JP2000180430A - Measuring method of hydroxy radical in water - Google Patents

Measuring method of hydroxy radical in water

Info

Publication number
JP2000180430A
JP2000180430A JP10359367A JP35936798A JP2000180430A JP 2000180430 A JP2000180430 A JP 2000180430A JP 10359367 A JP10359367 A JP 10359367A JP 35936798 A JP35936798 A JP 35936798A JP 2000180430 A JP2000180430 A JP 2000180430A
Authority
JP
Japan
Prior art keywords
water
solvent
solution
measuring
hydroxyl radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10359367A
Other languages
Japanese (ja)
Inventor
Toshiro Kato
敏朗 加藤
Yoshiro Ono
芳朗 小野
Shozo Fukui
昭三 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10359367A priority Critical patent/JP2000180430A/en
Publication of JP2000180430A publication Critical patent/JP2000180430A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly sensitive, highly accurate and handy measuring method of hydroxy radical which can inhibit a self oxidizing reaction such as photochemical reaction while eliminating the need for sophisticated analysis technique. SOLUTION: A radical trapping method suggested as a method for measuring a radical in a living being is modified to obtain a hydroxide radical measuring method applicable for a water treatment technology. When an oxidizing treatment is conducted for a solution containing dimethyl sulfoxide, the hydroxy radical generated in water by the oxidizing treatment reacts with dimethylsulfoxide to form methansulfinic acid. The methansulfinic acid produced as a result of the oxidizing reaction is extracted and determined to estimate the quantity of the hydroxide radical generated. This enables sensitive and handy measurement of the hydroxy radical even when a spectrophotometer generally employed in the water treatment field is used by comparing and studying the quality of reagents used in the measurements, a solvent addition quantity ratio during the extraction of the solvent and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水中の水酸化ラジカ
ル濃度の測定方法に関する。従来の水処理技術では対処
できない難分解性物質や微量有害物質の分解や病原性原
虫類の消毒を目的とした水処理の新技術として、オゾ
ン,紫外線,過酸化水素,光触媒等の酸化処理技術を組
み合わせたAOP法(Advanced Oxidation Processes;
促進酸化法)が注目されている。
The present invention relates to a method for measuring the concentration of hydroxyl radicals in water. Oxidation technology such as ozone, ultraviolet light, hydrogen peroxide, photocatalyst, etc. is a new water treatment technology for the purpose of decomposing hardly decomposable substances and trace harmful substances and disinfecting pathogenic protozoa that cannot be handled by conventional water treatment technologies. AOP method (Advanced Oxidation Processes;
(Promoted oxidation method) is attracting attention.

【0002】AOP法は、化学酸化剤や光化学反応によ
って水中に生じた酸化力の強い水酸化ラジカルが汚濁物
質を酸化・分解する作用メカニズムに基づいていると言
われている(例えば、宗宮功編著『オゾン利用水処理技
術』公害対策技術同友会)。しかしながら、水酸化ラジ
カルを正確に定量する技術がないために、AOP法の作
用機構を明らかにするには至っていない。水酸化ラジカ
ル発生量を定量することができれば、AOP法の作用機
構の解明といった学術的な進展ばかりでなく、AOP法
を用いた水処理装置の設計に必要な指標を提示すること
ができる。
[0002] The AOP method is said to be based on a mechanism by which a strong oxidizing hydroxyl radical generated in water by a chemical oxidizing agent or a photochemical reaction oxidizes and decomposes pollutants (for example, edited by Isao Soumiya). "Ozone Water Treatment Technology" Pollution Control Technology Doyukai). However, since there is no technique for accurately quantifying hydroxyl radicals, the action mechanism of the AOP method has not been clarified. If the amount of generated hydroxyl radicals can be quantified, not only scientific progress such as elucidation of the action mechanism of the AOP method but also an index necessary for designing a water treatment apparatus using the AOP method can be presented.

【0003】[0003]

【従来の技術】水酸化ラジカルの酸化作用に基づく浄化
技術として二酸化チタン等の光触媒技術やオゾン酸化技
術が有る。これらの浄化技術の効果を定量する方法とし
ては、ヨウ化カリウム法が用いられている(例えば、P.
R. Harvey and R. Rudham (1988) "Photocatalytic ox
idation of iodine ions by titanium dioxide", J. Ch
em. Soc., Trans. 1., vol.84, no.11, p4181 ;小早川
紘一(1988)『酸化チタン(IV)の光触媒活性』
日本化学会誌,第8号,1175頁;杉本英俊他(19
98)『オゾン発生量測定法の標準化』第7回日本オゾ
ン協会年次研究講演会講演集,101頁など)。Har
veyとRudham(P. R. Harvey andR. Rudham (1
988) "Photocatalytic oxidation of iodine ions by t
itanium dioxide", J. Chem. Soc., Trans. 1., vol.8
4, no.11, p4181 )によるとヨウ化カリウム法は、式1
で示される化学反応によって検水中のヨウ素イオン[I
- ]が酸化され、ヨウ素分子[I2 ]が生成する原理に
基づいていると言われている。生成したヨウ素分子はさ
らにヨウ素イオンと会合してヨウ素錯イオン[I3 -
を形成する(式2)。
2. Description of the Related Art As a purification technique based on the oxidizing action of a hydroxyl radical, there are a photocatalyst technique such as titanium dioxide and an ozone oxidation technique. As a method for quantifying the effects of these purification techniques, the potassium iodide method is used (for example,
R. Harvey and R. Rudham (1988) "Photocatalytic ox
idation of iodine ions by titanium dioxide ", J. Ch
em. Soc., Trans. 1., vol.84, no.11, p4181; Kobayakawa, Koichi (1988) "Photocatalytic activity of titanium (IV) oxide"
The Chemical Society of Japan, No. 8, p. 1175; Hidetoshi Sugimoto et al. (19
98) “Standardization of ozone generation measurement method”, 7th Annual Meeting of the Ozone Society of Japan Annual Meeting, p. 101). Har
Vey and Rudham (PR Harvey and R. Rudham (1
988) "Photocatalytic oxidation of iodine ions by t
itanium dioxide ", J. Chem. Soc., Trans. 1., vol.8
4, no.11, p4181), the potassium iodide method is based on the formula 1
The iodine ion [I
- ] Is oxidized to produce an iodine molecule [I 2 ]. The resulting iodine molecule further associate with iodine ions iodide Moto錯ion [I 3 -]
(Formula 2).

【0004】 2I- + ・OH → I2 (式1) I2 + I- → I3 - (式2) ヨウ素錯イオンは、波長350nm近傍の近紫外光を濃
度依存的に吸収する特性があるため、この特性を利用す
ることによってヨウ素錯イオン生成量を定量することが
でき、ヨウ素錯イオンの生成量から水酸化ラジカルの生
成量を推定することができる。しかしながら、水溶液中
のヨウ素イオンは波長253.7nmの紫外光によって
光化学反応を生じ、ヨウ素分子へと酸化される性質があ
る(例えば、『化学便覧(応用編)』417頁)。この
ため、紫外線照射を伴わないオゾンや過酸化水素等の化
学酸化剤への適用、もしくは、波長254nm近傍の紫
外光を含まない近紫外光照射条件下での光触媒への適用
など、限られた条件に対しては適用が可能であるが、波
長254nm近傍の紫外光の照射を伴う試験条件へは適
用できない。
[0004] 2I - + · OH → I 2 ( Formula 1) I 2 + I - → I 3 - ( Equation 2) iodine Moto錯ion has a characteristic of absorbing a concentration dependent manner the near-ultraviolet light of a wavelength near 350nm Therefore, by utilizing this characteristic, the amount of iodine complex ion produced can be quantified, and the amount of hydroxyl radical produced can be estimated from the amount of iodine complex ion produced. However, iodine ions in an aqueous solution have a property of undergoing a photochemical reaction by ultraviolet light having a wavelength of 253.7 nm and being oxidized to iodine molecules (for example, "Chemical Handbook (Application)", p. 417). For this reason, application to a chemical oxidizing agent such as ozone or hydrogen peroxide without ultraviolet irradiation, or application to a photocatalyst under irradiation conditions of near ultraviolet light not including ultraviolet light having a wavelength of around 254 nm is limited. It can be applied to the conditions, but cannot be applied to the test conditions involving irradiation of ultraviolet light having a wavelength of about 254 nm.

【0005】ところで、医学、薬学等の生化学分野にお
いて生体反応におけるラジカル分子を定量する方法とし
てラジカル捕捉法が提案されている(例えば、S. Fukui
etal. (1993) "High-performance Liquid chromatogra
phic determination of methansulphinic acid as a me
thod for the determination of hydroxyl radicals",
J. Chromatogr., vol.630, p.187 )。この方法は、式
3のように推定されている化学反応によって生成するメ
タンスルフィン酸[CH3 SO2 H]を溶媒で抽出し、
メタンスルフィン酸濃度から水酸化ラジカル量を評価す
る原理に基づいている。すなわち、水酸化ラジカル[・
OH]とジメチスルホキシド[(CH32 SO]とが
反応する結果、メタンスルフィン酸とメタンラジカル
[・CH3]が生成物する。副生成するメタンラジカル
は式4〜6のようにラジカル連鎖反応を起こすが、その
過程で水酸化ラジカルの生成や消費がないとされてお
り、このことはメタンスルフィン酸の量は水酸化ラジカ
ルを反映していることを示してる。 (CH3 2 SO + ・OH → CH3 SO2 H + ・CH3 (式3) ・CH3 + O2 → CH3 OO・ (式4) 2CH3 OO・ → HCHO + CH3 OH + O2 (式5) ・CH3 + R → CH4 + R’ (式6) この方法は、前記したヨウ化カリウム法において問題視
された光化学反応の影響を受けることなく、水酸化ラジ
カルの量を20〜80μMの濃度範囲で感度良く検出す
ることが可能であるが、メタンスルフィン酸を定量する
ために高速液体クロマトグラフィー装置を用いた高度な
分析技術を必要とする。さらに、水処理分野への適用検
討は前例がない。
In the field of biochemistry such as medicine and pharmacy, a radical scavenging method has been proposed as a method for quantifying a radical molecule in a biological reaction (for example, S. Fukui).
etal. (1993) "High-performance Liquid chromatogra
phic determination of methansulphinic acid as a me
thod for the determination of hydroxyl radicals ",
J. Chromatogr., Vol.630, p.187). In this method, methanesulfinic acid [CH 3 SO 2 H] generated by a chemical reaction estimated as in Equation 3 is extracted with a solvent,
It is based on the principle of evaluating the amount of hydroxyl radical from the methanesulfinic acid concentration. That is, the hydroxyl radical [•
As a result of the reaction between OH] and dimethyl sulfoxide [(CH 3 ) 2 SO], methanesulfinic acid and a methane radical [CH 3 ] are produced. The by-produced methane radical causes a radical chain reaction as shown in Formulas 4 to 6, but it is said that no hydroxyl radical is generated or consumed in the process. This means that the amount of methanesulfinic acid is It shows that it is reflected. (CH 3 ) 2 SO + · OH → CH 3 SO 2 H + · CH 3 (Formula 3) · CH 3 + O 2 → CH 3 OO · (Formula 4) 2CH 3 OO · → HCHO + CH 3 OH + O 2 (Equation 5) CH 3 + R → CH 4 + R ′ (Equation 6) In this method, the amount of hydroxyl radical can be reduced without being affected by the photochemical reaction which was regarded as a problem in the potassium iodide method. Although detection can be performed with high sensitivity in the concentration range of 20 to 80 μM, an advanced analysis technique using a high-performance liquid chromatography device is required to quantify methanesulfinic acid. Furthermore, there is no precedent for studying its application to the water treatment field.

【0006】[0006]

【発明が解決しようとする課題】本発明は、ヨウ素イオ
ンの光化学反応等の自己酸化が生じるために波長254
nm近傍の紫外光照射条件下での正確な水酸化ラジカル
定量ができないヨウ化カリウム法の問題点や高速液体ク
ロマトグラフィー装置を用いた高度な分析技術を必要と
する生体分析を対象としたラジカル捕捉法の問題点等を
克服した、高感度、高精度、かつ、簡便な水中の水酸化
ラジカルの測定方法を提供することにある。
SUMMARY OF THE INVENTION According to the present invention, a wavelength of 254 is used because auto-oxidation such as photochemical reaction of iodine ion occurs.
Problems of the potassium iodide method, which cannot accurately determine hydroxyl radicals under ultraviolet light irradiation conditions in the vicinity of nm, and radical scavenging for biological analysis that requires advanced analytical techniques using high-performance liquid chromatography equipment It is an object of the present invention to provide a highly sensitive, accurate and simple method for measuring hydroxyl radicals in water, which overcomes the problems of the method.

【0007】[0007]

【課題を解決するための手段】本発明は、生化学分野に
おいて生体反応を調べる為のラジカル定量法として提案
されているラジカル捕捉法に基づく水酸化ラジカル測定
方法(例えば、S. Fukui etal.(1993)"High-performanc
e Liquid chromatographic determination ofmethansul
phinic acid as a method for the determination of h
ydroxyl radicals", J. Chromatogr., vol.630, p.18
7)の問題点を改良して、水処理分野への適用が可能な
水酸化ラジカル測定方法を提供するために、測定に用い
る試薬類の品質、溶媒抽出時の溶媒添加量比等を比較検
討した結果、水処理分野で汎用されている分光光度計を
用いた場合でも、高速液体クロマトグラフィー装置を用
いた場合と同様に感度良く、かつ簡便に水酸化ラジカル
を測定する方法を見いだし、本発明を完成するに至っ
た。
SUMMARY OF THE INVENTION The present invention provides a method for measuring hydroxyl radicals based on a radical scavenging method which has been proposed as a radical quantification method for examining biological reactions in the field of biochemistry (for example, S. Fukui et al. 1993) "High-performanc
e Liquid chromatographic determination ofmethansul
phinic acid as a method for the determination of h
ydroxyl radicals ", J. Chromatogr., vol.630, p.18
In order to improve the problem of 7) and provide a method for measuring hydroxyl radicals applicable to the field of water treatment, comparative examination of the quality of reagents used in the measurement, the ratio of the amount of solvent added during solvent extraction, etc. As a result, even when using a spectrophotometer that is widely used in the field of water treatment, a method for measuring hydroxyl hydroxide radicals with high sensitivity and simply as in the case of using a high-performance liquid chromatography apparatus was found. Was completed.

【0008】本発明は、以下の1)〜6)の通りであ
る。 1)水中の水酸化ラジカルをジメチルスルホキシドと反
応させた時に生成するメタンスルフィン酸を測定するこ
とを特徴とする水中の水酸化ラジカルの測定方法。 2)ジメチルスルホキシドを添加した水溶液に対して、
紫外線、オゾン、光触媒、および過酸化水素のいずれか
から選ばれる水処理法を単独または2種類以上を組合せ
た水処理を行い処理水を得る第一の工程、次いで、処理
水に色素液を混和した後に溶媒抽出物を分離する第二の
工程、更に、該溶媒抽出物を含んでなる試料を分光分析
する第三の工程からなる前記1)に記載の水中の水酸化
ラジカルの測定方法。
The present invention is as described below in 1) to 6). 1) A method for measuring hydroxyl radicals in water, comprising measuring methanesulfinic acid generated when a hydroxyl radical in water reacts with dimethyl sulfoxide. 2) For the aqueous solution to which dimethyl sulfoxide is added,
The first step of performing water treatment using a water treatment method selected from the group consisting of ultraviolet light, ozone, photocatalyst, and hydrogen peroxide alone or in combination of two or more to obtain treated water, and then mixing the dye liquid with the treated water The method for measuring hydroxyl radicals in water according to the above 1), comprising a second step of separating the solvent extract after the reaction, and a third step of spectrally analyzing a sample containing the solvent extract.

【0009】3)第二の工程として、処理水に色素液を
添加した後に有機溶媒液で抽出して溶媒層試料を回収す
ることを特徴とする前記2)に記載の水中の水酸化ラジ
カルの測定方法。 4)第三の工程として、分光光度計を用いて吸光度を計
測することを特徴とする前記2)または3)に記載の水
中の水酸化ラジカルの測定方法。
[0009] 3) As a second step, a dye solution is added to the treated water and then extracted with an organic solvent solution to collect a solvent layer sample. Measuring method. 4) The method for measuring hydroxyl radicals in water according to 2) or 3), wherein the absorbance is measured using a spectrophotometer as a third step.

【0010】5)第二の工程の後処理工程として、分光
分析に供する溶媒層試料を有機溶媒飽和水で抽出して溶
媒層を回収する後処理工程、および/または、分光分析
に供する溶媒層試料にピリジンを添加する後処理工程を
含んでなることを特徴とする前記2)から4)に記載の
水中の水酸化ラジカルの測定方法。 6)第二の工程の前処理工程として、処理水に酸溶液を
添加した後に酸性溶媒液で抽出して溶媒層を回収し、回
収した溶媒層を酸性緩衝液で抽出して水層を回収する前
処理工程を含んでなることを特徴とする前記2)から
5)に記載の水中の水酸化ラジカルの測定方法。
5) As a post-processing step of the second step, a post-processing step of extracting a solvent layer sample to be subjected to spectroscopic analysis with an organic solvent saturated water to recover a solvent layer, and / or a solvent layer to be subjected to spectroscopic analysis The method for measuring hydroxyl radicals in water according to the above 2) to 4), further comprising a post-treatment step of adding pyridine to the sample. 6) As a pretreatment step of the second step, an acid solution is added to the treated water and then extracted with an acidic solvent solution to collect a solvent layer, and the collected solvent layer is extracted with an acidic buffer solution to collect an aqueous layer. The method for measuring hydroxyl radicals in water according to the above 2) to 5), which comprises a pretreatment step.

【0011】[0011]

【発明の実施の形態】本発明における水酸化ラジカルの
測定フローを図1に示し、以下に詳述する。 水処理工程:水酸化ラジカル発生量を測定したい水処理
装置(例えば、紫外線、オゾン、光触媒、過酸化水素か
ら選ばれる水処理法を単独または2種類以上を組合せた
水処理装置)において、ジメチルスルホキシドを添加し
た水溶液を処理原水として水処理を行って処理水を得
る。ジメチルスルホキシド溶液は、ジメチルスルホキシ
ド濃度が高すぎると粘度が高まり正確な水酸化ラジカル
測定には向かず、濃度が低すぎると水酸化ラジカルの捕
捉効率が低くなるため正確な水酸化ラジカルの測定は困
難であり、1mM〜10M、好ましくは50mM〜1M
の水溶液として調製する。ジメチルスルホキシド溶液
は、pH緩衝液によってpHを調製してあっても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a flow chart for measuring hydroxyl radicals in the present invention, which will be described in detail below. Water treatment step: In a water treatment apparatus (for example, a water treatment apparatus in which a water treatment method selected from ultraviolet rays, ozone, a photocatalyst, and hydrogen peroxide is used alone or in combination of two or more kinds), the dimethyl sulfoxide is to be measured. Water treatment is performed by using the aqueous solution to which is added as the raw water for treatment to obtain treated water. If the concentration of dimethyl sulfoxide is too high, the viscosity increases and it is not suitable for accurate measurement of hydroxyl radicals.If the concentration is too low, the efficiency of capturing hydroxyl radicals is low, so that accurate measurement of hydroxyl radicals is difficult. And 1 mM to 10 M, preferably 50 mM to 1 M
It is prepared as an aqueous solution of The pH of the dimethyl sulfoxide solution may be adjusted by a pH buffer.

【0012】前処理工程:脱イオン水や蒸留水等の純水
にジメチルスルホキシドやpH緩衝剤を添加して調整し
たジメチルスルホキシド溶液を用いた場合には、以下に
記載する前処理工程を経ずに、後述の発色工程に供試し
てもよいが、処理水中に不純物が含まれると予想される
場合には、以下に記載する前処理工程によって、処理水
中の不純物を除去すれば、精度良く水酸化ラジカル濃度
を測定することができる。
Pretreatment step: When a dimethylsulfoxide solution prepared by adding dimethylsulfoxide or a pH buffer to pure water such as deionized water or distilled water is used, the pretreatment step described below is not performed. Alternatively, it may be used in the coloring step described below, but if it is expected that impurities are contained in the treated water, the impurities in the treated water can be accurately removed by removing the impurities in the treated water by the pretreatment step described below. The concentration of the oxidized radical can be measured.

【0013】前処理工程としては、まず、処理水に酸溶
液を添加し、次いで、酸性溶媒液を添加して混和後、水
層と溶媒層とが分離するまで静置してから、溶媒層を回
収する。酸溶液は酸化反応を惹起しない性質であれば特
に制限はないが、1〜10M、好ましくは1〜4Mの硫
酸水溶液を用いるのがよい。また、酸性溶媒液に用いる
酸についても酸化反応を惹起しない性質であれば特に制
限はないが、1〜10M、好ましくは1〜4Mの硫酸水
溶液を用いるのがよく、酸性溶媒液に用いる溶媒として
は、メタンスルフィン酸を抽出可能で、かつ、水と混合
したときに二層分離が可能な有機溶媒であれば特に制限
はなく、例えば、n−ブタノール,n−ヘキサン,酢酸
エチルを用いることができるが、好ましくはn−ブタノ
ールを用いるのがよい。
As a pretreatment step, first, an acid solution is added to treated water, then an acidic solvent solution is added and mixed, and the mixture is allowed to stand until an aqueous layer and a solvent layer are separated. Collect. The acid solution is not particularly limited as long as it does not cause an oxidation reaction, but a 1 to 10 M, preferably 1 to 4 M sulfuric acid aqueous solution is preferably used. The acid used in the acidic solvent liquid is not particularly limited as long as it does not cause an oxidation reaction. However, it is preferable to use a 1 to 10 M, preferably 1 to 4 M aqueous sulfuric acid solution. Is not particularly limited as long as it can extract methanesulfinic acid and can separate two layers when mixed with water. For example, n-butanol, n-hexane, and ethyl acetate can be used. Although it is possible, n-butanol is preferably used.

【0014】回収した溶媒層に酸性緩衝液を添加して混
和後、水層と溶媒層とが分離するまで静置してから、水
層を回収する。酸性緩衝液のpHは溶媒層からメタンス
ルフィン酸を抽出できるpH条件を満たす範囲で選定す
ればよく、例えば、前記した酸性溶媒液として硫酸酸性
n−ブタノールを用いた場合、酸性緩衝液として酢酸緩
衝液(pH5.0)を用いればメタンスルフィン酸を抽
出できる。
After the acidic buffer is added to the recovered solvent layer and mixed, the mixture is allowed to stand until the aqueous layer and the solvent layer are separated, and then the aqueous layer is recovered. The pH of the acidic buffer may be selected in a range that satisfies the pH conditions under which methanesulfinic acid can be extracted from the solvent layer. For example, when n-butanol sulfate is used as the acidic solvent, acetate buffer is used as the acidic buffer. Methanesulfinic acid can be extracted by using the liquid (pH 5.0).

【0015】また、オゾンや過酸化水素等の酸化剤を使
った水処理に対して適用した場合、処理水に酸溶液を添
加する前に、予め亜硫酸ナトリウムやチオ硫酸ナトリウ
ム等の還元剤を処理水に添加することによって、酸化剤
の残留成分の影響を除去することもできる。 発色工程:前記の処理水に、もしくは、前記の工程を経
て回収した水層に、色素液を添加して混和後、暗所で反
応させ、更に反応後の溶液に有機溶媒液を添加して混和
後、水層と溶媒層とが分離するまで静置してから、溶媒
層を回収する。前記の処理水には、色素液を直接添加し
ても良いが、後述の発色反応を助長するために、pHを
調整しても良い。色素液としては、メタンスルフィン酸
と反応してジアゾ硫酸化合物を生成しうるアゾ色素であ
れば特に制限は無く、Fast Yellow GC salt, Fast Red
TR salt, Fast Blue BB salt, Fast Red AL salt, Fast
Black K salt, Fast Blue RR salt, Fast Red ITR sal
t などを用いることができるが、反応生成物であるジア
ゾ硫酸化合物の溶媒抽出効率,分光特性,検出感度の点
から、好ましくはFast Yellow GC salt, Fast Red TR s
alt, Fast Blue BBsalt, Fast Red AL salt、より好ま
しくは、Fast Yellow GC salt, Fast Blue BB saltを用
いるのがよい。有機溶媒液に用いる有機溶媒は、前記し
たジアゾ硫酸化合物を水層から効率よく抽出できる性質
のある有機溶媒であれば特に制限はなく、例えば、n−
ブタノール,n−ヘキサン,酢酸エチル,トルエン,ジ
クロロメタン,ジクロロメタン,エタノール,メタノー
ルを単独もしくは2種類以上混合して用いることができ
るが、前記した酸性溶媒液としてn−ブタノールを用い
た場合にはトルエンとn−ブタノールを3:1で混合し
たものを用いるのがよい。
When the present invention is applied to water treatment using an oxidizing agent such as ozone or hydrogen peroxide, a reducing agent such as sodium sulfite or sodium thiosulfate is treated before adding an acid solution to treated water. By adding to water, the effect of residual components of the oxidizing agent can also be eliminated. Coloring step: adding a dye solution to the treated water or to the aqueous layer recovered through the above step, mixing and reacting in a dark place, and further adding an organic solvent solution to the solution after the reaction. After mixing, the mixture is allowed to stand until the aqueous layer and the solvent layer separate, and then the solvent layer is recovered. A dye solution may be directly added to the above-mentioned treated water, but the pH may be adjusted in order to promote a color-forming reaction described later. The dye solution is not particularly limited as long as it is an azo dye capable of producing a diazosulfate compound by reacting with methanesulfinic acid. Fast Yellow GC salt, Fast Red
TR salt, Fast Blue BB salt, Fast Red AL salt, Fast
Black K salt, Fast Blue RR salt, Fast Red ITR sal
t, etc., but from the viewpoint of solvent extraction efficiency, spectral characteristics, and detection sensitivity of the diazosulfate compound as a reaction product, Fast Yellow GC salt, Fast Red TR s
alt, Fast Blue BB salt and Fast Red AL salt, more preferably Fast Yellow GC salt and Fast Blue BB salt. The organic solvent used for the organic solvent liquid is not particularly limited as long as it is an organic solvent having a property capable of efficiently extracting the diazosulfate compound from the aqueous layer.
Butanol, n-hexane, ethyl acetate, toluene, dichloromethane, dichloromethane, ethanol, and methanol can be used alone or as a mixture of two or more. However, when n-butanol is used as the acidic solvent solution, toluene and It is preferable to use a mixture of n-butanol at a ratio of 3: 1.

【0016】後処理工程:前記で回収した溶媒層はその
まま、もしくは後述の如くピリジンを添加してから分光
分析に供することができるが、有機溶媒飽和水で洗浄し
てもよい。すなわち、溶媒層に有機溶媒飽和水を添加し
て混和後、水層と溶媒層とが分離するまで静置してか
ら、溶媒層を回収することによって夾雑する不純物を除
去することができ、分光分析の感度と精度を上げること
が期待できる。有機溶媒飽和水に用いる有機溶媒は、前
記したジアゾ硫酸化合物を水層から抽出することなく不
純物のみを効率よく抽出できる性質のある有機溶媒であ
れば特に制限はなく、例えば、n−ブタノール,n−ヘ
キサン,酢酸エチルを用いることができるが、前記した
酸性溶媒液や有機溶媒混合液としてn−ブタノールを基
本に用いた場合にはn−ブタノールを用いるのがよい。
Post-treatment step: The solvent layer recovered above can be subjected to spectroscopic analysis as it is or after adding pyridine as described later, but it may be washed with water saturated with an organic solvent. That is, after adding an organic solvent saturated water to the solvent layer and mixing, the mixture is allowed to stand until the aqueous layer and the solvent layer are separated, and then the contaminant impurities can be removed by collecting the solvent layer. It can be expected to increase the sensitivity and accuracy of the analysis. The organic solvent used for the organic solvent saturated water is not particularly limited as long as it is an organic solvent having a property that only the impurities can be efficiently extracted without extracting the diazosulfate compound from the aqueous layer. For example, n-butanol, n -Hexane and ethyl acetate can be used, but it is preferable to use n-butanol when n-butanol is basically used as the acidic solvent liquid or the organic solvent mixed liquid.

【0017】回収した溶媒層をそのまま分光分析に供し
てもよいが、分光分析の前に予めピリジンを添加するこ
とで安定した吸光度が得られる。 分光分析工程:前記した溶媒抽出工程で得られた溶媒層
試料、もしくは、前記した前処理工程を施した溶媒層試
料について、分光光度計を用いて吸光度を測定する。吸
光度を測定する波長は前記したジアゾ化合物の分光特性
に応じて選定すればよく、例えば、アゾ色素としてFast
Yellow GC salt, Fast Red TR salt, Fast Blue BB sa
lt, Fast Red AL saltを用いた場合には、各々波長28
5nm付近,310nm付近,430nm付近,330
nm付近の吸光度を測定すればよい。
Although the recovered solvent layer may be directly used for spectroscopic analysis, a stable absorbance can be obtained by adding pyridine before the spectroscopic analysis. Spectroscopic analysis step: The absorbance of the solvent layer sample obtained in the above-described solvent extraction step or the solvent layer sample subjected to the above-described pretreatment step is measured using a spectrophotometer. The wavelength at which the absorbance is measured may be selected according to the spectral characteristics of the diazo compound described above.
Yellow GC salt, Fast Red TR salt, Fast Blue BB sa
lt, Fast Red AL salt, each wavelength 28
Around 5 nm, around 310 nm, around 430 nm, 330
The absorbance around nm may be measured.

【0018】種々の濃度でメタンスルフィン酸試薬を添
加したジメチルスルホキシド溶液に対して前記した溶媒
抽出工程によって回収した溶媒層試料について、もしく
は、溶媒抽出工程の後に前記した前処理工程によって調
製した溶媒層試料について分光分析すれば、メタンスル
フィン酸濃度を算出するための検量線が得られる。作成
した検量線に基づけば、所望の水処理試料中のメタンス
ルフィン酸濃度を算出することができ、その濃度から水
酸化ラジカル生成量を知ることができる。 (実施例1)ジメチルスルホキシド溶液に5〜100μ
Mの濃度範囲でメタンスルフィン酸試薬を溶解した標準
試料を用いて検量線を作成し、メタンスルフィン酸定量
の妥当性を明らかにした。
The solvent layer sample collected by the above-mentioned solvent extraction step for the dimethyl sulfoxide solution to which the methanesulfinic acid reagent is added at various concentrations, or the solvent layer prepared by the above-mentioned pretreatment step after the solvent extraction step Spectroscopic analysis of the sample provides a calibration curve for calculating methanesulfinic acid concentration. Based on the prepared calibration curve, the concentration of methanesulfinic acid in a desired water treatment sample can be calculated, and the amount of hydroxyl radical generated can be known from the concentration. (Example 1) 5 to 100 µm of dimethyl sulfoxide solution
A calibration curve was prepared using a standard sample in which the methanesulfinic acid reagent was dissolved in the concentration range of M, and the validity of the methanesulfinic acid determination was clarified.

【0019】0.5Mとなるようにジメチルスルホキシ
ド(関東化学社製)を溶解した水溶液を調製し、これを
溶媒としてメタンスルフィン酸ナトリウム塩(Aldr
ich Chem Co.社製)を溶解して5〜100
μMのメタンスルフィン酸標準溶液を調製した。10m
lのメタンスルフィン酸標準溶液に5mlの15mMF
ast Blue BB salt(関東化学社製)水
溶液を添加し、混和後、室温・暗所に10分間静置し
た。続いて、トルエンとn−ブタノールとを3:1の割
合で混合した有機溶媒混合液を2.5ml添加して、混
和後、溶媒層が分離するまで室温に静置し、溶媒層を
1.5ml回収した。回収した溶媒層にn−ブタノール
飽和水を1ml添加し、混和後、溶媒層が分離するまで
室温に静置し、溶媒層を0.8ml回収した。回収した
溶媒層にピリジン(関東化学社製)を0.4ml添加し
て、混和後、波長420nmの吸光度を分光光度計にて
計測した。メタンスルフィン酸試薬を含まない0.5M
ジメチルスルホキシド水溶液についても同様の溶媒抽出
とそれに続く分光分析を行った。
An aqueous solution in which dimethyl sulfoxide (manufactured by Kanto Chemical Co., Ltd.) was dissolved to a concentration of 0.5 M was prepared, and this was used as a solvent to prepare methanesulfinic acid sodium salt (Aldr).
ich Chem Co. 5-100
A μM methanesulfinic acid standard solution was prepared. 10m
1 ml of methanesulfinic acid standard solution in 5 ml of 15 mM F
An aqueous solution of ast Blue BB salt (manufactured by Kanto Chemical Co., Ltd.) was added, mixed, and allowed to stand at room temperature in a dark place for 10 minutes. Subsequently, 2.5 ml of an organic solvent mixture obtained by mixing toluene and n-butanol at a ratio of 3: 1 was added, and after mixing, the mixture was allowed to stand at room temperature until the solvent layer was separated. 5 ml was collected. 1 ml of n-butanol saturated water was added to the collected solvent layer, mixed, and allowed to stand at room temperature until the solvent layer was separated, and 0.8 ml of the solvent layer was recovered. 0.4 ml of pyridine (manufactured by Kanto Chemical Co.) was added to the collected solvent layer, mixed, and the absorbance at a wavelength of 420 nm was measured with a spectrophotometer. 0.5M without methanesulfinic acid reagent
The same solvent extraction and subsequent spectroscopic analysis were performed on the aqueous dimethyl sulfoxide solution.

【0020】結果を図2に示した。図2は、横軸に標準
物質であるメタンスルフィン酸濃度を、縦軸に各々のメ
タンスルフィン酸標準溶液に関する吸光度の計測値をプ
ロットした。本図から明らかなように、メタンスルフィ
ン酸濃度と吸光度とは比例関係にあり、本発明における
メタンスルフィン酸定量法は100μMまでのメタンス
ルフィン酸濃度を感度良く定量評価することができた。 (実施例2)ジメチルスルホキシド溶液に62.5〜1
000μMの濃度範囲でメタンスルフィン酸試薬を溶解
した標準試料を用いて検量線を作成し、メタンスルフィ
ン酸定量の妥当性を明らかにした。
The results are shown in FIG. FIG. 2 plots the concentration of methanesulfinic acid as a standard substance on the horizontal axis, and the measured absorbance of each methanesulfinic acid standard solution on the vertical axis. As is clear from this figure, the methanesulfinic acid concentration and the absorbance are in a proportional relationship, and the methanesulfinic acid determination method of the present invention was able to quantitatively evaluate the methanesulfinic acid concentration up to 100 μM with high sensitivity. (Example 2) 62.5-1 dimethyl sulfoxide solution
A calibration curve was prepared using a standard sample in which the methanesulfinic acid reagent was dissolved in a concentration range of 000 μM, and the validity of the methanesulfinic acid determination was clarified.

【0021】0.5Mとなるようにジメチルスルホキシ
ド(関東化学社製)を溶解した水溶液を調製し、これを
溶媒としてメタンスルフィン酸ナトリウム塩(Aldr
ich Chem Co.社製)を溶解して62.5〜
1000μMのメタンスルフィン酸標準溶液を調製し
た。メタンスルフィン酸標準溶液10mlに対して5m
lの2M硫酸と10mlの1M硫酸飽和n−ブタノール
を添加して、混和後、溶媒層が分離するまで室温に静置
し、溶媒層8mlを回収した。回収した溶媒層に1mM
酢酸緩衝液(pH5.0)を4ml添加して、混和後、
溶媒層が分離するまで室温に静置し、水層を3ml回収
した。回収した水層に15mM FastBlue B
B salt(関東化学社製)水溶液を1.5ml添加
し、混和後、室温・暗所に10分間静置した。続いて、
トルエンとn−ブタノールとを3:1の割合で混合した
有機溶媒混合液を1.5ml添加して、混和後、溶媒層
が分離するまで室温に静置し、溶媒層を1.2ml回収
した。回収した溶媒層にn−ブタノール飽和水を1.2
ml添加し、混和後、溶媒層が分離するまで室温に静置
し、溶媒層を0.8ml回収した。回収した溶媒層にピ
リジン(関東化学社製)を0.4ml添加して、混和
後、波長420nmの吸光度を分光光度計にて計測し
た。メタンスルフィン酸試薬を含まない0.5Mジメチ
ルスルホキシド水溶液についても同様の溶媒抽出とそれ
に続く分光分析を行った。
An aqueous solution in which dimethyl sulfoxide (manufactured by Kanto Chemical Co., Ltd.) was dissolved to a concentration of 0.5 M was prepared, and this was used as a solvent to prepare sodium methanesulfinate (Aldr).
ich Chem Co. 62.5)
A 1000 μM methanesulfinic acid standard solution was prepared. 5m for 10ml of methanesulfinic acid standard solution
After adding 1 L of 2M sulfuric acid and 10 ml of 1M sulfuric acid saturated n-butanol and mixing, the mixture was allowed to stand at room temperature until the solvent layer was separated, and 8 ml of the solvent layer was recovered. 1 mM in the collected solvent layer
After adding 4 ml of an acetate buffer (pH 5.0) and mixing,
The mixture was allowed to stand at room temperature until the solvent layer was separated, and 3 ml of an aqueous layer was recovered. 15 mM FastBlue B is added to the collected aqueous layer.
1.5 ml of an aqueous solution of B salt (manufactured by Kanto Chemical Co.) was added, mixed, and allowed to stand at room temperature in a dark place for 10 minutes. continue,
1.5 ml of an organic solvent mixture in which toluene and n-butanol were mixed at a ratio of 3: 1 was added, and after mixing, the mixture was allowed to stand at room temperature until the solvent layer was separated, and 1.2 ml of the solvent layer was recovered. . N-Butanol saturated water was added to the recovered solvent layer in an amount of 1.2.
After adding and mixing, the mixture was allowed to stand at room temperature until the solvent layer was separated, and 0.8 ml of the solvent layer was recovered. 0.4 ml of pyridine (manufactured by Kanto Chemical Co.) was added to the collected solvent layer, mixed, and the absorbance at a wavelength of 420 nm was measured with a spectrophotometer. The same solvent extraction and subsequent spectroscopic analysis were performed on a 0.5 M dimethyl sulfoxide aqueous solution containing no methanesulfinic acid reagent.

【0022】結果を図3に示した。図3は、横軸に標準
物質であるメタンスルフィン酸濃度を、縦軸に各々のメ
タンスルフィン酸標準溶液に関する吸光度の計測値をプ
ロットした。本図から明らかなように、メタンスルフィ
ン酸濃度に応じて吸光度が変化する傾向があり、本発明
におけるメタンスルフィン酸定量法は1000μMまで
のメタンスルフィン酸濃度を精度良く定量評価すること
ができた。 (実施例3)ジメチルスルホキシド溶液に10〜100
μMの濃度範囲でメタンスルフィン酸試薬溶解した試料
を用いて検量線を作成し、メタンスルフィン酸定量の検
出感度と精度を明らかにした。
The results are shown in FIG. In FIG. 3, the abscissa plots the concentration of methanesulfinic acid as a standard substance, and the ordinate plots measured values of absorbance for each methanesulfinic acid standard solution. As is clear from this figure, the absorbance tends to change according to the methanesulfinic acid concentration, and the methanesulfinic acid quantification method of the present invention was able to accurately and quantitatively evaluate the methanesulfinic acid concentration up to 1000 μM. (Example 3) 10 to 100 parts of dimethyl sulfoxide solution
A calibration curve was prepared using a sample in which the methanesulfinic acid reagent was dissolved in the concentration range of μM, and the detection sensitivity and accuracy of methanesulfinic acid determination were clarified.

【0023】0.5Mとなるようにジメチルスルホキシ
ド(関東化学社製)を溶解した水溶液を調製し、これを
溶媒としてメタンスルフィン酸ナトリウム塩(Aldr
ich Chem Co.社製)を溶解して10〜10
μMのメタンスルフィン酸標準溶液を調製した。メタン
スルフィン酸標準溶液10mlに対して5mlの2M硫
酸と10mlの1M硫酸飽和n−ブタノールを添加し
て、混和後、溶媒層が分離するまで室温に静置し、溶媒
層8mlを回収した。回収した溶媒層に1mM酢酸緩衝
液(pH5.0)を4ml添加して、混和後、溶媒層が
分離するまで室温に静置し、水層を3ml回収した。回
収した水層に15mM Fast Blue BB s
alt(関東化学社製)水溶液を1.5ml添加し、混
和後、室温・暗所に10分間静置した。続いて、トルエ
ンとn−ブタノールとを3:1の割合で混合した有機溶
媒混合液を1.5ml添加して、混和後、溶媒層が分離
するまで室温に静置し、溶媒層を1.2ml回収した。
回収した溶媒層にn−ブタノール飽和水を1.2ml添
加し、混和後、溶媒層が分離するまで室温に静置し、溶
媒層を0.8ml回収した。回収した溶媒層にピリジン
を0.4ml添加して、混和後、波長420nmの吸光
度を分光光度計にて計測した。メタンスルフィン酸試薬
を含まない0.5Mジメチルスルホキシド水溶液につい
ても同様の溶媒抽出とそれに続く分光分析を行った。
An aqueous solution in which dimethyl sulfoxide (manufactured by Kanto Chemical Co., Ltd.) was dissolved to a concentration of 0.5 M was prepared, and this was used as a solvent to prepare sodium methanesulfinate (Aldr).
ich Chem Co. 10-10
A μM methanesulfinic acid standard solution was prepared. 5 ml of 2M sulfuric acid and 10 ml of 1M sulfuric acid-saturated n-butanol were added to 10 ml of the methanesulfinic acid standard solution, mixed, and allowed to stand at room temperature until the solvent layer was separated, thereby collecting 8 ml of the solvent layer. 4 ml of 1 mM acetate buffer (pH 5.0) was added to the collected solvent layer, mixed, and allowed to stand at room temperature until the solvent layer was separated. 15 mM Fast Blue BBs was added to the collected aqueous layer.
alt (manufactured by Kanto Chemical Co.) was added in an amount of 1.5 ml, mixed, and allowed to stand at room temperature in a dark place for 10 minutes. Subsequently, 1.5 ml of an organic solvent mixture obtained by mixing toluene and n-butanol at a ratio of 3: 1 was added, and after mixing, the mixture was allowed to stand at room temperature until the solvent layer was separated. 2 ml were collected.
1.2 ml of n-butanol-saturated water was added to the collected solvent layer, mixed, and allowed to stand at room temperature until the solvent layer was separated, to collect 0.8 ml of the solvent layer. 0.4 ml of pyridine was added to the collected solvent layer, mixed, and the absorbance at a wavelength of 420 nm was measured with a spectrophotometer. The same solvent extraction and subsequent spectroscopic analysis were performed on a 0.5 M dimethyl sulfoxide aqueous solution containing no methanesulfinic acid reagent.

【0024】結果を図4に示した。図4は、横軸に標準
物質であるメタンスルフィン酸濃度を、縦軸に各々のメ
タンスルフィン酸標準溶液について4検体ずつ実施した
吸光度の平均値と標準偏差をプロットした。本図から明
らかなように、メタンスルフィン酸濃度に比例して吸光
度が変化する傾向があり、さらに、標準偏差も極めて小
さかった。本発明におけるメタンスルフィン酸定量法
は、従来(例えば、S. Fukui etal.(1993)"High-perfor
mance Liquid chromatographic determination of meth
ansulphinic acid as a method for the determination
of hydroxyl radicals", J. Chromatogr., vol.630,
p.187)は高速液体クロマトグラフィーを用いなければ
検出できなかった10〜100μMの濃度範囲における
メタンスルフィン酸濃度を精度良く定量評価することが
できた。 (実施例4)用水もしくは排水中の微生物を殺菌する水
処理方法として紫外線消毒技術があるが、殺菌効果をさ
らに高めた消毒技術として光触媒−紫外線消毒技術が注
目され始めている(例えば、小熊久美子他(1998)
『紫外線照射光触媒処理における大腸菌の光回復に関す
る研究』土木学会第53回年次学術講演会)。光触媒−
紫外線消毒においては、殺菌線と呼ばれる波長254n
mの紫外光による微生物の直接的な殺菌に加えて、光触
媒が紫外線照射された時に生成する水酸化ラジカルが殺
菌効果を高めていると考えられている。そこで、光触媒
−紫外線消毒における殺菌効果と水酸化ラジカル発生量
との相関関係について検討した。本発明におけるメタン
スルフィン酸濃度に基づく水酸化ラジカル生成量の測定
を実施例とし、従来のヨウ化カリウム法におけるヨウ素
錯イオン濃度に基づく水酸化ラジカル生成量の測定を比
較例として検討した。殺菌試験、実施例、および、比較
例とも、二酸化チタン光触媒を内壁に塗膜したガラス容
器に試料を入れて、上方から紫外線を照射する光触媒−
紫外線照射装置を用いた。
FIG. 4 shows the results. In FIG. 4, the abscissa plots the concentration of methanesulfinic acid as a standard substance, and the ordinate plots the average value and the standard deviation of absorbances of four samples of each methanesulfinic acid standard solution. As is clear from this figure, the absorbance tended to change in proportion to the methanesulfinic acid concentration, and the standard deviation was extremely small. The method for determining methanesulfinic acid in the present invention is a conventional method (for example, S. Fukui et al. (1993) "High-perfor
mance Liquid chromatographic determination of meth
ansulphinic acid as a method for the determination
of hydroxyl radicals ", J. Chromatogr., vol.630,
p. 187), the methanesulfinic acid concentration in a concentration range of 10 to 100 μM, which could not be detected without using high performance liquid chromatography, could be quantitatively evaluated with high accuracy. (Example 4) There is an ultraviolet disinfection technique as a water treatment method for disinfecting microorganisms in water or wastewater, and a photocatalyst-ultraviolet disinfection technique is beginning to attract attention as a disinfection technique that further enhances the disinfection effect (for example, Kumiko Oguma et al.) (1998)
"Study on Light Recovery of Escherichia coli by UV Irradiation Photocatalyst Treatment," 53rd Annual Scientific Meeting of the Japan Society of Civil Engineers). Photocatalyst-
In UV disinfection, a wavelength of 254 n
In addition to direct sterilization of microorganisms by ultraviolet light of m, hydroxyl radicals generated when the photocatalyst is irradiated with ultraviolet rays are considered to enhance the sterilizing effect. Therefore, the correlation between the bactericidal effect in photocatalyst-ultraviolet disinfection and the amount of hydroxyl radical generated was examined. The measurement of the amount of hydroxyl radical generated based on the methanesulfinic acid concentration in the present invention was taken as an example, and the measurement of the amount of hydroxyl radical generated based on the iodine complex ion concentration in the conventional potassium iodide method was examined as a comparative example. In each of the sterilization test, the examples, and the comparative examples, a photocatalyst in which a sample is put in a glass container having a titanium dioxide photocatalyst coated on the inner wall and irradiated with ultraviolet light from above-
An ultraviolet irradiation device was used.

【0025】まず、殺菌実験では、大腸菌を107MP
N/mlの濃度で含んだ生理食塩水を試料として紫外線
照射を行い、経時的に試料を採取し、『下水試験方法−
1984年版−』(社団法人日本下水道協会)に記載さ
れた最確数法に準拠して大腸菌群生菌数を調べた。水銀
ランプは発光特性の異なる2種類、すなわち殺菌線を効
率よく発光する低圧水銀ランプ、殺菌線以外にも光触媒
を活性化しうる波長400nm以下の近紫外光を発光す
る高圧水銀ランプをそれぞれ紫外線源として用いた場合
を比較した。結果を図5に示した。図5は、波長254
nmの紫外線照射強度を横軸として、紫外線照射後の大
腸菌生菌数を紫外線照射前の初期生菌数で除した生残率
を縦軸にプロットした。高圧水銀ランプを紫外線源とし
たときの生残率を●印で示し、低圧水銀ランプを紫外線
源としたときの生残率を○印で示した。波長254nm
の紫外線照射強度を以って、2種類の水銀ランプの殺菌
効果を比較すると明らかに高圧水銀ランプを紫外線源と
したときの方が殺菌効果が高い。これは、殺菌線を唯一
の主発光とした低圧水銀ランプに比べて、それ以外にも
光触媒の活性化に有効な近紫外光を発する高圧水銀ラン
プの方が、光触媒活性に因る殺菌効果が高いことを示し
ている。
First, in a sterilization experiment, E. coli was
A sample of physiological saline containing N / ml was irradiated with ultraviolet rays, and samples were collected with time.
1984 edition "(Japan Sewer Association), the number of viable coliform bacteria was examined according to the most probable number method. Two types of mercury lamps having different emission characteristics, namely, a low-pressure mercury lamp that efficiently emits a germicidal line, and a high-pressure mercury lamp that emits near-ultraviolet light having a wavelength of 400 nm or less that can activate a photocatalyst besides the germicidal line are used as ultraviolet light sources. The case where it used was compared. The results are shown in FIG. FIG.
The ultraviolet irradiation intensity in nm is plotted on the abscissa, and the survival rate obtained by dividing the number of viable Escherichia coli after irradiation with the initial number of viable bacteria before irradiation is plotted on the ordinate. The survival rate when a high-pressure mercury lamp was used as an ultraviolet light source was indicated by a black circle, and the survival rate when a low-pressure mercury lamp was used as an ultraviolet light source was indicated by a circle. Wavelength 254nm
Comparing the germicidal effects of the two types of mercury lamps with the ultraviolet irradiation intensity of, the germicidal effect is clearly higher when the high-pressure mercury lamp is used as the ultraviolet light source. This is because the high-pressure mercury lamp that emits near-ultraviolet light, which is effective in activating the photocatalyst, has a germicidal effect due to the photocatalytic activity, compared to the low-pressure mercury lamp that uses only the germicidal line as the main luminescence. It is high.

【0026】ついで、水酸化ラジカル生成量をヨウ化カ
リウム法によってヨウ素生成量で評価した。高圧水銀ラ
ンプもしくは低圧水銀ランプをそれぞれ紫外線源とした
場合について比較検討した。すなわち、100mMヨウ
化カリウム水溶液を試料として紫外線照射を行い、経時
的に試料を採取して、P. R. Harvey and R. Rudham (19
88) "Photocatalytic oxidation of iodine ions by ti
tanium dioxide", J.Chem. Soc., Trans. 1., vol.84,
no.11, p4181 に記載された方法に従って、波長350
nmの吸光度を測定した。100mMヨウ化カリウム溶
液に10〜100μMの濃度範囲でヨウ素溶液(和光純
薬社製)を添加して調製した標準液を分光分析して作成
した検量線より、紫外線照射試料におけるヨウ素生成量
を算出した。結果を図6に示した。図6は、波長254
nmの紫外線照射強度を横軸として、紫外線照射後のヨ
ウ素生成量を縦軸にプロットした。高圧水銀ランプを紫
外線源としたときのヨウ素生成量を●印で示し、低圧水
銀ランプを紫外線源としたときのヨウ素生成量を○印で
示した。波長254nmの紫外線照射強度を以って、2
種類の水銀ランプのヨウ素生成量を比較すると明らかに
低圧水銀ランプを紫外線源としたときの方がヨウ素生成
量が高く、この結果は、前記した大腸菌に対する殺菌効
果とは逆の傾向であり、ヨウ化カリウム法では、光触媒
−紫外線法における水酸化ラジカル生成活性を正確に評
価できないことを示している。
Next, the amount of hydroxyl radical produced was evaluated by the amount of iodine produced by the potassium iodide method. A comparison was made between a high-pressure mercury lamp and a low-pressure mercury lamp as ultraviolet sources. That is, a 100 mM aqueous solution of potassium iodide was used as a sample, and the sample was irradiated with ultraviolet light, a sample was collected over time, and PR Harvey and R. Rudham (19).
88) "Photocatalytic oxidation of iodine ions by ti
tanium dioxide ", J. Chem. Soc., Trans. 1., vol.84,
According to the method described in no.
The absorbance at nm was measured. The amount of iodine produced in the sample irradiated with ultraviolet light was calculated from a calibration curve prepared by spectral analysis of a standard solution prepared by adding an iodine solution (manufactured by Wako Pure Chemical Industries, Ltd.) to a 100 mM potassium iodide solution in a concentration range of 10 to 100 μM. did. The results are shown in FIG. FIG.
The UV irradiation intensity in nm is plotted on the horizontal axis, and the iodine generation after UV irradiation is plotted on the vertical axis. The amount of iodine generated when a high-pressure mercury lamp was used as an ultraviolet light source was indicated by a black circle, and the amount of iodine generated when a low-pressure mercury lamp was used as an ultraviolet light source was indicated by a circle. With the UV irradiation intensity of 254 nm wavelength, 2
When comparing the amount of iodine produced by the two types of mercury lamps, it is clear that the amount of iodine produced is higher when the low-pressure mercury lamp is used as the ultraviolet light source, and this result is opposite to the bactericidal effect on Escherichia coli described above. This shows that the potassium halide method cannot accurately evaluate the hydroxyl radical generation activity in the photocatalyst-ultraviolet method.

【0027】さらに、水酸化ラジカル生成量を本発明に
よってメタンスルフィン酸生成量で評価した。高圧水銀
ランプもしくは低圧水銀ランプをそれぞれ紫外線源とし
た場合について比較検討した。すなわち、0.5Mジメ
チルスルホキシド水溶液を試料として紫外線照射を行
い、経時的に試料を採取して、実施例2に記載した方法
に従って、メタンスルフィン酸を溶媒抽出し、波長42
0nmの吸光度を測定した。実施例3に示した検量線に
基づいて吸光度からのメタンスルフィン酸濃度を算出し
た。結果を図7に示した。図7は、波長254nmの紫
外線照射強度を横軸として、紫外線照射後のメタンスル
フィン酸生成量を縦軸にプロットした。高圧水銀ランプ
を紫外線源としたときのメタンスルフィン酸生成量を●
印で示し、低圧水銀ランプを紫外線源としたときのメタ
ンスルフィン酸生成量を○印で示した。波長254nm
の紫外線照射強度を以って、2種類の水銀ランプのメタ
ンスルフィン酸生成量を比較すると明らかに高圧水銀ラ
ンプを紫外線源としたときの方がヨウ素生成量が高く、
この結果は、前記した大腸菌に対する殺菌効果と同じ傾
向であり、メタンスルフィン酸生成量で評価する本発明
の水酸化ラジカル測定方法は、光触媒−紫外線法におけ
る水酸化ラジカル生成活性を正確に評価していることを
示している。 (実施例5)実施例4で用いた光触媒−紫外線照射装置
を用いて、光触媒活性に起因した水酸化ラジカル生成量
を評価した。本実施例においては、高圧水銀ランプを紫
外線源として用いた。
Further, the production amount of hydroxyl radical was evaluated by the production amount of methanesulfinic acid according to the present invention. A comparison was made between a high-pressure mercury lamp and a low-pressure mercury lamp as ultraviolet sources. That is, a 0.5 M dimethyl sulfoxide aqueous solution was used as a sample, and the sample was irradiated with ultraviolet light, a sample was collected over time, and methanesulfinic acid was solvent-extracted according to the method described in Example 2, and the wavelength was 42
The absorbance at 0 nm was measured. The methanesulfinic acid concentration was calculated from the absorbance based on the calibration curve shown in Example 3. The results are shown in FIG. FIG. 7 plots the irradiation intensity of methanesulfinic acid after irradiation with ultraviolet light on the vertical axis, with the irradiation intensity of ultraviolet light with a wavelength of 254 nm on the horizontal axis. The amount of methanesulfinic acid generated when a high-pressure mercury lamp was used as the ultraviolet light source
The mark indicates the amount of methanesulfinic acid generated when the low-pressure mercury lamp was used as an ultraviolet light source, and the mark indicates the mark. Wavelength 254nm
Comparing the amount of methanesulfinic acid produced by the two types of mercury lamps with the ultraviolet irradiation intensity of, the amount of iodine produced is clearly higher when the high-pressure mercury lamp is used as the ultraviolet light source,
This result has the same tendency as the bactericidal effect on Escherichia coli described above, and the method for measuring the hydroxyl radical of the present invention evaluated by the amount of methanesulfinic acid produced accurately evaluates the hydroxyl radical generating activity in the photocatalyst-ultraviolet method. It indicates that (Example 5) Using the photocatalyst-ultraviolet irradiation apparatus used in Example 4, the amount of hydroxyl radical generated due to photocatalytic activity was evaluated. In this embodiment, a high-pressure mercury lamp was used as an ultraviolet light source.

【0028】0.5Mジメチルスルホキシド水溶液を試
料として紫外線照射を行い、経時的に試料を採取して、
実施例3に記載した方法に従って、メタンスルフィン酸
を溶媒抽出し、波長420nmの吸光度を測定した。光
触媒被膜のあるガラス容器と光触媒被膜のないガラス容
器をそれぞれ用いて試験した。実施例3に示した検量線
に基づいて、吸光度からのメタンスルフィン酸濃度を算
出し、それを水酸化ラジカル生成量とした。結果を図8
に示した。
A 0.5 M aqueous solution of dimethyl sulfoxide was used as a sample, and the sample was irradiated with ultraviolet light.
According to the method described in Example 3, methanesulfinic acid was subjected to solvent extraction, and the absorbance at a wavelength of 420 nm was measured. The test was performed using a glass container having a photocatalytic coating and a glass container having no photocatalytic coating. Based on the calibration curve shown in Example 3, the methanesulfinic acid concentration was calculated from the absorbance, and this was defined as the amount of hydroxyl radical generated. Fig. 8 shows the results.
It was shown to.

【0029】図8は、光触媒活性化に有効な近紫外光の
代表波長として波長365nmにおける紫外線照射強度
を横軸として、紫外線照射後の水酸化ラジカル生成量を
縦軸にプロットした。光触媒被膜のある場合を実施例と
して●印で示し、光触媒被膜のない場合を比較例として
□印で示した。図より明らかなように、比較例において
も若干の水酸化ラジカル生成が認められたが、実施例に
おいては比較例に比べて顕著な水酸化ラジカル生成が観
察されたことから、本発明における水酸化ラジカルの測
定方法は、光触媒−紫外線消毒法における水酸化ラジカ
ル生成量を評価することができた。 (実施例6)用水や排水中の難分解生物質の酸化分解す
る水処理技術のひとつにオゾン処理がある。オゾン処理
は前記したように水酸化ラジカルの酸化力に基づいた水
処理技術であり、本発明の水酸化ラジカル測定方法によ
って、酸化力を評価できることを明らかにした。
FIG. 8 plots the intensity of ultraviolet irradiation at a wavelength of 365 nm as the representative wavelength of near-ultraviolet light effective for photocatalytic activation on the horizontal axis, and plots the amount of hydroxyl radical generated after ultraviolet irradiation on the vertical axis. The case with the photocatalyst coating is shown by a black circle as an example, and the case without the photocatalyst coating is shown by a black square as a comparative example. As is clear from the figure, a slight amount of hydroxyl radical generation was also observed in the comparative example, but in the example, significant hydroxyl radical generation was observed as compared with the comparative example. The radical measurement method was able to evaluate the amount of hydroxyl radical generated in the photocatalyst-ultraviolet disinfection method. (Embodiment 6) Ozone treatment is one of the water treatment techniques for oxidatively decomposing hardly decomposable raw materials in water and wastewater. As described above, ozone treatment is a water treatment technique based on the oxidizing power of hydroxyl radicals, and the oxidizing power can be evaluated by the hydroxyl radical measuring method of the present invention.

【0030】7.5mg/Nlのオゾンガスを、0.5
Mジメチルスルホキシド水溶液中に10分間通気し、オ
ゾンガス通気の前後のジメチルスルホキシド水溶液につ
いて実施例3に記載したした方法に従って、メタンスル
フィン酸を溶媒抽出し、波長420nmの吸光度を測定
した。実施例2に示した検量線に基づいて吸光度からの
メタンスルフィン酸濃度を算出し、それを水酸化ラジカ
ル生成量とした。結果を図9に示した。
7.5 mg / Nl of ozone gas was added to 0.5
M dimethylsulfoxide aqueous solution was aerated for 10 minutes, and methanesulfinic acid was solvent-extracted with the dimethylsulfoxide aqueous solution before and after ozone gas aeration according to the method described in Example 3, and the absorbance at a wavelength of 420 nm was measured. Based on the calibration curve shown in Example 2, the methanesulfinic acid concentration was calculated from the absorbance, and the calculated concentration was defined as the amount of hydroxyl radical generated. The results are shown in FIG.

【0031】図9より明らかなように、オゾンガス通気
前には本発明の方法によって検出される水酸化ラジカル
濃度は殆どないが、オゾンガス通気後の水溶液には水酸
化ラジカルの顕著な生成が検出できた。このことは、本
発明の水酸化ラジカル測定方法がオゾン処理についても
適用が可能であることを示している。
As is clear from FIG. 9, the concentration of hydroxyl radicals detected by the method of the present invention is hardly detected before ozone gas aeration, but remarkable generation of hydroxyl radicals can be detected in the aqueous solution after ozone gas aeration. Was. This indicates that the method for measuring a hydroxyl radical of the present invention is applicable to ozone treatment.

【0032】[0032]

【発明の効果】本発明によれば、水処理分野における水
中の水酸化ラジカル測定方法として提案されているヨウ
化カリウム法の適用が困難な紫外線照射を伴う水処理装
置に関しても水酸化ラジカル生成量を定量・評価するこ
とができる。また、本発明によれば、オゾン,過酸化水
素等の化学的酸化剤や光触媒,紫外線等の光化学反応を
単独もしくは2種以上併用した用水・排水の酸化処理法
や水処理装置における水酸化ラジカル生成量を感度良
く、かつ精度良く測定することができる。
According to the present invention, the amount of hydroxyl radicals produced can be reduced even in a water treatment apparatus with ultraviolet irradiation, which is difficult to apply the potassium iodide method proposed as a method for measuring hydroxyl radicals in water in the field of water treatment. Can be quantified and evaluated. Further, according to the present invention, a method for oxidizing water or wastewater using a chemical oxidizing agent such as ozone or hydrogen peroxide, a photocatalyst, or a photochemical reaction such as ultraviolet light alone or in combination of two or more thereof, or a hydroxyl radical in a water treatment apparatus. The amount of generation can be measured with high sensitivity and accuracy.

【0033】本発明は、前記したあらゆる種類の酸化処
理法に対して適用が可能のため、既存の水処理装置にお
ける水処理効果の検定を目的とした利用ばかりでなく、
水処理の新技術の開発あるいは新装置の設計を目的とし
た利用が可能であり、本発明によって測定した水酸化ラ
ジカル生成量は、水処理装置の運転条件や設計諸元を把
握するための指標として利用することが可能である。
Since the present invention can be applied to any of the above-mentioned oxidation treatment methods, it can be used not only for the purpose of examining the effect of water treatment in an existing water treatment apparatus, but also for
It can be used for the development of new technologies for water treatment or for the design of new equipment.The amount of hydroxyl radical generated measured according to the present invention is an index for understanding the operating conditions and design specifications of water treatment equipment. It is possible to use as.

【0034】本発明は、水処理技術開発といった産業面
での活用ばかりでなく、酸化処理の作用メカニズムの解
明に向けた学術上の発展にも大いに貢献する。
The present invention greatly contributes not only to industrial applications such as water treatment technology development but also to scientific development for elucidating the action mechanism of oxidation treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願における水酸化ラジカルの測定手順を示す
図である。
FIG. 1 is a diagram showing a procedure for measuring a hydroxyl radical in the present application.

【図2】100μM以下のメタンスルフィン酸標準液に
関して、前処理工程を省略した場合の検量線の例を示す
図である。
FIG. 2 is a diagram showing an example of a calibration curve when a pretreatment step is omitted for a methanesulfinic acid standard solution of 100 μM or less.

【図3】1000μM以下のメタンスルフィン酸標準液
に関する検量線の例を示す図である。
FIG. 3 is a diagram showing an example of a calibration curve for a methanesulfinic acid standard solution of 1000 μM or less.

【図4】100μM以下のメタンスルフィン酸標準液に
関する検量線の例を示す図である。
FIG. 4 is a diagram showing an example of a calibration curve for a methanesulfinic acid standard solution of 100 μM or less.

【図5】光触媒−紫外線消毒処理した時の殺菌効果の例
を示す図である。
FIG. 5 is a diagram showing an example of a sterilization effect when a photocatalyst-ultraviolet disinfection treatment is performed.

【図6】光触媒−紫外線消毒処理においてヨウ化カリウ
ム法を用いて水酸化ラジカルを測定した比較例を示す図
である。
FIG. 6 is a view showing a comparative example in which hydroxyl radicals were measured using a potassium iodide method in a photocatalyst-ultraviolet disinfection treatment.

【図7】光触媒−紫外線消毒処理において本発明を用い
て水酸化ラジカルを測定した実施例を示す図である。
FIG. 7 is a diagram showing an example in which hydroxyl radicals were measured using the present invention in a photocatalyst-ultraviolet disinfection treatment.

【図8】光触媒−紫外線消毒処理において本発明を用い
て水酸化ラジカルを測定した実施例を示す図である。
FIG. 8 is a diagram showing an example in which hydroxyl radicals were measured using the present invention in a photocatalyst-ultraviolet disinfection treatment.

【図9】オゾン処理において本発明を用いて水酸化ラジ
カルを測定した実施例を示す図である。
FIG. 9 is a diagram showing an example in which hydroxyl radicals were measured using the present invention in ozone treatment.

フロントページの続き Fターム(参考) 2G042 AA01 BA03 BA04 BA07 BA08 BD01 BD15 CA02 CB03 DA08 EA03 EA20 FA11 FB02 GA04 GA05 HA07 2G054 AA02 AB10 BA10 BB01 BB02 BB08 BB10 BB20 CA30 CB10 CD04 CE02 EA06 EB01 EB05 FA06 FA50 FB07 GA02 GA03 GB01 JA06 4D037 AA01 AA11 AB02 AB03 AB05 BA18 BB02 BB08 CA12 4D050 AA01 AA12 AB06 AB11 BB02 BB09 BC06 BC09 CA05 CA07 CA12 CA20 Continued on the front page F term (reference) 2G042 AA01 BA03 BA04 BA07 BA08 BD01 BD15 CA02 CB03 DA08 EA03 EA20 FA11 FB02 GA04 GA05 HA07 2G054 AA02 AB10 BA10 BB01 BB02 BB08 BB10 BB20 CA30 CB10 CD04 CE02 EA06 GA03 EB06 4D037 AA01 AA11 AB02 AB03 AB05 BA18 BB02 BB08 CA12 4D050 AA01 AA12 AB06 AB11 BB02 BB09 BC06 BC09 CA05 CA07 CA12 CA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水中の水酸化ラジカルをジメチルスルホ
キシドと反応させた時に生成するメタンスルフィン酸を
測定することを特徴とする水中の水酸化ラジカルの測定
方法。
1. A method for measuring hydroxyl radicals in water, comprising measuring methanesulfinic acid generated when hydroxyl radicals in water react with dimethyl sulfoxide.
【請求項2】 ジメチルスルホキシドを添加した水溶液
に対して、紫外線、オゾン、光触媒、および過酸化水素
のいずれかから選ばれる水処理法を単独または2種類以
上を組合せた水処理を行い処理水を得る第一の工程、次
いで、処理水に色素液を混和した後に溶媒抽出物を分離
する第二の工程、更に、該溶媒抽出物を含んでなる試料
を分光分析する第三の工程からなる請求項1に記載の水
中の水酸化ラジカルの測定方法。
2. An aqueous solution to which dimethyl sulfoxide has been added is subjected to water treatment using a water treatment method selected from the group consisting of ultraviolet light, ozone, a photocatalyst, and hydrogen peroxide, alone or in combination of two or more. A first step of obtaining, a second step of separating the solvent extract after mixing the dye solution with the treated water, and a third step of spectroscopically analyzing a sample containing the solvent extract. Item 4. The method for measuring hydroxyl radicals in water according to Item 1.
【請求項3】 第二の工程として、処理水に色素液を添
加した後に有機溶媒液で抽出して溶媒層試料を回収する
ことを特徴とする請求項2に記載の水中の水酸化ラジカ
ルの測定方法。
3. The method according to claim 2, wherein, as a second step, a dye solution is added to the treated water, and then extracted with an organic solvent solution to collect a solvent layer sample. Measuring method.
【請求項4】 第三の工程として、分光光度計を用いて
吸光度を計測することを特徴とする請求項2または3に
記載の水中の水酸化ラジカルの測定方法。
4. The method for measuring hydroxyl radicals in water according to claim 2, wherein in the third step, absorbance is measured using a spectrophotometer.
【請求項5】 第二の工程の後処理工程として、分光分
析に供する溶媒層試料を有機溶媒飽和水で抽出して溶媒
層を回収する後処理工程、および/または、分光分析に
供する溶媒層試料にピリジンを添加する後処理工程を含
んでなることを特徴とする請求項2から4に記載の水中
の水酸化ラジカルの測定方法。
5. A post-processing step of extracting a solvent layer sample to be subjected to spectroscopic analysis with an organic solvent-saturated water to recover a solvent layer as a post-processing step of the second step, and / or a solvent layer to be subjected to spectroscopic analysis. 5. The method for measuring hydroxyl radicals in water according to claim 2, further comprising a post-treatment step of adding pyridine to the sample.
【請求項6】 第二の工程の前処理工程として、処理水
に酸溶液を添加した後に酸性溶媒液で抽出して溶媒層を
回収し、回収した溶媒層を酸性緩衝液で抽出して水層を
回収する前処理工程を含んでなることを特徴とする請求
項2から5に記載の水中の水酸化ラジカルの測定方法。
6. As a pretreatment step of the second step, an acid solution is added to the treated water, followed by extraction with an acidic solvent solution to collect a solvent layer. The collected solvent layer is extracted with an acidic buffer solution to form a water solution. The method for measuring hydroxyl radicals in water according to any one of claims 2 to 5, further comprising a pretreatment step of recovering the layer.
JP10359367A 1998-12-17 1998-12-17 Measuring method of hydroxy radical in water Withdrawn JP2000180430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10359367A JP2000180430A (en) 1998-12-17 1998-12-17 Measuring method of hydroxy radical in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10359367A JP2000180430A (en) 1998-12-17 1998-12-17 Measuring method of hydroxy radical in water

Publications (1)

Publication Number Publication Date
JP2000180430A true JP2000180430A (en) 2000-06-30

Family

ID=18464148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10359367A Withdrawn JP2000180430A (en) 1998-12-17 1998-12-17 Measuring method of hydroxy radical in water

Country Status (1)

Country Link
JP (1) JP2000180430A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010576A1 (en) * 2003-07-24 2005-02-03 Nitto Denko Corporation Method for producing poly(vinyl alcohol) based film dyed with iodine, polarizer, polarizing plate, optical film and image display device
JP2011045808A (en) * 2009-08-25 2011-03-10 Harison Toshiba Lighting Corp Ultraviolet treatment device
CN101413896B (en) * 2008-12-02 2011-05-18 上海理工大学 Method for measuring hydroxy free radical
JP2011242166A (en) * 2010-05-14 2011-12-01 Kurabo Ind Ltd Measuring method and measuring device of hydroxyl radical concentration
JP2013163147A (en) * 2012-02-10 2013-08-22 Toshiba Corp Water treatment method and water treatment apparatus
WO2014103440A1 (en) * 2012-12-28 2014-07-03 株式会社東芝 Apparatus for measuring hydroxyl radicals and liquid treatment apparatus
WO2017163456A1 (en) * 2016-03-25 2017-09-28 栗田工業株式会社 Method and device for measuring oxidant concentration, and electronic material cleaning device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010576A1 (en) * 2003-07-24 2005-02-03 Nitto Denko Corporation Method for producing poly(vinyl alcohol) based film dyed with iodine, polarizer, polarizing plate, optical film and image display device
CN101413896B (en) * 2008-12-02 2011-05-18 上海理工大学 Method for measuring hydroxy free radical
JP2011045808A (en) * 2009-08-25 2011-03-10 Harison Toshiba Lighting Corp Ultraviolet treatment device
JP2011242166A (en) * 2010-05-14 2011-12-01 Kurabo Ind Ltd Measuring method and measuring device of hydroxyl radical concentration
JP2013163147A (en) * 2012-02-10 2013-08-22 Toshiba Corp Water treatment method and water treatment apparatus
WO2014103440A1 (en) * 2012-12-28 2014-07-03 株式会社東芝 Apparatus for measuring hydroxyl radicals and liquid treatment apparatus
JP2014130105A (en) * 2012-12-28 2014-07-10 Toshiba Corp Oh radical measurement device and liquid processing device
US9873619B2 (en) 2012-12-28 2018-01-23 Kabushiki Kaisha Toshiba Apparatus for measuring hydroxyl radicals and liquid treatment apparatus
WO2017163456A1 (en) * 2016-03-25 2017-09-28 栗田工業株式会社 Method and device for measuring oxidant concentration, and electronic material cleaning device
JP2017173218A (en) * 2016-03-25 2017-09-28 栗田工業株式会社 Method and apparatus for measuring concentration of oxidizer, and electronic material cleaning device

Similar Documents

Publication Publication Date Title
Phungsai et al. Molecular characteristics of dissolved organic matter transformed by O3 and O3/H2O2 treatments and the effects on formation of unknown disinfection by-products
Wenk et al. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties
Vieira et al. Determination of total mercury and methylmercury in biological samples by photochemical vapor generation
Roccaro et al. Differential vs. absolute UV absorbance approaches in studying NOM reactivity in DBPs formation: Comparison and applicability
JP7446276B2 (en) Detection and analysis of aldehydes using surface-enhanced Raman spectroscopy
Peleato et al. Comparison of three-dimensional fluorescence analysis methods for predicting formation of trihalomethanes and haloacetic acids
Zhang et al. Spectroscopic insights into photochemical transformation of effluent organic matter from biological wastewater treatment plants
Rocha et al. An environmentally friendly flow-based procedure with photo-induced oxidation for the spectrophotometric determination of chloride in urine and waters
Donham et al. Photometric hydroxyl radical scavenging analysis of standard natural organic matter isolates
Gao et al. A comparison of dissolved organic matter transformation in low pressure ultraviolet (LPUV) and ultraviolet light-emitting diode (UV-LED)/chlorine processes
Moliner-Martínez et al. Improved detection limit for ammonium/ammonia achieved by Berthelot's reaction by use of solid-phase extraction coupled to diffuse reflectance spectroscopy
Bosco et al. Determination of phenol in the presence of its principal degradation products in water during a TiO2-photocatalytic degradation process by three-dimensional excitation–emission matrix fluorescence and parallel factor analysis
JP2000180430A (en) Measuring method of hydroxy radical in water
Kodamatani et al. Sensitive detection of nitrite and nitrate in seawater by 222 nm UV-irradiated photochemical conversion to peroxynitrite and ion chromatography-luminol chemiluminescence system
Li et al. Total organic fluorine (TOF) analysis by completely converting TOF into fluoride with vacuum ultraviolet
Lozano et al. Second-order advantage with excitation–emission photoinduced fluorimetry for the determination of the antiepileptic carbamazepine in environmental waters
JP4538604B2 (en) Photoreaction tube built-in photoreaction apparatus and water quality monitoring apparatus using the same
Bosco et al. Simultaneous analysis of the photocatalytic degradation of polycyclic aromatic hydrocarbons using three-dimensional excitation–emission matrix fluorescence and parallel factor analysis
Mikuška et al. Chemiluminescent flow-injection analysis of nitrates in water using on-line ultraviolet photolysis
JP2010271085A (en) Method and instrument for measuring formaldehyde
CN112147244A (en) Method for identifying high-risk disinfection byproducts in water, device and application thereof
JP2882516B2 (en) Analysis of compounds in water
He et al. Heterogeneity of molecular-level and photochemical of dissolved organic matter derived from decomposing submerged macrophyte and algae
JP2006201104A (en) Total nitrogen measuring method and system
dos Santos Allan Applying sequential injection analysis (SIA) and response surface methodology for optimization of Fenton-based processes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307