JP2013131540A - Core, transformer, choke coil, and switching power supply device - Google Patents

Core, transformer, choke coil, and switching power supply device Download PDF

Info

Publication number
JP2013131540A
JP2013131540A JP2011278397A JP2011278397A JP2013131540A JP 2013131540 A JP2013131540 A JP 2013131540A JP 2011278397 A JP2011278397 A JP 2011278397A JP 2011278397 A JP2011278397 A JP 2011278397A JP 2013131540 A JP2013131540 A JP 2013131540A
Authority
JP
Japan
Prior art keywords
core
temperature
core member
magnetic loss
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011278397A
Other languages
Japanese (ja)
Inventor
Kentaro Mori
健太郎 森
Katsushi Yasuhara
克志 安原
Masahiro Gamo
正浩 蒲生
Shoji Susa
昌司 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2011278397A priority Critical patent/JP2013131540A/en
Publication of JP2013131540A publication Critical patent/JP2013131540A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a core having a low calorific value and excellent temperature characteristics.SOLUTION: A core, around which a coil is wound, comprises a plurality of core members. At least one of the core members contacts with a heat radiation member. A temperature at which a magnetic loss of the core member contacting with the heat radiation member becomes the minimum is lower than a temperature at which a magnetic loss of the core member other than the core member contacting with the heat radiation member becomes the minimum. Thereby, a core having a low calorific value and excellent temperature characteristics can be provided.

Description

本発明はトランスやチョークコイルに用いるコアに関し、特に、発熱を低減し温度特性が改善されたコアに関する。また、本発明は、このようなコアを用いたトランスやチョークコイルに関する。また、本発明はこのようなトランスやチョークコイルを用いたスイッチング電源装置に関する。 The present invention relates to a core used for a transformer and a choke coil, and more particularly to a core having reduced heat generation and improved temperature characteristics. The present invention also relates to a transformer or choke coil using such a core. The present invention also relates to a switching power supply device using such a transformer or choke coil.

スイッチング電源装置などに用いられるトランスやチョークコイルは、動作時において発熱することから、発熱量が小さく放熱特性の優れたコアを採用することが望ましい。コアが高温にならないために考えられる手法は2つある。第1の手法としては、コア自体を発熱させないためにコアに低損失な磁性材料を使用する方法が挙げられる。また、コア自体を発熱させない第1の手法の別の方法として、コア形状を発熱しにくい形状にする方法が挙げられる。例えば、特許文献1に記載のE型コアは、中心脚部の断面積を外側脚部の断面積よりも大きくすることで蓄熱しやすい中心脚部の温度上昇を抑えることが可能になるとされている。   Since transformers and choke coils used in switching power supply devices generate heat during operation, it is desirable to employ a core that generates a small amount of heat and has excellent heat dissipation characteristics. There are two possible ways to keep the core from getting hot. As a first method, there is a method of using a low-loss magnetic material for the core so as not to generate heat. Further, as another method of the first method that does not cause the core itself to generate heat, there is a method of making the core shape difficult to generate heat. For example, the E-type core described in Patent Document 1 is said to be able to suppress the temperature rise of the central leg portion that is likely to store heat by making the cross-sectional area of the central leg portion larger than the cross-sectional area of the outer leg portion. Yes.

また、コアを高温にしないための第2の手法としては、発熱してしまったコアから熱を効率良く放熱させる方法が挙げられる。例えば、コアに放熱用部材あるいは冷媒を接触させ伝熱により放熱させる方法が挙げられる。例えば、特許文献2に記載のコアは、磁気ギャップ部を備えた準閉磁路構造をとり、その磁気ギャップ部に高分子部材が介在している。空気よりも熱伝導率が大きい前記高分子部材が介在することでコアの放熱効率が高くなり、コアの温度上昇を抑えることができる。   Further, as a second method for preventing the core from becoming high temperature, there is a method of efficiently radiating heat from the core that has generated heat. For example, there is a method in which a heat radiating member or refrigerant is brought into contact with the core and heat is radiated by heat transfer. For example, the core described in Patent Document 2 has a quasi-closed magnetic circuit structure including a magnetic gap portion, and a polymer member is interposed in the magnetic gap portion. By interposing the polymer member having a thermal conductivity higher than that of air, the heat dissipation efficiency of the core is increased, and the temperature rise of the core can be suppressed.

また、効率良く放熱する第2の手法の別の方法として、コアを放熱しやすい形状とする方法が挙げられる。例えば、特許文献1に記載されたコアは、中心脚部に放熱用孔が設けられており、放熱用孔内の外気を介して放熱を行える。また、必要により前記放熱用孔に熱伝導率の高い放熱用部材を挿入して放熱特性を向上させることが可能になるとされている。また、特許文献3に記載されたコアは、上側梁部で発生する熱の放熱ルートを拡大することによって、コアの放熱特性を改善することが可能になるとされている。   Further, as another method of the second method for efficiently radiating heat, there is a method for making the core easy to radiate heat. For example, the core described in Patent Document 1 is provided with a heat radiating hole in the center leg portion, and can radiate heat through outside air in the heat radiating hole. Further, if necessary, a heat radiating member having high thermal conductivity can be inserted into the heat radiating hole to improve heat radiating characteristics. In addition, the core described in Patent Document 3 is said to be able to improve the heat dissipation characteristics of the core by expanding the heat dissipation route of heat generated in the upper beam portion.

特開2002−203726号公報JP 2002-203726 A 特開2011−077304号公報JP 2011-077304 A 特開2009−088250号公報JP 2009-088250 A

しかしながら、上述の特許文献1から特許文献3に記載された技術を用いても、特に発熱量の大きいトランスやチョークコイルにおいては、温度上昇の抑制が不十分となる問題があり、更なるコアの発熱低減のための改善が望まれている。本発明は、上記に鑑みてなされたものであって、その目的は、発熱量が小さく、温度特性の優れたコアを提供することである。また、本発明の他の目的は、このようなコアを用いたトランス及びチョークコイルを提供することである。また、本発明の他の目的は、このようなトランス及びチョークコイルを用いたスイッチング電源装置を提供することである。   However, even if the techniques described in Patent Document 1 to Patent Document 3 described above are used, there is a problem that the temperature rise is not sufficiently suppressed particularly in a transformer or choke coil having a large heat generation amount. Improvement for reducing heat generation is desired. The present invention has been made in view of the above, and an object thereof is to provide a core having a small calorific value and excellent temperature characteristics. Another object of the present invention is to provide a transformer and a choke coil using such a core. Another object of the present invention is to provide a switching power supply device using such a transformer and a choke coil.

上述した課題を解決し、目的を達成するために、請求項1に係るコアは、コイルが巻き回されるコアであって、複数のコア部材からなり、前記コア部材の少なくとも1つが放熱用部材に接触しており、前記放熱用部材に接触しているコア部材の磁気損失が最小となる温度が、前記放熱用部材に接触している前記コア部材以外のコア部材の磁気損失が最小となる温度よりも低いことを特徴とする。   In order to solve the above-described problems and achieve the object, the core according to claim 1 is a core around which a coil is wound, and includes a plurality of core members, and at least one of the core members is a heat dissipation member. The temperature at which the magnetic loss of the core member that is in contact with the heat radiating member is minimum is the magnetic loss of the core member other than the core member that is in contact with the heat radiating member. It is characterized by being lower than the temperature.

請求項1に記載のコアによれば、複数のコア部材の内、放熱用部材に接触しているコア部材の磁気損失が最小となる温度を、前記放熱用部材に接触しているコア部材以外のコア部材の磁気損失が最小となる温度よりも低くすることで、放熱用部材を用いたために発生したコアの温度分布に対して、より適切な温度特性を持ったコア部材を適用することができる。特に放熱用部材に接したコア部材の温度特性を適切に選択することによって、複数のコア部材を組み合わせたコア全体の磁気損失を低減することが可能となる。その結果、温度上昇が抑えられる。   According to the core of claim 1, the temperature at which the magnetic loss of the core member in contact with the heat radiating member among the plurality of core members is minimized is other than the core member in contact with the heat radiating member. It is possible to apply a core member having a more appropriate temperature characteristic to the temperature distribution of the core generated by using the heat radiating member by lowering the temperature than the temperature at which the magnetic loss of the core member is minimized. it can. In particular, by appropriately selecting the temperature characteristics of the core member in contact with the heat radiating member, it is possible to reduce the magnetic loss of the entire core in which a plurality of core members are combined. As a result, the temperature rise can be suppressed.

また、本発明では、前記複数のコア部材のそれぞれの磁気損失が最小となる温度の差が5℃以上50℃以下であることが好ましい。複数のコア部材の磁気損失が最小となる温度の差が大きすぎると、任意のコア部材の損失が最小となる温度とその他のコア部材の損失が最小となる温度の間の温度域において磁気損失が増大してしまう。そのため、磁気損失が最小となる温度の差は50℃以下が好ましく、また、複数のコア部材の磁気損失が最小となる温度の差が小さすぎると磁気損失低減の効果は小さくなる。そのため、磁気損失が最小となる温度の差は5℃以上が好ましい。   Moreover, in this invention, it is preferable that the temperature difference from which each magnetic loss of the said several core member becomes the minimum is 5 to 50 degreeC. If the temperature difference that minimizes the magnetic loss of multiple core members is too large, the magnetic loss in the temperature range between the temperature at which the loss of any core member is minimized and the temperature at which the loss of other core members is minimized Will increase. For this reason, the temperature difference at which the magnetic loss is minimized is preferably 50 ° C. or less, and if the temperature difference at which the magnetic loss of the plurality of core members is minimized is too small, the effect of reducing the magnetic loss is reduced. For this reason, the temperature difference at which the magnetic loss is minimized is preferably 5 ° C. or more.

また、本発明では、複数のコア部材がフェライトからなることが好ましい。コア部材がフェライトからなることで、熱伝導率が低く、比較的大きな温度分布が生じるフェライトコア部材に対して、使用温度に適したコア部材を選択することになり、元々磁気損失の小さいフェライトの損失をさらに低減することが可能となる。その結果、複数のコア部材を組み合わせたコア全体の発熱量は低減し、温度上昇が抑えられる。   In the present invention, it is preferable that the plurality of core members are made of ferrite. Since the core member is made of ferrite, the core member suitable for the operating temperature is selected for the ferrite core member that has a low thermal conductivity and generates a relatively large temperature distribution. Loss can be further reduced. As a result, the heat generation amount of the entire core obtained by combining a plurality of core members is reduced, and the temperature rise is suppressed.

本発明は、上述のコアを用いたことを特徴とするトランスである。前記コアを用いることにより発熱量の小さいトランスが提供されることから、トランスが伝送する電力を増やしたり、トランスを小型化したりすることが可能となる。   The present invention is a transformer characterized by using the above-described core. By using the core, a transformer with a small calorific value is provided, so that the power transmitted by the transformer can be increased or the transformer can be downsized.

本発明は、上述のコアを用いたことを特徴とするチョークコイルである。前記コアを用いることにより発熱量の小さいチョークコイルが提供されることから、チョークコイルに蓄えられる電力を増やしたり、チョークコイルを小型化することが可能となる。   The present invention is a choke coil using the above-described core. Since the choke coil with a small calorific value is provided by using the core, it is possible to increase the electric power stored in the choke coil and to reduce the size of the choke coil.

本発明は、前記トランスを備えたことを特徴とするスイッチング電源装置である。このスイッチング電源装置によれば、トランスの発生する熱量が低減されることから、信頼性の高いスイッチング電源装置を提供することが可能となる。   The present invention is a switching power supply device including the transformer. According to this switching power supply device, since the amount of heat generated by the transformer is reduced, a highly reliable switching power supply device can be provided.

本発明は、前記チョークコイルを備えたことを特徴とするスイッチング電源装置である。このスイッチング電源装置によれば、チョークコイルの発生する熱量が低減されることから、信頼性の高いスイッチング電源装置を提供することが可能となる。   The present invention is a switching power supply device comprising the choke coil. According to this switching power supply device, since the amount of heat generated by the choke coil is reduced, a highly reliable switching power supply device can be provided.

本発明は、発熱量が小さく、温度特性の優れたコアを提供することができる。また、本発明は、このようなコアを用いたトランス及びチョークコイルを提供することができる。また、本発明は、このようなトランス及びチョークコイルを用いたスイッチング電源装置を提供することができる。   The present invention can provide a core having a small calorific value and excellent temperature characteristics. In addition, the present invention can provide a transformer and a choke coil using such a core. In addition, the present invention can provide a switching power supply device using such a transformer and a choke coil.

図1は実施形態1に係るコア10を示す斜視図である。FIG. 1 is a perspective view showing a core 10 according to the first embodiment. 図2はコア部材10Aとコア部材10Bの磁気損失の温度特性を示す図である。FIG. 2 is a diagram showing temperature characteristics of magnetic loss of the core member 10A and the core member 10B. 図3は実施形態1の変形例に係るコアを示す斜視図である。FIG. 3 is a perspective view showing a core according to a modification of the first embodiment. 図4は実施形態2に係るコアを示す斜視図である。FIG. 4 is a perspective view showing a core according to the second embodiment. 図5はコア部材20Aとコア部材20Bの磁気損失の温度特性を示す図である。FIG. 5 is a diagram showing temperature characteristics of magnetic loss of the core member 20A and the core member 20B. 図6は実施形態2の変形例に係るコアを示す斜視図である。FIG. 6 is a perspective view showing a core according to a modification of the second embodiment. 図7は実施形態3に係るコアを示す斜視図である。FIG. 7 is a perspective view showing a core according to the third embodiment.

本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、均等の範囲のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。   DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are equivalent. Furthermore, the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of components can be made without departing from the scope of the present invention.

(実施形態1)
図1は実施形態1に係るコアを示す斜視図である。コア10はいずれもE型形状であるコア部材10Aとコア部材10Bの開口部を向き合わせて組み立てられる。コア部材10Bの下面には放熱用部材10Cが接している。なお、接触面の密着性を高め放熱性を高めるためにコア部材10Bと放熱用部材10Cの間に放熱用のシートやグリースや接着剤を用いてもよい。図2にコア部材10Aとコア部材10Bの磁気損失の温度特性を示す。コア部材10Aの磁気損失が最小となる温度T1はコア部材10Bの損失が最小となる温度T2よりも高い。組み立てられたコア10をトランス又はチョークコイルに使用する場合はコア10の主脚部11にコイル12を巻き回す。なお、本実施形態において、コア10は、フェライトの焼結体であるが、コア10の材料はこれに限定されるものではない。
(Embodiment 1)
FIG. 1 is a perspective view showing a core according to the first embodiment. The core 10 is assembled by facing the openings of the core member 10A and the core member 10B each having an E shape. The heat radiating member 10C is in contact with the lower surface of the core member 10B. In addition, in order to improve the adhesiveness of a contact surface and to improve heat dissipation, a heat dissipation sheet, grease, or adhesive may be used between the core member 10B and the heat dissipation member 10C. FIG. 2 shows the temperature characteristics of the magnetic loss of the core member 10A and the core member 10B. The temperature T1 at which the magnetic loss of the core member 10A is minimized is higher than the temperature T2 at which the loss of the core member 10B is minimized. When the assembled core 10 is used for a transformer or a choke coil, the coil 12 is wound around the main leg portion 11 of the core 10. In the present embodiment, the core 10 is a ferrite sintered body, but the material of the core 10 is not limited to this.

従来は、コア部材10Aとコア部材10Bは磁気損失が最小となる温度が同じコア部材の組合せで組み立てられている。コアの温度上昇が小さい場合には放熱用部材10Cを使用しない。しかしながら、コアの温度上昇が大きい場合には、コアの熱暴走を防ぐため、コアの温度を下げる必要があり、放熱用部材10Cを用いた温度低減が行なわれている。すなわち、温度上昇が大きいコアで放熱用部材を使用する場合は、放熱用部材10Cに接触しているコア部材10Bは温度が低くなり、放熱用部材に接触せず蓄熱しやすいコア部材10Aは温度が高くなるといった温度分布が生じていた。このような結果、従来のコアは、温度に適したコア部材を使用することが出来ておらず、発熱が大きかった。一方、実施形態1に係るコア10においては、放熱用部材10Cに接触し冷却されているコア部材10Bの磁気損失が最小となる温度が、放熱されないコア部材10Aの磁気損失が最小となる温度よりも低い。その結果、それぞれに適したコア部材を使用することになり、コア全体、すなわち、コア10の磁気損失が低減し温度上昇が低減する。   Conventionally, the core member 10A and the core member 10B are assembled by a combination of core members having the same temperature at which the magnetic loss is minimized. When the temperature rise of the core is small, the heat radiating member 10C is not used. However, when the temperature rise of the core is large, it is necessary to lower the temperature of the core in order to prevent thermal runaway of the core, and the temperature is reduced using the heat radiating member 10C. That is, when using a heat radiating member with a core having a large temperature rise, the temperature of the core member 10B that is in contact with the heat radiating member 10C is low, and the core member 10A that is not in contact with the heat radiating member and easily stores heat is a temperature. There was a temperature distribution in which the temperature increased. As a result, the conventional core cannot use a core member suitable for the temperature, and generates a large amount of heat. On the other hand, in the core 10 according to the first embodiment, the temperature at which the magnetic loss of the core member 10B that is cooled in contact with the heat radiating member 10C is minimum is higher than the temperature at which the magnetic loss of the core member 10A that is not radiated is minimum. Is also low. As a result, the core member suitable for each is used, and the magnetic loss of the entire core, that is, the core 10 is reduced, and the temperature rise is reduced.

前記コア部材10Aとコア部材10Bの磁気損失が最小となる温度の差は、5℃以上50℃以下であることが好ましく、より好ましくは、コア部材の磁気損失が最小となる温度の差が5℃以上30℃以下とする。また、更に好ましくは、複数のコア部材の磁気損失が最小となる温度の差が5℃以上15℃以下である。複数のコア部材の磁気損失が最小となる温度の差が大きすぎると、任意のコア部材の損失が最小となる温度とその他のコア部材の損失が最小となる温度の間の温度域において磁気損失が増大してしまうからである。   The temperature difference at which the magnetic loss between the core member 10A and the core member 10B is minimized is preferably 5 ° C. or more and 50 ° C. or less, and more preferably the temperature difference at which the core member has a minimum magnetic loss is 5 ° C. It shall be above 30 ° C. More preferably, the temperature difference at which the magnetic loss of the plurality of core members is minimized is 5 ° C. or more and 15 ° C. or less. If the temperature difference that minimizes the magnetic loss of multiple core members is too large, the magnetic loss in the temperature range between the temperature at which the loss of any core member is minimized and the temperature at which the loss of other core members is minimized This is because of the increase.

コア10を用いたトランスは、発熱量が小さくなる。このため、コア10を用いたトランスは伝送可能な電力の増加、小型化が可能になる。コア10を用いたチョークコイルは、発熱量が小さくなる。このため、コア10を用いたチョークコイルは、蓄えられる電力の増加、小型化が可能になる。コア10を用いたトランス又はコア10を用いたチョークコイルが搭載されたスイッチング電源装置は、トランス又はチョークコイルの発生する熱量が低減されることから、信頼性が向上する。なお、本実施形態におけるコア部材10Bが、図3 に示すように、Iコアで形成される場合においても、本発明の効果が得られることは言うまでもない。   The transformer using the core 10 generates less heat. For this reason, the transformer using the core 10 can increase the power that can be transmitted and can be downsized. The choke coil using the core 10 generates a small amount of heat. For this reason, the choke coil using the core 10 can increase the stored electric power and can be downsized. In the switching power supply device in which the transformer using the core 10 or the choke coil using the core 10 is mounted, the amount of heat generated by the transformer or the choke coil is reduced, so that the reliability is improved. Needless to say, the effect of the present invention can be obtained even when the core member 10B in the present embodiment is formed of an I core as shown in FIG.

また、本実施形態におけるコア10を構成するコア部材10Aの固定については特に言及していないが、一般に、コア部材10Bとの接触面で接着剤を用いて接着しているか、もしくは、コア部材10Aの上面を金具で押さえている。この場合、金具も放熱用部材とみなすことができるが、本発明における本質は、温度分布をもつコアに対して使用温度に適したコア部材を適用することにある。すなわち、複数のコア部材が放熱用部材に接触していたとしても、主として、放熱経路となり、温度が比較的低くなるコア部材に対して、磁気損失が最小となる温度が比較的低いコア部材を適用し、放熱用部材に接触していたとしても、主な放熱経路となりえず、温度が比較的高くなるコア部材に対しては、磁気損失が最小となる温度が比較的高めのコア部材を適用することにある。   In addition, the fixing of the core member 10A constituting the core 10 in the present embodiment is not particularly mentioned, but generally, the core member 10A is bonded using an adhesive on the contact surface with the core member 10B, or the core member 10A. The top surface of is held with metal fittings. In this case, the metal fitting can also be regarded as a heat radiating member, but the essence in the present invention is to apply a core member suitable for the operating temperature to a core having a temperature distribution. That is, even if a plurality of core members are in contact with the heat radiating member, a core member that mainly serves as a heat radiating path and has a relatively low temperature at which the magnetic loss is minimized relative to the core member that has a relatively low temperature. Even if it is in contact with the heat radiating member, it cannot be the main heat radiating path, and for core members that have a relatively high temperature, a core member that has a relatively high temperature that minimizes magnetic loss is used. There is to apply.

本実施形態及びその変形例の構成は、以下においても適宜適用することができる。また、本実施形態及びその変形例と同様の構成を有するものは、本実施形態及びその変形例と同様の作用、効果を奏する。   The configurations of the present embodiment and its modifications can be applied as appropriate in the following. Moreover, what has the structure similar to this embodiment and its modification has an effect | action and effect similar to this embodiment and its modification.

(実施形態2)
図4は実施形態2に係るコアを示す斜視図である。コア20はいずれもE型形状であるコア部材20Aとコア部材20Bの開口部を向き合わせて組み立てられる。コア部材20Bの下面には放熱用部材20Cが接している。なお、接触面の密着性を高め放熱性を高めるためにコア部材20Bと放熱用部材20Cの間に放熱用のシートやグリースや接着剤を用いてもよい。図5にコア部材20Aとコア部材20Bの磁気損失の温度特性を示す。コア部材20Aの磁気損失が最小となる温度T3はコア部材20Bの損失が最小となる温度T4よりも高い。組み立てられたコア20をトランス又はチョークコイルに使用する場合はコア20の主脚部21にコイル22を巻き回す。
(Embodiment 2)
FIG. 4 is a perspective view showing a core according to the second embodiment. The core 20 is assembled by facing the openings of the core member 20A and the core member 20B, both of which are E-shaped. A heat radiating member 20C is in contact with the lower surface of the core member 20B. In addition, in order to improve the adhesiveness of a contact surface and to improve heat dissipation, a heat dissipation sheet, grease or adhesive may be used between the core member 20B and the heat dissipation member 20C. FIG. 5 shows the temperature characteristics of the magnetic loss of the core member 20A and the core member 20B. The temperature T3 at which the magnetic loss of the core member 20A is minimized is higher than the temperature T4 at which the loss of the core member 20B is minimized. When the assembled core 20 is used for a transformer or a choke coil, the coil 22 is wound around the main leg portion 21 of the core 20.

本実施形態によるコア20は、コア20を構成するコア部材20Bの厚さを、放熱用部材面からの厚さhを10mmと構成したものである。本実施形態のコア20のように、コア部材20Bの放熱用部材20Cとの接触面からの厚さhを10mm以下とすることで、放熱用部材20Cに接しているコア部材20Bの温度分布を更に小さくすることができる。そのため、コア部材20Bに対して、より最適な温度特性を持ったコア部材を適用することになり、その結果、コア全体の発熱量は低減し、温度上昇が抑えられる。なお、本実施形態におけるコア部材20B が、図6 に示すように、Iコアで形成される場合においても、本発明の効果が得られることは言うまでもない。   The core 20 according to the present embodiment is configured such that the thickness of the core member 20B constituting the core 20 is 10 mm and the thickness h from the heat radiating member surface is 10 mm. Like the core 20 of the present embodiment, the temperature distribution of the core member 20B in contact with the heat radiating member 20C is reduced by setting the thickness h of the core member 20B from the contact surface with the heat radiating member 20C to 10 mm or less. It can be further reduced. Therefore, a core member having a more optimal temperature characteristic is applied to the core member 20B. As a result, the amount of heat generated by the entire core is reduced, and a temperature rise is suppressed. Needless to say, the effect of the present invention can be obtained even when the core member 20B according to the present embodiment is formed of an I core as shown in FIG.

前記コア部材20Aとコア部材20Bの磁気損失が最小となる温度の差は、5℃以上50℃以下であることが好ましく、より好ましくは、コア部材の磁気損失が最小となる温度の差が5℃以上30℃以下とする。また、更に好ましくは、複数のコア部材の磁気損失が最小となる温度の差が5℃以上15℃以下であることは、実施形態1と同様である。   The temperature difference at which the magnetic loss between the core member 20A and the core member 20B is minimized is preferably 5 ° C. or more and 50 ° C. or less, and more preferably, the temperature difference at which the core member has a minimum magnetic loss is 5 ° C. It shall be above 30 ° C. More preferably, the difference in temperature at which the magnetic loss of the plurality of core members is minimized is 5 ° C. or more and 15 ° C. or less, as in the first embodiment.

本実施形態の構成は、以下においても適宜適用することができる。また、本実施形態と同様の構成を有するものは、本実施形態と同様の作用、効果を奏する。   The configuration of the present embodiment can also be applied as appropriate in the following. Moreover, what has the structure similar to this embodiment has an effect | action and effect similar to this embodiment.

(実施形態3)
図7は実施形態3に係るコアを示す斜視図である。コア30は、いずれもE型形状であるコア部材30Aとコア部材30Bの開口部を向き合わせ、間にI型形状のコア部材30Cを挟んで組み立てられる。コア部材30Aの上面には放熱用部材30Dが接している。コア部材30Bの下面には放熱用部材30Eが接している。なお、放熱用部材との接触面の密着性を高め放熱性を高めるため、コア部材30Aと放熱用部材30Dの間、あるいはコア部材30Bと放熱用部材30Eの間に放熱用のシートやグリースや接着剤を用いてもよい。コア部材30Aとコア部材30Bの磁気損失が最小となる温度はコア部材30Cの磁気損失が最小となる温度よりも低い。なお、コア部材30Aとコア部材30Bの磁気損失の温度特性は違ってもよい。組み立てられたコア30をトランス又はチョークコイルに使用する場合は、例えば、コア30の主脚部31A、31Bにコイル32A、32Bを巻き回す。
(Embodiment 3)
FIG. 7 is a perspective view showing a core according to the third embodiment. The core 30 is assembled by facing the openings of the core member 30A and the core member 30B, both of which are E-shaped, with the I-shaped core member 30C interposed therebetween. A heat radiating member 30D is in contact with the upper surface of the core member 30A. A heat radiating member 30E is in contact with the lower surface of the core member 30B. In order to improve the adhesion of the contact surface with the heat radiating member and enhance the heat radiating property, a heat radiating sheet, grease, An adhesive may be used. The temperature at which the magnetic loss of the core member 30A and the core member 30B is minimized is lower than the temperature at which the magnetic loss of the core member 30C is minimized. The temperature characteristics of the magnetic loss between the core member 30A and the core member 30B may be different. When the assembled core 30 is used for a transformer or a choke coil, for example, the coils 32A and 32B are wound around the main legs 31A and 31B of the core 30.

実施形態3に係るコア30においては、放熱用部材30Dあるいは放熱用部材30Eに接触し冷却されているコア部材30Aあるいはコア部材30Bの磁気損失が最小となる温度が、放熱されないコア部材30Cの磁気損失が最小となる温度よりも低い。その結果、それぞれのコア部材の使用温度に適したコア部材を使用することになり、コア全体、すなわち、コア30の磁気損失が低減し温度上昇が低減する。   In the core 30 according to the third embodiment, the temperature at which the magnetic loss of the core member 30A or the core member 30B that is cooled in contact with the heat radiating member 30D or the heat radiating member 30E is minimized is the magnetic force of the core member 30C that is not radiated. Below the temperature at which loss is minimized. As a result, the core member suitable for the operating temperature of each core member is used, and the magnetic loss of the entire core, that is, the core 30 is reduced, and the temperature rise is reduced.

本実施形態の構成は、以下においても適宜適用することができる。また、本実施形態と同様の構成を有するものは、本実施形態と同様の作用、効果を奏する。   The configuration of the present embodiment can also be applied as appropriate in the following. Moreover, what has the structure similar to this embodiment has an effect | action and effect similar to this embodiment.

以下、本発明の実施例について説明するが、本発明はこの実施例に何ら限定されるものではない。   Hereinafter, although the Example of this invention is described, this invention is not limited to this Example at all.

(実施例1)
上述した実施形態1におけるコア10を用いて評価を行った。コア部材には磁気損失の温度特性を変えたMn-Zn系フェライトを用いた。コアの温度上昇は次の方法で測定した。コア10の主脚部11において最大磁束密度230mTを発生させ、周波数100kHzで連続してコア10を励磁した。一方、放熱用部材10Cの温度を常に100℃一定となるように冷却した。コア10の温度が安定したところで、熱電対でコア部材10Aの上面の温度を測定した。温度上昇の測定結果を表1に示す。表1から分かるように、従来例のように上下のコアを磁気損失が最小となる温度が同じコアで構成したものより、実施例のようにコアの温度分布に合わせて適切な温度特性のコアを適応したもので、温度が低減することができた。
Example 1
Evaluation was performed using the core 10 in the first embodiment described above. The core member was Mn-Zn ferrite with varying magnetic loss temperature characteristics. The temperature rise of the core was measured by the following method. A maximum magnetic flux density of 230 mT was generated in the main leg portion 11 of the core 10, and the core 10 was excited continuously at a frequency of 100 kHz. On the other hand, the temperature of the heat radiating member 10C was cooled so as to be always constant at 100 ° C. When the temperature of the core 10 was stabilized, the temperature of the upper surface of the core member 10A was measured with a thermocouple. Table 1 shows the measurement results of the temperature rise. As can be seen from Table 1, a core having an appropriate temperature characteristic according to the temperature distribution of the core as in the embodiment, as compared with the conventional example in which the upper and lower cores are composed of the same core with the minimum magnetic loss. The temperature can be reduced.

Figure 2013131540
Figure 2013131540

(実施例2)
上述した実施形態2におけるコア20を用いて、放熱用部材面に接触しているコア部材の放熱用部材面からの厚さhとコア温度上昇との関係についてのを評価を行なった。コア部材には磁気損失の温度特性を変えたMn-Zn系フェライトを用いた。コア部材20Aには磁気損失が最小となる温度が115℃のコアを用いた。コア部材20Bには磁気損失が最小となる温度が100℃のコアを用いた。コアの温度上昇は実施例1と同様な方法で測定した。温度上昇の測定結果を表2に示す。表2から分かるように、コア部材20Bの放熱用部材20Cとの接触面からの厚みを13mmとしたサンプルNo.9よりも厚みを10mmとしたサンプルNo.10でより温度を低減することができた。
(Example 2)
Using the core 20 in Embodiment 2 described above, the relationship between the thickness h of the core member in contact with the heat radiating member surface from the heat radiating member surface and the core temperature increase was evaluated. The core member was Mn-Zn ferrite with varying magnetic loss temperature characteristics. As the core member 20A, a core having a temperature of 115 ° C. at which the magnetic loss is minimized was used. As the core member 20B, a core having a temperature of 100 ° C. at which the magnetic loss is minimized is used. The temperature rise of the core was measured by the same method as in Example 1. Table 2 shows the measurement results of the temperature rise. As can be seen from Table 2, the temperature can be further reduced with sample No. 10 with a thickness of 10 mm than sample No. 9 with a thickness from the contact surface of the core member 20B with the heat dissipation member 20C of 13 mm. It was.

Figure 2013131540
Figure 2013131540

10、20、30 コア
10A、10B 、20A、20B、30A、30B、30C コア部材
10C、20C、30D、30E 放熱用部材
11、21、31A、31B 主脚部
12、22、32A、32B コイル
10, 20, 30 Core 10A, 10B, 20A, 20B, 30A, 30B, 30C Core member 10C, 20C, 30D, 30E Heat dissipation member 11, 21, 31A, 31B Main leg portion 12, 22, 32A, 32B Coil

Claims (7)

コイルが巻き回されるコアであって、複数のコア部材からなり、前記コア部材の少なくとも1つが放熱用部材に接触しており、前記放熱用部材に接触しているコア部材の磁気損失が最小となる温度が前記放熱用部材に接触している前記コア部材以外のコア部材の磁気損失が最小となる温度よりも低いことを特徴とするコア。   A core around which a coil is wound, comprising a plurality of core members, wherein at least one of the core members is in contact with a heat dissipation member, and magnetic loss of the core member in contact with the heat dissipation member is minimized The core is characterized in that the core temperature is lower than the temperature at which the magnetic loss of the core member other than the core member in contact with the heat radiating member is minimized. 前記複数のコア部材の磁気損失が最小となる温度の差が5℃以上50℃以下であることを特徴とする請求項1に記載のコア。   2. The core according to claim 1, wherein the temperature difference at which the magnetic loss of the plurality of core members is minimized is 5 ° C. or more and 50 ° C. or less. 前記コアがフェライトからなることを特徴とする請求項1又は2に記載のコア。   The core according to claim 1, wherein the core is made of ferrite. 請求項1から3のいずれか1項に記載のコアを用いたことを特徴とするトランス。   A transformer using the core according to any one of claims 1 to 3. 請求項1から3のいずれか1項に記載のコアを用いたことを特徴とするチョークコイル。   A choke coil using the core according to any one of claims 1 to 3. 請求項4に記載のトランスを備えたことを特徴とするスイッチング電源装置。   A switching power supply comprising the transformer according to claim 4. 請求項5に記載のチョークコイルを備えたことを特徴とするスイッチング電源装置。   A switching power supply comprising the choke coil according to claim 5.
JP2011278397A 2011-12-20 2011-12-20 Core, transformer, choke coil, and switching power supply device Pending JP2013131540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278397A JP2013131540A (en) 2011-12-20 2011-12-20 Core, transformer, choke coil, and switching power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278397A JP2013131540A (en) 2011-12-20 2011-12-20 Core, transformer, choke coil, and switching power supply device

Publications (1)

Publication Number Publication Date
JP2013131540A true JP2013131540A (en) 2013-07-04

Family

ID=48908897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278397A Pending JP2013131540A (en) 2011-12-20 2011-12-20 Core, transformer, choke coil, and switching power supply device

Country Status (1)

Country Link
JP (1) JP2013131540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537463A1 (en) * 2018-03-08 2019-09-11 Mitsubishi Heavy Industries Thermal Systems, Ltd. Reactor and outdoor unit
WO2021117811A1 (en) 2019-12-11 2021-06-17 パナソニックIpマネジメント株式会社 Transformer, method for manufacturing same, charging device, and power supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537463A1 (en) * 2018-03-08 2019-09-11 Mitsubishi Heavy Industries Thermal Systems, Ltd. Reactor and outdoor unit
WO2021117811A1 (en) 2019-12-11 2021-06-17 パナソニックIpマネジメント株式会社 Transformer, method for manufacturing same, charging device, and power supply device

Similar Documents

Publication Publication Date Title
JP4222490B2 (en) Planar transformer and switching power supply
JP5367685B2 (en) Transformer with heat dissipation function
JP5546512B2 (en) Electromagnetic induction equipment
US20140368059A1 (en) Transformer, electronic apparatus, and method for controlling transformer
JP6312945B1 (en) Planar transformer, laser diode drive power supply device and laser processing device
US20190148049A1 (en) Inductor and mounting structure thereof
JP5333521B2 (en) Magnetic core
JP2008021688A (en) Core for reactor
JP2015198181A (en) Coil component and heat dissipation structure thereof
JP2015095938A (en) Power supply device
JP2011077304A (en) Inductance component for large power
JP2012204814A (en) Core, transformer, choke coil and switching power supply device
JP2013131540A (en) Core, transformer, choke coil, and switching power supply device
WO2015111404A1 (en) Winding component
JP6064943B2 (en) Electronics
JP2016127109A (en) Reactor cooling structure
JP2019046983A (en) Inductor with radiator
JP2015103538A (en) Transformer core cooling structure
JP2008186904A (en) Reactor and air conditioner
JP2016076527A (en) Magnetic component
JP7503387B2 (en) Coil device
JP2014127471A (en) Transformer and dc/dc converter using the same
JP2015204431A (en) Magnetic core and inductor element using the same
JP2017143222A (en) Transformer
JP2006302505A (en) Induction heating device