fringing flux shielding element
JP2008186904A (en) Reactor and air conditioner
JP2015053369A (en) Coil component and power supply device using the same
WO2017159010A1 (en) Heat dissipation structure of coil part, and coil part used therefor
JP2013131540A (en) Core, transformer, choke coil, and switching power supply device
JP2013183066A (en) Coil device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851338

Country of ref document: EP

Kind code of ref document: A1