JP6168184B1 - Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus - Google Patents

Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus Download PDF

Info

Publication number
JP6168184B1
JP6168184B1 JP2016061469A JP2016061469A JP6168184B1 JP 6168184 B1 JP6168184 B1 JP 6168184B1 JP 2016061469 A JP2016061469 A JP 2016061469A JP 2016061469 A JP2016061469 A JP 2016061469A JP 6168184 B1 JP6168184 B1 JP 6168184B1
Authority
JP
Japan
Prior art keywords
sulfuric acid
cleaning
concentration
acid solution
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016061469A
Other languages
Japanese (ja)
Other versions
JP2017173218A (en
Inventor
小川 祐一
祐一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016061469A priority Critical patent/JP6168184B1/en
Priority to PCT/JP2016/076829 priority patent/WO2017163456A1/en
Priority to TW105130860A priority patent/TW201800751A/en
Application granted granted Critical
Publication of JP6168184B1 publication Critical patent/JP6168184B1/en
Publication of JP2017173218A publication Critical patent/JP2017173218A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods

Abstract

【課題】金属と酸化剤を含む硫酸溶液中の酸化剤濃度を、金属等の不純物の影響を受けることなく精度良く効率的に測定することができ、オンライン化も容易な酸化剤濃度の測定方法を提供する。【解決手段】金属と酸化剤を含む硫酸溶液とヨウ化カリウム溶液とを混合し、波長200〜600nmのいずれかのUV吸光度を測定し、この測定結果に基づいて硫酸溶液の酸化剤濃度を定量する。金属及び酸化剤を含む硫酸溶液にヨウ化カリウム(KI)溶液を添加して硫酸溶液中の酸化性物質をKIと選択的に反応させて遊離したヨウ素により黄色く発色させることにより、金属等の不純物よりもUV感度が高くなり、金属等の不純物の影響を低減して高精度にUV吸光度を測定することができる。【選択図】図1A method for measuring an oxidant concentration in a sulfuric acid solution containing a metal and an oxidant can be accurately and efficiently measured without being affected by impurities such as metal, and can be easily brought online. I will provide a. SOLUTION: A sulfuric acid solution containing a metal and an oxidizing agent is mixed with a potassium iodide solution, UV absorbance at a wavelength of 200 to 600 nm is measured, and the oxidizing agent concentration of the sulfuric acid solution is determined based on the measurement result. To do. Impurities such as metals by adding a potassium iodide (KI) solution to a sulfuric acid solution containing a metal and an oxidizing agent, and selectively reacting an oxidizing substance in the sulfuric acid solution with KI to cause yellow coloration by liberated iodine. UV sensitivity becomes higher than that, and the UV absorbance can be measured with high accuracy by reducing the influence of impurities such as metals. [Selection] Figure 1

Description

本発明は、金属と酸化剤を含む硫酸溶液中の酸化剤濃度を測定する方法及び装置と、この装置を利用した電子材料洗浄装置に関する。   The present invention relates to a method and apparatus for measuring an oxidant concentration in a sulfuric acid solution containing a metal and an oxidant, and an electronic material cleaning apparatus using the apparatus.

半導体製造工程においては、SPM(硫酸と過酸化水素水の混合液)、SOM(オゾン吹き込み硫酸)、電解硫酸といった硫酸系酸化剤溶液が、レジストの除去や金属のエッチング等に使用されている。硫酸系酸化剤溶液を用いたレジストの除去や金属のエッチングにおいて、処理効果に及ぼす硫酸系酸化剤溶液中の酸化剤の濃度の影響は大きい。このため、硫酸系酸化剤溶液の酸化剤濃度の測定と管理が重要な要件となっている。   In semiconductor manufacturing processes, sulfuric acid-based oxidizer solutions such as SPM (mixed solution of sulfuric acid and hydrogen peroxide solution), SOM (ozone blowing sulfuric acid), and electrolytic sulfuric acid are used for resist removal, metal etching, and the like. In resist removal and metal etching using a sulfuric acid-based oxidant solution, the effect of the concentration of the oxidant in the sulfuric acid-based oxidant solution on the processing effect is large. For this reason, measurement and management of the oxidant concentration of the sulfuric acid-based oxidant solution are important requirements.

従来、SPMや電解硫酸中の酸化剤濃度を測定する方法として、以下の方法が挙げられる。
(1) 紫外線(UV)の吸光度測定による方法:測定対象溶液のUVの吸光度を測定し、測定値から酸化剤を定量する(特許文献1)。
(2) ヨウ化カリウムを添加してチオ硫酸ナトリウムで滴定する方法:測定対象溶液にヨウ化カリウム溶液を添加混合し、遊離したヨウ素をチオ硫酸ナトリウムで滴定し、その結果から酸化剤を定量する(以下、「KI滴定法」と称す。)(特許文献2,3)。
Conventionally, as a method for measuring the oxidant concentration in SPM or electrolytic sulfuric acid, the following methods can be mentioned.
(1) Method by measuring ultraviolet (UV) absorbance: The UV absorbance of a solution to be measured is measured, and the oxidizing agent is quantified from the measured value (Patent Document 1).
(2) Method of adding potassium iodide and titrating with sodium thiosulfate: Adding potassium iodide solution to the solution to be measured, mixing, titrating the released iodine with sodium thiosulfate, and quantifying the oxidizing agent from the result (Hereinafter referred to as “KI titration method”) (Patent Documents 2 and 3).

国際公開WO2015/012041号パンフレットInternational Publication WO2015 / 012041 Pamphlet 特開2008−164504号公報JP 2008-164504 A 特開2011−75467号公報JP 2011-75467 A

SPMや電解硫酸といった酸化剤含有硫酸溶液でウエハを洗浄し、洗浄排液を回収し、酸化性物質を再生して再使用する場合、ウエハからの金属などの溶出物が洗浄排液に残留し、再生後の洗浄液に混入してしまう恐れがある。
特許文献1のUV吸光度の測定による酸化剤の定量方法では、測定対象溶液に金属が混入すると、UV吸光度が金属の影響を受け、酸化剤濃度を正確に定量することができない。
特許文献2,3のKI滴定法は、滴定操作が必要であるため、操作が煩雑である。また、ウエハ洗浄において、酸化剤濃度の即時的なモニタリングは重要であり、オンラインでのモニタリングが求められるが、本技術ではオンライン化が困難である。
When cleaning the wafer with sulfuric acid solution containing oxidizing agent such as SPM or electrolytic sulfuric acid, and recovering the cleaning waste liquid and regenerating and reusing the oxidizing substance, the eluate such as metal from the wafer remains in the cleaning waste liquid. There is a risk that it will be mixed into the regenerated cleaning liquid.
In the method for quantifying an oxidant by measuring UV absorbance in Patent Document 1, if a metal is mixed in the solution to be measured, the UV absorbance is affected by the metal, and the oxidant concentration cannot be accurately quantified.
Since the KI titration methods of Patent Documents 2 and 3 require a titration operation, the operation is complicated. Further, in wafer cleaning, immediate monitoring of the oxidant concentration is important, and online monitoring is required, but it is difficult to make online with this technology.

本発明は、金属と酸化剤を含む硫酸溶液中の酸化剤濃度を、金属等の不純物の影響を受けることなく、精度良く効率的に測定することができ、オンライン化も容易な酸化剤濃度の測定方法及び測定装置と、これを利用した電子材料洗浄装置を提供することを目的とする。   The present invention can measure the oxidant concentration in a sulfuric acid solution containing a metal and an oxidant accurately and efficiently without being affected by impurities such as metal, and the oxidant concentration can be easily brought online. It is an object of the present invention to provide a measuring method, a measuring apparatus, and an electronic material cleaning apparatus using the measuring method and measuring apparatus.

本発明者は上記課題を解決すべく鋭意検討を重ねた結果、硫酸溶液にヨウ化カリウム溶液を添加混合した後吸光度を測定することにより、混入した金属等の不純物の影響を受けることなく、硫酸溶液中の酸化剤濃度を簡便かつ高精度に測定することができることを確認した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
As a result of intensive studies to solve the above problems, the present inventor measured the absorbance after adding and mixing a potassium iodide solution to a sulfuric acid solution, without being affected by impurities such as mixed metals. It was confirmed that the oxidant concentration in the solution can be measured easily and with high accuracy.
The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 金属と酸化剤を含む硫酸溶液の酸化剤濃度を測定する方法であって、該硫酸溶液とヨウ化カリウム溶液を混合する混合工程と、得られた混合液の波長250400nmのいずれかの吸光度を測定する吸光度測定工程と、該吸光度の測定結果に基づいて該硫酸溶液の酸化剤濃度を定量する定量工程とを有し、該硫酸溶液がSPM又は電解硫酸であり、該硫酸溶液の酸化剤濃度が0.001〜1mol/Lで、硫酸濃度が20重量%超であり、該硫酸溶液が、電子材料の洗浄液又は該電子材料の洗浄に用いられた洗浄排液であり、該電子材料の洗浄工程に洗浄液を送給する洗浄液送給系、又は、該電子材料の洗浄工程から洗浄排液を排出する洗浄排液排出系から、循環する該洗浄液又は洗浄排液の一部を分取して酸化剤濃度をフロー式吸光光度計でオンライン測定する酸化剤濃度の測定方法であって、該電子材料が、表面の少なくとも一部に金属が露出している半導体ウエハであり、該混合工程に先立ち、該硫酸溶液を予め設定した希釈倍率で硫酸濃度20重量%以下に調整する希釈工程を含み、該定量工程では、該吸光度の測定結果と該希釈倍率とに基づいて該硫酸溶液の酸化剤濃度を算出する酸化剤濃度の測定方法。 [1] A method for measuring an oxidant concentration of a sulfuric acid solution containing a metal and an oxidant, wherein a mixing step of mixing the sulfuric acid solution and a potassium iodide solution, and a wavelength of 250 to 400 nm of the obtained mixed solution and the absorbance measurement step of measuring either the absorbance, possess a quantitative step of quantifying the oxidizing agent concentration of the sulfuric acid solution based on the measurement result of the absorbance, a sulfuric acid solution SPM or electrolytic sulfuric, sulfuric acid The oxidant concentration of the solution is 0.001 to 1 mol / L, the sulfuric acid concentration is more than 20% by weight, and the sulfuric acid solution is a cleaning liquid for the electronic material or a cleaning drainage used for cleaning the electronic material, A part of the cleaning liquid or the cleaning waste liquid circulating from the cleaning liquid feeding system for supplying the cleaning liquid to the electronic material cleaning process or the cleaning drainage discharge system for discharging the cleaning waste liquid from the electronic material cleaning process. The oxidant concentration is separated by the flow method A method of measuring an oxidant concentration that is measured online with an absorptiometer, wherein the electronic material is a semiconductor wafer having a metal exposed on at least a part of a surface, and the sulfuric acid solution is preliminarily prepared prior to the mixing step. Including a dilution step of adjusting the sulfuric acid concentration to 20% by weight or less at a set dilution rate, and in the quantification step, an oxidant concentration for calculating the oxidant concentration of the sulfuric acid solution based on the measurement result of the absorbance and the dilution rate Measuring method.

] 金属と酸化剤を含む硫酸溶液の酸化剤濃度を測定する装置であって、該硫酸溶液とヨウ化カリウム溶液を混合する混合手段と、得られた混合液の波長250400nmのいずれかの吸光度を測定する吸光度測定手段と、該吸光度の測定結果に基づいて該硫酸溶液の酸化剤濃度を定量する定量手段とを有し、該硫酸溶液がSPM又は電解硫酸であり、該硫酸溶液の酸化剤濃度が0.001〜1mol/Lで、硫酸濃度が20重量%超であり、該硫酸溶液が、電子材料の洗浄液又は該電子材料の洗浄に用いられた洗浄排液であり、該電子材料の洗浄手段に洗浄液を送給する洗浄液送給系、又は、該電子材料の洗浄手段から洗浄排液を排出する洗浄排液排出系から、循環する該洗浄液又は洗浄排液の一部を分取する分取手段を有し、該分取手段で分取された洗浄液又は洗浄排液の酸化剤濃度がフロー式吸光光度計でオンライン測定される酸化剤濃度の測定装置であって、該電子材料が、表面の少なくとも一部に金属が露出している半導体ウエハであり、該混合手段による混合に先立ち、該硫酸溶液を予め設定した希釈倍率で硫酸濃度20重量%以下に調整する希釈手段を含み、該定量手段では、該吸光度の測定結果と該希釈倍率とに基づいて該硫酸溶液の酸化剤濃度を算出する酸化剤濃度の測定装置。 [ 2 ] An apparatus for measuring an oxidant concentration of a sulfuric acid solution containing a metal and an oxidant, a mixing means for mixing the sulfuric acid solution and a potassium iodide solution, and a wavelength of 250 to 400 nm of the obtained mixed liquid and absorbance measurement means for measuring either the absorbance, possess a quantitative means for quantifying the oxidizing agent concentration of the sulfuric acid solution based on the measurement result of the absorbance, a sulfuric acid solution SPM or electrolytic sulfuric, sulfuric acid The oxidant concentration of the solution is 0.001 to 1 mol / L, the sulfuric acid concentration is more than 20% by weight, and the sulfuric acid solution is a cleaning liquid for the electronic material or a cleaning drainage used for cleaning the electronic material, A part of the cleaning liquid or cleaning waste liquid circulating from the cleaning liquid supply system for supplying the cleaning liquid to the electronic material cleaning means or the cleaning drainage discharge system for discharging the cleaning waste liquid from the electronic material cleaning means Having a sorting means for sorting, An oxidant concentration measuring apparatus in which the oxidant concentration of the cleaning liquid or cleaning waste liquid separated by the collecting means is measured on-line with a flow-type absorptiometer, wherein the electronic material has a metal on at least a part of its surface. An exposed semiconductor wafer, including dilution means for adjusting the sulfuric acid solution to a sulfuric acid concentration of 20% by weight or less at a preset dilution ratio prior to mixing by the mixing means. An oxidant concentration measuring device that calculates the oxidant concentration of the sulfuric acid solution based on the result and the dilution factor .

表面の少なくとも一部に金属が露出している半導体ウエハである電子材料の洗浄手段と、[2]に記載の酸化剤濃度の測定装置を備えることを特徴とする電子材料洗浄装置。 [ 3 ] An electronic material cleaning apparatus , comprising: electronic material cleaning means that is a semiconductor wafer having a metal exposed on at least a part of a surface thereof ; and the oxidizing agent concentration measuring device according to [2] .

] []において、前記洗浄手段で洗浄に使用された洗浄排液を再生する再生手段と、該再生手段で再生された液を洗浄液として前記洗浄手段に循環する循環手段とを備えることを特徴とする電子材料洗浄装置。 [ 4 ] In [ 3 ], a regenerating unit that regenerates the cleaning drainage used for cleaning by the cleaning unit, and a circulating unit that circulates the liquid regenerated by the regenerating unit as a cleaning liquid to the cleaning unit. Electronic material cleaning device characterized by the above.

本発明の酸化剤濃度の測定方法及び測定装置によれば、電子材料の洗浄工程で使用されている金属が混入した硫酸系酸化剤溶液等の金属と酸化剤を含む硫酸溶液中の酸化剤濃度を、金属等の混入不純物に影響されることなく、簡便かつ安定的に、高精度に測定することができ、オンラインでの連続モニタリングも容易に行える。
従って、SPMや電解硫酸といった硫酸系酸化剤溶液で半導体ウエハの洗浄を行うことでウエハ洗浄に起因する金属やレジストが混入した場合でも、金属等の不純物に影響されることなく該硫酸系酸化剤溶液中の酸化剤の濃度を的確に測定することができる。
本発明の電子材料洗浄装置によれば、硫酸系酸化剤溶液による洗浄排液を回収して硫酸系酸化剤溶液中の酸化剤を再生して洗浄に再利用する場合に、この測定技術を利用して、洗浄液中の酸化剤濃度を正確にモニタリングすることができ、所定の酸化剤濃度の洗浄液により効率的な洗浄を行うことができる。
According to the measuring method and measuring apparatus for the oxidant concentration of the present invention, the oxidant concentration in a sulfuric acid solution containing a metal and an oxidant such as a sulfuric acid-based oxidant solution mixed with a metal used in the cleaning process of the electronic material. Can be measured easily and stably with high accuracy without being influenced by impurities such as metals, and online continuous monitoring can be easily performed.
Therefore, even when a metal or resist resulting from wafer cleaning is mixed by cleaning a semiconductor wafer with a sulfuric acid oxidizing solution such as SPM or electrolytic sulfuric acid, the sulfuric acid oxidizing agent is not affected by impurities such as metal. The concentration of the oxidizing agent in the solution can be accurately measured.
According to the electronic material cleaning apparatus of the present invention, this measurement technique is used when cleaning waste liquid from a sulfuric acid-based oxidant solution is recovered and the oxidant in the sulfuric acid-based oxidant solution is regenerated and reused for cleaning. Thus, the oxidant concentration in the cleaning liquid can be accurately monitored, and efficient cleaning can be performed with the cleaning liquid having a predetermined oxidant concentration.

本発明の酸化剤濃度の測定装置の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the measuring apparatus of the oxidizing agent density | concentration of this invention. 本発明の酸化剤濃度の測定装置の適用例を示す系統図である。It is a systematic diagram which shows the example of application of the measuring apparatus of the oxidizing agent density | concentration of this invention. 本発明の電子材料洗浄装置の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the electronic material washing | cleaning apparatus of this invention. 本発明の電子材料洗浄装置の実施の形態の他の例を示す系統図である。It is a systematic diagram which shows the other example of embodiment of the electronic material cleaning apparatus of this invention. 本発明の電子材料洗浄装置の実施の形態の別の例を示す系統図である。It is a systematic diagram which shows another example of embodiment of the electronic material cleaning apparatus of this invention.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[メカニズム]
本発明では、金属及び酸化剤を含む硫酸溶液にヨウ化カリウム(KI)溶液を添加して硫酸溶液中のペルオキソ二硫酸等の酸化剤(酸化性物質)を、以下の反応式でKIと選択的に反応させて遊離したヨウ素(I)により黄色く発色させることにより、金属等の不純物よりも酸化性物質に起因する反応生成物のUV感度が高くなり、金属の影響を低減して高精度で酸化性物質由来の吸光度を測定することができる。
SO+2KI→I(淡黄色)+KSO+H
+4KI→2I(淡黄色)+2KSO+H
+HSO+2KI→I(淡黄色)+KSO+2H
[mechanism]
In the present invention, a potassium iodide (KI) solution is added to a sulfuric acid solution containing a metal and an oxidizing agent, and an oxidizing agent (oxidizing substance) such as peroxodisulfuric acid in the sulfuric acid solution is selected as KI in the following reaction formula. By making yellow color with iodine (I 2 ) liberated by reaction, the UV sensitivity of reaction products caused by oxidizing substances is higher than that of impurities such as metals, and the effect of metals is reduced and high accuracy is achieved. The absorbance due to the oxidizing substance can be measured.
H 2 SO 5 + 2KI → I 2 (pale yellow) + K 2 SO 4 + H 2 O
H 2 S 2 O 8 + 4KI → 2I 2 (pale yellow) + 2K 2 SO 4 + H 2
H 2 O 2 + H 2 SO 4 + 2KI → I 2 (light yellow) + K 2 SO 4 + 2H 2 O

[金属及び酸化剤を含む硫酸溶液]
本発明において、酸化剤濃度の測定対象となる硫酸溶液は、金属及び酸化剤を含むものであり、特に制限はないが、本発明は、表面の少なくとも一部に金属が露出している半導体ウエハの洗浄に用いることにより、不純物として金属を含む電解硫酸、SPM、SOM等の硫酸系酸化剤溶液の酸化剤濃度の測定に有用である。特に、本発明は、このような硫酸系酸化剤溶液を洗浄液として用いて半導体ウエハの洗浄を行い、洗浄排液を回収して酸化剤を再生して洗浄液として循環再利用する場合において、洗浄工程に送給される洗浄液や洗浄工程から排出された洗浄排液中の酸化剤濃度をオンライン測定して濃度管理する場合に有効である。
[Sulfuric acid solution containing metal and oxidizing agent]
In the present invention, the sulfuric acid solution to be measured for the oxidant concentration contains a metal and an oxidant and is not particularly limited. However, the present invention is a semiconductor wafer in which the metal is exposed on at least a part of the surface. This is useful for measuring the oxidant concentration of sulfuric acid-based oxidant solutions such as electrolytic sulfuric acid, SPM, and SOM containing metals as impurities. In particular, the present invention provides a cleaning process in the case of cleaning a semiconductor wafer using such a sulfuric acid-based oxidant solution as a cleaning liquid, recovering the cleaning waste liquid, regenerating the oxidant, and reusing it as a cleaning liquid. This is effective when the oxidant concentration in the cleaning liquid supplied to the cleaning liquid or the cleaning waste liquid discharged from the cleaning process is measured online to control the concentration.

[ヨウ化カリウム溶液の混合]
ヨウ化カリウム溶液としては、取り扱い性の観点から、10〜200g/L程度のヨウ化カリウム水溶液を用いることができる。
測定対象である硫酸溶液へのヨウ化カリウム溶液の添加量は、硫酸溶液中の酸化剤濃度によって適宜決定される。
ヨウ化カリウム溶液は、測定対象である硫酸溶液中のペルオキシ硫酸、過酸化水素、オゾン等の酸化性物質に対して、KI添加量が5〜20倍(体積比)程度となるように添加することが好ましい。
[Mixing of potassium iodide solution]
As the potassium iodide solution, an aqueous potassium iodide solution of about 10 to 200 g / L can be used from the viewpoint of handleability.
The amount of potassium iodide solution added to the sulfuric acid solution to be measured is appropriately determined depending on the oxidant concentration in the sulfuric acid solution.
The potassium iodide solution is added so that the amount of KI added is about 5 to 20 times (volume ratio) with respect to oxidizing substances such as peroxysulfuric acid, hydrogen peroxide, and ozone in the sulfuric acid solution to be measured. It is preferable.

なお、ヨウ化カリウム溶液を添加する硫酸溶液の硫酸濃度が高過ぎると発泡する問題があるため、測定対象の硫酸溶液の硫酸濃度が高い場合には水(純水又は超純水)で硫酸濃度が20重量%以下、例えば5〜15重量%となるように希釈混合した上でヨウ化カリウム溶液を添加することが好ましい。この場合は予め設定した希釈倍率となるよう希釈し、吸光度の測定値と希釈倍率とに基づいて酸化剤濃度を算出する。なお、この希釈はヨウ化カリウム溶液の混合前に行われるが、ヨウ化カリウム溶液と共に希釈水を添加混合することもできる。   In addition, since there is a problem of foaming if the sulfuric acid concentration of the sulfuric acid solution to which the potassium iodide solution is added is too high, if the sulfuric acid concentration of the sulfuric acid solution to be measured is high, the sulfuric acid concentration with water (pure water or ultrapure water) It is preferable to add the potassium iodide solution after diluting and mixing so as to be 20 wt% or less, for example, 5 to 15 wt%. In this case, dilution is performed to a preset dilution factor, and the oxidant concentration is calculated based on the measured absorbance value and the dilution factor. In addition, although this dilution is performed before mixing of a potassium iodide solution, dilution water can also be added and mixed with a potassium iodide solution.

[吸光度測定]
金属及び酸化剤を含む硫酸溶液を必要に応じて希釈し、ヨウ化カリウム溶液を添加混合した後に、波長200〜600nmのいずれかの吸光度を測定する。この測定波長は好ましくは200〜500nmであり、より好ましくは250〜400nmである。
吸光度は市販の吸光光度計を用いて測定することができる。
[Absorbance measurement]
A sulfuric acid solution containing a metal and an oxidizing agent is diluted as necessary, and after adding and mixing a potassium iodide solution, the absorbance at any wavelength of 200 to 600 nm is measured. This measurement wavelength is preferably 200 to 500 nm, more preferably 250 to 400 nm.
The absorbance can be measured using a commercially available absorptiometer.

[酸化剤濃度の定量]
上記の吸光度の測定結果から、酸化剤濃度を定量するには例えば、以下の方法を採用することができる。
測定対象とする硫酸溶液と同一の硫酸濃度で酸化剤濃度を変更した標準試料液を多種類調製し、この標準試料液について、予めヨウ化カリウム溶液を添加混合した後の吸光度を測定して、吸光度と酸化剤濃度の検量線を作製しておく。測定対象の硫酸溶液の吸光度の測定値をこの検量線にあてはめて、酸化剤濃度を求める。
[Quantification of oxidant concentration]
For example, the following method can be employed to quantify the oxidizing agent concentration from the absorbance measurement result.
Prepare many types of standard sample solutions with different oxidizing agent concentrations at the same sulfuric acid concentration as the sulfuric acid solution to be measured, measure the absorbance after adding and mixing potassium iodide solution in advance for this standard sample solution, Prepare a calibration curve for absorbance and oxidant concentration. The measured value of the absorbance of the sulfuric acid solution to be measured is applied to this calibration curve to determine the oxidant concentration.

なお、吸光度による酸化剤濃度の定量については、酸化剤濃度が低いと測定誤差が大きくなる傾向があり、逆に酸化剤濃度が高いと吸光度が測定範囲を超えてしまい追随できなくなり、酸化剤濃度と吸光度との検量関係がなくなる。従って、本発明の測定対象液は酸化剤濃度が測定濃度として、即ち、酸化剤濃度を測定する希釈前の金属及び酸化剤を含む硫酸溶液の酸化剤濃度として0.001〜1mol/L程度であることが好ましい。   Regarding the quantification of the oxidant concentration by absorbance, if the oxidant concentration is low, the measurement error tends to increase. Conversely, if the oxidant concentration is high, the absorbance exceeds the measurement range and cannot be followed. The calibration relationship between absorbance and absorbance disappears. Therefore, the liquid to be measured of the present invention has an oxidizing agent concentration of about 0.001 to 1 mol / L as a measuring concentration, that is, as an oxidizing agent concentration of a sulfuric acid solution containing a metal and an oxidizing agent before dilution for measuring the oxidizing agent concentration. Preferably there is.

通常、半導体ウエハの洗浄に用いられる電解硫酸、SPM、SOMの硫酸濃度及び酸化剤濃度は以下の範囲であるため、本発明を有効に適用することができる。
電解硫酸:硫酸濃度=10〜96重量%
酸化剤濃度=0.001〜1mol/L
SPM :硫酸濃度=10〜96重量%
酸化剤濃度=0.01〜10mol/L
SOM :硫酸濃度=10〜96重量%
酸化剤濃度=0.001〜1mol/L
Usually, since the sulfuric acid concentration and oxidizing agent concentration of electrolytic sulfuric acid, SPM, and SOM used for cleaning a semiconductor wafer are in the following ranges, the present invention can be effectively applied.
Electrolytic sulfuric acid: sulfuric acid concentration = 10 to 96% by weight
Oxidant concentration = 0.001 to 1 mol / L
SPM: sulfuric acid concentration = 10 to 96% by weight
Oxidant concentration = 0.01-10 mol / L
SOM: sulfuric acid concentration = 10 to 96% by weight
Oxidant concentration = 0.001 to 1 mol / L

[オンライン測定]
本発明による酸化剤濃度の測定は、混合槽内で、測定対象の硫酸溶液の希釈とヨウ化カリウム溶液との混合を行った後、混合液の吸光度を測定するバッチ方式で行うことも可能であるが、フロー式吸光光度計を用い、これらをライン混合することで、オンライン化が容易となる。
[Online measurement]
The measurement of the oxidant concentration according to the present invention can also be performed in a batch system in which the sulfuric acid solution to be measured and the potassium iodide solution are mixed in the mixing tank and then the absorbance of the mixed solution is measured. However, by using a flow-type absorptiometer and mixing them in a line, it is easy to go online.

図1を参照して、このライン混合を採用した本発明の酸化剤濃度の測定装置を説明する。   With reference to FIG. 1, the measuring apparatus of the oxidizing agent density | concentration of this invention which employ | adopted this line mixing is demonstrated.

この酸化剤濃度の測定装置では、ポンプPを有するフロー式吸光光度計1への試料液導入配管11に、希釈用の純水が導入され、この配管11に、半導体ウエハの洗浄工程からの酸化剤含有硫酸系洗浄液等の金属と酸化剤を含む硫酸溶液がポンプPを有する配管12より注入されることで、この酸化剤含有硫酸系洗浄液が純水により希釈される。 In this oxidant concentration measuring apparatus, pure water for dilution is introduced into the sample solution introduction pipe 11 to the flow type absorptiometer 1 having the pump P 1, and the pipe 11 is supplied with the process from the semiconductor wafer cleaning step. by sulfuric acid solution containing a metal and an oxidizing agent such as oxidizing agent containing sulfuric acid based cleaning liquid is injected from the pipe 12 having a pump P 2, the oxidizing agent containing sulfuric acid based cleaning liquid is diluted with pure water.

この酸化剤含有硫酸系洗浄液の注入点よりも下流側にヨウ化カリウム溶液を注入するためのポンプPを有する配管13が接続されており、希釈された酸化剤含有硫酸系洗浄液にヨウ化カリウム溶液が注入される。このヨウ化カリウム溶液は、ポンプPを有する配管14からの高濃度ヨウ化カリウム溶液を純水が導入される配管13に注入して希釈され濃度調整されたものである。 Potassium iodide pipe 13 is connected, to the diluted oxidant containing sulfuric acid based cleaning solution having a pump P 3 for injecting a potassium iodide solution on the downstream side of the injection point of the oxidizing agent containing sulfuric acid based cleaning fluid The solution is injected. This potassium iodide solution is a solution in which a high-concentration potassium iodide solution from a pipe 14 having a pump P 4 is injected into a pipe 13 into which pure water is introduced and diluted to adjust the concentration.

ヨウ化カリウム溶液が注入された後の液は、更にラインミキサ2で混合された後、混合液がフロー式吸光光度計1に導入され、吸光度の測定が行われる。測定後の液は、ヨウ化カリウムを含み、洗浄液として用いることはできないため、系外に排出される。   The liquid after the potassium iodide solution has been injected is further mixed by the line mixer 2, and then the mixed liquid is introduced into the flow type absorptiometer 1 to measure the absorbance. Since the liquid after the measurement contains potassium iodide and cannot be used as a cleaning liquid, it is discharged out of the system.

この酸化剤濃度の測定装置であれば、各配管の純水や硫酸溶液、ヨウ化カリウム溶液の流量を調整することにより、所定濃度範囲に希釈された硫酸溶液に所定量のヨウ化カリウム溶液を添加混合してフロー式吸光光度計1で吸光度の測定を行うことができ、これを例えば半導体ウエハの洗浄装置に組み込むことで、洗浄工程に送給される洗浄液や洗浄工程から排出される洗浄排液の酸化剤濃度を迅速かつ的確に測定することができる。   With this oxidant concentration measuring device, a predetermined amount of potassium iodide solution is added to a sulfuric acid solution diluted to a predetermined concentration range by adjusting the flow rate of pure water, sulfuric acid solution and potassium iodide solution in each pipe. Absorbance can be measured with the flow-type absorptiometer 1 after addition and mixing. For example, by incorporating this into a semiconductor wafer cleaning apparatus, the cleaning liquid supplied to the cleaning process or the cleaning waste discharged from the cleaning process can be measured. The concentration of the oxidant in the liquid can be measured quickly and accurately.

特に制限するものではないが各配管の流量としては、
配管11:0.5〜200ml/minで配管12の流量の5〜2000倍
配管12:0.1〜50ml/min
配管13:20〜1000ml/minで配管12の流量の200〜10000倍
とすることができる。
The flow rate of each pipe is not particularly limited,
Pipe 11: 5 to 2000 times the flow rate of pipe 12 at 0.5 to 200 ml / min Pipe 12: 0.1 to 50 ml / min
Pipe 13: The flow rate of pipe 12 can be 200 to 10,000 times higher at 20 to 1000 ml / min.

[適用例]
図2は、本発明の酸化剤濃度の測定装置を、硫酸溶液の電気分解による洗浄液製造システムに適用した例を示す。図2では、貯留槽20からポンプ21を備える配管22より被電解液が電解セル23に送給され、電解処理液は配管24、気液分離器25、配管26を経て貯留槽20に循環される。配管22のポンプ21の下流側には、被電解液の一部を分取する分取配管27が設けられており、配管22から被電解液の一部が分取され、本発明の酸化剤濃度の測定装置である酸化剤濃度測定ユニット28に送給され、酸化剤濃度の測定が行われる。測定後の液は配管29を経て系外へ排出される。
この洗浄液製造システムでは、酸化剤濃度測定ユニット28での酸化剤濃度の測定結果に基づいて、電解セル23の電解条件を調整することにより、所望の酸化剤濃度の電解硫酸よりなる洗浄液を製造することができる。
[Application example]
FIG. 2 shows an example in which the oxidant concentration measuring apparatus of the present invention is applied to a cleaning liquid production system by electrolysis of a sulfuric acid solution. In FIG. 2, the electrolytic solution is supplied from the storage tank 20 to the electrolytic cell 23 through the pipe 22 including the pump 21, and the electrolytic treatment liquid is circulated to the storage tank 20 through the pipe 24, the gas-liquid separator 25, and the pipe 26. The On the downstream side of the pump 21 of the pipe 22, a sorting pipe 27 for sorting a part of the electrolyte solution is provided, and a part of the electrolyte solution is separated from the pipe 22, and the oxidizing agent of the present invention. It is sent to an oxidant concentration measurement unit 28 which is a concentration measuring device, and the oxidant concentration is measured. The liquid after the measurement is discharged out of the system through the pipe 29.
In this cleaning liquid manufacturing system, a cleaning liquid made of electrolytic sulfuric acid having a desired oxidizing agent concentration is manufactured by adjusting the electrolysis conditions of the electrolytic cell 23 based on the measurement result of the oxidizing agent concentration in the oxidizing agent concentration measuring unit 28. be able to.

[電子材料洗浄装置]
次に図3〜5を参照して、本発明の酸化剤濃度の測定装置を用いた電子材料洗浄装置について説明する。
図3〜5は、本発明の酸化剤濃度の測定装置を適用した電子材料洗浄装置の実施の形態を示す系統図である。
[Electronic material cleaning equipment]
Next, an electronic material cleaning apparatus using the oxidant concentration measuring apparatus of the present invention will be described with reference to FIGS.
3 to 5 are system diagrams showing an embodiment of an electronic material cleaning apparatus to which the oxidant concentration measuring apparatus of the present invention is applied.

図3は、SPMを洗浄液とするバッチ式洗浄機に本発明の酸化剤濃度の測定装置を適用したものを示し、貯留槽30内の洗浄液が配管31を経て洗浄機32に送給され、洗浄排液はポンプ34及び熱交換器35を有する配管36を経て貯留槽30に循環される。配管31には洗浄機32に送給される洗浄液の一部を試料液として分取する分取配管37が分岐しており、この配管37で分取された洗浄液は、本発明の酸化剤濃度の測定装置である酸化剤濃度測定ユニット38に送給されて酸化剤濃度の測定が行われ、測定後の試料液は配管39を経て系外へ排出される。   FIG. 3 shows an application of the oxidant concentration measuring device of the present invention to a batch type washing machine using SPM as a washing liquid, and the washing liquid in the storage tank 30 is fed to the washing machine 32 via a pipe 31 and washed. The drainage liquid is circulated to the storage tank 30 through a pipe 36 having a pump 34 and a heat exchanger 35. The pipe 31 is branched by a sorting pipe 37 for separating a part of the cleaning liquid supplied to the cleaning machine 32 as a sample liquid, and the cleaning liquid sorted by this pipe 37 has the oxidant concentration of the present invention. Is supplied to the oxidant concentration measurement unit 38, which measures the oxidant concentration, and the measured sample solution is discharged out of the system through the pipe 39.

図4は、電解硫酸を洗浄液とするバッチ式洗浄機に本発明の酸化剤濃度の測定装置を適用したものを示し、貯留槽40内の電解硫酸は洗浄液としてポンプ41を有する配管42,43を経て洗浄機44に送給され、洗浄排液はポンプ45を有する配管46を経て排出され、一部が加熱器47を有する配管48を経て洗浄機44に循環され、残部が冷却器49を有する配管50を経て貯留槽40に戻される。   FIG. 4 shows a batch type washing machine using electrolytic sulfuric acid as a cleaning liquid, and the oxidant concentration measuring device of the present invention is applied. The electrolytic sulfuric acid in the storage tank 40 is connected to pipes 42 and 43 having a pump 41 as a cleaning liquid. Then, it is supplied to the washing machine 44, and the drainage of the washing is discharged through a pipe 46 having a pump 45, a part is circulated to the washing machine 44 through a pipe 48 having a heater 47, and the rest has a cooler 49. It returns to the storage tank 40 through the pipe 50.

貯留槽40内の電解硫酸(硫酸溶液)は、ポンプ51、冷却器52を備える配管53を経て電解装置55に送給され、電解装置55における電気分解でペルオキソ二硫酸を生成してペルオキソ二硫酸を含む硫酸溶液は配管56を経て貯留槽40に戻される。貯留槽40には純水供給配管57と濃硫酸供給配管58が設けられている。   The electrolytic sulfuric acid (sulfuric acid solution) in the storage tank 40 is supplied to the electrolyzer 55 through a pipe 53 including a pump 51 and a cooler 52, and peroxodisulfuric acid is generated by electrolysis in the electrolyzer 55 to generate peroxodisulfuric acid. The sulfuric acid solution containing is returned to the storage tank 40 through the pipe 56. The storage tank 40 is provided with a pure water supply pipe 57 and a concentrated sulfuric acid supply pipe 58.

貯留槽40内の電解硫酸の一部が配管59より取り出され、本発明の酸化剤濃度の測定装置である酸化剤濃度測定ユニット60に送給されて酸化剤濃度の測定が行われ、測定後の試料液は配管61を経て系外へ排出される。   A part of the electrolytic sulfuric acid in the storage tank 40 is taken out from the pipe 59 and sent to the oxidant concentration measurement unit 60 which is the oxidant concentration measurement device of the present invention to measure the oxidant concentration. The sample solution is discharged out of the system through the pipe 61.

図5は、電解硫酸を洗浄液とする枚葉式洗浄機に、本発明の酸化剤濃度の測定装置を適用した例を示し、図4に示す部材と同一の部材には同一符号を付してある。   FIG. 5 shows an example in which the oxidant concentration measuring device of the present invention is applied to a single wafer cleaning machine using electrolytic sulfuric acid as a cleaning solution, and the same members as those shown in FIG. is there.

図中、70は分解槽であり、枚葉式洗浄機80から配管71を経て排出される洗浄排液に含まれるレジストなどの残留有機物を洗浄排液に含まれる酸化剤で酸化分解するためのものである。   In the figure, reference numeral 70 denotes a decomposition tank for oxidizing and decomposing residual organic substances such as resist contained in the cleaning waste liquid discharged from the single wafer cleaning machine 80 through the pipe 71 with the oxidizing agent contained in the cleaning waste liquid. Is.

貯留槽40内の電解硫酸は図4におけると同様にポンプ41を備える配管42から、フィルタ72、加熱機73を経て枚葉式洗浄機80に送給される。枚葉式洗浄機80において半導体ウエハの洗浄に使用された洗浄排液は、配管71を経て分解槽70に送給され、分解槽70で処理された洗浄排液はポンプ45及び冷却器49を備える配管50を経て貯留槽40に戻される。貯留槽40内の電解硫酸の電解処理及び酸化剤濃度の測定は図4における処理と同様に行われる。
なお、洗浄排液の一部は適宜配管71から分岐する配管74より系外へ排出される。
The electrolytic sulfuric acid in the storage tank 40 is fed from the pipe 42 provided with the pump 41 to the single wafer cleaning machine 80 through the filter 72 and the heater 73 as in FIG. The cleaning effluent used for cleaning the semiconductor wafer in the single wafer cleaning machine 80 is supplied to the decomposition tank 70 through the pipe 71, and the cleaning effluent processed in the decomposition tank 70 is supplied to the pump 45 and the cooler 49. It returns to the storage tank 40 through the piping 50 provided. The electrolytic treatment of the electrolytic sulfuric acid in the storage tank 40 and the measurement of the oxidant concentration are performed in the same manner as the treatment in FIG.
A part of the cleaning drainage is discharged out of the system through a pipe 74 branched from the pipe 71 as appropriate.

図3〜5に示すように、電子材料の洗浄装置に本発明の酸化剤濃度の測定装置を適用して、洗浄液である硫酸系酸化剤溶液の酸化剤濃度を測定することにより、洗浄液の酸化剤濃度を洗浄中にオンタイムで検出し、必要に応じて洗浄液の酸化剤濃度の調整を行うことにより、適切な酸化剤濃度の洗浄液により効率的な洗浄を行うことが可能となる。   As shown in FIGS. 3 to 5, by applying the oxidant concentration measuring device of the present invention to the electronic material cleaning device and measuring the oxidant concentration of the sulfuric acid-based oxidant solution as the cleaning solution, the cleaning solution is oxidized. By detecting the agent concentration on-time during cleaning and adjusting the oxidant concentration of the cleaning liquid as necessary, efficient cleaning can be performed with a cleaning liquid having an appropriate oxidant concentration.

以下に実施例を挙げて本発明をより具体的に説明する。
なお、以下において、金属添加前後の試料液の酸化剤濃度の測定結果の誤差が40%以下であれば測定法としても良い「○」と評価し、この誤差が40%より大きい場合には不良「×」として評価した。
また、フロー式吸光光度計としては日本分光社製の紫外可視分光光度計を用い、試料液に添加するTi源としてはTi標準液(10000ppm)を用い、Co源としてはCo標準液(10000ppm)を、適宜希釈して用いた。
Hereinafter, the present invention will be described more specifically with reference to examples.
In the following, if the error in the measurement result of the oxidant concentration of the sample solution before and after the addition of the metal is 40% or less, the measurement method is evaluated as “◯”. Evaluated as “x”.
Further, an ultraviolet-visible spectrophotometer manufactured by JASCO Corporation is used as a flow-type absorptiometer, a Ti standard solution (10000 ppm) is used as a Ti source to be added to a sample solution, and a Co standard solution (10000 ppm) is used as a Co source. Was used after appropriately diluted.

[比較例1]
電解硫酸(硫酸濃度92重量%、仕込み酸化剤濃度0.01mol/L)を1L/minでフロー式吸光光度計に導入し、波長253nmでの吸光度を測定して、金属添加前の酸化剤濃度を定量した。酸化剤濃度は0.01mol/Lであった。
次に、この電解硫酸にTi10mg/L及びCo10mg/LとなるようにTi源、Co源を添加した溶液を調製し、波長253nmでの吸光度を測定して、金属添加後の酸化剤濃度を定量した。酸化剤濃度は0.08mol/Lであり、金属添加前に対する測定濃度の誤差は700%(={(0.08−0.01)/0.01}×100)であった。
これらの結果を表1に示す。
[Comparative Example 1]
Electrolytic sulfuric acid (sulfuric acid concentration 92% by weight, charged oxidant concentration 0.01 mol / L) was introduced into a flow-type absorptiometer at 1 L / min, and the absorbance at a wavelength of 253 nm was measured. Was quantified. The oxidizing agent concentration was 0.01 mol / L.
Next, a solution in which Ti source and Co source are added to this electrolytic sulfuric acid so as to be Ti 10 mg / L and Co 10 mg / L is prepared, the absorbance at a wavelength of 253 nm is measured, and the oxidant concentration after the metal addition is quantified. did. The oxidant concentration was 0.08 mol / L, and the error in the measured concentration with respect to that before the metal addition was 700% (= {(0.08−0.01) /0.01} × 100).
These results are shown in Table 1.

[比較例2]
SPM(96重量%硫酸と30重量%過酸化水素水を40:1(重量比)で混合した液)(以下「SPM40:1」と記載する。)を試料液として、比較例1と同様にして、金属添加前後の酸化剤濃度を求め、結果を表1に示した。
[Comparative Example 2]
SPM (liquid obtained by mixing 96% by weight sulfuric acid and 30% by weight hydrogen peroxide water in a ratio of 40: 1 (weight ratio)) (hereinafter referred to as “SPM40: 1”) was used as a sample liquid in the same manner as in Comparative Example 1. Thus, the oxidant concentration before and after the metal addition was determined, and the results are shown in Table 1.

[比較例3]
SOM(92重量%硫酸にオゾンを吹き込んだ液)を試料液として、比較例1と同様にして金属添加前後の酸化剤濃度を求め、結果を表1に示した。
[Comparative Example 3]
Using SOM (liquid in which ozone was blown into 92% by weight sulfuric acid) as a sample liquid, the oxidant concentration before and after the metal addition was determined in the same manner as in Comparative Example 1, and the results are shown in Table 1.

[比較例4]
比較例1におけると同様の試料液を用い、KI滴定法で金属添加前後の酸化剤濃度を求め、結果を表1に示した。
[Comparative Example 4]
Using the same sample solution as in Comparative Example 1, the oxidant concentration before and after the metal addition was determined by the KI titration method, and the results are shown in Table 1.

[実施例1〜7]
表1に示す硫酸濃度及び酸化剤濃度の電解硫酸を試料液として、図1に示すフロー式にて、試料液の電解硫酸を配管12より1mL/minで、配管11を400mL/minで流れる超純水に注入して混合希釈した後、配管13より75g/Lヨウ化カリウム水溶液を5mL/minで注入して混合し、混合液をフロー式吸光光度計1に導入し、波長290nmでの吸光度を測定して、金属添加前の酸化剤濃度を定量した。
なお、ヨウ化カリウム水溶液は、配管14からの375g/Lヨウ化カリウム1mL/minを、配管13からの4mL/minの超純水と混合して希釈したものである。
[Examples 1-7]
The electrolytic sulfuric acid having the sulfuric acid concentration and the oxidant concentration shown in Table 1 is used as a sample solution, and the electrolytic sulfuric acid of the sample solution is 1 mL / min from the pipe 12 and the pipe 11 is flowed at 400 mL / min in the flow type shown in FIG. After injecting into pure water and mixing and diluting, 75 g / L potassium iodide aqueous solution is injected at a rate of 5 mL / min from the pipe 13 and mixed. The mixture is introduced into the flow-type absorptiometer 1 and absorbs at a wavelength of 290 nm. Was measured, and the oxidant concentration before the metal addition was quantified.
The potassium iodide aqueous solution is obtained by diluting 375 g / L potassium iodide 1 mL / min from the pipe 14 with 4 mL / min ultrapure water from the pipe 13.

次に硫酸濃度、酸化剤濃度が同じで、Ti及びCo濃度が表1となるように調製した溶液を試料液として、上記と同様にして金属添加後の酸化剤濃度を求めた。
これらの結果を表1に示す。
Next, the solution prepared so that the sulfuric acid concentration and the oxidant concentration were the same and the Ti and Co concentrations were as shown in Table 1 was used as a sample solution, and the oxidant concentration after the metal addition was determined in the same manner as described above.
These results are shown in Table 1.

[実施例8]
試料液としてSPM40:1を用い、実施例3と同様にして、金属添加前後の酸化剤濃度を求め、結果を表1に示した。
[Example 8]
Using SPM 40: 1 as the sample solution, the oxidant concentration before and after the metal addition was determined in the same manner as in Example 3, and the results are shown in Table 1.

[実施例9]
SPM(96重量%硫酸と30重量%過酸化水素水を4:1(重量比)で混合した液)(以下「SPM4:1」と記載する。)を試料液として、実施例3と同様にして、金属添加前後の酸化剤濃度を求め、結果を表1に示した。
[Example 9]
The sample liquid was SPM (liquid obtained by mixing 96 wt% sulfuric acid and 30 wt% hydrogen peroxide water at a ratio of 4: 1 (weight ratio)) (hereinafter referred to as “SPM 4: 1”) in the same manner as in Example 3. Thus, the oxidant concentration before and after the metal addition was determined, and the results are shown in Table 1.

[実施例10]
SOM(92重量%硫酸にオゾンを吹き込んだ液)を試料液として、実施例3と同様にして、金属添加前後の酸化剤濃度を求め、結果を表1に示した。
[Example 10]
Using SOM (liquid in which ozone was blown into 92% by weight sulfuric acid) as a sample liquid, the oxidant concentration before and after the metal addition was determined in the same manner as in Example 3, and the results are shown in Table 1.

[実施例11]
フロー式ではなく、以下のバッチ式として、実施例3と同様の金属添加前後の試料液について酸化剤濃度の測定を行い、結果を表1に示した。
バッチ式の測定は、ビーカーに超純水400mLと電解硫酸1mLと75g/Lヨウ化カリウム溶液5mLとを添加して混合し、吸光光度計(日本分光社製の紫外可視分光光度計)にて波長290nmの吸光度を測定することで行った。
[Example 11]
Not the flow method but the following batch method, the oxidant concentration was measured for the sample solution before and after the metal addition as in Example 3, and the results are shown in Table 1.
Batch type measurement is performed by adding 400 mL of ultrapure water, 1 mL of electrolytic sulfuric acid and 5 mL of 75 g / L potassium iodide solution to a beaker and mixing them with an absorptiometer (UV-Vis spectrophotometer manufactured by JASCO Corporation). The measurement was performed by measuring the absorbance at a wavelength of 290 nm.

Figure 0006168184
Figure 0006168184

表1より明らかなように、従来のUV測定法(比較例1〜3)では、操作は簡便であるが、試料液中の金属の影響を受け、測定誤差が大きい。KI滴定法(比較例4)では測定誤差はないものの、操作が煩雑である。
これに対して、本発明によれば、各種の酸化剤濃度、硫酸濃度及び金属濃度の電解硫酸、SPM、SOM等の硫酸溶液中の酸化剤濃度を、フロー式でもバッチ式でも簡便な操作で、金属の影響を受けることなく、精度よく測定することができる。
なお、上記の実施例において、波長290nmの吸光度を測定したが、波長300nm、350nm、355nmの吸光度の測定においても同様の測定結果を得ることができた。
As is apparent from Table 1, in the conventional UV measurement method (Comparative Examples 1 to 3), the operation is simple, but the measurement error is large due to the influence of the metal in the sample solution. Although there is no measurement error in the KI titration method (Comparative Example 4), the operation is complicated.
On the other hand, according to the present invention, the oxidizing agent concentration in sulfuric acid solutions such as electrolytic sulfuric acid, SPM, SOM, etc. having various oxidizing agent concentrations, sulfuric acid concentrations, and metal concentrations can be easily operated by both flow and batch methods. It is possible to measure accurately without being affected by metal.
In the above examples, the absorbance at a wavelength of 290 nm was measured, but similar measurement results could be obtained in the measurement of absorbance at wavelengths of 300 nm, 350 nm, and 355 nm.

1 フロー式吸光光度計
2 ラインミキサ
20 貯留槽
23 電解セル
25 気液分離器
28 酸化剤濃度測定ユニット
30 貯留槽
32 洗浄機
38 酸化剤濃度測定ユニット
40 貯留槽
44 洗浄機
47 加熱機
49,52 冷却器
55 電解装置
60 酸化剤濃度測定ユニット
70 分解槽
72 フィルタ
73 加熱機
80 枚葉式洗浄機
DESCRIPTION OF SYMBOLS 1 Flow type absorptiometer 2 Line mixer 20 Reservoir 23 Electrolysis cell 25 Gas-liquid separator 28 Oxidant concentration measurement unit 30 Reservoir 32 Washer 38 Oxidant concentration measurement unit 40 Reservoir 44 Washer 47 Heater 49, 52 Cooler 55 Electrolytic device 60 Oxidant concentration measurement unit 70 Decomposition tank 72 Filter 73 Heater 80 Single wafer cleaning machine

Claims (4)

金属と酸化剤を含む硫酸溶液の酸化剤濃度を測定する方法であって、
該硫酸溶液とヨウ化カリウム溶液を混合する混合工程と、
得られた混合液の波長250400nmのいずれかの吸光度を測定する吸光度測定工程と、
該吸光度の測定結果に基づいて該硫酸溶液の酸化剤濃度を定量する定量工程と
を有し、
該硫酸溶液がSPM又は電解硫酸であり、
該硫酸溶液の酸化剤濃度が0.001〜1mol/Lで、硫酸濃度が20重量%超であり、
該硫酸溶液が、電子材料の洗浄液又は該電子材料の洗浄に用いられた洗浄排液であり、該電子材料の洗浄工程に洗浄液を送給する洗浄液送給系、又は、該電子材料の洗浄工程から洗浄排液を排出する洗浄排液排出系から、循環する該洗浄液又は洗浄排液の一部を分取して酸化剤濃度をフロー式吸光光度計でオンライン測定する酸化剤濃度の測定方法であって、
該電子材料が、表面の少なくとも一部に金属が露出している半導体ウエハであり、
該混合工程に先立ち、該硫酸溶液を予め設定した希釈倍率で硫酸濃度20重量%以下に調整する希釈工程を含み、
該定量工程では、該吸光度の測定結果と該希釈倍率とに基づいて該硫酸溶液の酸化剤濃度を算出する酸化剤濃度の測定方法。
A method for measuring an oxidant concentration of a sulfuric acid solution containing a metal and an oxidant,
A mixing step of mixing the sulfuric acid solution and the potassium iodide solution;
An absorbance measurement step of measuring the absorbance of any one of wavelengths 250 to 400 nm of the obtained mixed solution;
It possesses a quantitative step of quantifying the oxidizing agent concentration of the sulfuric acid solution based on the measurement result of the absorbance,
The sulfuric acid solution is SPM or electrolytic sulfuric acid,
The sulfuric acid solution has an oxidizing agent concentration of 0.001 to 1 mol / L and a sulfuric acid concentration of more than 20% by weight;
The sulfuric acid solution is a cleaning liquid for the electronic material or a cleaning waste liquid used for cleaning the electronic material, and a cleaning liquid supply system for supplying the cleaning liquid to the cleaning process for the electronic material, or a cleaning process for the electronic material This is a method for measuring the oxidant concentration by separating a part of the circulated cleaning liquid or cleaning effluent from the cleaning effluent discharge system, and measuring the oxidant concentration online with a flow-type absorptiometer. There,
The electronic material is a semiconductor wafer in which metal is exposed on at least a part of the surface;
Prior to the mixing step, including a dilution step of adjusting the sulfuric acid solution to a sulfuric acid concentration of 20% by weight or less at a preset dilution rate,
In the quantification step, an oxidizing agent concentration measuring method for calculating an oxidizing agent concentration of the sulfuric acid solution based on the measurement result of the absorbance and the dilution factor .
金属と酸化剤を含む硫酸溶液の酸化剤濃度を測定する装置であって、
該硫酸溶液とヨウ化カリウム溶液を混合する混合手段と、
得られた混合液の波長250400nmのいずれかの吸光度を測定する吸光度測定手段と、
該吸光度の測定結果に基づいて該硫酸溶液の酸化剤濃度を定量する定量手段と
を有し、
該硫酸溶液がSPM又は電解硫酸であり、
該硫酸溶液の酸化剤濃度が0.001〜1mol/Lで、硫酸濃度が20重量%超であり、
該硫酸溶液が、電子材料の洗浄液又は該電子材料の洗浄に用いられた洗浄排液であり、該電子材料の洗浄手段に洗浄液を送給する洗浄液送給系、又は、該電子材料の洗浄手段から洗浄排液を排出する洗浄排液排出系から、循環する該洗浄液又は洗浄排液の一部を分取する分取手段を有し、該分取手段で分取された洗浄液又は洗浄排液の酸化剤濃度がフロー式吸光光度計でオンライン測定される酸化剤濃度の測定装置であって、
該電子材料が、表面の少なくとも一部に金属が露出している半導体ウエハであり、
該混合手段による混合に先立ち、該硫酸溶液を予め設定した希釈倍率で硫酸濃度20重量%以下に調整する希釈手段を含み、
該定量手段では、該吸光度の測定結果と該希釈倍率とに基づいて該硫酸溶液の酸化剤濃度を算出する酸化剤濃度の測定装置。
An apparatus for measuring an oxidant concentration of a sulfuric acid solution containing a metal and an oxidant,
Mixing means for mixing the sulfuric acid solution and the potassium iodide solution;
An absorbance measuring means for measuring the absorbance of any one of wavelengths 250 to 400 nm of the obtained mixed solution;
It possesses a quantitative means for quantifying the oxidizing agent concentration of the sulfuric acid solution based on the measurement result of the absorbance,
The sulfuric acid solution is SPM or electrolytic sulfuric acid,
The sulfuric acid solution has an oxidizing agent concentration of 0.001 to 1 mol / L and a sulfuric acid concentration of more than 20% by weight;
The sulfuric acid solution is an electronic material cleaning liquid or a cleaning waste liquid used for cleaning the electronic material, and a cleaning liquid supply system that supplies the cleaning liquid to the electronic material cleaning means, or the electronic material cleaning means The cleaning liquid or the cleaning waste liquid separated from the cleaning drainage discharge system for discharging the cleaning drainage from the cleaning liquid or the cleaning drainage separated by the sorting means. An oxidant concentration measuring apparatus in which the oxidant concentration of the oxidant is measured on-line with a flow-type absorptiometer,
The electronic material is a semiconductor wafer in which metal is exposed on at least a part of the surface;
Prior to mixing by the mixing means, including a diluting means for adjusting the sulfuric acid solution to a sulfuric acid concentration of 20% by weight or less at a preset dilution rate;
An apparatus for measuring an oxidant concentration , wherein the quantification means calculates the oxidant concentration of the sulfuric acid solution based on the measurement result of the absorbance and the dilution rate .
表面の少なくとも一部に金属が露出している半導体ウエハである電子材料の洗浄手段と、請求項2に記載の酸化剤濃度の測定装置を備えることを特徴とする電子材料洗浄装置。 An electronic material cleaning apparatus comprising: electronic material cleaning means that is a semiconductor wafer having a metal exposed on at least a part of a surface thereof; and the oxidizing agent concentration measuring device according to claim 2 . 請求項において、前記洗浄手段で洗浄に使用された洗浄排液を再生する再生手段と、該再生手段で再生された液を洗浄液として前記洗浄手段に循環する循環手段とを備えることを特徴とする電子材料洗浄装置。 According to claim 3, and comprising: a reproducing means for reproducing the washing drainage used for washing in the washing unit, and a circulation means for circulating said cleaning means liquid reproduced by the reproducing means as the cleaning liquid Electronic material cleaning equipment.
JP2016061469A 2016-03-25 2016-03-25 Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus Expired - Fee Related JP6168184B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016061469A JP6168184B1 (en) 2016-03-25 2016-03-25 Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus
PCT/JP2016/076829 WO2017163456A1 (en) 2016-03-25 2016-09-12 Method and device for measuring oxidant concentration, and electronic material cleaning device
TW105130860A TW201800751A (en) 2016-03-25 2016-09-23 Method and device for measuring oxidant concentration, and electronic material cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061469A JP6168184B1 (en) 2016-03-25 2016-03-25 Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus

Publications (2)

Publication Number Publication Date
JP6168184B1 true JP6168184B1 (en) 2017-07-26
JP2017173218A JP2017173218A (en) 2017-09-28

Family

ID=59384362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061469A Expired - Fee Related JP6168184B1 (en) 2016-03-25 2016-03-25 Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus

Country Status (3)

Country Link
JP (1) JP6168184B1 (en)
TW (1) TW201800751A (en)
WO (1) WO2017163456A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995329B1 (en) 2021-09-06 2022-01-14 サラヤ株式会社 Indicator for measuring percarboxylic acid concentration, method for measuring percarboxylic acid concentration using it

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120790A (en) * 1975-04-16 1976-10-22 Yokogawa Hokushin Electric Corp Method of measuring dissorved ozone and reagents used
JPS5583849A (en) * 1978-12-21 1980-06-24 Toshiba Corp Measuring method of melted ozone density
JPS62134558A (en) * 1985-12-09 1987-06-17 Yokohama Metsukin Kogyo Kk Method for measuring amount of available chlorine in hypochlorite
JP3034640B2 (en) * 1991-05-30 2000-04-17 同和鉱業株式会社 Method and apparatus for detecting reducing and oxidizing substances
JP3329071B2 (en) * 1994-06-06 2002-09-30 株式会社明電舎 Method and apparatus for analyzing nitrate and nitrite ions
JP2000180430A (en) * 1998-12-17 2000-06-30 Nippon Steel Corp Measuring method of hydroxy radical in water
US20020122744A1 (en) * 1999-12-21 2002-09-05 Hui Henry K. Apparatus and method for monitoring of oxidative gas or vapor
JP3504939B2 (en) * 2002-04-04 2004-03-08 理工協産株式会社 Simultaneous analysis of peracetic acid and hydrogen peroxide
JP2011081007A (en) * 2004-03-30 2011-04-21 Sakura Color Products Corp Ink composition for sensing hydrogen peroxide gas and hydrogen peroxide gas indicator
JP4553688B2 (en) * 2004-11-10 2010-09-29 株式会社Ihi Dissolved gas concentration measuring device
JP2008164504A (en) * 2006-12-28 2008-07-17 Chlorine Eng Corp Ltd Quantity determination method of oxidizing component in electrolysis sulfuric acid
JP5499602B2 (en) * 2009-09-30 2014-05-21 栗田工業株式会社 Method for measuring the concentration of effective oxidizing substances
JP4701310B1 (en) * 2010-06-24 2011-06-15 北斗電工株式会社 Monitoring method of residual oxidant (TRO) concentration in ballast water
JP5773132B2 (en) * 2011-02-23 2015-09-02 栗田工業株式会社 Persulfuric acid concentration measuring method, persulfuric acid concentration measuring device, and persulfuric acid supplying device
JP2014063920A (en) * 2012-09-21 2014-04-10 Kurita Water Ind Ltd Cleaning method and cleaning device
CN104380086A (en) * 2013-04-26 2015-02-25 松下知识产权经营株式会社 Quantitative analyzing method for oxidant and quantitative analyzing instrument for oxidant
WO2015012041A1 (en) * 2013-07-23 2015-01-29 栗田工業株式会社 Method for measuring total oxidizing-substance concentration, substrate cleaning method, and substrate cleaning system
WO2016114188A1 (en) * 2015-01-14 2016-07-21 栗田工業株式会社 Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus

Also Published As

Publication number Publication date
WO2017163456A1 (en) 2017-09-28
TW201800751A (en) 2018-01-01
JP2017173218A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
US20080220533A1 (en) Measuring Method for Total Organic Carbon, Measuring Method for Total Nitrogen and Measuring Apparatus for the Methods
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
TWI444338B (en) Method and apparatus for removing organic matter
WO2015012041A1 (en) Method for measuring total oxidizing-substance concentration, substrate cleaning method, and substrate cleaning system
JP6430772B2 (en) Carbon dioxide-dissolved water supply system, carbon dioxide-dissolved water supply method, and ion exchange device
JP6427378B2 (en) Ammonia dissolved water supply system, ammonia dissolved water supply method, and ion exchange apparatus
JP6168184B1 (en) Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus
US11738997B2 (en) Method and apparatus for producing halogen oxyacid solution
JP4978275B2 (en) Primary pure water production process water treatment method and apparatus
TWI742266B (en) Washing water supply device
TW201531444A (en) Method for removing hydrogen peroxide from sulfur acid-hydrogen peroxide solution and processing agent thereof
JP5859287B2 (en) Method for measuring the concentration of trace hydrogen peroxide in ultrapure water
WO2016114188A1 (en) Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus
JP2013133506A (en) Apparatus for regenerating etching solution
JP6279295B2 (en) Ultrapure water production system and ultrapure water production method
WO2017094418A1 (en) Method for treating exhaust gas containing elemental fluorine
JP5979328B2 (en) Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus
EP3384975A1 (en) Method for treating exhaust gas containing elemental fluorine
JP5980652B2 (en) Persulfate treatment apparatus, persulfate treatment method, oxidation-reduction potential measurement apparatus, and oxidation-reduction potential measurement method
JP5913087B2 (en) Wastewater treatment system
JP2013103156A (en) Biological sludge volume reduction method and apparatus
JP6977845B1 (en) Cleaning water supply device for electronic parts / members and cleaning water supply method for electronic parts / members
JP2013181219A (en) Etchant regenerating apparatus and etchant regenerating method
KR20230004437A (en) Method for producing halogenated oxygen acid solution

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6168184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees