JP2006201104A - Total nitrogen measuring method and system - Google Patents

Total nitrogen measuring method and system Download PDF

Info

Publication number
JP2006201104A
JP2006201104A JP2005015143A JP2005015143A JP2006201104A JP 2006201104 A JP2006201104 A JP 2006201104A JP 2005015143 A JP2005015143 A JP 2005015143A JP 2005015143 A JP2005015143 A JP 2005015143A JP 2006201104 A JP2006201104 A JP 2006201104A
Authority
JP
Japan
Prior art keywords
reduction
total nitrogen
sample water
ions
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005015143A
Other languages
Japanese (ja)
Other versions
JP4661232B2 (en
Inventor
Masahito Yahata
雅人 矢幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005015143A priority Critical patent/JP4661232B2/en
Publication of JP2006201104A publication Critical patent/JP2006201104A/en
Application granted granted Critical
Publication of JP4661232B2 publication Critical patent/JP4661232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately determine the concentration of total nitrogen by easily reducing nitric acid to nitrous acid. <P>SOLUTION: In an oxidative degradation reaction part 12, a potassium peroxodisulfate solution 2 and a sodium hydroxide solution 3 are added to a nitrogen compound sample, then heated to approximately 120°, and oxidatively degraded to nitric acid ions. Sample water containing nitric acid ions is supplied for a reaction container 15 of a reduction reaction part 23. Potassium iodide is, for example, added to the sample water as a reduction accelerator 6. By irradiating ultraviolet rays by an ultraviolet lamp 14, the nitric acid ions are reduced to nitrous acid ions. Then a naphthyl ethylenediamine solution 5 is added to measure absorbance of the sample water of which colors have developed. An arithmetic processing part 18 converts the absorbance measured by a measuring part 16 into the concentration of total nitrogen and displays it on a display part 19. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排水、下水、環境水、プラント用水などの試料水に含まれる全窒素を測定する方法及び装置に関する。特に、本発明は試料水中の窒素化合物を硝酸イオンにまで酸化分解した後、亜硝酸イオンに還元して発色試薬を用いた吸光光度法によって全窒素を定量する全窒素測定方法に関する。   The present invention relates to a method and apparatus for measuring total nitrogen contained in sample water such as waste water, sewage, environmental water, and plant water. In particular, the present invention relates to a total nitrogen measurement method in which a nitrogen compound in a sample water is oxidatively decomposed to nitrate ions, then reduced to nitrite ions, and total nitrogen is quantified by an absorptiometric method using a coloring reagent.

我が国においては、工場等からの排水中の全窒素化合物総量を窒素の濃度であらわす全窒素の測定方法は、日本工業規格(JIS)の「工場から排出される排水の試験方法」に規定されている「紫外吸光光度法」(非特許文献1参照。)が構成の簡素さにより最も一般に利用されている。   In Japan, the method for measuring total nitrogen, which expresses the total amount of nitrogen compounds in wastewater from factories, etc. in terms of nitrogen concentration, is stipulated in the Japanese Industrial Standards (JIS) “Testing methods for wastewater discharged from factories”. The “ultraviolet absorptiometry” (see Non-Patent Document 1) is most commonly used because of its simplicity.

この窒素化合物の計測方法は、酸化剤であるアルカリ性ペルオキソ二硫酸カリウムを添加した試料水をオートクレーブ法、すなわち高温、高圧下で試料を硝酸イオンにまで加熱分解した後、pHを2〜3に調整し、波長220nmの紫外線吸光度測定により全窒素濃度を定量する方法である。この方法を実現するための装置は耐圧性と耐熱性が要求され、材質や設計が特殊なものになっている。   In this nitrogen compound measurement method, the sample water to which alkaline potassium peroxodisulfate as an oxidizing agent is added is autoclaved, that is, the sample is thermally decomposed to nitrate ions at high temperature and high pressure, and then the pH is adjusted to 2 to 3. In this method, the total nitrogen concentration is quantified by measuring ultraviolet absorbance at a wavelength of 220 nm. An apparatus for realizing this method is required to have pressure resistance and heat resistance, and has a special material and design.

一方、試料を硝酸イオンにまで分解する方法に、「紫外線酸化分解法」を採用した全窒素測定装置も市販されている。この方法では、温度、圧力を下げる改善も進められ利用されている。すなわち、紫外線酸化に必要な温度が120℃から60℃程度にまで下げられ、圧力も常圧下で行なうことができる。
両者共、酸化分解により窒素化合物は硝酸イオンにまで酸化分解され、その後吸光度測定のための酸が添加され、220nm付近の吸光度測定によって試料中の全窒素の測定が行なわれる。
On the other hand, a total nitrogen measuring device adopting an “ultraviolet oxidative decomposition method” as a method for decomposing a sample into nitrate ions is also commercially available. In this method, improvement of lowering the temperature and pressure is being promoted and used. That is, the temperature required for the ultraviolet oxidation is lowered from 120 ° C. to about 60 ° C., and the pressure can also be performed under normal pressure.
In both cases, the nitrogen compound is oxidatively decomposed to nitrate ions by oxidative decomposition, and then an acid for measuring absorbance is added, and the total nitrogen in the sample is measured by measuring the absorbance near 220 nm.

上記のオートクレーブ法や紫外線酸化分解による全窒素測定法は、220nm付近の紫外線の吸光度測定によって、全窒素濃度を測定することは共通である。そのため、紫外域に吸収をもつ金属イオンや臭化物イオンを含む試料では測定値に誤差を与え、同時に酸化剤として用いるペルオキソ二硫酸カリウムも220nm付近に吸収をもつため、その酸化後の残量が測定に影響を与えることもあり、220nmの吸光度測定は紫外域に吸収を持つ物質の影響を受けるという問題を有している。また、測定精度についても、高度に処理された0.1mg以下の低濃度域の試料に対しては、220nmの吸光度測定法では定量困難である。   In the autoclave method and the total nitrogen measuring method by ultraviolet oxidative decomposition, it is common to measure the total nitrogen concentration by measuring the absorbance of ultraviolet rays near 220 nm. For this reason, samples containing metal ions and bromide ions that absorb in the ultraviolet range give an error in the measured value. At the same time, potassium peroxodisulfate used as an oxidizing agent also absorbs near 220 nm, so the remaining amount after oxidation is measured. The absorbance measurement at 220 nm has a problem that it is affected by substances having absorption in the ultraviolet region. In addition, regarding the measurement accuracy, it is difficult to quantify the highly processed sample in a low concentration range of 0.1 mg or less by the absorbance measurement method at 220 nm.

この問題回避のために、ペルオキソ二硫酸カリウムのアルカリ性溶液を加えて窒素化合物を硝酸イオンに酸化し、酸化後の試料を銅−カドミウムカラムに通過させ亜硝酸イオンへ還元させたあと、ナフチルエチレンジアミン吸光光度法によって540nm付近の吸光度から全窒素濃度を定量する銅−カドミウムカラム還元方法がある(非特許文献2参照。)。   To avoid this problem, an alkaline solution of potassium peroxodisulfate was added to oxidize the nitrogen compounds to nitrate ions. The oxidized sample was passed through a copper-cadmium column and reduced to nitrite ions, and then absorbed with naphthylethylenediamine. There is a copper-cadmium column reduction method in which the total nitrogen concentration is quantified from absorbance at around 540 nm by a photometric method (see Non-Patent Document 2).

水中の硝酸イオンを亜硝酸イオンに還元する方法として、紫外線を照射する方法が提案されている(非特許文献3参照。)。そこでは、紫外線を照射する試料水のpHは8.0がよい結果を与えるとしている。また紫外線照射だけでは十分な反応率をえることが難しいことから、試料を流すセルの形状をコイル状にして紫外線ランプの周囲に巻きつけることにより紫外線の照射時間を長くしている。
JIS K0102 45.2 JIS K0102 45.4 K. Takeda and K. Fujiwara, Analytica Chimica Acta, 276 (1993) 25-32
As a method for reducing nitrate ions in water to nitrite ions, a method of irradiating ultraviolet rays has been proposed (see Non-Patent Document 3). In that case, the pH of the sample water irradiated with ultraviolet rays is said to give a good result of 8.0. In addition, since it is difficult to obtain a sufficient reaction rate only by ultraviolet irradiation, the irradiation time of ultraviolet rays is lengthened by winding the sample in a coil shape around the ultraviolet lamp.
JIS K0102 45.2 JIS K0102 45.4 K. Takeda and K. Fujiwara, Analytica Chimica Acta, 276 (1993) 25-32

銅−カドミウムカラム還元方法は有害物質である銅−カドミウムカラムを用いなければならず、また、活性化のために頻繁にカラムの再生処理を行なう必要があることから、オンライン測定には不適であった。   The copper-cadmium column reduction method is not suitable for on-line measurement because it requires the use of a copper-cadmium column, which is a hazardous substance, and the column must be regenerated frequently for activation. It was.

また、紫外線照射だけによって硝酸イオンを亜硝酸イオンに還元する方法は、反応速度が低いだけではなく、窒素化合物を硝酸イオンに酸化するために「紫外線酸化分解法」が行なわれていることからもわかるように、紫外線照射は還元と酸化のいずれにも作用するものである。そのため、単に試料に紫外線を照射するだけでは試料中の窒素化合物を全て硝酸イオン又は亜硝酸イオンに変換することは難しく、両イオンが混在した平衡状態になる可能性がある。
本発明はこのような課題に鑑みて、簡便で、保守性に優れ、実用性を備えた全窒素濃度の定量方法と装置を提供することを目的とする。
In addition, the method of reducing nitrate ions to nitrite ions only by ultraviolet irradiation not only has a low reaction rate, but also because the “ultraviolet oxidative decomposition method” is used to oxidize nitrogen compounds to nitrate ions. As can be seen, UV irradiation acts on both reduction and oxidation. Therefore, it is difficult to convert all the nitrogen compounds in the sample into nitrate ions or nitrite ions simply by irradiating the sample with ultraviolet rays, and there is a possibility that both ions are in an equilibrium state.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a total nitrogen concentration determination method and apparatus that are simple, excellent in maintainability, and practical.

本発明の全窒素測定方法は、試料水中の窒素化合物を硝酸イオンにまで酸化分解した後、硝酸イオンを亜硝酸イオンに還元する還元工程を備え、亜硝酸イオンに発色試薬を用いた吸光光度法によって全窒素を定量する全窒素測定方法において、上記還元工程では試料水に還元促進剤を添加し加熱しつつ紫外領域の光を照射する。
還元工程は中性条件下でもよいが、反応速度を高める上ではアルカリ性条件下で行なうことが好ましい。
The total nitrogen measurement method of the present invention comprises a reduction step of reducing nitrate ions to nitrite ions after oxidative decomposition of nitrogen compounds in sample water to nitrate ions, and a spectrophotometric method using a coloring reagent for nitrite ions In the total nitrogen measurement method in which the total nitrogen is quantified by the above, in the reduction step, a reduction accelerator is added to the sample water and light in the ultraviolet region is irradiated while heating.
The reduction step may be performed under neutral conditions, but is preferably performed under alkaline conditions in order to increase the reaction rate.

本発明の全窒素測定方法を実現する本発明の全窒素測定装置は、試料水中の窒素化合物を硝酸イオンに酸化分解しる酸化分解反応部と、還元促進剤の存在下で加熱しつつ紫外領域の光を照射して硝酸イオンを亜硝酸イオンに還元する還元反応部と、還元反応部からの試料水に対して発色試薬を用いた吸光光度法によって吸光度を測定する測定部と、測定部で得られた吸光度から全窒素濃度を求める演算処理部とを備えている。   The total nitrogen measuring device of the present invention that realizes the total nitrogen measuring method of the present invention includes an oxidative decomposition reaction unit that oxidatively decomposes nitrogen compounds in sample water into nitrate ions, and an ultraviolet region while heating in the presence of a reduction accelerator. A reduction reaction unit that reduces nitrate ions to nitrite ions by irradiating the light, a measurement unit that measures the absorbance of the sample water from the reduction reaction unit by a spectrophotometric method using a coloring reagent, and a measurement unit And an arithmetic processing unit that obtains the total nitrogen concentration from the obtained absorbance.

還元反応部での還元反応はアルカリ性条件下で行なうのが好ましい。
酸化分解反応部は、例えば試料水に酸化剤とアルカリを添加し、オートクレーブ法や紫外線照射により窒素化合物を硝酸イオンにまで酸化分解するものである。
測定部は、例えば亜硝酸イオンをエチレンジアミン法などの吸光光度法により発色させ、可視領域の吸光度を測定するものである。
The reduction reaction in the reduction reaction part is preferably carried out under alkaline conditions.
The oxidative decomposition reaction unit is, for example, an oxidant and an alkali added to sample water, and oxidatively decomposes nitrogen compounds to nitrate ions by an autoclave method or ultraviolet irradiation.
The measurement unit measures the absorbance in the visible region by coloring nitrite ions by an absorptiometric method such as ethylenediamine method.

紫外線照射により硝酸イオンを亜硝酸イオンに還元する際に用いる還元促進剤は、反応速度を高める上で、ヨウ素イオンを含むものが好ましく、ヨウ化カリウム、ヨウ化ナトリウム又はその他のヨウ化物塩を用いることができる。
紫外線照射に用いる紫外線ランプは、低圧水銀ランプをはじめ、高圧、中圧水銀ランプなど紫外線を発生するランプであればよい。
The reduction accelerator used when reducing nitrate ions to nitrite ions by ultraviolet irradiation is preferably one containing iodine ions in order to increase the reaction rate, and potassium iodide, sodium iodide or other iodide salts are used. be able to.
The ultraviolet lamp used for ultraviolet irradiation may be a lamp that generates ultraviolet rays, such as a low-pressure mercury lamp, a high-pressure medium-pressure mercury lamp, or the like.

窒素化合物試料水に還元促進剤を添加し、加熱しつつ紫外領域の光を照射して硝酸イオンを亜硝酸イオンにまで還元することで、高感度で、かつ環境に負荷を掛けるカドミウム等の有害な還元カラムを用いることなしに全窒素を測定できる。この紫外線照射による還元過程では還元促進剤を添加するので、酸化反応が抑えられ、もっぱら還元反応が進行する。
アルカリ性条件下で還元反応を行なわせることにより、反応速度が高まる。
還元促進剤として特にヨウ素イオンを添加すると還元反応は短時間に終了する。
Addition of a reduction accelerator to the nitrogen compound sample water, and irradiation with ultraviolet light while heating to reduce nitrate ions to nitrite ions is highly sensitive and harmful to the environment, such as cadmium. Total nitrogen can be measured without using a simple reduction column. In this reduction process by ultraviolet irradiation, a reduction accelerator is added, so that the oxidation reaction is suppressed and the reduction reaction proceeds exclusively.
The reaction rate is increased by carrying out the reduction reaction under alkaline conditions.
When iodine ion is added as a reduction accelerator, the reduction reaction is completed in a short time.

全窒素測定装置が、窒素化合物を硝酸イオンまで酸化分解する酸化分解反応部と、還元促進剤の存在下で亜硝酸イオンに還元する還元反応部と、測定部及び演算処理部を備えることで、簡単で保守性に優れた高精度な測定装置を構成できる。   The total nitrogen measuring device includes an oxidative decomposition reaction unit that oxidatively decomposes nitrogen compounds to nitrate ions, a reduction reaction unit that reduces nitrite ions in the presence of a reduction accelerator, a measurement unit, and an arithmetic processing unit. A simple and highly maintainable high-precision measuring device can be configured.

以下に図面を参照して本発明の一実施例を詳細に説明する。
図1は全窒素測定部の構成を示した概略図である。
1は試料調整槽であり、試料水が常時流れており、チューブ29を介して8ポートバルブ10bの1つのポートに接続されており、測定時に試料水が採水される。
8ポートバルブ10bの他のポートには、測定校正用水(スパン液)8や純水9を貯留するための容器と、酸化分解反応部12と、還元反応部23の試料出入口25と、測定部16と、廃棄ポート11が接続され、8ポートバルブ10bの共通ポートは他の8ポートバルブ10aの1つのポートに接続されている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing the configuration of the total nitrogen measuring unit.
Reference numeral 1 denotes a sample adjustment tank, in which sample water is constantly flowing, and is connected to one port of the 8-port valve 10b via a tube 29, and sample water is collected during measurement.
The other port of the 8-port valve 10b includes a container for storing measurement calibration water (span solution) 8 and pure water 9, an oxidation decomposition reaction unit 12, a sample inlet / outlet port 25 of the reduction reaction unit 23, and a measurement unit. 16, the waste port 11 is connected, and the common port of the 8-port valve 10b is connected to one port of the other 8-port valve 10a.

8ポートバルブ10aの各ポートには、試薬2〜6を貯留するための容器と、大気解放ポート7が配管によって接続されている。
この実施例においては、試薬2はペルオキソ二硫酸カリウム溶液、試薬3は水酸化ナトリウム水溶液、試薬4はスルファニルアミド・塩酸溶液、試薬5はN−(1−ナフチル)エチレンジアミン溶液、試薬6は還元促進剤であるとする。
A container for storing the reagents 2 to 6 and the air release port 7 are connected to each port of the 8-port valve 10a by piping.
In this example, reagent 2 is a potassium peroxodisulfate solution, reagent 3 is an aqueous sodium hydroxide solution, reagent 4 is a sulfanilamide / hydrochloric acid solution, reagent 5 is an N- (1-naphthyl) ethylenediamine solution, and reagent 6 is a reduction accelerator. Suppose that it is an agent.

8ポートバルブ10aの共通ポートにはシリンジポンプ17が接続されており、シリンジポンプ17はモータ27により駆動させられ、8ポートバルブ10a,10bを介して試料水や試薬などをシリンジポンプ17に取り込んだり、還元反応部23や測定部16に送り出すと共に、シリンジポンプ17内にて試料水に試薬などを添加することができる。   A syringe pump 17 is connected to a common port of the 8-port valve 10a. The syringe pump 17 is driven by a motor 27, and sample water, a reagent, and the like are taken into the syringe pump 17 via the 8-port valves 10a and 10b. In addition, the reagent can be sent to the reduction reaction unit 23 and the measurement unit 16 and a reagent can be added to the sample water in the syringe pump 17.

12は試料中の窒素化合物を硝酸イオンにまで分解する酸化分解反応部である。これは窒素化合物を硝酸イオンにまで酸化分解できるものであればよく、オートクレーブ(蒸気滅菌器)を用いたものでもよく、紫外線ランプを用いたものでもよい。   Reference numeral 12 denotes an oxidative decomposition reaction unit that decomposes nitrogen compounds in the sample into nitrate ions. This is not particularly limited as long as it can oxidatively decompose nitrogen compounds to nitrate ions, and may be an autoclave (steam sterilizer) or an ultraviolet lamp.

23は、酸化分解後の硝酸イオン溶液を亜硝酸イオンに還元するための還元反応部であり、反応容器15の中心部には低圧水銀ランプなどの紫外線ランプ14を備え、反応容器15の外側には温度調節を行なうヒータ13を備えている。ヒータ13による加熱は100℃以下で行なうことが望ましい。   Reference numeral 23 denotes a reduction reaction part for reducing the nitrate ion solution after oxidative decomposition to nitrite ions. The reaction vessel 15 is provided with an ultraviolet lamp 14 such as a low-pressure mercury lamp at the center of the reaction vessel 15. Includes a heater 13 for adjusting the temperature. Heating by the heater 13 is desirably performed at 100 ° C. or lower.

還元反応部23の反応容器15内には酸化分解反応部12から硝酸イオン含有試料水が供給され、この試料水に還元促進剤6として例えばヨウ化カリウムを加え、紫外線ランプ14によって紫外線を照射して硝酸イオンを亜硝酸イオンに還元する。   Nitrate ion-containing sample water is supplied from the oxidative decomposition reaction unit 12 into the reaction vessel 15 of the reduction reaction unit 23. For example, potassium iodide is added as a reduction accelerator 6 to the sample water, and ultraviolet rays are irradiated by an ultraviolet lamp 14. To reduce nitrate ions to nitrite ions.

反応容器15の試料出入口25は、バルブ10bの1つのポートに接続される。
測定部16は還元化反応終了後の試料水にのN−(1−ナフチル)エチレンジアミン溶液5による発色反液の吸光度を測定するものであり、詳しくは図示していないが、試料セルと、特定の波長(例えば、540nm)の光を試料セルに照射する光源と、試料セルを透過した光を検出するセンサなどから構成されている。
演算処理部18は測定部16で測定された吸光度を全窒素濃度に変換し、表示部19に表示する。
The sample inlet / outlet port 25 of the reaction vessel 15 is connected to one port of the valve 10b.
The measuring unit 16 measures the absorbance of the coloring reaction solution by the N- (1-naphthyl) ethylenediamine solution 5 in the sample water after the completion of the reduction reaction. For example, a light source that irradiates the sample cell with light having a wavelength of 540 nm (for example, 540 nm), a sensor that detects the light transmitted through the sample cell, and the like.
The arithmetic processing unit 18 converts the absorbance measured by the measuring unit 16 into a total nitrogen concentration and displays it on the display unit 19.

22は入力部であり、オペレータは入力部22から還元反応部23における還元化の条件や試料水に添加する試薬の量や濃度を入力することで、制御部20がオペレータの入力した条件に基づいた制御を行なう。制御部20は、専用のマイクロコンピュータや汎用のパーソナルコンピュータにより実現され、8ポートバルブ10a、10bの切換え動作、シリンジポンプ17を駆動するモータ27の動作、加熱ヒータ13による反応容器15の温度調節、測定部16の測定動作、及び紫外線ランプ14のオン/オフの制御を行なう。   Reference numeral 22 denotes an input unit, and the operator inputs the reduction conditions in the reduction reaction unit 23 and the amount and concentration of the reagent added to the sample water from the input unit 22, so that the control unit 20 is based on the conditions input by the operator. Control. The control unit 20 is realized by a dedicated microcomputer or a general-purpose personal computer, and switches the 8-port valves 10a and 10b, operates the motor 27 that drives the syringe pump 17, adjusts the temperature of the reaction vessel 15 using the heater 13, The measurement operation of the measurement unit 16 and the on / off control of the ultraviolet lamp 14 are performed.

この全窒素測定装置における測定動作を図2のフローチャートを参照して説明する。
試料水は、試料調製槽1から8ポートバルブ10b、10aを介してシリンジポンプ17に計量される。必要に応じて純水9が8ポートバルブ10b,10aを介してシリンジポンプ17に吸入され、試料水が2mgN/L以下になるまで希釈する。
The measuring operation in this total nitrogen measuring device will be described with reference to the flowchart of FIG.
The sample water is measured from the sample preparation tank 1 to the syringe pump 17 through the 8-port valves 10b and 10a. If necessary, pure water 9 is sucked into the syringe pump 17 through the 8-port valves 10b and 10a, and diluted until the sample water becomes 2 mgN / L or less.

この試料水に、ペルオキソ二硫酸カリウム溶液2と水酸化ナトリウム溶液3を添加したものを、シリンジポンプ17から酸化分解反応容器12へ導入する。そして内部ヒータで30分間120℃程度に加熱し、窒素化合物を硝酸イオン(NO3-)にまで酸化分解する。 A solution obtained by adding the potassium peroxodisulfate solution 2 and the sodium hydroxide solution 3 to the sample water is introduced from the syringe pump 17 into the oxidative decomposition reaction vessel 12. And it heats to about 120 degreeC for 30 minutes with an internal heater, and oxidatively decomposes a nitrogen compound to nitrate ion ( NO3- ).

続いて酸化分解後の硝酸イオン含有溶液をシリンジポンプ17で希釈しながら計量し、これに水酸化ナトリウム水溶液及びヨウ化カリウム溶液を添加した後、還元反応部23へ導入する。そして、ヒータ13で80℃に加熱し、5分間紫外線を照射した環境で、試料中の硝酸イオンを亜硝酸イオン(NO2-)にまで、(1)式に示すように紫外線還元する。

Figure 2006201104
Subsequently, the nitrate ion-containing solution after oxidative decomposition is weighed while being diluted by the syringe pump 17, and after adding an aqueous sodium hydroxide solution and a potassium iodide solution thereto, the solution is introduced into the reduction reaction unit 23. Then, in an environment where the heater 13 is heated to 80 ° C. and irradiated with ultraviolet rays for 5 minutes, the nitrate ions in the sample are reduced to ultraviolet rays as shown in the equation (1) up to nitrite ions (NO 2− ).
Figure 2006201104

還元反応終了後、試料の一定量をシリンジポンプ17へ計量し、スルファニルアミド・塩酸溶液4とナフチルエチレンジアミン溶液5を添加し、ナフチルエチレンジアミン反応による発色反応液(淡赤褐色溶液)を生成させる。   After completion of the reduction reaction, a certain amount of the sample is weighed to the syringe pump 17 and the sulfanilamide / hydrochloric acid solution 4 and the naphthylethylenediamine solution 5 are added to produce a color reaction solution (light reddish brown solution) by the naphthylethylenediamine reaction.

その発色反応液を測定部16中のセルに導入し、発色した試料を45℃で3分間経過後、540nmにおける吸光度測定を行い、次式(1)から試料中の窒素濃度を算出した。
{(試料吸光度―純水吸光度)/(校正液吸光度―純水吸光度)}×(校正液濃度)×希釈率 ………(1)
The coloring reaction solution was introduced into the cell in the measurement unit 16, and after 3 minutes had passed, the colored sample was subjected to absorbance measurement at 540 nm, and the nitrogen concentration in the sample was calculated from the following formula (1).
{(Sample Absorbance−Pure Water Absorbance) / (Calibration Solution Absorbance−Pure Water Absorbance)} × (Calibration Solution Concentration) × Dilution Rate ………… (1)

校正液8には、例えば2mgN/Lの硝酸カリウム水溶液を用い、純水9と校正液8にも試料水と同じように試薬を加え、酸化分解反応、還元化反応及び発色反応を行なったものを用いる。
全窒素濃度は、(1)式から算出する以外に測定結果を試料水の希釈率や校正データが入力されている演算処理部38に取り込んで求めてもよい。
As the calibration solution 8, for example, a 2 mg N / L potassium nitrate aqueous solution is used, and a reagent is added to the pure water 9 and the calibration solution 8 in the same manner as the sample water, and an oxidative decomposition reaction, a reduction reaction, and a color reaction are performed. Use.
The total nitrogen concentration may be obtained by taking the measurement result into the arithmetic processing unit 38 to which the dilution rate of the sample water and the calibration data are input, in addition to calculating from the equation (1).

表1はこの実施例の装置を用いて、オートクレーブ法による酸化分解を行い、ヨウ化カリウム存在下で紫外線を照射して還元したときの実排水試料の紫外線還元ナフチルエチレンジアミン吸光光度法による全窒素測定結果を示す。

Figure 2006201104
Table 1 shows the measurement of total nitrogen by UV-reduced naphthylethylenediamine spectrophotometry of an actual wastewater sample after oxidative decomposition by the autoclave method using the apparatus of this example and reduction by irradiation with ultraviolet light in the presence of potassium iodide. Results are shown.
Figure 2006201104

表1に示すように、化学工業排水、下水処理場排水の(A)及び(B)において、本発明法による測定値はJIS法とよく一致しており、全窒素を精度よく測定できることが示された。
また、硝酸イオンから亜硝酸イオンへは5分程度で90〜100%還元することができ、測定終了までの時間が短縮された。
As shown in Table 1, in chemical industrial wastewater and sewage treatment plant wastewater (A) and (B), the measured values according to the method of the present invention are in good agreement with the JIS method, indicating that total nitrogen can be measured accurately. It was done.
Moreover, it was possible to reduce the nitrate ion to the nitrite ion by 90 to 100% in about 5 minutes, and the time until the measurement was completed was shortened.

試料水の加熱温度、紫外線照射時間、還元促進剤濃度などは試料水により変更することができる。例えば還元化反応時の加熱温度は20〜100℃、紫外線照射時間は1〜10分程度、還元促進剤のヨウ化カリウム濃度は0.01〜1.0%が適当である。   The heating temperature of the sample water, the ultraviolet irradiation time, the concentration of the reduction accelerator, etc. can be changed depending on the sample water. For example, the heating temperature during the reduction reaction is 20 to 100 ° C., the ultraviolet irradiation time is about 1 to 10 minutes, and the potassium iodide concentration of the reduction accelerator is suitably 0.01 to 1.0%.

排水、下水、環境水、プラント用水、などの試料水に含まれる硝酸イオンの還元方法に利用することができ、亜硝酸イオンの発色反応によって、試料水中に含まれる全窒素を測定することができる。   It can be used for reducing nitrate ions contained in sample water such as waste water, sewage, environmental water, plant water, etc., and total nitrogen contained in sample water can be measured by coloration reaction of nitrite ions. .

一実施例の全窒素測定装置の構成を概略的に示す構成図である。It is a block diagram which shows schematically the structure of the total nitrogen measuring apparatus of one Example. 同実施例の操作を示すフローチャートである。It is a flowchart which shows operation of the Example.

符号の説明Explanation of symbols

1 試料調整槽
2、3、4、5、6、8、9 試薬又は水
7 大気解放ポート
10 バルブ
11 廃棄ポート
12 酸化分解反応部
13 ヒータ
14 紫外線ランプ
15 反応容器
16 測定部
17 シリンジポンプ
18 演算処理部
19 表示部
20 制御部
22 入力部
23 還元反応部
25 試料出入口
27 モータ
DESCRIPTION OF SYMBOLS 1 Sample preparation tank 2, 3, 4, 5, 6, 8, 9 Reagent or water 7 Atmospheric release port 10 Valve 11 Waste port 12 Oxidation decomposition reaction part 13 Heater 14 Ultraviolet lamp 15 Reaction container 16 Measurement part 17 Syringe pump 18 Calculation Processing unit 19 Display unit 20 Control unit 22 Input unit 23 Reduction reaction unit 25 Sample inlet / outlet 27 Motor

Claims (6)

試料水中の窒素化合物を硝酸イオンにまで酸化分解した後、前記硝酸イオンを亜硝酸イオンに還元する還元工程を備え、前記亜硝酸イオンに発色試薬を用いた吸光光度法によって全窒素を定量する全窒素測定方法において、
前記還元工程では試料水に還元促進剤を添加し、紫外領域の光を照射することを特徴とする全窒素測定方法。
After the oxidative decomposition of the nitrogen compound in the sample water to nitrate ions, a reduction process is provided for reducing the nitrate ions to nitrite ions, and total nitrogen is quantified by absorptiometry using a coloring reagent for the nitrite ions. In the nitrogen measurement method,
In the reduction step, a reduction accelerator is added to the sample water, and irradiation with ultraviolet light is performed.
前記還元工程をアルカリ性条件下で行なう請求項1に記載の全窒素測定方法。 The total nitrogen measurement method according to claim 1, wherein the reduction step is performed under alkaline conditions. 前記還元促進剤としてヨウ素イオンを添加する請求項1又は2に記載の全窒素測定方法。 The total nitrogen measuring method according to claim 1 or 2, wherein iodine ions are added as the reduction accelerator. 試料水中の窒素化合物を硝酸イオンにまで酸化分解する酸化分解反応部と、
前記酸化分解反応部を経た試料水を還元促進剤の存在下で加熱しつつ紫外領域の光を照射して硝酸イオンを亜硝酸イオンに還元する還元反応部と、
前記還元反応部からの試料水に対して発色試薬を用いた吸光光度法によって吸光度を測定する測定部と、
前記測定部で得た吸光度から全窒素濃度を求める演算処理部と、
を備えた全窒素測定装置。
An oxidative decomposition reaction unit that oxidatively decomposes nitrogen compounds in the sample water into nitrate ions;
A reduction reaction part for reducing nitrate ions to nitrite ions by irradiating light in the ultraviolet region while heating the sample water that has passed through the oxidation decomposition reaction part in the presence of a reduction accelerator;
A measurement unit for measuring absorbance by a spectrophotometric method using a coloring reagent for the sample water from the reduction reaction unit;
An arithmetic processing unit for determining the total nitrogen concentration from the absorbance obtained by the measurement unit;
A total nitrogen measuring device.
前記還元反応部での還元反応をアルカリ性条件下で行なう請求項4に記載の全窒素測定装置。 The total nitrogen measuring apparatus according to claim 4, wherein the reduction reaction in the reduction reaction part is performed under alkaline conditions. 前記還元促進剤はヨウ素イオンである請求項4又は5に記載の全窒素測定装置。 The total nitrogen measuring device according to claim 4, wherein the reduction accelerator is iodine ion.
JP2005015143A 2005-01-24 2005-01-24 Total nitrogen measuring method and apparatus Active JP4661232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015143A JP4661232B2 (en) 2005-01-24 2005-01-24 Total nitrogen measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015143A JP4661232B2 (en) 2005-01-24 2005-01-24 Total nitrogen measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2006201104A true JP2006201104A (en) 2006-08-03
JP4661232B2 JP4661232B2 (en) 2011-03-30

Family

ID=36959227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015143A Active JP4661232B2 (en) 2005-01-24 2005-01-24 Total nitrogen measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4661232B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706823A (en) * 2012-06-25 2012-10-03 苏州国环环境检测有限公司 Method for measuring total nitrogen content in environmental water by adopting flow injection spectrophotometry
WO2013121577A1 (en) * 2012-02-17 2013-08-22 株式会社島津製作所 Total nitrogen measurement apparatus
CN105277542A (en) * 2015-02-05 2016-01-27 温州医科大学 On-site rapid detection method for nitrite in water and capable of eliminating reagent blank effects
CN116840219A (en) * 2023-07-31 2023-10-03 上海博取仪器有限公司 Method for detecting total nitrogen concentration of water quality

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151767A (en) * 1993-11-30 1995-06-16 Tokyo Kasei Kogyo Kk High-sensitive determination method of nitric acid ion using fia
JPH08285834A (en) * 1995-04-13 1996-11-01 Yokogawa Electric Corp Continuous water quality measuring system
JP2003344381A (en) * 2002-05-24 2003-12-03 Shimadzu Corp Method and apparatus for measuring total nitrogen
JP2004239813A (en) * 2003-02-07 2004-08-26 Dkk Toa Corp Apparatus for measuring concentration of water pollution component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151767A (en) * 1993-11-30 1995-06-16 Tokyo Kasei Kogyo Kk High-sensitive determination method of nitric acid ion using fia
JPH08285834A (en) * 1995-04-13 1996-11-01 Yokogawa Electric Corp Continuous water quality measuring system
JP2003344381A (en) * 2002-05-24 2003-12-03 Shimadzu Corp Method and apparatus for measuring total nitrogen
JP2004239813A (en) * 2003-02-07 2004-08-26 Dkk Toa Corp Apparatus for measuring concentration of water pollution component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121577A1 (en) * 2012-02-17 2013-08-22 株式会社島津製作所 Total nitrogen measurement apparatus
JPWO2013121577A1 (en) * 2012-02-17 2015-05-11 株式会社島津製作所 Total nitrogen measuring device
US9588050B2 (en) 2012-02-17 2017-03-07 Shimadzu Corporation Total nitrogen measurement apparatus
CN102706823A (en) * 2012-06-25 2012-10-03 苏州国环环境检测有限公司 Method for measuring total nitrogen content in environmental water by adopting flow injection spectrophotometry
CN105277542A (en) * 2015-02-05 2016-01-27 温州医科大学 On-site rapid detection method for nitrite in water and capable of eliminating reagent blank effects
CN105277542B (en) * 2015-02-05 2018-02-06 温州医科大学 A kind of water nitrite field fast detection method for eliminating reagent blank influence
CN116840219A (en) * 2023-07-31 2023-10-03 上海博取仪器有限公司 Method for detecting total nitrogen concentration of water quality
CN116840219B (en) * 2023-07-31 2024-03-19 上海博取仪器有限公司 Method for detecting total nitrogen concentration of water quality

Also Published As

Publication number Publication date
JP4661232B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
DE102009028165B4 (en) Method and apparatus for the automated determination of the chemical oxygen demand of a liquid sample
Chowdhury et al. Direct UV photolysis of pharmaceutical compounds: Determination of pH-dependent quantum yield and full-scale performance
JP4661232B2 (en) Total nitrogen measuring method and apparatus
JP5854122B2 (en) Total nitrogen measuring device
JP2000266677A (en) Analyzer for nitrogen compound, phosphorus compound and organic contaminant
EP2863210A1 (en) Method and apparatus for measuring bromate ion
JP4538604B2 (en) Photoreaction tube built-in photoreaction apparatus and water quality monitoring apparatus using the same
JP2018036084A (en) Water Quality Analyzer
WO2018218960A1 (en) Pre-treatment method for measuring total halogenated organic compound in water
JP3269196B2 (en) Analyzer for nitrogen compounds and phosphorus compounds in water
CN111948303B (en) Method for detecting concentration of hydroxyl free radicals by using probe compound
JP6665751B2 (en) Water quality analyzer
JP4045859B2 (en) Total nitrogen measurement method
JP4259402B2 (en) Total phosphorus measuring device
WO2021250944A1 (en) Water quality analyzer and water quality analysis method
JP2006170897A (en) Method and apparatus for measuring chemical oxygen demand (cod)
JP4078223B2 (en) Total nitrogen measurement method
JP4767064B2 (en) COD measurement system and chloride ion removal apparatus used therefor
JP2004251833A (en) Total nitrogen measuring method and instrument
JP4691266B2 (en) Total nitrogen and / or total phosphorus measuring device
JPH09127005A (en) Method for analyzing compound in water
JP2003014724A (en) Method and apparatus for measuring total phosphorus
JP2004257916A (en) Method and instrument for measuring total phosphorus
JP2001056332A (en) Water analyzer
WO2020214707A1 (en) Colorimetric detection of fluoride in an aqueous sample

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R151 Written notification of patent or utility model registration

Ref document number: 4661232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3