JP4259402B2 - Total phosphorus measuring device - Google Patents

Total phosphorus measuring device Download PDF

Info

Publication number
JP4259402B2
JP4259402B2 JP2004166482A JP2004166482A JP4259402B2 JP 4259402 B2 JP4259402 B2 JP 4259402B2 JP 2004166482 A JP2004166482 A JP 2004166482A JP 2004166482 A JP2004166482 A JP 2004166482A JP 4259402 B2 JP4259402 B2 JP 4259402B2
Authority
JP
Japan
Prior art keywords
sample water
unit
total phosphorus
oxidation reaction
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004166482A
Other languages
Japanese (ja)
Other versions
JP2005345316A5 (en
JP2005345316A (en
Inventor
雅人 矢幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004166482A priority Critical patent/JP4259402B2/en
Publication of JP2005345316A publication Critical patent/JP2005345316A/en
Publication of JP2005345316A5 publication Critical patent/JP2005345316A5/ja
Application granted granted Critical
Publication of JP4259402B2 publication Critical patent/JP4259402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、試料水中の全リン(TP)を測定する全リン測定装置に関する。全リン測定装置はリンの測定だけでなく、全窒素や有機汚濁物質も同時に測定するようにした複合測定装置も含んでいる。   The present invention relates to a total phosphorus measuring apparatus for measuring total phosphorus (TP) in sample water. The total phosphorus measurement device includes not only the measurement of phosphorus but also a complex measurement device that simultaneously measures total nitrogen and organic pollutants.

従来の試料水中のリン化合物総量をリンの濃度であらわす全リンの測定法は、日本工業規格の「工場から排出される排水の試験方法」に規定されている、「ペルオキソ二硫酸カリウム分解法」(JIS・K・0102)が利用されている。この方法は、酸化剤であるペルオキソ二硫酸カリウムを添加した試料水をオートクレーブ法、すなわち高蒸気圧下で試料を加熱する処理を採用する方法である。そして、その方法を実現するための装置は耐圧性と耐熱性が要求され、材質や設計が特殊なものになっている。   The conventional method for measuring total phosphorus, which expresses the total amount of phosphorus compounds in sample water as the concentration of phosphorus, is stipulated in the “Test Method for Wastewater Effluent from Factories” of the Japanese Industrial Standards, “Potassium peroxodisulfate decomposition method” (JIS K0102) is used. This method employs an autoclave method in which sample water to which potassium peroxodisulfate, which is an oxidizing agent, is added, that is, a process of heating the sample under a high vapor pressure. An apparatus for realizing the method is required to have pressure resistance and heat resistance, and has a special material and design.

一方、上記「ペルオキソ二硫酸カリウム分解法」に「紫外線酸化分解法」を組み合わせた方法も提案されている。この方法では、温度と圧力を下げる改善も進められ利用されている。その結果、この方法では測定に必要な温度が120℃から95℃まで下げられ、圧力も常圧下で行えるようになってオートクレーブが不要になっている。   On the other hand, a method in which the “ultraviolet oxidative decomposition method” is combined with the “potassium peroxodisulfate decomposition method” has also been proposed. In this method, improvement of lowering the temperature and pressure is being promoted and used. As a result, in this method, the temperature required for the measurement is lowered from 120 ° C. to 95 ° C., and the pressure can be reduced under normal pressure, thus eliminating the need for an autoclave.

その方法では、採取された試料水は、計量され希釈水で薄められ、試料水中の縮合リン酸が分解しやすいように前処理として試料水を酸性とするために硫酸が添加される。次に酸化剤としてペルオキソ二硫酸カリウムが添加され、試料水は紫外線酸化分解工程へ移される。紫外線酸化分解工程では、95℃の加熱条件下で酸素ガス源として酸素ガス又は空気が吹き込まれながら紫外線が45分間程度照射され、酸化分解される。その後、吸光度測定のための試薬として、還元剤のL−アスコルビン酸溶液と、発色剤のモリブデン酸アンモニウム・酒石酸アンチモニルカリウム溶液が添加され、吸光度測定によって試料水中のリン濃度測定が行なわれる(特許文献1参照。)。
特開2003−014724号公報
In that method, the collected sample water is weighed and diluted with dilution water, and sulfuric acid is added to make the sample water acidic as a pretreatment so that condensed phosphoric acid in the sample water is easily decomposed. Next, potassium peroxodisulfate is added as an oxidizing agent, and the sample water is transferred to the ultraviolet oxidative decomposition process. In the ultraviolet oxidative decomposition process, ultraviolet rays are irradiated for about 45 minutes while oxygen gas or air is blown as an oxygen gas source under a heating condition of 95 ° C., and oxidative decomposition is performed. Thereafter, as a reagent for measuring absorbance, an L-ascorbic acid solution as a reducing agent and an ammonium molybdate / antimonyl potassium tartrate solution as a color former are added, and the phosphorous concentration in the sample water is measured by measuring the absorbance (patent) Reference 1).
JP 2003-014724 A

試料水に酸素又は空気を吹き込みながら紫外線を照射して酸化分解させる工程を備えた全リン測定方法でも、酸化反応終了直後に試料水を採取して測定系で吸光度の測定を行なうが、全リン濃度の値が実際の値よりも高くなることがあった。
本発明は、そのような全リン測定方法を行なう装置での測定制度を高めることを目的とするものである。
Even with a total phosphorus measurement method comprising a step of oxidative decomposition by irradiating ultraviolet rays or oxygen while blowing sample water, the sample water is collected immediately after the oxidation reaction and the absorbance is measured in the measurement system. In some cases, the concentration value was higher than the actual value.
An object of the present invention is to enhance a measurement system in an apparatus that performs such a total phosphorus measurement method.

本発明者は、そのような全リン測定方法で測定値が実際の値よりも高くなる原因について検討した結果、リン化合物を酸化反応させる工程において、試料水に酸素又は空気を吹き込み続けていると懸濁物質が生成することがあることがわかった。そして、試料水はバブリング状態になっていているために懸濁物質が試料水中に分散しており、その分散した懸濁物質による光の散乱が生じて測定値が高めに出るとの結論に至った。   As a result of examining the cause that the measurement value becomes higher than the actual value by such a total phosphorus measurement method, the present inventor has continuously blown oxygen or air into the sample water in the step of oxidizing the phosphorus compound. It was found that suspended material may be formed. Since the sample water is in a bubbling state, the suspended solids are dispersed in the sample water, and light is scattered by the dispersed suspended solids, resulting in a conclusion that the measured value increases. It was.

そこで、本発明は、反応容器中で試料水を酸性条件下で加熱し、かつ酸素ガス源を試料水中に供給しながら紫外線照射して試料水中のリン化合物を酸化してオルトリン酸を生成させる酸化反応部と、前記反応容器の採取部から酸化反応後の試料水を取り出してその試料水中のオルトリン酸をモリブデン青法により発色させ、その発色溶液の特定波長における吸光度を測定する測定部と、前記測定部で得た吸光度から全リン濃度を求める演算処理部と、前記各部の動作を制御する制御部とを備えた全リン測定装置において、前記反応容器として前記採取部が懸濁物質の沈殿位置より上部に配置されたものを使用し、前記制御部は、前記酸化反応部における酸化反応工程終了後、前記測定部へ試料水を供給する前に、前記酸素ガス源の供給を停止して反応容器内の懸濁物質を沈降させるための沈降時間を設けるように制御を行なうものであるようにしたものである。
前記制御部は、沈降時間の間は試料水への紫外線の照射も停止させるように制御を行なうものであることが好ましい。
Therefore, the present invention is an oxidation method in which sample water is heated in a reaction vessel under an acidic condition and irradiated with ultraviolet rays while an oxygen gas source is supplied into the sample water to oxidize phosphorus compounds in the sample water to generate orthophosphoric acid. A reaction part, and a measuring part for taking out the sample water after the oxidation reaction from the sampling part of the reaction vessel and coloring the orthophosphoric acid in the sample water by the molybdenum blue method, and measuring the absorbance at a specific wavelength of the coloring solution; In the total phosphorus measuring device including an arithmetic processing unit that obtains the total phosphorus concentration from the absorbance obtained by the measuring unit and a control unit that controls the operation of each unit, the collection unit serves as a precipitation position of the suspended substance as the reaction container. The control unit stops the supply of the oxygen gas source after supplying the sample water to the measurement unit after completion of the oxidation reaction step in the oxidation reaction unit. It is suspended solids in the reaction vessel which was set to those performing control to provide a settling time to settle Te.
It is preferable that the control unit performs control so as to stop irradiation of the sample water with ultraviolet rays during the settling time.

酸化反応工程で試料水中のリン化合物を酸化分解させた後、酸化反応工程で生じた懸濁物質を沈降させるために所定の時間をおいた後、懸濁物質の沈殿位置より上部の採取部から試料水の上澄み液を採取して測定に供することができるので、測定対象となる試料水から懸濁物質を除いて吸光度への影響を抑えることができ、試料水中の全リン濃度測定を正確に行なうことができるようになる。   After oxidative decomposition of the phosphorus compound in the sample water in the oxidation reaction step, after a predetermined time to settle the suspended matter generated in the oxidation reaction step, from the sampling part above the sedimentation position of the suspended matter Since the supernatant of the sample water can be collected and used for measurement, the suspended matter can be removed from the sample water to be measured to reduce the effect on absorbance, and the total phosphorus concentration in the sample water can be accurately measured. You can do it.

また、沈降工程中において、試料水への紫外線照射を停止させるようにすれば、試料中の酸化雰囲気を維持し、紫外線照射による試料の還元反応に伴なう新たな懸濁物質の生成を抑制することができる。   In addition, if the UV irradiation of the sample water is stopped during the sedimentation process, the oxidizing atmosphere in the sample is maintained, and the generation of new suspended substances accompanying the sample reduction reaction due to UV irradiation is suppressed. can do.

以下に全リン測定装置の一実施例を説明する。
図1は一実施例の全リン測定装置の構成を概略的に示す図である。
1は試料調整槽であり、試料水が常時流れており、チューブを介してポートバルブ8bの1つのポートに接続されており、測定時に試料水が採取される。
ポートバルブ8bの他のポートには酸化反応部12の試料供給・採取部15と、測定部16が接続され、ポートバルブ8bの共通ポートは他のポートバルブ8aの1つのポートに接続されている。
An embodiment of the total phosphorus measuring device will be described below.
FIG. 1 is a diagram schematically showing a configuration of a total phosphorus measuring apparatus according to an embodiment.
Reference numeral 1 denotes a sample adjustment tank, in which sample water is constantly flowing, and is connected to one port of the port valve 8b via a tube, and sample water is collected during measurement.
The sample supply / collection unit 15 of the oxidation reaction unit 12 and the measurement unit 16 are connected to the other port of the port valve 8b, and the common port of the port valve 8b is connected to one port of the other port valve 8a. .

ポートバルブ8aの各ポートには、試薬や測定校正用水などの液2〜7を貯留するための容器が配管によって接続されている。この実施例においては、液2はモリブデン青色法のための発色剤である硫酸酸性モリブデン酸アンモニウム・酒石酸アンチモニルカリウム溶液、液3は同じく発色のための還元剤L−アスコルビン酸溶液、液4は酸化分解の前処理用の硫酸溶液、液5はモリブデン発色のための酸性濃度調整用の水酸化ナトリウム溶液、液6は吸光度測定のためのスパン校正液としてのリン濃度が1ppmPのリン酸二水素カリウム溶液、液7は同じく吸光度測定のためのブランク水としてのリン濃度ゼロの純水であるとする。   Containers for storing liquids 2 to 7 such as reagents and measurement calibration water are connected to the respective ports of the port valve 8a by pipes. In this example, liquid 2 is a color developing agent for molybdenum blue method, ammonium sulfate ammonium molybdate / antimony potassium tartrate solution, liquid 3 is also a reducing agent L-ascorbic acid solution for color development, and liquid 4 is Sulfuric acid solution for pretreatment of oxidative decomposition, liquid 5 is a sodium hydroxide solution for adjusting acid concentration for molybdenum color development, liquid 6 is dihydrogen phosphate having a phosphorus concentration of 1 ppmP as a span calibration solution for absorbance measurement Similarly, it is assumed that the potassium solution and the liquid 7 are pure water having a phosphorus concentration of zero as blank water for absorbance measurement.

ポートバルブ8aの共通ポートにはシリンジポンプ17が接続されており、シリンジポンプ17はモータ25により駆動させられ、ポートバルブ8a,8bを介して試料水や試薬などを酸化反応部12や測定部16に導くともに、シリンジポンプ17内にて試料水に試薬などを添加することができる。   A syringe pump 17 is connected to a common port of the port valve 8a. The syringe pump 17 is driven by a motor 25, and the sample water, reagent, and the like are passed through the port valves 8a and 8b to the oxidation reaction unit 12 and the measurement unit 16. In addition, a reagent or the like can be added to the sample water in the syringe pump 17.

酸化反応部12は反応容器10内で試料水を加熱し、試料水に酸素源を供給しながら紫外線照射することによってリン化合物を酸化分解するものである。酸化反応部12は、反応容器10の中心部に紫外線を発生する紫外線ランプ9を備え、反応容器10の外側に温度調節を行なうヒータ11を備えている。また、反応容器10の下部には酸素源として空気を供給するブロアなどの空気供給機構14が電磁バルブ13を介して取り付けられている。酸素源としては空気に限らず、酸素ガス又は酸素を含む他の混合ガスを使用してもよい。   The oxidation reaction unit 12 heats the sample water in the reaction vessel 10 and oxidizes and decomposes the phosphorus compound by irradiating with ultraviolet rays while supplying an oxygen source to the sample water. The oxidation reaction unit 12 includes an ultraviolet lamp 9 that generates ultraviolet rays at the center of the reaction vessel 10, and a heater 11 that adjusts the temperature outside the reaction vessel 10. An air supply mechanism 14 such as a blower for supplying air as an oxygen source is attached to the lower part of the reaction vessel 10 via an electromagnetic valve 13. The oxygen source is not limited to air, and oxygen gas or other mixed gas containing oxygen may be used.

反応容器10の試料供給・採取部15は、試料調整槽1の試料水を反応容器10に供給し、酸化反応終了後の試料水を採取して測定部16に供給するものである。試料供給・採取部15の取付け位置は、反応容器10内で酸化分解反応に伴なって懸濁物質が生じてその懸濁物質を沈降させたときの、その懸濁物質の沈殿位置より上部になって上澄み液を採取できるように、例えば底部から10〜15mmに位置に配置されている。
24は反応容器10の底部に設けられた試料水排出用にドレインである。
The sample supply / collection unit 15 of the reaction container 10 supplies the sample water in the sample preparation tank 1 to the reaction container 10, collects the sample water after the completion of the oxidation reaction, and supplies it to the measurement unit 16. The mounting position of the sample supply / collection unit 15 is higher than the position where the suspended substance is precipitated when the suspended substance is generated in the reaction vessel 10 due to the oxidative decomposition reaction and the suspended substance is settled. For example, it is arrange | positioned in the position of 10-15 mm from a bottom part so that a supernatant liquid can be extract | collected.
Reference numeral 24 denotes a drain provided at the bottom of the reaction vessel 10 for discharging sample water.

測定部16は酸化分解反応終了後の試料水によるモリブデン青発色反応液の吸光度を測定するものであり、詳しくは図示していないが、試料セルと、特定の波長(例えば、880nm又は710nm)の光を発生させて試料セルに照射する光源と、試料セルを透過した光を検出するセンサなどから構成されている。
演算処理部18は測定部16で測定された吸光度を全リン濃度に変換し、表示部19に表示する。
The measurement unit 16 measures the absorbance of the molybdenum blue color reaction solution by the sample water after completion of the oxidative decomposition reaction. Although not shown in detail, the measurement cell 16 has a sample cell and a specific wavelength (for example, 880 nm or 710 nm). It comprises a light source that generates light and irradiates the sample cell, a sensor that detects light transmitted through the sample cell, and the like.
The arithmetic processing unit 18 converts the absorbance measured by the measurement unit 16 into a total phosphorus concentration and displays it on the display unit 19.

22は入力部であり、オペレータは入力部22から酸化反応部における酸化条件や試料水に添加する試薬の量や濃度を入力することで、制御部20がオペレータの入力した条件に基づいた制御を行なう。制御部20はCPUであり、専用のマイクロコンピュータや汎用のパーソナルコンピュータにより実現され、ポートバルブ8a、8bの切換え動作、シリンジポンプ17を駆動するモータ25の動作、ヒータ11による反応容器10の加熱温度や加熱時間、測定部16の測定動作、紫外線ランプ9のオン/オフ、及びバルブ13による空気供給動作の制御を行なう。   22 is an input unit, and the operator inputs the oxidation conditions in the oxidation reaction unit and the amount and concentration of the reagent added to the sample water from the input unit 22 so that the control unit 20 performs control based on the conditions input by the operator. Do. The control unit 20 is a CPU, and is realized by a dedicated microcomputer or a general-purpose personal computer. The control operation of the port valves 8a and 8b, the operation of the motor 25 that drives the syringe pump 17, and the heating temperature of the reaction vessel 10 by the heater 11 The heating time, the measurement operation of the measurement unit 16, the on / off of the ultraviolet lamp 9, and the air supply operation by the bulb 13 are controlled.

制御部20は、酸化反応部12における酸化反応工程終了後、測定部16へ試料水を供給する前に、電磁バルブ13を閉じて反応容器10への空気の供給を停止する制御も行なう。この停止時間は、反応容器10内に懸濁物質が発生したときは、その懸濁物質を沈降させるために必要な沈降時間となるように設定する。
また、制御部20は、懸濁物質を沈降させている間は紫外線ランプ9もオフにするように制御する。
The control unit 20 also performs control to close the electromagnetic valve 13 and stop the supply of air to the reaction vessel 10 after supplying the sample water to the measurement unit 16 after the oxidation reaction step in the oxidation reaction unit 12 is completed. This suspension time is set so as to be a settling time required for settling the suspended substance when the suspended substance is generated in the reaction vessel 10.
Further, the control unit 20 performs control so that the ultraviolet lamp 9 is also turned off while the suspended substance is being settled.

この実施例における全リン測定装置における全リン測定の動作を図2のフローチャート図を参照して説明する。
試料調整槽1の試料水をポートバルブ8a、8bを介してシリンジポンプ17に計量して採取し、必要に応じてポートバルブ8aを介してブランク水7をシリンジポンプ17に吸入して希釈する。次に前処理として、試料水が約1Nになるようポートバルブ8aを介して硫酸4を添加する。硫酸の添加により試料水に含まれている縮合リン酸の加水分解が促進される。
The operation of total phosphorus measurement in the total phosphorus measuring apparatus in this embodiment will be described with reference to the flowchart of FIG.
The sample water in the sample preparation tank 1 is measured and collected by the syringe pump 17 through the port valves 8a and 8b, and the blank water 7 is sucked into the syringe pump 17 through the port valve 8a and diluted as necessary. Next, as pretreatment, sulfuric acid 4 is added through the port valve 8a so that the sample water becomes about 1N. Addition of sulfuric acid promotes hydrolysis of condensed phosphoric acid contained in the sample water.

前処理終了後の試料水を、ポートバルブ8a、8bを介して、ヒータ11によって約95℃に加熱された反応容器10へ試料水を導入する。
続いて空気供給機構14より酸素源としての空気を試料水へ1分間当り試料水に対し約3倍の体積量で注入するとともに、試料水に紫外線ランプ9により約20分間紫外線を照射する。これにより、リン化合物はオルトリン酸まで酸化分解される。この反応では、注入された空気中の酸素が紫外線照射を受けて酸素原子やオゾンとなり、この酸素原子やオゾンが試料水中のリン化合物の分解を促進する。
The sample water after completion of the pretreatment is introduced into the reaction vessel 10 heated to about 95 ° C. by the heater 11 through the port valves 8a and 8b.
Subsequently, air as an oxygen source is injected from the air supply mechanism 14 into the sample water at a volume amount about three times that of the sample water per minute, and the sample water is irradiated with ultraviolet rays by the ultraviolet lamp 9 for about 20 minutes. Thereby, the phosphorus compound is oxidatively decomposed to orthophosphoric acid. In this reaction, the oxygen in the injected air is irradiated with ultraviolet rays to become oxygen atoms and ozone, and these oxygen atoms and ozone accelerate the decomposition of the phosphorus compound in the sample water.

この酸化反応工程では、リン化合物が酸化分解されるが、さらに硫酸やその他の有機干渉物質の酸化分解により、試料水(反応液)中に懸濁物質が生成することがある。酸化反応工程において生成した懸濁物質は、注入される空気により試料水中に分散した状態となる。   In this oxidation reaction step, the phosphorus compound is oxidatively decomposed, but suspended matter may be generated in the sample water (reaction solution) due to oxidative decomposition of sulfuric acid and other organic interference substances. The suspended substance generated in the oxidation reaction step is dispersed in the sample water by the injected air.

酸化反応終了後、空気供給と紫外線照射を止め、試料水を測定部に供給する前に、試料水中の懸濁物質を底部に沈降させるための所定の時間を待機する。この沈降のための待機時間は、1分〜10分が適当である。これにより、試料水の酸化反応中に生じた懸濁物質は反応容器10の最下部へ沈殿する。
この待機時間中は紫外線照射も停止させることで、試料中の酸化雰囲気を維持し、紫外線照射による試料の還元反応に伴なう新たな懸濁物質の生成を抑制することができる。
After completion of the oxidation reaction, air supply and ultraviolet irradiation are stopped, and a predetermined time for allowing suspended substances in the sample water to settle to the bottom is waited before supplying the sample water to the measurement unit. The waiting time for the sedimentation is suitably 1 minute to 10 minutes. Thereby, the suspended substance generated during the oxidation reaction of the sample water is precipitated at the bottom of the reaction vessel 10.
By stopping the ultraviolet irradiation during this waiting time, the oxidizing atmosphere in the sample can be maintained, and the generation of new suspended substances accompanying the reduction reaction of the sample due to the ultraviolet irradiation can be suppressed.

その後、試料水の上澄み液の一定量をポートバルブ8a、8bを介してシリンジポンプ17に計量して採取し、そこへポートバルブ8aを介して水酸化ナトリウム溶液5、モリブデン酸アンモニウム・酒石酸アンチモニルカリウム溶液2及びL−アスコルビン酸溶液3を添加して、試料水をモリブデン青発色反応液とする。その反応液をポートバルブ8a、8bを介して測定部16に導き、例えば波長880nmの光の吸光度を測定し、ダーク補正とゼロ点補正を行なう。測定結果は演算処理部18に取り込まれる。演算処理部18には、試料水の希釈率や校正データが入力されており、これらのデータに基づいて試料水中のリン化合物の全リン濃度を求められる。   Thereafter, a certain amount of the supernatant of the sample water is weighed and collected by the syringe pump 17 through the port valves 8a and 8b, and into the sodium hydroxide solution 5, ammonium molybdate / antimony tartrate through the port valve 8a. Potassium solution 2 and L-ascorbic acid solution 3 are added, and the sample water is used as a molybdenum blue color reaction solution. The reaction solution is guided to the measurement unit 16 via the port valves 8a and 8b, and the absorbance of light having a wavelength of 880 nm, for example, is measured, and dark correction and zero point correction are performed. The measurement result is taken into the arithmetic processing unit 18. The arithmetic processing unit 18 receives the dilution rate and calibration data of the sample water, and the total phosphorus concentration of the phosphorus compound in the sample water can be obtained based on these data.

試料水加熱温度、加熱時間、空気注入量、硫酸濃度などは試料水により変更してもよいが、それらの設定値としては、試料水加熱温度は50〜100℃、加熱時間は10分〜45分、空気注入量は1分間当り試料水体積量の100〜500%、酸化反応中の試料水硫酸濃度は0.4〜2Nが適当である。   The sample water heating temperature, heating time, air injection amount, sulfuric acid concentration, etc. may be changed depending on the sample water. However, as the set values, the sample water heating temperature is 50 to 100 ° C., and the heating time is 10 minutes to 45. The amount of water injected per minute is 100 to 500% of the volume of sample water per minute, and the concentration of sulfuric acid in the sample water during the oxidation reaction is suitably 0.4 to 2N.

表1は、この実施例の装置を用いて、2種類の試料液A,Bについて、全リン濃度を測定した結果を示したものである。試料の酸化条件は、試料量:3ml、酸化反応温度:95℃、硫酸濃度:1N、酸化反応時間:20分、空気注入量:約8ml/分とした。 Table 1 shows the results of measuring the total phosphorus concentration of two types of sample solutions A and B using the apparatus of this example. The sample oxidation conditions were as follows: sample amount: 3 ml, oxidation reaction temperature: 95 ° C., sulfuric acid concentration: 1 N, oxidation reaction time: 20 minutes, air injection amount: about 8 ml / min .

(A)欄は従来の方法に該当するものであり、酸化反応部における紫外線照射と空気注入による酸化反応終了後、待機時間を設けずに試料水を測定部に導いて試薬を添加して吸光度を測定した結果である。(B)欄は本発明による方法であり、酸化反応部における紫外線照射と空気注入による酸化反応終了後、試料水を測定部に導く前に待機時間として5分間を設け、その間は紫外線照射も停止した場合である。(C)欄はペルオキソ二硫酸カリウム分解法(JISK102 46.3.1)による手分析の測定結果であり、懸濁物質による影響がないために標準測定値となるものである。   The column (A) corresponds to the conventional method, and after completion of the oxidation reaction by ultraviolet irradiation and air injection in the oxidation reaction part, the sample water is introduced to the measurement part without providing a waiting time and the absorbance is added. It is the result of having measured. Column (B) is the method according to the present invention, and after completion of the oxidation reaction by the ultraviolet irradiation and air injection in the oxidation reaction section, 5 minutes are provided as a waiting time before introducing the sample water to the measurement section, during which the ultraviolet irradiation is also stopped. This is the case. The column (C) shows the measurement results of the manual analysis by the potassium peroxodisulfate decomposition method (JISK102 46.3.1), and is a standard measurement value because there is no influence of suspended substances.

Figure 0004259402
Figure 0004259402

この測定では、試料液Aも試料液Bも、酸化反応中に懸濁物質が生成した。沈降時間を設けずに行なった場合の測定値は、全リン濃度測定値が手分析で行なった測定値よりも高い値を示しているのに対し、沈降時間を5分間設けて行なった場合の測定値は手分析で行なった場合の測定値とほぼ一致している。沈降時間を設けない場合では、酸化反応中に生成した懸濁物質が吸光度測定に干渉してしまい、本来の値よりも高い値を示すようになっていることがわかる。しかし、沈降時間を設けることで酸化反応中に生成した懸濁物質は反応容器の底部に沈降するため、本発明の測定装置では反応後の試料溶液の上澄み液を採取でき、正確な測定が行なる。
In this measurement, both sample liquid A and sample liquid B produced suspended substances during the oxidation reaction. The measured value when the settling time was not provided is higher than the measured value of the total phosphorus concentration measured by manual analysis, while the settling time was set for 5 minutes. The measured values are almost the same as those measured by manual analysis. In the case where no settling time is provided, it can be seen that the suspended matter generated during the oxidation reaction interferes with the absorbance measurement and shows a higher value than the original value. However, since the suspended matter generated during the oxidation reaction is settled at the bottom of the reaction vessel by setting the sedimentation time, the measurement apparatus of the present invention can collect the supernatant of the sample solution after the reaction and perform accurate measurement. Become.

本発明は、生活排水、工業排水などの試料水の水質を分析するのに用いられる水質分析計に適用することができ、特にリン化合物を含む液体を空気などの酸素源供給と紫外線照射の方法により酸化分解してリン化合物をオルトリン酸に変換し、モリブデン青色法により発色させて吸光度測定により全リン測定を行なうことのできる全リン測定装置に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a water quality analyzer used to analyze the quality of sample water such as domestic wastewater and industrial wastewater, and in particular, a method of supplying an oxygen source such as air and ultraviolet irradiation of a liquid containing a phosphorus compound. It can be used in a total phosphorus measuring apparatus capable of converting phosphorous compounds into orthophosphoric acid by oxidation, developing color by molybdenum blue method, and measuring total phosphorus by absorbance measurement.

一実施例の全リン測定装置の構成を概略的に示す構成図である。It is a block diagram which shows schematically the structure of the total phosphorus measuring apparatus of one Example. 同実施例の動作を示すフローチャート図である。It is a flowchart figure which shows the operation | movement of the Example.

符号の説明Explanation of symbols

1 試料調整槽
2、3、4、5、6、7 試薬又は水
8a、8b ポートバルブ
9 紫外線ランプ
10 反応容器
11 ヒータ
12 酸化反応部
13 電磁バルブ
14 空気供給機構
16 測定部
17 シリンジポンプ
18 演算処理部
19 表示部
20 制御部
22 入力部
24 ドレイン
25 モータ
DESCRIPTION OF SYMBOLS 1 Sample preparation tank 2, 3, 4, 5, 6, 7 Reagent or water 8a, 8b Port valve 9 Ultraviolet lamp 10 Reaction container 11 Heater 12 Oxidation reaction part 13 Electromagnetic valve 14 Air supply mechanism 16 Measurement part 17 Syringe pump 18 Calculation Processing unit 19 Display unit 20 Control unit 22 Input unit 24 Drain 25 Motor

Claims (2)

反応容器中で試料水を酸性条件下で加熱し、かつ酸素ガス源を試料水中に供給しながら紫外線照射して試料水中のリン化合物を酸化してオルトリン酸を生成させる酸化反応部と、
前記反応容器の採取部から酸化反応後の試料水を取り出してその試料水中のオルトリン酸をモリブデン青法により発色させ、その発色溶液の特定波長における吸光度を測定する測定部と、
前記測定部で得た吸光度から全リン濃度を求める演算処理部と、
前記各部の動作を制御する制御部と、を備えた全リン測定装置において、
前記反応容器は前記採取部が懸濁物質の沈殿位置より上部に配置されたものであり、
前記制御部は、前記酸化反応部における酸化反応工程終了後、前記測定部へ試料水を供給する前に、前記酸素ガス源の供給を停止して反応容器内の懸濁物質を沈降させるための沈降時間を設けるように制御を行なうものであることを特徴とする全リン測定装置。
An oxidation reaction unit for heating the sample water in a reaction vessel under acidic conditions and irradiating with ultraviolet rays while supplying an oxygen gas source into the sample water to oxidize a phosphorus compound in the sample water to generate orthophosphoric acid;
Taking out the sample water after the oxidation reaction from the sampling part of the reaction vessel, coloring the orthophosphoric acid in the sample water by the molybdenum blue method, and measuring the absorbance at a specific wavelength of the colored solution,
An arithmetic processing unit for obtaining the total phosphorus concentration from the absorbance obtained by the measurement unit;
In a total phosphorus measuring device comprising a control unit that controls the operation of each unit,
The reaction vessel is one in which the collection part is arranged above the suspended substance precipitation position,
The control unit is configured to stop the supply of the oxygen gas source and settle the suspended matter in the reaction vessel before supplying the sample water to the measurement unit after the oxidation reaction step in the oxidation reaction unit is completed. An apparatus for measuring total phosphorus, which is controlled so as to provide a sedimentation time.
前記制御部は、前記沈降時間の間は試料水への紫外線の照射も停止させるように制御を行なうものである請求項1に記載の全リン測定装置。
The total phosphorus measuring apparatus according to claim 1, wherein the control unit performs control so that irradiation of ultraviolet rays to the sample water is stopped during the settling time.
JP2004166482A 2004-06-04 2004-06-04 Total phosphorus measuring device Expired - Lifetime JP4259402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166482A JP4259402B2 (en) 2004-06-04 2004-06-04 Total phosphorus measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166482A JP4259402B2 (en) 2004-06-04 2004-06-04 Total phosphorus measuring device

Publications (3)

Publication Number Publication Date
JP2005345316A JP2005345316A (en) 2005-12-15
JP2005345316A5 JP2005345316A5 (en) 2007-03-15
JP4259402B2 true JP4259402B2 (en) 2009-04-30

Family

ID=35497837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166482A Expired - Lifetime JP4259402B2 (en) 2004-06-04 2004-06-04 Total phosphorus measuring device

Country Status (1)

Country Link
JP (1) JP4259402B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510066B2 (en) * 2010-05-25 2014-06-04 三浦工業株式会社 Determination of total phosphorus
CN102998266A (en) * 2012-11-21 2013-03-27 合肥星宇化学有限责任公司 Method for analyzing total phosphorus in industrial sewage sample
JP6799236B2 (en) * 2017-01-26 2020-12-16 京都電子工業株式会社 Full phosphorus automatic measuring device
JP6881189B2 (en) * 2017-09-28 2021-06-02 株式会社島津製作所 Total phosphorus measuring device
WO2020152896A1 (en) * 2019-01-21 2020-07-30 株式会社島津製作所 Water quality analyzer and water quality analysis method
CN113161152B (en) * 2021-04-13 2023-04-07 新疆众和股份有限公司 Method for leaching and detecting phosphate radical in anode foil of aluminum electrolytic capacitor
CN115508299A (en) * 2022-09-28 2022-12-23 广东邦普循环科技有限公司 Method for detecting total phosphorus content of non-ferrous metal extraction waste liquid

Also Published As

Publication number Publication date
JP2005345316A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4305438B2 (en) Analytical aqueous solution metering / feeding mechanism and water quality analyzer using the same
CN107037045B (en) Method for rapidly measuring content of hydrogen peroxide in solution
KR101576603B1 (en) A total organic carbon analyzer with quantitative sample loop and a total organic carbon measurement method therewith
KR101229577B1 (en) The method for analysis of total organic carbon and apparatus
JP4259402B2 (en) Total phosphorus measuring device
JP2011002424A (en) Method of quantitatively analyzing selenium
JP3772692B2 (en) Analytical aqueous solution metering / feeding mechanism and water quality analyzer using the same
JP2000266677A (en) Analyzer for nitrogen compound, phosphorus compound and organic contaminant
JP6665751B2 (en) Water quality analyzer
JP4367240B2 (en) Automatic water quality measuring instrument
KR101208190B1 (en) Analizing methods of chemical oxygen demand(cod) using ultrasound digestion and oxidation-reduction potential based titration
JP4661232B2 (en) Total nitrogen measuring method and apparatus
WO2021250944A1 (en) Water quality analyzer and water quality analysis method
Antela et al. Automated H2O2 monitoring during photo-Fenton processes using an Arduino self-assembled automatic system
JP2003014724A (en) Method and apparatus for measuring total phosphorus
JP2004257916A (en) Method and instrument for measuring total phosphorus
JP2001083136A (en) Method and apparatus for measuring total phosphorus, total nitrogen
JP2004184132A (en) Water quality analyzer
TWI665439B (en) A method for determining chemical oxygen demand of a water sample
JP3291879B2 (en) Photo-oxidative decomposition apparatus, method and apparatus for analyzing nitrogen compounds and phosphorus compounds in water using the same
KR20020043132A (en) COD Vials and determination methods for chemical oxygen demand analysis
JP2001083083A (en) Method and device for measuring total nitrogen
CN112213298A (en) Method for measuring content of calcium and magnesium ions in dialysate
JP3316664B2 (en) Method and apparatus for measuring total phosphorus by ultraviolet oxidation decomposition method
JP3237400B2 (en) Analyzer for nitrogen compounds and phosphorus compounds in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4259402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

EXPY Cancellation because of completion of term