JP5875760B2 - Wire ring parts - Google Patents
Wire ring parts Download PDFInfo
- Publication number
- JP5875760B2 JP5875760B2 JP2010279982A JP2010279982A JP5875760B2 JP 5875760 B2 JP5875760 B2 JP 5875760B2 JP 2010279982 A JP2010279982 A JP 2010279982A JP 2010279982 A JP2010279982 A JP 2010279982A JP 5875760 B2 JP5875760 B2 JP 5875760B2
- Authority
- JP
- Japan
- Prior art keywords
- coil
- transfer member
- heat transfer
- heat
- wire ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012546 transfer Methods 0.000 claims description 92
- 230000002093 peripheral effect Effects 0.000 claims description 29
- 239000006247 magnetic powder Substances 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 4
- 230000017525 heat dissipation Effects 0.000 description 16
- 239000002131 composite material Substances 0.000 description 8
- 230000005855 radiation Effects 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 229910002796 Si–Al Inorganic materials 0.000 description 1
- 229910008423 Si—B Inorganic materials 0.000 description 1
- 229910008458 Si—Cr Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Coils Of Transformers For General Uses (AREA)
- Transformer Cooling (AREA)
Description
本発明は、軟磁性コアにコイルを施した線輪部品に関する。 The present invention relates to a wire ring component in which a coil is applied to a soft magnetic core.
絶縁樹脂の中に磁性体の粉末が分散した磁性粉末混合樹脂からなるコアに、通電により磁束が発生するコイルが埋設され、コアよりも熱伝導率が高い材料からなる板状の放熱フィンが、コア内に複数個、中心から放射状となるようにコア内に設けることで、コイルから発生した熱を効果的に冷却するリアクトルの技術が特許文献1に開示されている。
In a core made of a magnetic powder mixed resin in which magnetic powder is dispersed in an insulating resin, a coil that generates a magnetic flux when energized is embedded, and a plate-like radiating fin made of a material having a higher thermal conductivity than the core,
特許文献1に記載された従来の技術では、コイルの熱を伝えるために、板状の放熱フィンを用いていたが、放熱フィンとコイル間の接触が安定しておらず、コイルから熱が充分伝わらない場合があった。
In the conventional technique described in
すなわち、リアクトルの中心から放射状に放熱フィンを配置した場合、全ての放熱フィンとコイルの間を接触させるのは困難であり、放熱フィンとコイルの間に隙間が空いてしまうと、伝熱効率が低下してしまうという課題があった。 That is, when radiating fins are arranged radially from the center of the reactor, it is difficult to make contact between all the radiating fins and the coil, and if there is a gap between the radiating fins and the coil, the heat transfer efficiency decreases. There was a problem of doing it.
従って、本発明の目的は、コイルからの放熱を確実に、かつ効率よく行うことのできる線輪部品を提供することにある。 Accordingly, an object of the present invention is to provide a wire ring component that can reliably and efficiently perform heat dissipation from a coil.
軟磁性粉の結合体である軟磁性コアと、巻きの中心軸を持つコイルと、内側に凹部が設けられた伝熱部材を備え、前記伝熱部材の前記凹部内に前記軟磁性コアが配され、前記コイルの少なくとも一部は前記軟磁性コア内に埋設され、前記中心軸を含む一つの平面を基準面としたとき、前記断面内における前記中心軸から引き出された直線が、前記基準面に対してなす角度W以下となる条件を満たす領域で前記伝熱部材は前記コイル外周面と接し、前記角度Wは2度以上90度以下であることを特徴とする線輪部品により上記課題を解決することができる。 A soft magnetic core, which is a combination of soft magnetic powders, a coil having a central axis of winding, and a heat transfer member provided with a recess inside, the soft magnetic core being disposed in the recess of the heat transfer member. And at least a part of the coil is embedded in the soft magnetic core, and when a single plane including the central axis is used as a reference plane, a straight line drawn from the central axis in the cross section is the reference plane. In the region satisfying the condition that the angle W is less than or equal to the angle W, the heat transfer member is in contact with the outer peripheral surface of the coil, and the angle W is not less than 2 degrees and not more than 90 degrees. Can be solved.
コイルと伝熱部材はある程度広い面積に渡って近接、望ましくは可能な限り密接に接触させておいたほうが、例え軟磁性コア内部で発生した熱であっても、格段に熱伝導率の高い、内部のコイルと伝熱部材を経由して、効率的に熱を分散させることができる。 It is better to keep the coil and heat transfer member close to each other over a certain area, preferably as close as possible, even if the heat generated inside the soft magnetic core has much higher thermal conductivity. Heat can be efficiently dispersed via the internal coil and the heat transfer member.
なお、前記伝熱部材は一体成形品であっても良い。 The heat transfer member may be an integrally molded product.
また、前記角度Wは15度以上90度以下であることが望ましく、前記角度Wは15度以上30度以下であると、さらに望ましい。 The angle W is preferably 15 degrees or greater and 90 degrees or less, and more preferably 15 degrees or greater and 30 degrees or less.
また、前記領域において、前記伝熱部材と前記コイルの中心軸方向における端面の少なくとも一部とが接していても良い。 Moreover, in the said area | region, the said heat-transfer member and at least one part of the end surface in the center axis direction of the said coil may be in contact.
また、放熱手段をさらに備え、前記放熱手段は前記伝熱部材の外面のうち、前記コイルと前記伝熱部材が接する部分の対向部に設置されていても良い。 Moreover, a heat radiating means may be further provided, and the heat radiating means may be installed on an outer surface of the heat transfer member at a facing portion where the coil and the heat transfer member are in contact with each other.
また、前記放熱手段は前記伝熱部材の外面のうち、前記コイル外周面と対向する面に設置され、前記基準面は前記放熱手段の中心と前記中心軸を含む平面であっても良い。 The heat dissipating means may be installed on a surface of the outer surface of the heat transfer member facing the outer peripheral surface of the coil, and the reference surface may be a plane including the center of the heat dissipating means and the central axis.
また、前記コイルと前記伝熱部材との間の前記軟磁性コアの厚さは、前記領域近傍の前記厚さが前記コイル全周における前記厚さの平均値よりも厚くても良い。 Further, the thickness of the soft magnetic core between the coil and the heat transfer member may be such that the thickness in the vicinity of the region is larger than the average value of the thickness in the entire circumference of the coil.
また、前記コイルは前記領域における前記コイルと前記伝熱部材が接する部分に押圧されていても良い。 Further, the coil may be pressed against a portion of the region where the coil and the heat transfer member are in contact.
また、前記押圧は、前記コイル外周面における前記領域と対向する部位に設けられた押圧手段によりなされても良い。 Further, the pressing may be performed by pressing means provided at a portion of the outer peripheral surface of the coil facing the region.
また、前記領域において、前記伝熱部材と前記コイルの内周面の少なくとも一部とが接していても良い。 Moreover, in the said area | region, the said heat-transfer member and at least one part of the internal peripheral surface of the said coil may be in contact.
本発明によって、コイルからの放熱を確実に、かつ効率よく行うことのできる線輪部品を提供できる。 According to the present invention, it is possible to provide a wire ring component that can reliably and efficiently perform heat dissipation from a coil.
本発明は、軟磁性粉の結合体である軟磁性コアと、巻きの中心軸を持つコイルと、内側に凹部が設けられた伝熱部材を備え、伝熱部材の凹部内に軟磁性コアが配され、コイルの少なくとも一部は軟磁性コア内に埋設され、中心軸を含む一つの平面を基準面としたとき、断面内における中心軸から引き出された直線が、基準面に対してなす角度W以下となる条件を満たす領域で伝熱部材はコイル外周面と接し、角度Wは2度以上90度以下である線輪部品により実現される。 The present invention includes a soft magnetic core that is a combination of soft magnetic powders, a coil having a central axis of winding, and a heat transfer member having a recess on the inside, and the soft magnetic core is in the recess of the heat transfer member. The angle formed by the straight line drawn from the central axis in the cross section with respect to the reference plane when at least a part of the coil is embedded in the soft magnetic core and a single plane including the central axis is used as the reference plane. The heat transfer member is in contact with the outer peripheral surface of the coil in a region that satisfies the condition of W or less, and is realized by a wire ring component having an angle W of 2 degrees to 90 degrees.
なお、伝熱部材はコイルと接する部分が別部材により構成されていても良い。 In addition, as for the heat-transfer member, the part which contact | connects a coil may be comprised by another member.
コイルへの通電電流により生じる軟磁性コア及びコイル内部の熱は、コイル外周面から直接放熱すれば最も効果があり、同時に、放熱部材を分散配置するよりも、放熱部材を集中させることで、確実にコイルの熱が放熱部材に伝達される。 The soft magnetic core and the heat inside the coil generated by the energization current to the coil are most effective if the heat is radiated directly from the outer peripheral surface of the coil. At the same time, the heat radiating members are concentrated rather than dispersedly arranged. The heat of the coil is transmitted to the heat radiating member.
すなわち、軟磁性コアは結合剤を含有しているため、高々3W/(m・K)程度の熱伝導率しか無いのに対して、コイルや伝熱部材の材質として銅を用いた場合は約400W/(m・K)、アルミニウムを用いた場合は約200W/(m・K)と、格段に熱伝導率が高く、コイルと伝熱部材はある程度広い面積に渡って、可能な限り密接に接触させておいたほうが、例え軟磁性コア内部で発生した熱であっても、格段に熱伝導率の高い、内部のコイルと伝熱部材を経由して、効率的に熱を分散させることができる。 In other words, since the soft magnetic core contains a binder, it has a thermal conductivity of only about 3 W / (m · K) at most, whereas when copper is used as the material of the coil or heat transfer member, it is about 400W / (m · K), about 200W / (m · K) when aluminum is used, the heat conductivity is remarkably high, and the coil and heat transfer member are as close as possible over a wide area. Even if it is the heat generated inside the soft magnetic core, it is possible to disperse the heat more efficiently through the internal coil and heat transfer member, which has a much higher thermal conductivity. it can.
なお、伝熱部材がコイル外周面と接する部分を含めて、さらには伝熱部材全体が一体成形品であれば、接合部で熱伝導率を損なうことが無いため、より望ましい。 In addition, if the heat transfer member including the portion where the heat transfer member is in contact with the outer peripheral surface of the coil, and the entire heat transfer member are integrally formed, it is more desirable because the heat conductivity is not impaired at the joint.
さらに、角度Wは15度以上90度以下であることが望ましく、また、角度Wは15度以上30度以下であることがより望ましい。 Furthermore, the angle W is desirably 15 degrees or more and 90 degrees or less, and the angle W is more desirably 15 degrees or more and 30 degrees or less.
角度Wは2度以上で放熱効果に向上が認められ、15度以上になると放熱効果が著しく向上する。またインダクタンス特性への影響を懸念する場合は、90度以下、さらには30度以下に限定する。 When the angle W is 2 degrees or more, an improvement in the heat dissipation effect is recognized, and when the angle W is 15 degrees or more, the heat dissipation effect is remarkably improved. If there is a concern about the influence on the inductance characteristics, the angle is limited to 90 degrees or less, and further to 30 degrees or less.
また、コイルの中心軸方向における端面からも放熱部材に熱を伝達することができるため、上記領域において、伝熱部材とコイルの中心軸方向における端面の少なくとも一部とが接していても良い。 In addition, since heat can be transferred from the end face in the central axis direction of the coil to the heat radiating member, the heat transfer member and at least a part of the end face in the central axis direction of the coil may be in contact with each other.
なお、放熱手段をさらに備え、放熱手段は伝熱部材の外面のうち、コイルと伝熱部材が接する部分の対向部に設置されていると、コイルから放熱手段へ熱を伝える伝熱部材内部の経路が短くなり、コイルから伝熱部材を介して効率的に熱を排出することができるため、望ましい。 The heat dissipating means is further provided, and the heat dissipating means is disposed on the outer surface of the heat transfer member at the opposite portion of the portion where the coil and the heat transfer member are in contact with each other. This is desirable because the path is shortened and heat can be efficiently discharged from the coil via the heat transfer member.
また、放熱手段は伝熱部材の外面のうち、コイル外周面と対向する面に設置され、基準面は放熱手段の中心と中心軸を含む平面であれば、コイルと伝熱部材の接する領域の中心に放熱手段を配置することになるため、コイルから放熱手段へ熱を伝える伝熱部材内部の経路がより短くなり、より効率的に熱を排出することができるため、望ましい。 Further, the heat dissipating means is installed on the outer surface of the heat transfer member facing the outer peripheral surface of the coil, and the reference surface is a plane including the center of the heat dissipating means and the central axis. Since the heat dissipating means is arranged at the center, the path inside the heat transfer member for transferring heat from the coil to the heat dissipating means becomes shorter and heat can be discharged more efficiently, which is desirable.
なお、コイルと伝熱部材との間の軟磁性コアの厚さは、領域近傍の厚さがコイル全周の厚さの平均値よりも厚くすることが望ましい。 In addition, as for the thickness of the soft magnetic core between the coil and the heat transfer member, it is desirable that the thickness in the vicinity of the region is larger than the average value of the thickness of the entire circumference of the coil.
すなわち、伝熱部材が接する部分のコイルにより誘起された磁束は、軟磁性コアに入り込めないので、隣接するコイルの軟磁性コアが厚ければ、軟磁性コアに入り込めなかった磁束を余分に厚い軟磁性コアに入り込ませることができるため。放熱部材との接触部によるインダクタンス低下を防ぐことができる。 That is, the magnetic flux induced by the coil in contact with the heat transfer member cannot enter the soft magnetic core, so if the soft magnetic core of the adjacent coil is thick, the extra magnetic flux that could not enter the soft magnetic core is excessive. Because it can penetrate into a thick soft magnetic core. It is possible to prevent a decrease in inductance due to the contact portion with the heat radiating member.
また、コイルは領域におけるコイルと伝熱部材が接する部分に押圧されていることで、寸法バラツキを吸収、すなわちコイルと伝熱部材との接触を安定化することで、コイルの熱をより確実に伝熱部材に伝達するため、望ましい。 In addition, the coil is pressed against the region where the coil and the heat transfer member are in contact with each other, so that the dimensional variation is absorbed, that is, the contact between the coil and the heat transfer member is stabilized, so that the heat of the coil is more reliably obtained. This is desirable because it is transmitted to the heat transfer member.
押圧は、例えばコイル外周面における領域と対向する部位に設けられた押圧手段によりなされてもよい。 The pressing may be performed, for example, by pressing means provided at a portion facing the region on the outer peripheral surface of the coil.
なお、領域において、伝熱部材とコイルの内周面の少なくとも一部とが接していると、コイル内周面より放熱でき、さらにコイルと伝熱部材間の接触も安定するため、望ましい。 In the region, it is preferable that the heat transfer member and at least a part of the inner peripheral surface of the coil are in contact with each other because heat can be radiated from the inner peripheral surface of the coil and the contact between the coil and the heat transfer member is stabilized.
(実施の形態1)
本発明の実施形態を、図を参照しながら説明する。図1は、本発明における線輪部品のコイルの巻きの中心軸に垂直な断面図である。コイル1は、コイル内周部の軟磁性コア21と、コイル外周部の軟磁性コア22によって埋設されている。ここで、伝熱部材の外面における任意の1点をPとして、コイルの中心軸Cとを含む基準面AAとすると、コイルの中心軸Cから、基準面AAとなす角度がW以下となる領域でコイル外周部と伝熱部材3が接している。
(Embodiment 1)
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view perpendicular to the central axis of coil winding of a wire ring component according to the present invention. The
図1の構成は、予め中央部に窪みを形成した伝熱部材3へ、コイル1の底部にあたる高さになるよう、軟磁性粉と結合剤よりなる複合磁性材を注入して硬化させ、軟磁性コアの一部を形成する。軟磁性コアは、軟磁性粉と液状接着剤よりなる結合剤を配合した液状の複合磁性体を伝熱部材3の窪みへ注入後硬化して形成してもよく、軟磁性粉と粉末状の結合剤よりなる、または軟磁性粉表面に結合剤をコーティングした粉末状の複合磁性体を伝熱部材3の窪みへ入れて加圧硬化して形成してもよく、また、予めコイル1底部を支持する形状に形成した軟磁性コアを伝熱部材3の窪みの中へ入れても良いが、製法はこれに限定されるものではない。例えば、コイルの引き出し導線を支持しながら複合磁性体を入れて硬化させても良い。
In the configuration of FIG. 1, a composite magnetic material composed of soft magnetic powder and a binder is injected into a
次に伝熱部材3の窪みへコイルを入れる。必要に応じ、コイルを伝熱部材へ、熱伝導率の高いフィラーを配合した接着剤などで仮固定すると、コイルと伝熱部材間の熱伝導を確実にできる。さらにコイルの位置決めのための軟磁性コアブロックを必要に応じ入れて、さらに液状または粉末状の複合磁性体を入れ、硬化させることで、コイルを軟磁性コア中に埋設する。
Next, a coil is put into the recess of the
なお、予めコイルを伝熱部材の一部に接着または固定しておき、さらに液状または粉末状の複合磁性体を入れ、硬化させることで、コイルを軟磁性コア中に埋設しても良い。接着には、熱伝導率の高いフィラーを配合した接着剤などを用いると、熱伝導の損失を防ぐことができるため、望ましい。 The coil may be embedded in the soft magnetic core by bonding or fixing the coil to a part of the heat transfer member in advance, and further adding a liquid or powdery composite magnetic material and curing it. For adhesion, it is desirable to use an adhesive containing a filler having a high thermal conductivity because loss of thermal conduction can be prevented.
ここで、軟磁性粉は、Fe−Si、Fe−Si−B、Fe−Si−Al、Fe−Si−Cr等の軟磁性金属粉や、フェライト粉砕粉などが挙げられるが、放熱性が重要視される大電流用途では、軟磁性金属粉が好適に用いられる。 Here, examples of the soft magnetic powder include soft magnetic metal powders such as Fe-Si, Fe-Si-B, Fe-Si-Al, and Fe-Si-Cr, and ferrite pulverized powder. However, heat dissipation is important. Soft magnetic metal powder is preferably used in the high current applications that are seen.
また、結合剤は、液状のエポキシ樹脂を用いた場合に隙間無く充填できるため、放熱性も良く、好適に用いられる。 Moreover, since a binder can be filled without gaps when a liquid epoxy resin is used, it has good heat dissipation and is preferably used.
(実施の形態2)
本発明の別の実施形態を、図を参照しながら説明する。図2は、本発明における線輪部品のコイル中心軸に垂直な断面図である。実施の形態1の構成に、放熱手段4が追加されている。
(Embodiment 2)
Another embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a cross-sectional view perpendicular to the coil central axis of the wire ring component according to the present invention. The heat radiation means 4 is added to the configuration of the first embodiment.
放熱手段4は伝熱部材の外面上に設置され、設置部の中心Hは実施の形態1における基準面AA上の一点Pと一致している。 The heat radiation means 4 is installed on the outer surface of the heat transfer member, and the center H of the installation part coincides with a point P on the reference plane AA in the first embodiment.
このような配置にすることで、コイル及び軟磁性コアで発生した熱は、最短経路である図2中の熱流路Tすなわち、コイル内部、伝熱部材との接触部、伝熱部材を経由して放熱手段4より熱が排出される。 With this arrangement, the heat generated in the coil and the soft magnetic core passes through the heat flow path T in FIG. 2, which is the shortest path, that is, the inside of the coil, the contact portion with the heat transfer member, and the heat transfer member. Thus, heat is discharged from the heat radiating means 4.
(実施の形態3)
本発明の別の実施形態を、図を参照しながら説明する。図6は、本発明における線輪部品のコイル中心軸と放熱手段の中心を含む断面図である。コイル1は伝熱部材31により内周面から、伝熱部材32により底部から、それぞれ支持されている。伝熱部材31の頂上部は、コイル1内周面に対して滑らかな曲面を設けると、コイル1を設置する際に伝熱部材31とコイル1内周面との衝突を確実に防ぐことができるため、望ましい。
(Embodiment 3)
Another embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a cross-sectional view including the coil central axis of the wire ring component and the center of the heat dissipating means in the present invention. The
(実施の形態4)
本発明の別の実施形態を、図を参照しながら説明する。図7は、本発明における線輪部品のコイル中心軸と放熱手段の中心を含む断面図である。コイル1における伝熱部材3との接触する外周面と対向する外周面に弾性部材51、52を設置して、コイル1を伝熱部材3に向けて押圧し、コイル1と伝熱部材3を確実に接触させることで、コイル1の熱を確実に伝熱部材3へ伝達させる。
(Embodiment 4)
Another embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a cross-sectional view including the coil central axis of the wire ring component and the center of the heat dissipating means in the present invention. The
弾性部材としては、弾性部材51のような弾力性のあるゴム等を用いても良く、弾性部材52のようなくの字状の板ばねを用いても良い。図7中では弾性部材51、52を両方とも設置しているが、どちらか一方でも良い。
As the elastic member, elastic rubber such as the
なお弾性部材51は、コイルを伝熱部材に設置する前に伝熱部材内壁面に予め接触配置させてもよく、コイルを伝熱部材に設置した後にコイル外周面と伝熱部材内壁面の間に挿入してもよい。
The
また弾性部材52は、コイルを伝熱部材に設置した後にコイル外周面と伝熱部材内壁面の間に挿入するほうが作業性も良く望ましいが、くの字の向きを上下逆にすることで、コイルを伝熱部材に設置する前に伝熱部材内壁面に予め接着または固定させておいても良い。なお弾性部材は、くの字状の板ばねに限らず、くの字を2つ組み合わせた菱形の板ばねでも良く、もちろんコイルばね等各種のばねでも良い。
In addition, it is preferable that the
図8は、本発明における線輪部品のコイル中心軸に垂直な断面図である。板ばね53をコイル1における伝熱部材3との接触する外周面と対向する外周面から押圧するよう配置している。このような構成とすることで、板ばねの材質が金属の場合でも、軟磁性コア内の磁束の流れを阻害することが無い。
FIG. 8 is a cross-sectional view perpendicular to the coil central axis of the wire ring component according to the present invention. The
(実施例1)
実施の形態2の構成で、角度Wと、コイル温度の関係を確認する実験を行った。
Example 1
In the configuration of the second embodiment, an experiment was performed to confirm the relationship between the angle W and the coil temperature.
線輪部品は、図2すなわち実施の形態2の構成である。具体的には、コイルは素線断面が厚さ0.8mm、幅9mmの平角銅線を32ターン、エッジワイズ巻きしたものを用い、伝熱部材は内径93mm、高さ52mmのアルミケースを用い、複合磁性体はFe−6.5%Si材のガスアトマイズ粉末と2液型のエポキシ樹脂とを混合し液状の磁性スラリーとしたものを用い、放熱手段としては、10L/分通水する直方体のアルミ製水冷管を用いた。 The wire ring component has the configuration shown in FIG. Specifically, the coil uses a rectangular copper wire having a wire cross section of 0.8 mm thickness and 9 mm width, 32 turns, edgewise wound, and the heat transfer member uses an aluminum case with an inner diameter of 93 mm and a height of 52 mm. The composite magnetic body is a liquid magnetic slurry prepared by mixing a gas atomized powder of Fe-6.5% Si material and a two-pack type epoxy resin, and the heat radiation means is a rectangular parallelepiped that passes 10 L / min. An aluminum water-cooled tube was used.
上記コイルを伝熱部材内に固定した後、複合磁性体をアルミケースに注型、加熱硬化し線輪部品を作成した。さらに、伝熱部材外面上に、中心が実施の形態1記載の基準面上となるように水冷管を押し当てた状態で、10kHz、60Ap−pの交流電流に直流電流を80A重畳させた電流をコイルに通電し、線輪部品内部のコイルの温度上昇を測定した。 After fixing the coil in the heat transfer member, the composite magnetic body was cast in an aluminum case and heat-cured to produce a wire ring part. Further, a current obtained by superimposing a DC current of 80 A on an AC current of 10 kHz, 60 Ap-p in a state where the water-cooled tube is pressed on the outer surface of the heat transfer member so that the center is on the reference surface described in the first embodiment. The coil was energized and the temperature rise of the coil inside the wire ring part was measured.
図3は、角度Wとコイル温度の関係を示す実験結果の図である。角度Wが0度、すなわちコイルと伝熱部材が接触しない場合のコイル温度を基準として、角度Wを大きくしてコイルと伝熱部材の接触面積が増えた場合のコイル温度との差分を温度低下量としている。 FIG. 3 is a diagram of experimental results showing the relationship between the angle W and the coil temperature. The angle W is 0 degree, that is, the difference between the coil temperature when the contact area between the coil and the heat transfer member is increased by increasing the angle W on the basis of the coil temperature when the coil and the heat transfer member are not in contact with each other is reduced in temperature. Amount.
まず、角度Wが2度を越えると、温度低下量は6Kを超え、大きな放熱効果が認められる。さらに、角度が15度を超えると、温度低下量は20Kを超え、さらに著しい放熱性の向上が認められる。 First, when the angle W exceeds 2 degrees, the temperature drop amount exceeds 6K, and a large heat dissipation effect is recognized. Further, when the angle exceeds 15 degrees, the temperature drop amount exceeds 20K, and a further significant improvement in heat dissipation is recognized.
磁性素子の耐熱温度は用途によりさまざまであるが、発熱による温度上昇が高いほど、長期信頼性は低下するため、放熱性に優れ、温度上昇が小さいことが必要である。 The heat-resistant temperature of the magnetic element varies depending on the application, but the longer the temperature rise due to heat generation, the lower the long-term reliability. Therefore, it is necessary to have excellent heat dissipation and a small temperature rise.
一般の電子部品の耐熱性は例えば80〜150?程度で設計されるが、放熱性が悪く温度上昇が大きい場合、耐熱温度の設計値を満足するためには素子を大きくして損失を低減するなどして温度上昇を抑制せざるを得ず、コスト面、小型化の面で不利なものとなるため、放熱性は重要な設計要素のひとつである。素子の温度は内部に埋設した熱電対等によって測定されるが、熱電対自体の精度や取り付けの位置等の問題もあり温度低下量として5K以上の違いがあれば顕著な差としてみることができる。 General electronic parts are designed to have a heat resistance of, for example, about 80 to 150 ?, but if the heat dissipation is poor and the temperature rise is large, the element is enlarged to reduce the loss in order to satisfy the design value of the heat resistance temperature. Therefore, the heat dissipation is one of the important design elements because it is disadvantageous in terms of cost and miniaturization. The temperature of the element is measured by a thermocouple embedded in the inside, but there are problems such as the accuracy of the thermocouple itself and the position of attachment, and if there is a difference of 5K or more as a temperature drop amount, it can be regarded as a significant difference.
(実施例2)
図4は、本発明における線輪部品のコイル中心軸に垂直な断面図である。実施例1の構成とは、放熱手段設置部の中心Hと実施の形態1における基準面AA上の一点Pをずらしている点が異なっている。ここで、コイルの中心軸Cと放熱手段設置部の中心Hを含む平面と基準面AAのなす角度をθとする。
(Example 2)
FIG. 4 is a cross-sectional view perpendicular to the coil central axis of the wire ring component according to the present invention. The configuration of Example 1 is different from the configuration of Example 1 in that the center H of the heat dissipating means installation portion and the point P on the reference plane AA in
図5は、角度θと、コイル温度の関係を示す実験結果の図である。実施例1における、角度Wが0度、すなわちコイルと伝熱部材が接触しない場合のコイル温度を基準として、角度Wを40度にして、角度θを大きくして放熱部材を基準面AAから離した場合のコイル温度との差分を温度低下量としている。 FIG. 5 is a diagram of experimental results showing the relationship between the angle θ and the coil temperature. In Example 1, the angle W is 0 degree, that is, the coil temperature when the coil and the heat transfer member do not contact each other, the angle W is set to 40 degrees, the angle θ is increased, and the heat dissipation member is separated from the reference plane AA. The difference from the coil temperature in this case is the amount of temperature decrease.
図5より、角度θは90度以下であれば、温度低下量は14K以上となり、放熱性が高く、本発明の効果をより有効に享受できることが分かる。 From FIG. 5, it can be seen that if the angle θ is 90 degrees or less, the temperature drop amount is 14K or more, the heat dissipation is high, and the effect of the present invention can be enjoyed more effectively.
(実施例3)
本発明を実施した他の一例を、図を参照しながら説明する。図9は、本発明における線輪部品のコイル中心軸に垂直な断面図である。外径82mmのコイル1は、内周面を軟磁性コア21、外周面を軟磁性コア221、222、223により埋設されている。コイル1の外周面における放熱手段4より離れている半周分の領域には軟磁性コア221が設けられている。また、コイル1の外周面における放熱手段4に面する半周分の領域には軟磁性コア222、223が設けられている。放熱手段4に最も近いコイル1の外周面でコイル1と伝熱部材3が接し、接触部領域の角度Wは22.5度である。なお、角度θは0度となる。
(Example 3)
Another example in which the present invention is implemented will be described with reference to the drawings. FIG. 9 is a cross-sectional view perpendicular to the coil central axis of the wire ring component according to the present invention. The
また、軟磁性コア221と222、軟磁性コア221と223との間でも、コイル1の中心軸を中心とした30度の範囲に渡ってコイル1と伝熱部材3が接している。軟磁性コア21におけるコイル1の中心軸に相当する中心部には、柱状の伝熱部材33が設けられている。
In addition, between the soft
すなわち、軟磁性コア221と222、さらに223との間のコイル1外周面から伝熱部材3に熱が伝達され、軟磁性コア21の中心からも伝熱部材33に熱が伝達され、放熱手段4により熱が排出されることから、非常に放熱性の高い構成となっている。
That is, heat is transmitted from the outer peripheral surface of the
一方、コイル1と伝熱部材3との接触部が複数個所に渡っているため、インダクタンス特性を維持する配慮も必要となる。そこで、コイル1と伝熱部材3の間の軟磁性コア222、223の厚さを11mmとして、軟磁性コア221の厚さ5mmの2倍以上にしている。
On the other hand, since the contact part of the
コイル外周面に一様に軟磁性コアを設けた場合は、5mmの厚さがあれば充分だが、伝熱部材3と接触する部分のコイル1により誘起された磁束は、倍以上の11mmの厚さの隣接する軟磁性コアを通すよう構成することで、インダクタンス特性を維持することができる。
When the soft magnetic core is uniformly provided on the outer peripheral surface of the coil, a thickness of 5 mm is sufficient, but the magnetic flux induced by the
1 コイル
21、22、221、222、223 軟磁性コア
3、31、32、33 伝熱部材
4 放熱手段
51、52、53 弾性部材
C コイルの中心軸
P 伝熱部材の外面における任意の1点
H 放熱手段設置部の中心
T 熱流路
1
Claims (9)
The wire ring component according to claim 8 , wherein the pressing is performed by pressing means provided on a portion of the outer peripheral surface of the coil facing the region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010279982A JP5875760B2 (en) | 2010-12-16 | 2010-12-16 | Wire ring parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010279982A JP5875760B2 (en) | 2010-12-16 | 2010-12-16 | Wire ring parts |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2012129374A JP2012129374A (en) | 2012-07-05 |
JP2012129374A5 JP2012129374A5 (en) | 2014-01-16 |
JP5875760B2 true JP5875760B2 (en) | 2016-03-02 |
Family
ID=46646098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010279982A Active JP5875760B2 (en) | 2010-12-16 | 2010-12-16 | Wire ring parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5875760B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6202807B2 (en) * | 2012-11-28 | 2017-09-27 | 株式会社トーキン | Reactor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4264422B2 (en) * | 2005-03-16 | 2009-05-20 | 富士通株式会社 | Speed converter with load control function |
JP4635982B2 (en) * | 2006-08-09 | 2011-02-23 | 株式会社デンソー | Reactor |
JP2010165799A (en) * | 2009-01-14 | 2010-07-29 | Toyota Motor Corp | Reactor |
JP5083258B2 (en) * | 2009-03-24 | 2012-11-28 | 株式会社デンソー | Reactor |
JP2011142193A (en) * | 2010-01-07 | 2011-07-21 | Sumitomo Electric Ind Ltd | Reactor |
-
2010
- 2010-12-16 JP JP2010279982A patent/JP5875760B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012129374A (en) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6288513B2 (en) | Reactor | |
JP6380753B2 (en) | Reactor | |
JP5083258B2 (en) | Reactor | |
US10192670B2 (en) | Reactor | |
JPWO2013001591A1 (en) | Reactor and manufacturing method thereof | |
JP2008021688A (en) | Core for reactor | |
JP2011142193A (en) | Reactor | |
JP2011124242A (en) | Reactor device | |
US12009145B2 (en) | Reactor | |
JP2018190910A (en) | Reactor device and method for manufacturing the same | |
JP5875760B2 (en) | Wire ring parts | |
JP7130188B2 (en) | Reactor | |
JP6168378B2 (en) | Wire ring parts | |
JP6409706B2 (en) | Reactor | |
JP7064718B2 (en) | Reactor | |
WO2018147061A1 (en) | Reactor | |
JP7110863B2 (en) | Reactor | |
JP2018186253A (en) | Reactor | |
JP6808177B2 (en) | Reactor | |
JP7311010B2 (en) | ferrite core | |
JP6359244B2 (en) | Reactor | |
JP7187905B2 (en) | Ferrite core and coil parts using the same | |
WO2019171940A1 (en) | Reactor | |
JP7089671B2 (en) | Reactor | |
JP2017037889A (en) | Reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131127 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5875760 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |