JP2009164326A - Magnetic core - Google Patents

Magnetic core Download PDF

Info

Publication number
JP2009164326A
JP2009164326A JP2008000316A JP2008000316A JP2009164326A JP 2009164326 A JP2009164326 A JP 2009164326A JP 2008000316 A JP2008000316 A JP 2008000316A JP 2008000316 A JP2008000316 A JP 2008000316A JP 2009164326 A JP2009164326 A JP 2009164326A
Authority
JP
Japan
Prior art keywords
magnetic core
magnetic
temperature
core
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008000316A
Other languages
Japanese (ja)
Inventor
Shinya Takashima
信也 高島
Kazuaki Mino
和明 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008000316A priority Critical patent/JP2009164326A/en
Publication of JP2009164326A publication Critical patent/JP2009164326A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic core that is effectively cooled to thereby suppress the rising of temperature, and also improves the efficiency of a power converting apparatus using the magnetic core. <P>SOLUTION: The magnetic core is produced by mixing metal, such as copper and aluminum, with a magnetic material such as ferrite, as a high-heat conductive material having higher heat conduction characteristics than the magnetic member. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁気コアに係り、詳しくは電力変換装置における変圧器やリアクトルに用いられる磁気コアおよびその磁気コア近傍に捲き回される巻線の温度上昇を抑制するに好適な磁気コアに関する。   The present invention relates to a magnetic core, and more particularly to a magnetic core used for a transformer or a reactor in a power converter and a magnetic core suitable for suppressing a temperature rise of a winding wound around the magnetic core.

従来、電磁誘導を利用した例えば変圧器のような電力変換機器において、巻線が捲き回されている変圧器鉄心(磁気コア)の箇所は、磁気コアの鉄損によって生じる熱と、巻線の銅損によって生じる熱が集中することに加え、巻線自身あるいは変圧器を構成する絶縁シートやボビン等によって磁気コアへの冷却風が妨げられるので、磁気コア内部の温度上昇が最も著しくなることが知られている。
そして磁気コア内部の温度上昇が過大になると磁気コアや巻線付近の絶縁物質が溶け出し、絶縁破壊してしまうことがあった。また磁気コアの温度が上昇すると、磁気コア内の飽和磁束密度は低下し、それ故、磁気飽和により巻線に過大な電流が流れて他の部品を破損してしまう恐れもある。このため磁気コア等の磁気部品を設計する際には、磁気部品の最高到達温度に注意をする必要があった。
そこでこの種の電力変換機器は、上述したような温度上昇を抑制するため、大形ファンによって強制空冷したり、大きな磁気コアを使って磁気部品の表面積を増やすことによって放熱面積を増加させたり、巻線に線径の大きな部材を使用して損失を減らしたりすることが行われている。
或いは別の方法として磁気コア損等の磁気特性の温度依存性が異なる複数の組成からなるフェライトコアを、温度分布に対応した最適なフェライトコアの組成を選択して構成し、磁気部品を効果的に冷却する複合フェライトコアが試みられている(例えば、特許文献1を参照)。
Conventionally, in a power conversion device such as a transformer that uses electromagnetic induction, the location of the transformer core (magnetic core) around which the winding is wound is caused by the heat generated by the iron loss of the magnetic core, In addition to the concentration of heat generated by copper loss, the cooling air to the magnetic core is hindered by the winding itself or the insulation sheet or bobbin that constitutes the transformer, so the temperature rise inside the magnetic core is most significant. Are known.
When the temperature rise inside the magnetic core becomes excessive, the insulating material near the magnetic core and windings may melt and break down. Further, when the temperature of the magnetic core rises, the saturation magnetic flux density in the magnetic core decreases, so that an excessive current flows through the winding due to magnetic saturation, and other components may be damaged. For this reason, when designing a magnetic component such as a magnetic core, it is necessary to pay attention to the maximum temperature reached by the magnetic component.
Therefore, this type of power conversion device suppresses the temperature rise as described above, forcibly air-cooling with a large fan, increasing the surface area of the magnetic component using a large magnetic core, increasing the heat dissipation area, A loss is reduced by using a member having a large wire diameter for the winding.
Or, as an alternative method, a ferrite core consisting of multiple compositions with different temperature dependence of magnetic properties such as magnetic core loss can be selected by selecting the optimal ferrite core composition corresponding to the temperature distribution, and the magnetic parts can be effectively used. Attempts have been made to cool composite ferrite cores (see, for example, Patent Document 1).

または電磁誘導を利用した機器に用いられる磁気コア(鉄心)にヒートシンクを熱的に結合させて放熱させる熱放出装置も提唱されている(例えば、特許文献2を参照)。
特開2003-163110号公報 特開平10-106847号公報
Alternatively, a heat release device is also proposed in which a heat sink is thermally coupled to a magnetic core (iron core) used in a device using electromagnetic induction to dissipate heat (see, for example, Patent Document 2).
JP 2003-163110 A JP-A-10-106847

しかしながら上述した特許文献2に開示される熱放出装置は、磁気コア表面に高熱伝導性物質層を設けているだけであって、表面での放熱性は改善されるものの、磁気コア中心部の温度は、磁気コアの表面や外周部に比べて高くなるという問題があった。特に磁気コアは、このような局所的に高温な部位が存在すると絶縁破壊や磁気飽和が発生して破損する恐れもある。
ちなみに磁気コアは、図6のグラフに示すように温度上昇が起こると一般に鉄損や銅損が増加する傾向にある。このため高温になる磁気コア中心部近傍における損失は、さらに増加し、より一層、磁気コアの発熱量が増加するという問題も生じる。
また図6のグラフに示したように磁気コア内で発生する損失は、温度によって変化する。このため磁気コアは、損失が最も少なくなる温度(例えば図6では、温度T1)で用いることが望ましい。しかしながら、磁気コア内部での温度勾配が大きいと、磁気コア表面や外周部において磁気コア内部で発生する損失が最少になる温度から逸脱する温度(例えば図6では温度T2)になる一方、磁気コア中心部の温度が上昇(例えば図6では、温度T3)すると、いずれも磁気コアの損失が増大して発熱量が増加し、磁気コアの温度が上昇する懸念がある。
However, the above-described heat release device disclosed in Patent Document 2 is merely provided with a high thermal conductivity material layer on the surface of the magnetic core, and although the heat dissipation on the surface is improved, the temperature at the center of the magnetic core is improved. Has a problem that it is higher than the surface and outer periphery of the magnetic core. In particular, the magnetic core may be damaged due to dielectric breakdown or magnetic saturation when such a locally high temperature portion exists.
Incidentally, as shown in the graph of FIG. 6, the magnetic core generally tends to increase iron loss and copper loss when the temperature rises. For this reason, the loss in the vicinity of the central portion of the magnetic core that becomes high temperature further increases, and there is a problem that the amount of heat generated by the magnetic core further increases.
Moreover, as shown in the graph of FIG. 6, the loss generated in the magnetic core varies depending on the temperature. For this reason, the magnetic core is desirably used at a temperature at which the loss is minimized (for example, temperature T1 in FIG. 6). However, if the temperature gradient inside the magnetic core is large, the temperature (eg, temperature T2 in FIG. 6) deviates from the temperature at which the loss generated inside the magnetic core is minimized on the magnetic core surface and outer periphery. When the temperature at the center rises (for example, temperature T3 in FIG. 6), there is a concern that the loss of the magnetic core increases, the amount of heat generation increases, and the temperature of the magnetic core rises.

この様な温度上昇を防ぐには、磁気コアの中心部と他の箇所での温度勾配を抑えればよい。このため一般的には大形の強制空冷ファンを用いて冷却を強化したり、磁気コア(磁気部品)を大形化させて表面積を増やし、冷却効果を高めたりしている。しかしながらこれらの方法は、装置が大形化し、高コスト化するという新たな問題が生じる。
本発明は、このような課題を解決するためになされたもので、その目的とするところは、磁気コアを効果的に冷却して温度上昇を抑えるとともに、この磁気コアを用いた電力変換機器の効率向上を図ることのできる磁気コアを提供することにある。
In order to prevent such a temperature rise, the temperature gradient at the central portion of the magnetic core and other portions may be suppressed. For this reason, generally, a large-sized forced air cooling fan is used to enhance cooling, or the magnetic core (magnetic component) is enlarged to increase the surface area and enhance the cooling effect. However, these methods have a new problem that the size of the apparatus is increased and the cost is increased.
The present invention has been made in order to solve such a problem. The object of the present invention is to effectively cool the magnetic core to suppress the temperature rise, and the power conversion device using the magnetic core. An object of the present invention is to provide a magnetic core capable of improving efficiency.

上述した目的を達成するため本発明に係る磁気コアは、例えばフェライト等の所定の磁性材にこの磁性材よりも高い熱伝導特性を有する高熱伝導材を混入して生成したことを特徴としている。
この磁気コアは、磁気コアの材料に高熱伝導特性を有する材料を添加し、コア内に分散させることで熱伝導特性を向上させる。
或いは本発明に係る磁気コアは、該磁気コアに捲き回されて取り付けられる巻線の近傍における前記高熱伝導材の含有率を他の前記磁気コアの部位より高めたことを特徴としている。
好ましくは前記高熱伝導材は、銅またはアルミニウムの少なくとも一方を含むことが望ましい。
上述の磁気コアは、高温部により多くの高熱伝導特性材料として、例えば銅またはアルミニウム等を含めることで、中心部分から外周部へ効率的に熱を分散させることができる。
或いは本発明の磁気コアは、磁気コア内を周回する磁路に沿って内設するようにして連通された空洞部と、この空洞部に封入されて前記磁気コアに生じた熱を受け取る流体とを備えることを特徴としている。
In order to achieve the above-described object, the magnetic core according to the present invention is characterized by being produced by mixing a predetermined magnetic material such as ferrite with a high thermal conductive material having higher thermal conductivity than the magnetic material.
In this magnetic core, a material having high heat conduction characteristics is added to the material of the magnetic core and dispersed in the core, thereby improving the heat conduction characteristics.
Alternatively, the magnetic core according to the present invention is characterized in that the content of the high heat conductive material in the vicinity of the winding wound around the magnetic core is higher than that of the other magnetic core.
Preferably, the high thermal conductive material includes at least one of copper and aluminum.
The above-described magnetic core can efficiently dissipate heat from the central portion to the outer peripheral portion by including, for example, copper or aluminum as a material having a high thermal conductivity in the high temperature portion.
Alternatively, the magnetic core of the present invention includes a cavity portion that communicates with a magnetic path that circulates in the magnetic core, and a fluid that is enclosed in the cavity portion and receives heat generated in the magnetic core. It is characterized by having.

上述の磁気コアは、磁気コア内に空洞を設けて温度によって密度が変化する水等の流体を空洞部に封入し、磁気コア中心部と外周部との間の温度勾配によって流体を対流させて磁気コア中心部と外周部との間での熱伝達を向上させる。そして磁気コア中心部と外周部との温度差を抑える。
好ましくは前記空洞部は、前記磁気コアに捲き回されて取り付けられる巻線の近傍における断面積を他の部位より狭め、かつ複数の空洞を設けることが望ましい。
上述の磁気コアは、磁気コアに捲き回されて取り付けられる巻線の近傍(磁気コア中心部)のような他の部位(磁気コア外周部)に比べて高温部となる箇所では空洞径を小さく、かつ空洞の数を多くすることで、磁気コア中心部と外周部との間での効率的な熱伝達を行うことができ、それ故、磁気コア中心部と外周部との温度差が抑えられる。
或いは本発明の磁気コアは、上述した方法を適宜組み合わせることで、コア中心部と外周部との間での熱伝達を向上させることができる。
The magnetic core described above provides a cavity in the magnetic core and encloses a fluid such as water whose density changes with temperature in the cavity, and causes the fluid to convect by a temperature gradient between the center and the outer periphery of the magnetic core. Heat transfer between the magnetic core center and the outer periphery is improved. And the temperature difference of a magnetic core center part and an outer peripheral part is suppressed.
Preferably, the hollow portion is provided with a plurality of cavities in which a cross-sectional area in the vicinity of a winding wound around and attached to the magnetic core is narrower than other portions.
The above-mentioned magnetic core has a smaller cavity diameter at a portion that becomes a high temperature portion than the other portion (magnetic core outer peripheral portion) such as the vicinity of the winding wound around the magnetic core (magnetic core central portion). In addition, by increasing the number of cavities, efficient heat transfer can be performed between the magnetic core central portion and the outer peripheral portion, and therefore the temperature difference between the magnetic core central portion and the outer peripheral portion is suppressed. It is done.
Or the magnetic core of this invention can improve the heat transfer between a core center part and an outer peripheral part by combining the method mentioned above suitably.

上述したように本発明の磁気コアは、熱伝導特性を高めているので磁気コア中心部などに生ずる局所的な高温部を効果的に冷却することができる。したがって本発明の磁気コアを用いた電力変換機器は、鉄損や銅損を低減して高効率で、しかも絶縁物の劣化を抑え、安全に作動させることが可能となる。
また本発明の磁気コアは、磁気コア内の温度勾配を低減し、温度分布を均一化させることができる。これによって本発明の磁気コアを用いた電力変換機器は、磁気部品や冷却部品を小形・軽量化することができ、引いては機器の低コスト化、低損失化することが可能となる等の実用上多大なる効果を奏する。
As described above, since the magnetic core of the present invention has improved heat conduction characteristics, it is possible to effectively cool a local high temperature portion generated in the central portion of the magnetic core. Therefore, the power conversion device using the magnetic core according to the present invention can be operated safely by reducing iron loss and copper loss with high efficiency and suppressing deterioration of the insulator.
The magnetic core of the present invention can reduce the temperature gradient in the magnetic core and make the temperature distribution uniform. As a result, the power conversion device using the magnetic core according to the present invention can reduce the size and weight of the magnetic component and the cooling component, thereby reducing the cost and loss of the device. There is a great practical effect.

以下、本発明の一実施形態に係る磁気コアについて図面を参照しながら説明する。尚、図1〜図5は、本発明の一実施形態に係る磁気コアを説明するための図であって、これらの図によって本発明が限定されるものではない。
<実施例1>
さて、図1は、本発明の磁気コアが適用された変圧器の構造を示す斜視図であり、図2は、その断面図である。これらの図において10は、例えばよく知られている二組のEEタイプの磁気コアであり、2は、この磁気コアに捲き回された巻線を示している。
概略的には上述したように構成された本発明の磁気コアが特徴とするところは、フェライト等の磁性材にこの磁性材より高い熱伝導特性を有する例えば銅、アルミニウム等の高い熱伝導特性を有する高熱伝導材を混入して磁気コア(高熱伝導材含有)10生成した点にある。
より具体的には、磁気コアの主構成材料であるフェライト等の磁性材料に銅、アルミニウム、或いはその他、高熱伝導特性を有する材料の粉末を単独或いは複数混入させ、それを成形して焼結等を行い、例えば変圧器等の電力変換機器に適した磁気コア(高熱伝導材含有)10を作成する。
Hereinafter, a magnetic core according to an embodiment of the present invention will be described with reference to the drawings. 1-5 is a figure for demonstrating the magnetic core which concerns on one Embodiment of this invention, Comprising: These figures do not limit this invention.
<Example 1>
FIG. 1 is a perspective view showing the structure of a transformer to which the magnetic core of the present invention is applied, and FIG. 2 is a sectional view thereof. In these drawings, reference numeral 10 denotes, for example, two well-known EE type magnetic cores, and reference numeral 2 denotes a winding wound around the magnetic cores.
In general, the magnetic core of the present invention configured as described above is characterized in that a magnetic material such as ferrite has higher heat conduction characteristics than this magnetic material, such as copper and aluminum. It is in the point which mixed the high heat conductive material which has and produced | generated the magnetic core (high heat conductive material containing) 10.
More specifically, magnetic material such as ferrite, which is the main constituent material of the magnetic core, is mixed with copper, aluminum, or other powders of materials having high thermal conductivity characteristics, and is molded and sintered. Then, for example, a magnetic core (containing a high thermal conductivity material) 10 suitable for power conversion equipment such as a transformer is created.

このように構成された本発明の磁気コアは、磁気コアの主構成材料(例えばフェライト等の磁性材料)よりも高い熱伝導特性を持った異種材料を混入して磁気コア(高熱伝導材含有)10を生成しているので従来の磁気コアに比べて熱伝導特性を向上させることができる。したがって本発明の磁気コアは、最も温度上昇する磁気コア(高熱伝導材含有)10中心近傍の熱を効率的に磁気コアの全体へ分散させることができ、更には磁気コアの外周部分での熱放散による冷却と相まって効果的に温度上昇を抑制することが可能となる。
<実施例2>
次に本発明の実施例2に係る磁気コアについて図3に示した変圧器の断面図を参照しながら説明する。
この実施例2が上述した実施例1と異なるところは、高熱伝導材を混入して生成された磁気コア(高熱伝導材含有)10に巻線2が捲き回された近傍、すなわち磁気コアの温度が最も上昇する中足部10aにおける熱伝導特性を向上させるため、中足部10aに高熱伝導材をより多く含有させて磁気コアを生成した点にある。
このように構成された本発明の実施例2に係る磁気コアは、より効果的に磁気コア(高熱伝導材含有)10中心部近傍の熱をこの磁気コア全体へ分散させることができる。更に本発明の実施例2に係る磁気コアは、磁気コア(高熱伝導材含有)10の外周部分での熱放散による冷却と相まって効果的に温度上昇を抑制することが可能となる。
<実施例3>
次に本発明の実施例3に係る磁気コアについて図4に示した変圧器の断面図を参照しながら説明する。なお、実施例3における磁気コアは、上述した実施例1,2に示したように高熱伝導材を混入して生成したものでもよいし、従来の磁気コアと同様な材質で生成したものでもかまわない。ここでは、従来の磁気コアと同質の磁性材(例えば、フェライト)で生成された磁気コア1として便宜的に説明する。
The magnetic core of the present invention configured in this way is mixed with a different kind of material having a higher thermal conductivity than the main constituent material of the magnetic core (for example, a magnetic material such as ferrite) to contain the magnetic core (containing a high thermal conductivity material). Therefore, the heat conduction characteristics can be improved as compared with the conventional magnetic core. Therefore, the magnetic core of the present invention can efficiently dissipate the heat in the vicinity of the center of the magnetic core (containing the high thermal conductivity material) 10 where the temperature rises most, and further, the heat in the outer peripheral portion of the magnetic core The temperature rise can be effectively suppressed in combination with the cooling by the diffusion.
<Example 2>
Next, a magnetic core according to a second embodiment of the present invention will be described with reference to a cross-sectional view of the transformer shown in FIG.
The difference between the second embodiment and the first embodiment described above is that the vicinity of the winding 2 being wound around the magnetic core (containing the high thermal conductivity material) 10 produced by mixing the high thermal conductivity material, that is, the temperature of the magnetic core. In order to improve the heat conduction characteristics in the middle foot portion 10a where the temperature rises the most, the magnetic core is generated by adding more high heat conductive material to the middle foot portion 10a.
The magnetic core according to the second embodiment of the present invention configured as described above can more effectively disperse the heat in the vicinity of the central portion of the magnetic core (containing a high thermal conductive material) 10 throughout the magnetic core. Furthermore, the magnetic core according to the second embodiment of the present invention can effectively suppress the temperature rise in combination with the cooling due to heat dissipation at the outer peripheral portion of the magnetic core (containing a high thermal conductivity material) 10.
<Example 3>
Next, a magnetic core according to Embodiment 3 of the present invention will be described with reference to the cross-sectional view of the transformer shown in FIG. The magnetic core in the third embodiment may be produced by mixing a high thermal conductive material as shown in the first and second embodiments, or may be produced by using the same material as the conventional magnetic core. Absent. Here, the magnetic core 1 made of the same magnetic material as the conventional magnetic core (for example, ferrite) will be described for convenience.

この実施例が上述した実施例1,2と異なるところは、磁気コア1の内部に磁気コア1内を周回して連通するように設けた空洞部20と、この空洞部に封入されて、電磁誘導によって磁気コア1に生じた熱を吸収する流体21を設けた点にある。
この流体21としては、例えば水などのように温度差によって密度差が生じることで対流を起こすような流体が望ましい。
さて図4に示す変圧器の断面図において巻線2が捲き回される磁気コア1の中足部1aにおける断面方向中心部は、最も温度上昇の著しい箇所である。一方、冷却が効果的に起こるのは磁気コア1の外周部1bである。このため磁気コア1の中足部1aの中心部と外周部1bとの間には温度勾配が生じ、流体21が矢印で示した経路のように対流する。
かくして本発明の実施例3に係る磁気コアは、磁気コア1における中心部の熱を磁気コア1全体へ分散させることができ、外周部1bでの熱放散による冷却よって磁気コア1の温度上昇を効果的に抑制することができる。
<実施例4>
次に本発明の実施例4に係る磁気コアについて図5に示した変圧器の断面図を参照しながら説明する。この実施例が上述した実施例3と異なるところは、磁気コア1の中足部1aのように最も温度上昇が生じる磁気コア1の中心部近傍において、空洞部20の径を小さく、かつ空洞部20の本数を多く設けた点にある。
This embodiment differs from the first and second embodiments described above in that a hollow portion 20 is provided inside the magnetic core 1 so as to circulate around the magnetic core 1 and is enclosed in the hollow portion. The fluid 21 absorbs heat generated in the magnetic core 1 by induction.
The fluid 21 is preferably a fluid that causes convection due to a density difference caused by a temperature difference, such as water.
Now, in the cross-sectional view of the transformer shown in FIG. 4, the central portion in the cross-sectional direction of the middle leg 1 a of the magnetic core 1 around which the winding 2 is wound is the place where the temperature rise is most remarkable. On the other hand, cooling occurs effectively in the outer peripheral portion 1b of the magnetic core 1. For this reason, a temperature gradient is generated between the center portion of the middle leg portion 1a of the magnetic core 1 and the outer peripheral portion 1b, and the fluid 21 convects as shown by a path indicated by an arrow.
Thus, the magnetic core according to the third embodiment of the present invention can dissipate the heat of the central portion of the magnetic core 1 throughout the magnetic core 1 and increase the temperature of the magnetic core 1 by cooling due to heat dissipation in the outer peripheral portion 1b. It can be effectively suppressed.
<Example 4>
Next, a magnetic core according to Embodiment 4 of the present invention will be described with reference to a cross-sectional view of the transformer shown in FIG. This embodiment differs from the third embodiment described above in that the diameter of the cavity 20 is small and the cavity is close to the center of the magnetic core 1 where the temperature rises most like the middle leg 1a of the magnetic core 1. The number of 20 is provided.

このように構成された本発明の実施例4に係る磁気コアは、磁気コア1の中足部1aに生じた熱を磁気コア1全体へより効率的に分散させることができ、外周部1bでの熱放散による冷却と相まって温度上昇を効果的に抑制することができる。
尚、上述した実施例1〜4については、磁気コア1の冷却によってその鉄損が最少になる温度(例えば図6に示した温度T1)を維持して作動するように設定すれば磁気コア1の損失をより低減させることができ、更には磁気コア1の最も温度が高くなる中足部1a近傍の温度を下げることが可能となり巻線2の銅損を低減させることができる。
或いは、本発明の磁気コア1は、上述した実施例1〜4を適宜組み合わせて実施しても勿論かまわない。
このように本発明の磁気コアは、力率改善回路やDC−DCコンバータ、UPSおよびインバータなどの電力変換装置に用いられる変圧器やリアクトル、回転機器などの電力変換機器に適用される磁気部品として用いることで温度上昇を効果的に抑制しながら電力変換装置の効率を向上することができる等の実用上多大なる効果を奏する。
尚、本発明の磁気コアは、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもかまわない。
The magnetic core according to the fourth embodiment of the present invention configured as described above can more efficiently disperse the heat generated in the middle leg portion 1a of the magnetic core 1 to the entire magnetic core 1, and at the outer peripheral portion 1b. The temperature rise can be effectively suppressed in combination with cooling by heat dissipation.
In the first to fourth embodiments described above, if the magnetic core 1 is set to operate while maintaining the temperature at which the iron loss is minimized by cooling the magnetic core 1 (for example, the temperature T1 shown in FIG. 6), the magnetic core 1 Loss can be further reduced, and furthermore, the temperature in the vicinity of the middle leg portion 1a where the temperature of the magnetic core 1 becomes highest can be lowered, and the copper loss of the winding 2 can be reduced.
Alternatively, the magnetic core 1 of the present invention may of course be implemented by appropriately combining the above-described Examples 1 to 4.
As described above, the magnetic core of the present invention is a magnetic component applied to power conversion devices such as transformers, reactors, and rotating devices used in power conversion devices such as power factor correction circuits, DC-DC converters, UPSs, and inverters. By using it, there is a practically great effect that the efficiency of the power conversion device can be improved while effectively suppressing the temperature rise.
The magnetic core of the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the gist of the present invention.

本発明の実施例1に係る磁気コアを用いた変圧器の構造を示す斜視図。The perspective view which shows the structure of the transformer using the magnetic core which concerns on Example 1 of this invention. 図1に示す変圧器の断面図。Sectional drawing of the transformer shown in FIG. 本発明の実施例2に係る磁気コアを用いた変圧器の構造を示す断面図。Sectional drawing which shows the structure of the transformer using the magnetic core which concerns on Example 2 of this invention. 本発明の実施例3に係る磁気コアを用いた変圧器の構造を示す断面図。Sectional drawing which shows the structure of the transformer using the magnetic core which concerns on Example 3 of this invention. 本発明の実施例4に係る磁気コアを用いた変圧器の構造を示す断面図。Sectional drawing which shows the structure of the transformer using the magnetic core which concerns on Example 4 of this invention. 変圧器の鉄損および銅損の温度依存性を示したグラフ。The graph which showed the temperature dependence of the iron loss and copper loss of a transformer.

符号の説明Explanation of symbols

2 巻線
10 磁気コア(高熱伝導材含有)
20 空洞部
21 流体
2 Winding 10 Magnetic core (Contains high thermal conductivity material)
20 Cavity 21 Fluid

Claims (5)

所定の磁性材にこの磁性材よりも高い熱伝導特性を有する高熱伝導材を混入して生成したことを特徴とする磁気コア。   A magnetic core produced by mixing a predetermined magnetic material with a high thermal conductivity material having higher thermal conductivity than the magnetic material. 前記磁気コアは、該磁気コアに捲き回されて取り付けられる巻線の近傍における前記高熱伝導材の含有率を他の前記磁気コアの部位より高めたことを特徴とする請求項1に記載の磁気コア。   2. The magnetism according to claim 1, wherein the magnetic core has a higher content of the high heat conductive material in the vicinity of a winding wound around the magnetic core than that of the other magnetic core. core. 前記高熱伝導材は、銅またはアルミニウムの少なくとも一方を含むことを特徴とする請求項1または2に記載の磁気コア。   The magnetic core according to claim 1, wherein the high thermal conductive material includes at least one of copper and aluminum. 電磁誘導によって電力を変換する電力変換機器に適用される磁気コアであって、
前記磁気コアは、該磁気コア内を周回する磁路に沿って内設して連通された空洞部と、
この空洞部に封入されて、前記磁気コアに生じた熱を受け取る流体と
を備えることを特徴とする磁気コア。
A magnetic core applied to a power conversion device that converts power by electromagnetic induction,
The magnetic core includes a hollow portion provided in communication along a magnetic path that circulates in the magnetic core; and
A magnetic core comprising: a fluid that is sealed in the hollow portion and receives heat generated in the magnetic core.
前記空洞部は、前記磁気コアに捲き回されて取り付けられる巻線の近傍における断面積を他の部位より狭め、かつ複数の空洞としたものである請求項4に記載の磁気コア。   5. The magnetic core according to claim 4, wherein the hollow portion has a plurality of cavities with a cross-sectional area in the vicinity of a winding wound around and attached to the magnetic core narrower than other portions.
JP2008000316A 2008-01-07 2008-01-07 Magnetic core Withdrawn JP2009164326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000316A JP2009164326A (en) 2008-01-07 2008-01-07 Magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000316A JP2009164326A (en) 2008-01-07 2008-01-07 Magnetic core

Publications (1)

Publication Number Publication Date
JP2009164326A true JP2009164326A (en) 2009-07-23

Family

ID=40966608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000316A Withdrawn JP2009164326A (en) 2008-01-07 2008-01-07 Magnetic core

Country Status (1)

Country Link
JP (1) JP2009164326A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235051A (en) * 2011-05-09 2012-11-29 Nec Tokin Corp Coil component
JP2015230914A (en) * 2014-06-03 2015-12-21 日産自動車株式会社 Transformer
KR20160021204A (en) * 2013-06-14 2016-02-24 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Annular Cooling Fluid Passage for Magnets
RU2715821C1 (en) * 2019-05-17 2020-03-03 Владимир Андреевич Коровин Apparatus for absorbing braking energy of machine with electric drive
CN113192742A (en) * 2021-04-29 2021-07-30 安徽瑞德磁电科技有限公司 Preparation method of soft magnetic powder core with built-in cooling mechanism
CN113192715A (en) * 2021-04-29 2021-07-30 安徽瑞德磁电科技有限公司 Soft magnetic powder core with cold water pipe and preparation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235051A (en) * 2011-05-09 2012-11-29 Nec Tokin Corp Coil component
KR20160021204A (en) * 2013-06-14 2016-02-24 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Annular Cooling Fluid Passage for Magnets
JP2016521913A (en) * 2013-06-14 2016-07-25 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Magnets and ion devices used in ion devices
KR102161231B1 (en) * 2013-06-14 2020-10-05 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Magnet for use with ion apparatus and ion apparatus
JP2015230914A (en) * 2014-06-03 2015-12-21 日産自動車株式会社 Transformer
RU2715821C1 (en) * 2019-05-17 2020-03-03 Владимир Андреевич Коровин Apparatus for absorbing braking energy of machine with electric drive
CN113192742A (en) * 2021-04-29 2021-07-30 安徽瑞德磁电科技有限公司 Preparation method of soft magnetic powder core with built-in cooling mechanism
CN113192715A (en) * 2021-04-29 2021-07-30 安徽瑞德磁电科技有限公司 Soft magnetic powder core with cold water pipe and preparation method

Similar Documents

Publication Publication Date Title
US7369024B2 (en) Compact dry transformer
US8928441B2 (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
JP2009164326A (en) Magnetic core
WO2014103298A1 (en) Reactor
JP6318874B2 (en) Reactor
JP4775108B2 (en) Power electronics
US20130293330A1 (en) Magnetic device having thermally-conductive bobbin
JP2008041882A (en) Reactor
KR20030007530A (en) A stationary induction machine and a cable therefor
WO2021196961A1 (en) Inductor and electronic device
KR20110090736A (en) Transformer
WO2016136421A1 (en) Transformer and electric power conversion device
JP2006294787A (en) Reactor
EP2568484B1 (en) Electro-magnetic device having a polymer housing
JP2020141013A (en) Winding device
CN209993450U (en) Inductor easy to radiate heat
JP7224941B2 (en) static induction electric machine
JP2008186904A (en) Reactor and air conditioner
WO2019044835A1 (en) Heat-sink-mounted inductor
JP2016036219A (en) DC-DC converter
WO2017159010A1 (en) Heat dissipation structure of coil part, and coil part used therefor
KR100664509B1 (en) Shell-type transformer and manufacture method
JP2010093014A (en) Thin coil and power supply using the same
JP2023183136A (en) Stationary induction machine
JP2014078665A (en) Inductance component

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Effective date: 20091214

Free format text: JAPANESE INTERMEDIATE CODE: A761