JP6164720B2 - Coupled resonator type wireless power transmission system - Google Patents

Coupled resonator type wireless power transmission system Download PDF

Info

Publication number
JP6164720B2
JP6164720B2 JP2012245861A JP2012245861A JP6164720B2 JP 6164720 B2 JP6164720 B2 JP 6164720B2 JP 2012245861 A JP2012245861 A JP 2012245861A JP 2012245861 A JP2012245861 A JP 2012245861A JP 6164720 B2 JP6164720 B2 JP 6164720B2
Authority
JP
Japan
Prior art keywords
power transmission
resonator
side resonator
transmission side
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012245861A
Other languages
Japanese (ja)
Other versions
JP2014096872A (en
Inventor
粟井 郁雄
郁雄 粟井
綱四郎 橋本
綱四郎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryutech Corporation
Original Assignee
Ryutech Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryutech Corporation filed Critical Ryutech Corporation
Priority to JP2012245861A priority Critical patent/JP6164720B2/en
Publication of JP2014096872A publication Critical patent/JP2014096872A/en
Application granted granted Critical
Publication of JP6164720B2 publication Critical patent/JP6164720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、非放射電磁界による共振器間結合を用いて無線で電力伝送を行う結合共振器型の無線電力伝送システに関する。 The present invention relates to a wireless power transmission system of the resonator type which performs power transmission by radio using a coupling between the resonators with non radiation field.

近年、結合共振器型の無線電力伝送システムは、送電側共振器から受電側共振器に、ある程度の距離があっても高効率の電力伝送が可能であるため、非常に注目されている。   2. Description of the Related Art In recent years, a coupled resonator type wireless power transmission system has attracted a great deal of attention because highly efficient power transmission is possible even if there is a certain distance from a power transmission side resonator to a power reception side resonator.

結合共振器型の無線電力伝送システムに関しては、これまでに種々の提案がなされている。例えば、特許文献1には、送信側と受信側のいずれにも設けられたループ状の導体などの共振器に共振を起こさせて電力伝送を行う無線電力伝送システムの基本的な構成が記載されている。特許文献2には、送電側共振器のコイルと受電側共振器のコイルに共振を起こさせて電力伝送を行う無線電力伝送システムにおいて、送電側共振器と受電側共振器との間の距離を検出し、それに基づいて共振周波数を変更するものが記載されている。   Various proposals have been made so far for the coupled resonator type wireless power transmission system. For example, Patent Document 1 describes a basic configuration of a wireless power transmission system that performs power transmission by causing resonance in a resonator such as a loop conductor provided on both the transmission side and the reception side. ing. In Patent Literature 2, in a wireless power transmission system that performs power transmission by causing resonance between a coil of a power transmission side resonator and a coil of a power reception side resonator, a distance between the power transmission side resonator and the power reception side resonator is set. What detects and changes the resonance frequency based on it is described.

特表2009−501510号公報Special table 2009-501510 特開2010−239769号公報JP 2010-239769 A

ところで、送電側共振器と受電側共振器との間には、通常、物や人などが存在する。物や人などはほぼ誘電体として振る舞い、送電側共振器と受電側共振器との間の空間の特性(電磁気的な特性)はその誘電体の影響を受ける。そして、その誘電体或いは受電側共振器が動くと、誘電体の有無又は位置の変化により、或いは、受電側共振器の位置の変化により、送電側共振器と受電側共振器との間の空間の特性は時間的に変化する。その変化により、送電側共振器と受電側共振器の共振周波数がそれぞれ変化し、伝送効率が低下し易くなる。   By the way, there is usually an object or a person between the power transmission side resonator and the power reception side resonator. Objects and people behave almost as dielectrics, and the characteristics (electromagnetic characteristics) of the space between the power transmission resonator and the power reception resonator are affected by the dielectric. When the dielectric or the power-receiving-side resonator moves, the space between the power-transmission-side resonator and the power-receiving-side resonator due to the presence or absence of the dielectric or a change in the position, or due to a change in the position of the power-receiving-side resonator. The characteristics of change with time. Due to the change, the resonance frequencies of the power transmission side resonator and the power reception side resonator are changed, and the transmission efficiency is easily lowered.

しかしながら、特許文献1、2を含め従来から提案されている結合共振器型の無線電力伝送システムは、送電側共振器と受電側共振器との間の誘電体の影響が考慮されていないことが多い。   However, the coupled resonator type wireless power transmission system conventionally proposed including Patent Documents 1 and 2 does not consider the influence of the dielectric between the power transmission side resonator and the power reception side resonator. Many.

本発明は、係る事由に鑑みてなされたものであり、その目的は、送電側共振器と受電側共振器との間の誘電体の影響が少なく、電力の伝送効率の低下を抑制できる結合共振器型の無線電力伝送システを提供することにある。 The present invention has been made in view of the above-described reason, and the purpose thereof is a coupled resonance that is less affected by a dielectric between the power transmission side resonator and the power reception side resonator and can suppress a decrease in power transmission efficiency. and to provide a vessel-type wireless power transmission system of.

上記目的を達成するために、請求項1に記載の結合共振器型の無線電力伝送システムは、第1のコイル及び第2のコイルと、コンデンサと、を有して構成され、該第1のコイル及び該第2のコイルは、スパイラルコイルであって、それらの間が容量結合によって電界強度が大きく、それらの外方の電界強度が小さくなるように、近接して配置され、該第1のコイルの両端のうちの一つと該第2のコイルの両端のうちの一つが該コンデンサを介して、該第1のコイルの両端のうちの他の一つと該第2のコイルの両端のうちの他の一つがコンデンサを介さずに、それぞれ接続され但し、該第1のコイルの内端と該第2のコイルの内端がコンデンサを介さずに接続されるものを除いた、少なくとも1個の送電側共振器と、該少なくとも1個の送電側共振器の内の一の送電側共振器の励振を制御する制御器と、前記一の送電側共振器の前記両コイルの外方に配置されて、前記一の送電側共振器から伝送される電力を受電する受電側共振器と、を備えることを特徴とする。 In order to achieve the above object, a coupled resonator type wireless power transmission system according to claim 1 is configured to include a first coil, a second coil, and a capacitor. The coil and the second coil are spiral coils and are arranged close to each other so that the electric field strength between them is large due to capacitive coupling, and the electric field strength outside them is small. One of both ends of the coil and one of both ends of the second coil are connected to the other one of both ends of the first coil and both ends of the second coil via the capacitor. not through other one of the capacitors, respectively connected, however, the inner end of the inner end and the second coil of the first coil was divided to be connected without passing through the condenser, at least one Power transmission resonator and at least one power transmission A controller that controls excitation of one power transmission side resonator of the resonators, and is disposed outside the two coils of the one power transmission side resonator and is transmitted from the one power transmission side resonator. A power-receiving-side resonator that receives power.

本発明に係る結合共振器型の無線電力伝送システによれば、送電側共振器の両コイルの外方の電界強度を小さくすることができるので、送電側共振器と受電側共振器との間の誘電体の影響が少なく、電力の伝送効率の低下の抑制が可能になる。 According to the wireless power transmission system of the resonator type according to the present invention, it is possible to reduce the electric field strength outside of the coils of the power transmission resonator, the power transmitting side resonator and the power receiving side resonator The influence of the dielectric between them is small, and it is possible to suppress the reduction of the power transmission efficiency.

本発明の実施形態に係る結合共振器型の無線電力伝送システムの構成のブロック図である。1 is a block diagram of a configuration of a coupled resonator type wireless power transmission system according to an embodiment of the present invention. FIG. 同上の結合共振器型の無線電力伝送システムの一の送電側共振器を示すもので、(a)は一の送電側共振器及び制御器の配線図、(b)は一の送電側共振器を構成するコイルの概略正面図、(c)は2個のコイルの概略側面図である。1 shows one power transmission side resonator of the above-described coupled resonator type wireless power transmission system, wherein (a) is a wiring diagram of one power transmission side resonator and a controller, and (b) is one power transmission side resonator. (C) is a schematic side view of two coils. 同上の結合共振器型の無線電力伝送システムの一の送電側共振器の配線の変形例の2つの場合を示す配線図である。It is a wiring diagram which shows two cases of the modification of the wiring of the power transmission side resonator of one of the same coupling resonator type wireless power transmission systems. 同上の結合共振器型の無線電力伝送システムの他の送電側共振器を示すもので、(a)は他の送電側共振器の配線図、(b)は他の送電側共振器を構成するコイルの概略正面図、(c)は2個のコイルの概略側面図である。The other power transmission side resonator of a coupling resonator type radio | wireless power transmission system same as the above is shown, (a) is a wiring diagram of another power transmission side resonator, (b) comprises another power transmission side resonator. The schematic front view of a coil and (c) are schematic side views of two coils. 同上の結合共振器型の無線電力伝送システムの一の送電側共振器と制御器の配線の変形例を示す配線図である。It is a wiring diagram which shows the modification of the wiring of the power transmission side resonator of one coupling | bonding resonator type wireless power transmission system same as the above, and a controller. 同上の結合共振器型の無線電力伝送システムの受電側共振器を拡大して示すもので、(a)は受電側共振器及び負荷回路の配線図、(b)は受電側共振器を構成するコイルの概略正面図、(c)は2個のコイルの概略側面図である。FIG. 2 is an enlarged view of a power receiving side resonator of the above-described coupled resonator type wireless power transmission system, where (a) is a wiring diagram of a power receiving side resonator and a load circuit, and (b) is a power receiving side resonator. The schematic front view of a coil and (c) are schematic side views of two coils. 同上の結合共振器型の無線電力伝送システムの受電側共振器と負荷回路の配線の変形例を示す配線図である。It is a wiring diagram which shows the modification of the wiring of a receiving side resonator and load circuit of a coupling resonator type wireless power transmission system same as the above. 同上の結合共振器型の無線電力伝送システムの奇モードの電界分布と磁界分布を示すもので、(a)は電界分布、(b)は磁界分布、の簡略波形図である。The odd-mode electric field distribution and magnetic field distribution of the coupling resonator type wireless power transmission system are shown, wherein (a) is a simplified waveform diagram of the electric field distribution and (b) is the magnetic field distribution. 同上の結合共振器型の無線電力伝送システムの送電側共振器のコイル巻き数に対するインダクタンス値と容量値の変化を示す特性図である。It is a characteristic view which shows the change of the inductance value and the capacitance value with respect to the number of coil turns of the power transmission side resonator of the wireless power transmission system of the coupled resonator type same as the above. 同上の結合共振器型の無線電力伝送システムの一の送電側共振器と他の送電側共振器の間の電界強度と磁界強度を示すもので、(a)は電界強度、(b)は磁界強度、の特性図である。2 shows the electric field strength and magnetic field strength between one power transmission side resonator and another power transmission side resonator of the coupled resonator type wireless power transmission system of the above, where (a) shows the electric field strength and (b) shows the magnetic field. It is a characteristic view of strength. 同上の結合共振器型の無線電力伝送システムの一の送電側共振器と他の送電側共振器の間の電界強度を示すもう1つの特性図である。It is another characteristic figure which shows the electric field strength between one power transmission side resonator of the coupling resonator type wireless power transmission system same as the above, and another power transmission side resonator. 同上の結合共振器型の無線電力伝送システムの共振周波数シフト量のシミュレーション及び実験の構成を示す模式図である。It is a schematic diagram which shows the structure of the simulation and experiment of the resonant frequency shift amount of a coupling resonator type wireless power transmission system same as the above. 図12の構成を用いたシミュレーションの結果を示す特性図である。It is a characteristic view which shows the result of the simulation using the structure of FIG. 図12の構成を用いた実際のサンプルによる実験の結果を示す特性図である。It is a characteristic view which shows the result of the experiment by the actual sample using the structure of FIG. 図12の構成を用いた実際のサンプルによる実験の結果を示す別の特性図である。It is another characteristic view which shows the result of the experiment by the actual sample using the structure of FIG. 同上の結合共振器型の無線電力伝送システムの受電側共振器の実験の構成を示す模式図である。It is a schematic diagram which shows the structure of the experiment of the receiving side resonator of a coupling resonator type wireless power transmission system same as the above. 図16の構成を用いた実際のサンプルによる実験の結果を示す特性図である。It is a characteristic view which shows the result of the experiment by the actual sample using the structure of FIG. 図16の構成を用いた実際のサンプルによる実験の結果を示す別の特性図である。It is another characteristic view which shows the result of the experiment by the actual sample using the structure of FIG. 同上の結合共振器型の無線電力伝送システム全体の実験の構成を示す模式図である。It is a schematic diagram which shows the structure of the experiment of the whole coupling resonator type wireless power transmission system same as the above. 図19の構成を用いた実際のサンプルによる実験の結果を示す特性図である。It is a characteristic view which shows the result of the experiment by the actual sample using the structure of FIG. 同上の結合共振器型の無線電力伝送システムの変形例を示すブロック図である。It is a block diagram which shows the modification of a coupling resonator type wireless power transmission system same as the above.

以下、本発明を実施するための形態を図面を参照しながら説明する。本発明の実施形態に係る結合共振器型の無線電力伝送システム1は、図1に示すように、2個の送電側共振器、すなわち一の送電側共振器2及び他の送電側共振器3と、制御器4と、1個の受電側共振器5と、負荷回路6と、を備えている。     Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, a coupled resonator type wireless power transmission system 1 according to an embodiment of the present invention includes two power transmission side resonators, that is, one power transmission side resonator 2 and another power transmission side resonator 3. And a controller 4, one power-receiving-side resonator 5, and a load circuit 6.

一の送電側共振器2は、図2(a)に示すように、近接して配置された2個のコイル(第1のコイル21及び第2のコイル22)とコンデンサ23とを有して構成されている。両コイル21、22は、同じ向きの磁界が生じるように配置される。両コイル21、22は、実質的に同じ巻き数で同じ大きさのものを用いればよいが、巻き数又は大きさが違っていても構わない。また、両コイル21、22は、図2(b)に示すように、電気導線が平面的でスパイラル状に巻かれて形成されるコイル、すなわちスパイラルコイルとすることができる。その場合、両コイル21、22は、図2(c)に示すように、所定距離Aだけ離して互いに略平行に配置され、スパイラルの中心軸(z軸)が略一致するように配置される。   As shown in FIG. 2A, one power transmission side resonator 2 includes two coils (first coil 21 and second coil 22) and a capacitor 23 that are arranged close to each other. It is configured. Both coils 21 and 22 are arranged such that a magnetic field in the same direction is generated. The coils 21 and 22 may have substantially the same number of turns and the same size, but the number of turns or the sizes may be different. Moreover, as shown in FIG.2 (b), both the coils 21 and 22 can be made into the coil formed by winding an electrical conductor planarly and spirally, ie, a spiral coil. In this case, as shown in FIG. 2 (c), the coils 21 and 22 are arranged substantially parallel to each other with a predetermined distance A, and are arranged so that the central axes (z-axis) of the spirals are substantially coincident with each other. .

第1のコイル21及び第2のコイル22の接続については、第1のコイル21の両端のうちの一つと第2のコイル22の両端のうちの一つがコンデンサ23を介して、第1のコイル21の両端のうちの他の一つと第2のコイル22の両端のうちの他の一つがコンデンサを介さずに、それぞれ電気的に接続されるようにする。より詳細には、図2(a)に示すように、第1のコイル21と第2のコイル22の電気導線が巻かれる向きを同じにして、第1のコイル21の一端21aと第2のコイル22の他端22bがコンデンサ23を介して、第1のコイル21の他端21bと第2のコイル22の一端22aがコンデンサを介さずに、それぞれ接続される。或いは、図3(a)に示すように、第1のコイル21の一端21aと第2のコイル22の他端22bがコンデンサを介さずに、第1のコイル21の他端21bと第2のコイル22の一端22aがコンデンサ23を介して、それぞれ接続されるようにすることも可能である。また、或いは、図3(b)に示すように、第1のコイル21と第2のコイル22の電気導線が巻かれる向きを逆にして、第1のコイル21の一端21aと第2のコイル22の一端22aがコンデンサ23を介して、第1のコイル21の他端21bと第2のコイル22の他端22bがコンデンサを介さずに、それぞれ接続されるようにすることも可能である。また、或いは、図示しないが、第1のコイル21及び第2のコイル22のその他の接続方法も可能である。   Regarding the connection of the first coil 21 and the second coil 22, one of both ends of the first coil 21 and one of both ends of the second coil 22 are connected via the capacitor 23 to the first coil. The other one of the two ends of 21 and the other one of the two ends of the second coil 22 are electrically connected without a capacitor. More specifically, as shown in FIG. 2 (a), the first coil 21 and the second coil 22 are wound in the same direction in which the electric conducting wires are wound, and the one end 21a of the first coil 21 and the second coil The other end 22b of the coil 22 is connected via a capacitor 23, and the other end 21b of the first coil 21 and one end 22a of the second coil 22 are connected via no capacitor. Alternatively, as shown in FIG. 3A, the one end 21a of the first coil 21 and the other end 22b of the second coil 22 are not connected to the other end 21b of the first coil 21 and the second It is also possible to connect the one ends 22a of the coils 22 via the capacitors 23, respectively. Alternatively, as shown in FIG. 3 (b), one end 21a of the first coil 21 and the second coil are reversed by reversing the direction in which the electric conductors of the first coil 21 and the second coil 22 are wound. It is also possible to connect one end 22a of 22 via the capacitor 23 and the other end 21b of the first coil 21 and the other end 22b of the second coil 22 without passing through the capacitor. Alternatively, although not shown, other connection methods of the first coil 21 and the second coil 22 are possible.

他の送電側共振器3も、一の送電側共振器2と同様の構成である。すなわち、他の送電側共振器3は、図4(a)に示すように、近接して配置された2個のコイル(第1のコイル31及び第2のコイル32)とコンデンサ33とを有して構成されている。両コイル31、32は、同じ向きの磁界が生じるように配置される。両コイル31、32は、実質的に同じ巻き数で同じ大きさのものを用いればよい。また、両コイル31、32は、図4(b)に示すように、スパイラルコイルとすることができる。その場合、両コイル31、32は、図4(c)に示すように、所定距離A’だけ離して互いに略平行に配置され、スパイラルの中心軸(z軸)が略一致するように配置される。第1のコイル31及び第2のコイル32の接続については、第1のコイル31の両端のうちの一つと第2のコイル32の両端のうちの一つがコンデンサ33を介して、第1のコイル31の両端のうちの他の一つと第2のコイル32の両端のうちの他の一つがコンデンサを介さずに、それぞれ電気的に接続されるようにする。第1のコイル31及び第2のコイル32の具体的な接続方法については、上記の一の送電側共振器2の第1のコイル21及び第2のコイル22の場合と同様な複数の接続方法が可能である。   Other power transmission side resonators 3 have the same configuration as that of one power transmission side resonator 2. That is, as shown in FIG. 4A, the other power transmission side resonator 3 has two coils (first coil 31 and second coil 32) arranged close to each other and a capacitor 33. Configured. Both coils 31 and 32 are arranged so that a magnetic field in the same direction is generated. The coils 31 and 32 may have substantially the same number of turns and the same size. Moreover, both the coils 31 and 32 can be made into a spiral coil as shown in FIG.4 (b). In this case, as shown in FIG. 4C, the coils 31 and 32 are arranged substantially parallel to each other with a predetermined distance A ′, and are arranged so that the center axis (z axis) of the spiral substantially coincides. The Regarding the connection of the first coil 31 and the second coil 32, one of both ends of the first coil 31 and one of both ends of the second coil 32 are connected via the capacitor 33 to the first coil 31. The other one of both ends of 31 and the other one of both ends of the second coil 32 are electrically connected without a capacitor. About the specific connection method of the 1st coil 31 and the 2nd coil 32, the several connection method similar to the case of the 1st coil 21 and the 2nd coil 22 of said one power transmission side resonator 2 is mentioned. Is possible.

一の送電側共振器2と他の送電側共振器3は、それらの中心軸が略一致するように、所定の距離Bだけ離して、対向して配置されている。   One power transmission side resonator 2 and the other power transmission side resonator 3 are arranged to face each other with a predetermined distance B so that their central axes substantially coincide.

制御器4は、一の送電側共振器2の励振を制御するものである。制御器4は、詳細には、図1及び図2(a)に示すように、高周波電源41と結合ループ42を有して構成される。高周波電源41は、インピーダンスの整合を行う結合ループ42を介して一の送電側共振器2を励振する。つまり、高周波電源41はその出力信号を結合ループ42に出力し、結合ループ42は一の送電側共振器2に電磁界結合している。結合ループ42は、他の公知のインピーダンス整合手段で置き換えることも可能である。また、図5に示すように、一の送電側共振器2の回路に高周波電源41の出力端子を電気的に直結し、両コイル21、22の巻き数やコンデンサ23の容量値などを調整してインピーダンス整合を行うことで、結合ループ42などのインピーダンス整合手段を省略できる場合もある。   The controller 4 controls excitation of one power transmission side resonator 2. Specifically, the controller 4 includes a high-frequency power supply 41 and a coupling loop 42 as shown in FIGS. 1 and 2A. The high frequency power supply 41 excites one power transmission side resonator 2 through a coupling loop 42 that performs impedance matching. That is, the high frequency power supply 41 outputs the output signal to the coupling loop 42, and the coupling loop 42 is electromagnetically coupled to one power transmission side resonator 2. The coupling loop 42 can be replaced by other known impedance matching means. In addition, as shown in FIG. 5, the output terminal of the high frequency power supply 41 is electrically connected directly to the circuit of one power transmission side resonator 2, and the number of turns of both the coils 21, 22 and the capacitance value of the capacitor 23 are adjusted. In some cases, impedance matching means such as the coupling loop 42 can be omitted by performing impedance matching.

他の送電側共振器3は、制御器4又は他の制御器によって励振されることはなく、後述するように一の送電側共振器2が発生する電磁界を受けてそれによって励振される。   The other power transmission side resonator 3 is not excited by the controller 4 or another controller, but is excited by receiving an electromagnetic field generated by one power transmission side resonator 2 as described later.

受電側共振器5は、2個の送電側共振器2、3よりも通常は小型であるが、2個の送電側共振器2、3と同様の構成である。すなわち、受電側共振器5は、図6(a)に示すように、近接して配置された2個のコイル(第1のコイル51及び第2のコイル52)とコンデンサ53とを有して構成されている。両コイル51、52は、同じ向きの磁界が生じるように配置される。両コイル51、52は、実質的に同じ巻き数で同じ大きさのものを用いればよい。また、両コイル51、52は、図6(b)に示すように、スパイラルコイルとすることができる。その場合、両コイル51、52は、図6(c)に示すように、所定距離A’’だけ離して互いに略平行に配置され、スパイラルの中心軸が略一致するように配置される。第1のコイル51及び第2のコイル52の接続については、第1のコイル51の両端のうちの一つと第2のコイル52の両端のうちの一つがコンデンサ23を介して、第1のコイル51の両端のうちの他の一つと第2のコイル52の両端のうちの他の一つがコンデンサを介さずに、それぞれ電気的に接続されるようにする。第1のコイル51及び第2のコイル52の具体的な接続方法については、上記の一の送電側共振器2の第1のコイル21及び第2のコイル22の場合と同様な複数の接続方法が可能である。   The power receiving side resonator 5 is usually smaller than the two power transmitting side resonators 2 and 3, but has the same configuration as the two power transmitting side resonators 2 and 3. That is, the power-receiving-side resonator 5 includes two coils (a first coil 51 and a second coil 52) and a capacitor 53 that are arranged close to each other as shown in FIG. It is configured. Both coils 51 and 52 are arranged so that a magnetic field in the same direction is generated. The coils 51 and 52 may have substantially the same number of turns and the same size. Moreover, both the coils 51 and 52 can be made into a spiral coil as shown in FIG.6 (b). In this case, as shown in FIG. 6C, the two coils 51 and 52 are arranged so as to be separated from each other by a predetermined distance A ″ and substantially parallel to each other, and are arranged so that the central axes of the spirals are substantially coincident with each other. Regarding the connection between the first coil 51 and the second coil 52, one of both ends of the first coil 51 and one of both ends of the second coil 52 are connected via the capacitor 23 to the first coil. The other one of both ends of 51 and the other one of both ends of the second coil 52 are electrically connected without a capacitor. About the specific connection method of the 1st coil 51 and the 2nd coil 52, several connection methods similar to the case of the 1st coil 21 and the 2nd coil 22 of said one power transmission side resonator 2 are mentioned. Is possible.

受電側共振器5は、一の送電側共振器2の両コイル21、22の外方及び他の送電側共振器3の両コイル31、32の外方で、送電側共振器2と送電側共振器3の間に配置されて、送電側共振器2及び送電側共振器3から伝送される電力を受電するものである。受電側共振器5と一の送電側共振器2の間の距離及び受電側共振器5と他の送電側共振器3の間の距離は、一の送電側共振器2の両コイル21、22の間の距離A及び他の送電側共振器3の両コイル31、32の間の距離A’、及び受電側共振器5の両コイル51、52の間の距離A’’)よりも、非常に大きい。受電側共振器5は、移動可能なものとすることができる。   The power receiving side resonator 5 includes the power transmitting side resonator 2 and the power transmitting side outside the two coils 21 and 22 of one power transmitting side resonator 2 and the outside of both coils 31 and 32 of the other power transmitting side resonator 3. It is arrange | positioned between the resonators 3 and receives the electric power transmitted from the power transmission side resonator 2 and the power transmission side resonator 3. FIG. The distance between the power receiving side resonator 5 and the one power transmitting side resonator 2 and the distance between the power receiving side resonator 5 and the other power transmitting side resonator 3 are the two coils 21 and 22 of the one power transmitting side resonator 2. Than the distance A ′ between the coils 31 and 32 of the other power transmission side resonator 3 and the distance A ″) between the coils 51 and 52 of the power reception side resonator 5. Big. The power receiving resonator 5 can be moved.

受電側共振器5には、負荷回路6が結合している。負荷回路6は、詳細には、結合ループ61と、負荷62と、を有して構成されている。結合ループ61は、受電側共振器3に電磁界結合しており、インピーダンスの整合を行う。後述するように一の送電側共振器2と他の送電側共振器3から受電側共振器5に伝送された電力は、結合ループ61を介して、負荷62に供給される。負荷62は、通信分野における携帯機器の充電回路や医療分野における体内の自走式マイクロカプセルの電源回路など、機器の所要の機能のための回路である。なお、結合ループ61は、他の公知のインピーダンス整合手段で置き換えることも可能である。また、図7に示すように、受電側共振器2の回路に負荷62の入力端子を電気的に直結し、両コイル51、52の巻き数やコンデンサ53の容量値などを調整してインピーダンス整合を行うことで、結合ループ61などのインピーダンス整合手段を省略できる場合もある。   A load circuit 6 is coupled to the power receiving side resonator 5. Specifically, the load circuit 6 includes a coupling loop 61 and a load 62. The coupling loop 61 is electromagnetically coupled to the power receiving resonator 3 and performs impedance matching. As will be described later, the power transmitted from one power transmission side resonator 2 and another power transmission side resonator 3 to the power reception side resonator 5 is supplied to the load 62 via the coupling loop 61. The load 62 is a circuit for a required function of the device such as a charging circuit of a portable device in the communication field and a power supply circuit of a self-propelled microcapsule in the body in the medical field. The coupling loop 61 can be replaced with other known impedance matching means. Further, as shown in FIG. 7, the input terminal of the load 62 is electrically connected directly to the circuit of the power receiving resonator 2, and the impedance matching is performed by adjusting the number of turns of the coils 51 and 52 and the capacitance value of the capacitor 53. In some cases, impedance matching means such as the coupling loop 61 can be omitted.

このような構成の結合共振器型の無線電力伝送システム1では、制御器4によって励振された一の送電側共振器2は、周囲の領域(特に中心軸の方向)に電磁界(非放射電磁界)を発生させる。そうすると、他の送電側共振器3は、一の送電側共振器2が発生する電磁界に結合して励振される。そして、他の送電側共振器3も周囲の領域(特に中心軸の方向)に電磁界を発生させる。それにより、一の送電側共振器2と他の送電側共振器3の間に分布する電磁界は、一の送電側共振器2が発生する電磁界と他の送電側共振器3が発生する電磁界が合成されたものとなる。   In the coupled resonator type wireless power transmission system 1 having such a configuration, one power transmission side resonator 2 excited by the controller 4 has an electromagnetic field (non-radiated electromagnetic wave) in a surrounding region (particularly in the direction of the central axis). ). Then, the other power transmission side resonator 3 is excited by being coupled to the electromagnetic field generated by one power transmission side resonator 2. The other power transmission side resonators 3 also generate an electromagnetic field in the surrounding area (particularly in the direction of the central axis). Thereby, the electromagnetic field distributed between one power transmission side resonator 2 and another power transmission side resonator 3 is generated by the electromagnetic field generated by one power transmission side resonator 2 and the other power transmission side resonator 3. An electromagnetic field is synthesized.

一の送電側共振器2と他の送電側共振器3のように複数の共振器によって分布する電磁界は、複数の共振モードを有するものになり、それらの共振モードそれぞれに対応する周波数が少しだけ異なる複数の共振周波数が発生する。一の送電側共振器2と他の送電側共振器3によって分布する電磁界は、一の送電側共振器2と他の送電側共振器3の電界が逆相で共振する奇モードと同相で共振する偶モードを有する。奇モードの共振周波数は、偶モードの共振周波数よりも低い周波数である。   An electromagnetic field distributed by a plurality of resonators such as one power transmission side resonator 2 and another power transmission side resonator 3 has a plurality of resonance modes, and the frequency corresponding to each of these resonance modes is a little. A plurality of resonance frequencies different from each other are generated. The electromagnetic field distributed by one power transmission resonator 2 and another power transmission resonator 3 is in phase with an odd mode in which the electric fields of one power transmission resonator 2 and other power transmission resonator 3 resonate in opposite phases. It has an even mode that resonates. The odd-mode resonance frequency is lower than the even-mode resonance frequency.

奇モードの電界分布E1は、近似的には、一の送電側共振器2単体からの電界分布E2と他の送電側共振器3単体からの電界分布E3の和となり、そして、一の送電側共振器2と他の送電側共振器3の電界が逆相であるので、図8(a)に示すように、一の送電側共振器2と他の送電側共振器3の中央では0となり半分の領域で正値、もう半分の領域で負値となる。奇モードの磁界分布H1は、近似的には、一の送電側共振器2単体からの磁界分布H2と他の送電側共振器3からの磁界分布H3の和となり、そして、一の送電側共振器2と他の送電側共振器3の磁界が同相であるので、図8(b)に示すように、一の送電側共振器2と他の送電側共振器3の中央では若干強度が下がるが、一の送電側共振器2から他の送電側共振器3にかけて変化が少ないものとなる。   The odd-mode electric field distribution E1 is approximately the sum of the electric field distribution E2 from one power transmission side resonator 2 and the electric field distribution E3 from another power transmission resonator 3 alone, and one power transmission side Since the electric fields of the resonator 2 and the other power transmission side resonator 3 are in opposite phases, as shown in FIG. 8A, the electric field is zero at the center of one power transmission side resonator 2 and the other power transmission side resonator 3. Half of the area has a positive value, and the other half has a negative value. The odd-mode magnetic field distribution H1 is approximately the sum of the magnetic field distribution H2 from one power transmission side resonator 2 and the magnetic field distribution H3 from another power transmission side resonator 3, and one power transmission side resonance. Since the magnetic fields of the power transmitter 2 and the other power transmission side resonator 3 are in phase, as shown in FIG. 8B, the strength slightly decreases at the center of one power transmission side resonator 2 and the other power transmission side resonator 3. However, there is little change from one power transmission side resonator 2 to another power transmission side resonator 3.

また、一の送電側共振器2と他の送電側共振器3の間に配置される受電側共振器5は、一の送電側共振器2と他の送電側共振器3によって分布する電磁界に結合して共振し、それによって一の送電側共振器2と他の送電側共振器3から電力伝送が行われる。この電磁界による共振器間結合に主に影響を与えるのは磁界である。   The power receiving resonator 5 disposed between one power transmitting resonator 2 and another power transmitting resonator 3 is an electromagnetic field distributed by the one power transmitting resonator 2 and the other power transmitting resonator 3. Are coupled and resonated, whereby electric power transmission is performed from one power transmission side resonator 2 and another power transmission side resonator 3. It is the magnetic field that mainly affects the coupling between the resonators by this electromagnetic field.

従って、奇モードを用いて結合共振器型の無線電力伝送システム1を構成すると、一の送電側共振器2と他の送電側共振器3の間で場所による依存性が少なく、しかも低い周波数で電力伝送が可能になる。   Therefore, when the coupled resonator type wireless power transmission system 1 is configured using the odd mode, there is less dependence on the location between the one power transmission side resonator 2 and the other power transmission side resonator 3, and at a low frequency. Power transmission becomes possible.

次に、2個のコイル21、22を互いに近接配置して一の送電側共振器2を構成し、2個のコイル31、32を互いに近接配置して他の送電側共振器3を構成したことによる電界の閉じ込めの効果について説明する。   Next, the two coils 21 and 22 are arranged close to each other to form one power transmission side resonator 2, and the two coils 31 and 32 are arranged close to each other to form another power transmission side resonator 3. The effect of electric field confinement will be described.

一の送電側共振器2と他の送電側共振器3の間のいずれかの箇所に誘電体が存在すると、磁界よりも電界の方が影響を受けやすい。電界が影響を受けると、一の送電側共振器2と他の送電側共振器3の共振周波数がシフトし、一の送電側共振器2と他の送電側共振器3から受電側共振器5への電力の伝送効率が低下することになる。   If a dielectric exists at any location between one power transmission resonator 2 and another power transmission resonator 3, the electric field is more susceptible than the magnetic field. When the electric field is affected, the resonance frequency of one power transmission side resonator 2 and the other power transmission side resonator 3 is shifted, and the power reception side resonator 5 is shifted from the one power transmission side resonator 2 and the other power transmission side resonator 3. The transmission efficiency of power to the power source will be reduced.

一の送電側共振器2の近接配置した第1のコイル21と第2のコイル22の間は、容量結合によって電界強度が大きく、そのため、両コイル21、22の外方は電界強度が小さくなる。両コイル21、22の外方の磁界強度は、両コイル21、22の合わせた巻き数の単一のコイルの場合と余り変わらない。他の送電側共振器3についても同様である。このように、一の送電側共振器2及び他の送電側共振器3の内部で、電界の閉じ込めが生じる。   Between the first coil 21 and the second coil 22 arranged close to each other on the one power transmission side resonator 2, the electric field strength is large due to capacitive coupling, and therefore, the electric field strength is small outside the two coils 21 and 22. . The magnetic field intensity outside the two coils 21 and 22 is not much different from the case of a single coil having the total number of turns of the two coils 21 and 22. The same applies to the other power transmission side resonators 3. In this way, electric field confinement occurs inside one power transmission resonator 2 and another power transmission resonator 3.

従って、両コイル21、22の外方及び両コイル31、32の外方の一の送電側共振器2と他の送電側共振器3の間の電界強度は小さくなっているので、受電側共振器5と一の送電側共振器2の間或いは受電側共振器5と他の送電側共振器3の間に誘電体が存在してもその影響が少なく、一の送電側共振器2及び他の送電側共振器3の共振周波数がシフトして一の送電側共振器2と他の送電側共振器3から受電側共振器5への電力の伝送効率が低下すること、を抑制することができる。   Accordingly, since the electric field strength between the outer side of the coils 21 and 22 and the outer side of the coils 31 and 32 and the other transmitting side resonator 3 is small, the receiving side resonance is reduced. Even if there is a dielectric between the power transmitter 5 and the one power transmission side resonator 2 or between the power reception side resonator 5 and the other power transmission side resonator 3, the influence is small. It is possible to suppress a decrease in transmission efficiency of power from one power transmission side resonator 2 and another power transmission side resonator 3 to the power reception side resonator 5 due to a shift in the resonance frequency of the power transmission side resonator 3. it can.

次に、第1のコイル51及び第2のコイル52を互いに近接配置して受電側共振器5を構成したことによる電界の閉じ込めの効果について説明する。   Next, the effect of electric field confinement by configuring the power receiving resonator 5 by arranging the first coil 51 and the second coil 52 close to each other will be described.

受電側共振器5は、その周囲に誘電体が存在すると、磁界よりも電界の方が影響を受けやすい。電界が影響を受けると、受電側共振器5の共振周波数がシフトし、一の送電側共振器2と他の送電側共振器3から受電側共振器5への電力の伝送効率が低下することになる。   In the power receiving side resonator 5, when a dielectric is present around the power receiving side resonator 5, the electric field is more susceptible than the magnetic field. When the electric field is affected, the resonance frequency of the power receiving resonator 5 is shifted, and the power transmission efficiency from one power transmitting resonator 2 and another power transmitting resonator 3 to the power receiving resonator 5 is reduced. become.

受電側共振器5が共振するとき、受電側共振器5の近接配置した第1のコイル51と第2のコイル52の間は、容量結合によって電界強度が大きく、そのため、両コイル51、52の外方は受電側共振器5によって生じる電界の強度が小さくなる。両コイル51、52の外方の受電側共振器5によって生じる磁界の強度は、両コイル21、22の合わせた巻き数の単一のコイルの場合と余り変わらない。このように、受電側共振器5の内部で、電界の閉じ込めが生じる。   When the power receiving resonator 5 resonates, the electric field strength between the first coil 51 and the second coil 52 arranged close to the power receiving resonator 5 is large due to capacitive coupling. Outside, the strength of the electric field generated by the power receiving resonator 5 is reduced. The strength of the magnetic field generated by the power-receiving-side resonator 5 outside the two coils 51 and 52 is not much different from that of the single coil having the total number of turns of the two coils 21 and 22. Thus, the electric field is confined inside the power receiving resonator 5.

従って、受電側共振器5の両コイル51、52の外方の受電側共振器5によって生じる電界強度は小さくなっているので、受電側共振器5と一の送電側共振器2の間或いは受電側共振器5と他の送電側共振器3の間に誘電体が存在したとしても受電側共振器5の周囲の誘電体の影響が少なく、受電側共振器5の共振周波数がシフトして一の送電側共振器2と他の送電側共振器3から受電側共振器5への電力の伝送効率が低下すること、を抑制することができる。   Accordingly, since the electric field strength generated by the power receiving resonator 5 outside the coils 51 and 52 of the power receiving resonator 5 is small, the power receiving resonator 5 and one power transmitting resonator 2 or the power receiving Even if there is a dielectric between the side resonator 5 and the other power transmission side resonator 3, the influence of the dielectric around the power reception side resonator 5 is small, and the resonance frequency of the power reception side resonator 5 is shifted to one. The power transmission efficiency from the power transmission side resonator 2 and the other power transmission side resonator 3 to the power reception side resonator 5 can be reduced.

次に、本願発明者が行った一の送電側共振器2と他の送電側共振器3についてのシミュレーションと実際のサンプルを用いた実験について述べる。   Next, simulations of one power transmission side resonator 2 and another power transmission side resonator 3 conducted by the inventors of the present application and experiments using actual samples will be described.

一の送電側共振器2の励振は、1Wの電力を入力し、第1のコイル21及び第2のコイル22の巻き数によらずその反射係数S11がいつも−1dBになるよう結合ループ42の配置等を調整し、同じ量の電力が一の送電側共振器2に伝わるようにした。一の送電側共振器の両コイル21、22と他の送電側共振器3の両コイル31、32は、直径を30cmとした。また、一の送電側共振器2と他の送電側共振器3の間の距離Bは20cmとした。一の送電側共振器2と他の送電側共振器3の中心軸をZ軸とし、それらの中心の位置を座標値0とした。共振は前述した奇モードを用い、共振周波数は1MHzとした。また、一の送電側共振器2の両コイル21、22と他の送電側共振器3の両コイル31、32の巻き数を変化させたときは、それらのインダクタンス値が図9の曲線aに示すように変わるので、共振周波数を合わせるために、コンデンサ23とコンデンサ33の容量値を図9の曲線bに示すように変化させた。   Excitation of one power transmission side resonator 2 inputs 1 W of power, and does not depend on the number of turns of the first coil 21 and the second coil 22 so that the reflection coefficient S11 is always −1 dB. The arrangement and the like are adjusted so that the same amount of power is transmitted to one power transmission resonator 2. The coils 21 and 22 of one power transmission side resonator and the coils 31 and 32 of the other power transmission side resonator 3 have a diameter of 30 cm. The distance B between one power transmission resonator 2 and another power transmission resonator 3 was 20 cm. The central axis of one power transmission side resonator 2 and the other power transmission side resonator 3 is taken as the Z axis, and the position of the center is set as the coordinate value 0. The resonance uses the odd mode described above, and the resonance frequency is 1 MHz. Further, when the number of turns of both the coils 21 and 22 of one power transmission side resonator 2 and the coils 31 and 32 of the other power transmission side resonator 3 is changed, their inductance values are changed to a curve a in FIG. Therefore, in order to match the resonance frequency, the capacitance values of the capacitor 23 and the capacitor 33 were changed as shown by a curve b in FIG.

シミュレーションによる一の送電側共振器2と他の送電側共振器3の間の中心軸(z軸)上の電界強度を図10(a)に、磁界強度を図10(b)にそれぞれ示す。シミュレーションソフトは、WIPL−Dを使用した。図10(a)に示す電界強度は絶対値表示であり、負値は正値に変更されている。後述する電界強度を示す全ての図においても同様の表示を行う。図10(a)の曲線c1と図10(b)の曲線e1は、一の送電側共振器2の両コイル21、22の総巻き数と他の送電側共振器3の両コイル31、32の総巻き数が15回のものの特性を示している。図10(a)の曲線c2と図10(b)の曲線e2は、一の送電側共振器2の両コイル21、22の総巻き数と他の送電側共振器3の両コイル31、32の総巻き数が25回のものの特性を示している。このとき、一の送電側共振器2の2個の両コイル21、22の互いの距離Aと他の送電側共振器3の両コイル31、32の互いの距離A’を2mmとしている。図10(a)の曲線d1、d2と図10(b)の曲線f1、f2は、比較例であり、一の送電側共振器2と他の送電側共振器3がそれぞれ単一のコイルで構成されたものの特性を示している。曲線d1と曲線f1は、一の送電側共振器2の単一のコイルの巻き数と他の送電側共振器3の単一のコイルの巻き数が15回のものの特性を示している。曲線d2と曲線f2は、一の送電側共振器2の単一のコイルの巻き数と他の送電側共振器3の単一のコイルの巻き数が25回のものの特性を示している。   FIG. 10A shows the electric field strength on the central axis (z-axis) between one power transmission resonator 2 and another power transmission resonator 3 by simulation, and FIG. 10B shows the magnetic field strength. WIPL-D was used as the simulation software. The electric field intensity shown in FIG. 10A is an absolute value display, and the negative value is changed to a positive value. The same display is performed also in all the figures showing the electric field strength described later. A curve c1 in FIG. 10A and a curve e1 in FIG. 10B indicate the total number of turns of both coils 21 and 22 of one power transmission side resonator 2 and both coils 31 and 32 of the other power transmission side resonator 3. The characteristic of the total number of turns of 15 is shown. A curve c2 in FIG. 10A and a curve e2 in FIG. 10B indicate the total number of turns of both coils 21 and 22 of one power transmission side resonator 2 and both coils 31 and 32 of the other power transmission side resonator 3. The characteristic of the total number of turns of 25 is shown. At this time, the distance A between the two coils 21 and 22 of one power transmission side resonator 2 and the distance A 'between the coils 31 and 32 of the other power transmission side resonator 3 are 2 mm. Curves d1 and d2 in FIG. 10 (a) and curves f1 and f2 in FIG. 10 (b) are comparative examples, and one power transmission side resonator 2 and the other power transmission side resonator 3 are each composed of a single coil. It shows the characteristics of what was constructed. Curves d1 and f1 show the characteristics of a single power transmission side resonator 2 having a single coil winding number and another power transmission side resonator 3 having a single coil winding number of 15. Curves d2 and f2 show the characteristics of a single power transmission side resonator 2 having a single coil winding number and another power transmission side resonator 3 having a single coil winding number of 25.

図10(a)の曲線c1と曲線d1及び曲線c2と曲線d2を比べると、一の送電側共振器2を両コイル21、22で構成し、他の送電側共振器3を両コイル31、32で構成した方が、一の送電側共振器2と他の送電側共振器3をそれぞれ単一コイルで構成するよりも、電界強度が小さくなっている。一方、図10(b)の曲線e1と曲線f1及び曲線e2と曲線f2を比べると、一の送電側共振器2を両コイル21、22で構成し、他の送電側共振器3を両コイル31、32で構成した方が、一の送電側共振器2と他の送電側共振器3をそれぞれ単一コイルで構成するよりも、磁界強度が大きくなっている。これより、一の送電側共振器2を両コイル21、22で構成し、他の送電側共振器3を両コイル31、32で構成すると、一の送電側共振器2及び他の送電側共振器3の内部で電界の閉じ込めが生じて、一の送電側共振器2と他の送電側共振器3の間の電界強度は小さくなる一方、磁界強度は小さくはならないことが分かる。   When the curve c1 and the curve d1 and the curve c2 and the curve d2 in FIG. 10A are compared, one power transmission side resonator 2 is configured by both the coils 21, 22, and the other power transmission side resonator 3 is configured by the two coils 31, The electric field strength is smaller in the configuration of 32 than in the case where one power transmission side resonator 2 and the other power transmission side resonator 3 are each configured by a single coil. On the other hand, when the curve e1 and the curve f1 and the curve e2 and the curve f2 in FIG. 10B are compared, one power transmission side resonator 2 is composed of both coils 21 and 22, and the other power transmission side resonator 3 is composed of both coils. The magnetic field strength is larger in the configuration of 31 and 32 than in the case where one power transmission side resonator 2 and the other power transmission side resonator 3 are each configured by a single coil. Thus, when one power transmission side resonator 2 is constituted by both coils 21 and 22 and another power transmission side resonator 3 is constituted by both coils 31 and 32, one power transmission side resonator 2 and another power transmission side resonance are formed. It can be seen that the electric field is confined inside the device 3, and the electric field strength between one power transmission side resonator 2 and the other power transmission side resonator 3 is reduced, while the magnetic field strength is not reduced.

また、図10(a)の曲線c1と曲線c2を比べ、図10(b)の曲線e1と曲線e2を比べると、総巻き数が少ないほど、電界強度が小さく磁界強度も小さくなる傾向がある。   Further, when the curve c1 and the curve c2 in FIG. 10A are compared and the curve e1 and the curve e2 in FIG. 10B are compared, the smaller the total number of turns, the smaller the electric field strength and the smaller the magnetic field strength. .

一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’を変えたときの一の送電側共振器2と他の送電側共振器3の間の中心軸(z軸)上の電界強度を図11に示す。曲線g1、g2、g3、g4はそれぞれ、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’が1mm、2mm、5mm、10mmとしたときの特性を示している。このとき、一の送電側共振器の両コイル21、22の総巻き数と他の送電側共振器3の両コイル31、32の総巻き数を15回としている。図11によると、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’が短いほど、電界強度が小さくなる傾向がある。これより、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’を短くした方が、より電界の閉じ込めを大きくすることができることがわかる。なお、磁界に関しては、図示は省略するが、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’を変えても、ほとんど違いがなかった。   One power transmission side resonator 2 when the distance A between the coils 21 and 22 of one power transmission side resonator 2 and the distance A ′ between the coils 31 and 32 of the other power transmission side resonator 3 are changed. FIG. 11 shows the electric field strength on the central axis (z-axis) between the power transmission side resonator 3 and other power transmission side resonators 3. Curves g1, g2, g3, and g4 indicate that the distance A ′ between the coils 21 and 22 of one power transmission side resonator 2 and the distance A ′ between the coils 31 and 32 of the other power transmission side resonator 3, respectively. The characteristics when 1 mm, 2 mm, 5 mm, and 10 mm are shown. At this time, the total number of turns of both coils 21 and 22 of one power transmission side resonator and the total number of turns of both coils 31 and 32 of the other power transmission side resonator 3 are set to 15 times. According to FIG. 11, the shorter the distance A ′ between the coils 21 and 22 of one power transmission resonator 2 and the distance A ′ between the coils 31 and 32 of the other power transmission resonator 3, the shorter the electric field strength. There is a tendency to become smaller. From this, it is more effective to shorten the distance A ′ between the coils 21 and 22 of one power transmission resonator 2 and the distance A ′ between the coils 31 and 32 of the other power transmission resonator 3. It can be seen that the confinement can be increased. In addition, although illustration is abbreviate | omitted regarding a magnetic field, the mutual distance A of both the coils 21 and 22 of the one power transmission side resonator 2 and the mutual distance A 'of both the coils 31 and 32 of the other power transmission side resonator 3 are shown. There was almost no difference even when changing.

次に、一の送電側共振器2と他の送電側共振器3に関して本願発明者が行った別のシミュレーションについて述べる。一の送電側共振器2と他の送電側共振器3の間に、図12に示すように、誘電体7が配置されたときのそれが配置されないときに対する一の送電側共振器2と他の送電側共振器3の共振周波数のシフト量を計算した。誘電体7は、中心軸方向が18cm、それに直交する方向が10cmの大きさのものである。図13の曲線hは、一の送電側共振器2の両コイル21、22の総巻き数と他の送電側共振器3の両コイル31、32の総巻き数を15回とし、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’を2mmとして、誘電体7の誘電率に対する共振周波数のシフト量の依存性の特性を示している。曲線iは、比較例であり、一の送電側共振器2と他の送電側共振器3がそれぞれ単一のコイルで構成して、誘電体7の誘電率に対する共振周波数のシフト量の依存性の特性を示している。   Next, another simulation performed by the inventors of the present invention regarding one power transmission resonator 2 and another power transmission resonator 3 will be described. As shown in FIG. 12, between the one power transmission side resonator 2 and the other power transmission side resonator 3, the one power transmission side resonator 2 and the other when the dielectric 7 is not disposed are disposed. The shift amount of the resonance frequency of the power transmission side resonator 3 was calculated. The dielectric 7 has a size of 18 cm in the central axis direction and 10 cm in the direction perpendicular to the central axis direction. A curve h in FIG. 13 indicates that the total number of turns of both the coils 21 and 22 of one power transmission side resonator 2 and the total number of turns of both the coils 31 and 32 of the other power transmission side resonator 3 is 15 times. The distance A ′ between the coils 21 and 22 of the side resonator 2 and the distance A ′ between the coils 31 and 32 of the other power transmission side resonator 3 are set to 2 mm. The characteristic of quantity dependence is shown. A curve i is a comparative example, and one power transmission side resonator 2 and another power transmission side resonator 3 are each configured by a single coil, and the dependency of the resonance frequency shift amount on the dielectric constant of the dielectric 7 is shown. The characteristics are shown.

曲線hと曲線iを比べると、一の送電側共振器2を両コイル21、22で構成し、他の送電側共振器3を両コイル31、32で構成した方が、一の送電側共振器2と他の送電側共振器3をそれぞれ単一コイルで構成するよりも、共振周波数のシフト量が少なくなっている。これより、一の送電側共振器2を両コイル21、22で構成し、他の送電側共振器3を両コイル31、32で構成することにより、一の送電側共振器2と他の送電側共振器3の間で誘電体の誘電率が変化、つまり誘電体の有無又は位置などの状態が変化しても、一の送電側共振器2及び他の送電側共振器3の共振周波数のシフトが抑制されることが分かる。   Comparing curve h and curve i, one power transmission side resonator 2 is composed of both coils 21 and 22, and the other power transmission side resonator 3 is composed of both coils 31 and 32. The amount of shift of the resonance frequency is smaller than that in which the resonator 2 and the other power transmission side resonator 3 are each constituted by a single coil. From this, one power transmission side resonator 2 is comprised by both the coils 21 and 22, and the other power transmission side resonator 3 is comprised by both the coils 31 and 32, Therefore One power transmission side resonator 2 and other power transmission are comprised. Even if the dielectric constant of the dielectric changes between the side resonators 3, that is, the state of the presence or position of the dielectric changes, the resonance frequency of one power transmission side resonator 2 and the other power transmission side resonator 3 It can be seen that the shift is suppressed.

次に、本願発明者が行った実際のサンプルを用いた一の送電側共振器2と他の送電側共振器3の実験について述べる。一の送電側共振器2と他の送電側共振器3の間に、前述した図12に示したように、誘電体7として水が入ったプラスチック容器が配置されたときのそれが配置されないときに対する一の送電側共振器2と他の送電側共振器3の共振周波数のシフト量を測定した。図14の曲線j1、j2、j3はそれぞれ、一の送電側共振器2の両コイル21、22の総巻き数と他の送電側共振器3の両コイル31、32の総巻き数が7.5回のもの、15回のもの、22回のものについて、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’に対する共振周波数のシフト量の依存性の特性を示している。曲線j1、j2、j3のそれぞれにおいて、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’が0のときの値は、一の送電側共振器2と他の送電側共振器3がそれぞれ単一のコイルで構成されたものを用いた場合のものを示している。   Next, an experiment of one power transmission side resonator 2 and another power transmission side resonator 3 using an actual sample performed by the present inventor will be described. When a plastic container containing water is disposed as the dielectric 7 between the one power transmission resonator 2 and the other power transmission resonator 3 as shown in FIG. The shift amount of the resonance frequency of one power transmission side resonator 2 and the other power transmission side resonator 3 was measured. Curves j1, j2, and j3 in FIG. 14 each have a total number of turns of both coils 21 and 22 of one power transmission side resonator 2 and a total number of turns of both coils 31 and 32 of another power transmission side resonator 3. For the five times, the 15 times, and the 22 times, the distance A between the coils 21 and 22 of one power transmission side resonator 2 and the mutual coils 31 and 32 of the other power transmission side resonator 3 The dependence characteristic of the shift amount of the resonance frequency with respect to the distance A ′ is shown. In each of the curves j1, j2, and j3, the distance A ′ between the coils 21 and 22 of one power transmission side resonator 2 and the distance A ′ between the coils 31 and 32 of the other power transmission side resonator 3 are 0. The value at this time indicates the case where one power transmission side resonator 2 and the other power transmission side resonator 3 are each configured by a single coil.

図14によると、一の送電側共振器2を両コイル21、22で構成し、他の送電側共振器3を両コイル31、32で構成した方が、一の送電側共振器2と他の送電側共振器3をそれぞれ単一コイルで構成するよりも、共振周波数のシフト量が少なくなっている。これより、一の送電側共振器2を両コイル21、22で構成し、他の送電側共振器3を両コイル31、32で構成することにより、一の送電側共振器2と他の送電側共振器3の間の誘電体の有無による一の送電側共振器2及び他の送電側共振器3の共振周波数のシフトが抑制されることが分かる。   According to FIG. 14, one power transmission side resonator 2 is composed of both coils 21 and 22, and the other power transmission side resonator 3 is composed of both coils 31 and 32. The amount of shift of the resonance frequency is smaller than that in the case where each of the power transmission side resonators 3 is composed of a single coil. From this, one power transmission side resonator 2 is comprised by both the coils 21 and 22, and the other power transmission side resonator 3 is comprised by both the coils 31 and 32, Therefore One power transmission side resonator 2 and other power transmission are comprised. It can be seen that the shift of the resonance frequency of one power transmission side resonator 2 and the other power transmission side resonator 3 due to the presence or absence of a dielectric between the side resonators 3 is suppressed.

また、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’を短くするほど共振周波数のシフト量が少なくなり、巻き数を少なくするほど共振周波数のシフト量が少なくなる傾向がある。   Further, the shorter the distance A between the coils 21 and 22 of one power transmission resonator 2 and the distance A ′ between the coils 31 and 32 of the other power transmission resonator 3, the more the resonance frequency shift amount becomes. As the number of turns decreases and the number of turns decreases, the shift amount of the resonance frequency tends to decrease.

図15に示すのは、無負荷Q値の測定値である。これは、一の送電側共振器2を両コイル21、22で構成し、他の送電側共振器3を両コイル31、32で構成することによって、無負荷Q値が低下しないことを示すためのものである。図15の曲線k1、k2、k3はそれぞれ、一の送電側共振器2の両コイル21、22の総巻き数と他の送電側共振器3の両コイル31、32の総巻き数が7.5回のもの、15回のもの、22回のものについて、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’に対する無負荷Q値の依存性の特性を示している。曲線k1、k2、k3のそれぞれにおいて、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’が0のときの値は、一の送電側共振器2と他の送電側共振器3がそれぞれ単一のコイルで構成されたものを用いた場合のものを示している。図15によると、一の送電側共振器2を両コイル21、22で構成し、他の送電側共振器3を両コイル31、32で構成した方が、一の送電側共振器2と他の送電側共振器3をそれぞれ単一コイルで構成するよりも、無負荷Q値は良くなっている。また、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’を変えると、無負荷Q値は若干変化し、巻き数を増やすほど無負荷Q値は良くなる傾向がある。   FIG. 15 shows the measured value of the no-load Q value. This is to show that the unloaded Q value does not decrease by configuring one power transmission side resonator 2 with both coils 21 and 22 and configuring the other power transmission side resonator 3 with both coils 31 and 32. belongs to. In the curves k1, k2, and k3 in FIG. 15, the total number of turns of both coils 21 and 22 of one power transmission side resonator 2 and the total number of turns of both coils 31 and 32 of the other power transmission side resonator 3 are 7. For the five times, the 15 times, and the 22 times, the distance A between the coils 21 and 22 of one power transmission side resonator 2 and the mutual coils 31 and 32 of the other power transmission side resonator 3 The characteristic of the dependence of the unloaded Q value on the distance A ′ is shown. In each of the curves k1, k2, and k3, the mutual distance A between the coils 21 and 22 of one power transmission side resonator 2 and the mutual distance A ′ of both coils 31 and 32 of the other power transmission side resonator 3 are 0. The value at this time indicates the case where one power transmission side resonator 2 and the other power transmission side resonator 3 are each configured by a single coil. According to FIG. 15, one power transmission side resonator 2 is composed of both coils 21 and 22, and the other power transmission side resonator 3 is composed of both coils 31 and 32. The no-load Q value is better than each of the power transmission side resonators 3 configured by a single coil. When the distance A between the coils 21 and 22 of one power transmission resonator 2 and the distance A ′ between the coils 31 and 32 of the other power transmission resonator 3 are changed, the no-load Q value is slightly changed. The unloaded Q value tends to improve as the number of turns increases.

次に、本願発明者が行った実際のサンプルを用いた受電側共振器5の実験について述べる。受電側共振器5の両コイル51、52は、直径が3cmとした。共振周波数は1MHzとした。また、受電側共振器5の両コイル51、52の巻き数を変化させたときは、共振周波数を合わせるために、コンデンサ53の容量値を変化させた。   Next, an experiment of the power-receiving-side resonator 5 using an actual sample conducted by the present inventor will be described. Both the coils 51 and 52 of the power receiving resonator 5 have a diameter of 3 cm. The resonance frequency was 1 MHz. Further, when the number of turns of both the coils 51 and 52 of the power receiving resonator 5 was changed, the capacitance value of the capacitor 53 was changed in order to match the resonance frequency.

受電側共振器5の両側に、図16に示すように、誘電体として水が入ったプラスチック容器7A、7Bが配置されたときと、それが配置されないときに対する受電側共振器5の共振周波数のシフト量を測定した。水が入ったプラスチック容器7A、7Bは、中心軸方向が9cm、それに直交する方向が10cmの大きさのものである。図17の曲線m1、m2、m3はそれぞれ、受電側共振器5の両コイル51、52の総巻き数が4回のもの、8回のもの、15回のものについて、受電側共振器5の両コイル51、52の互いの距離A’’に対する共振周波数のシフト量の依存性の特性を示している。曲線m1、m2、m3のそれぞれにおいて、受電側共振器5の両コイル51、52の互いの距離A’’が0のときの値は、受電側共振器5が単一のコイルで構成されたものを用いた場合のものを示している。   As shown in FIG. 16, on both sides of the power receiving side resonator 5, when the plastic containers 7A and 7B containing water as a dielectric are arranged, and the resonance frequency of the power receiving side resonator 5 with respect to when the plastic containers 7A and 7B are not arranged, The amount of shift was measured. The plastic containers 7A and 7B containing water have a size of 9 cm in the central axis direction and 10 cm in a direction perpendicular to the central axis direction. Curves m1, m2, and m3 in FIG. 17 respectively indicate that the total number of turns of the coils 51 and 52 of the power receiving side resonator 5 is 4, 8, and 15 times. The characteristic of the dependence of the shift amount of the resonance frequency with respect to the mutual distance A ″ of both the coils 51 and 52 is shown. In each of the curves m1, m2, and m3, when the distance A ″ between the coils 51 and 52 of the power receiving resonator 5 is 0, the power receiving resonator 5 is composed of a single coil. The thing when a thing is used is shown.

図17によると、受電側共振器5を両コイル51、52の互いの距離A’’が1mm近傍として構成すると、受電側共振器5を単一コイルで構成するよりも、共振周波数のシフト量が少なくなっている。これより、受電側共振器5を両コイル51、52で構成することにより、受電側共振器5の周囲の誘電体の有無による受電側共振器5の共振周波数のシフトが抑制可能であることが分かる。   According to FIG. 17, when the power receiving side resonator 5 is configured such that the distance A ″ between the coils 51 and 52 is about 1 mm, the resonance frequency shift amount is larger than that of the power receiving side resonator 5 formed of a single coil. Is decreasing. Thus, by configuring the power receiving side resonator 5 with both the coils 51 and 52, it is possible to suppress a shift in the resonance frequency of the power receiving side resonator 5 due to the presence or absence of a dielectric around the power receiving side resonator 5. I understand.

また、送受電側共振器5を両コイル51、52の互いの距離A’’を短くするほど共振周波数のシフト量が少なくなり、巻き数を増やすほど共振周波数のシフト量が小さくなる傾向がある。   In addition, the resonance frequency shift amount decreases as the distance A ″ between the coils 51 and 52 of the power transmission / reception resonator 5 decreases, and the resonance frequency shift amount tends to decrease as the number of turns increases. .

図18に示すのは、無負荷Q値の測定値である。これは、受電側共振器5を両コイル51、52で構成することによって、無負荷Q値が低下しないことを示すためのものである。図18の曲線n1、n2、n3はそれぞれ、受電側共振器5の両コイル51、52の総巻き数が4回のもの、8回のもの、15回のものについて、受電側共振器5の両コイル51、52の互いの距離A’’に対する無負荷Q値の依存性の特性を示している。曲線n1、n2、n3のそれぞれにおいて、受電側共振器5の両コイル51、52の互いの距離A’’が0のときの値は、受電側共振器5がそれぞれ単一のコイルで構成されたものを用いた場合のものである。図18によると、受電側共振器5を両コイル51、52で構成した方が、受電側共振器5を単一コイルで構成するよりも、無負荷Q値は良くなっている。また、受電側共振器5の両コイル51、52の互いの距離A’’を変えても、無負荷Q値はほとんど変化せず、巻き数を増やすほど無負荷Q値は良くなる傾向がある。   FIG. 18 shows the measured value of the no-load Q value. This is to show that the unloaded Q value does not decrease by configuring the power receiving side resonator 5 with both the coils 51 and 52. Curves n1, n2, and n3 in FIG. 18 respectively indicate that the total number of windings of both coils 51 and 52 of the power receiving resonator 5 is 4, 8, and 15 times. The characteristic of the dependence of the no-load Q value with respect to the mutual distance A ″ of both the coils 51 and 52 is shown. In each of the curves n1, n2, and n3, when the distance A ″ between the coils 51 and 52 of the power receiving resonator 5 is 0, the power receiving resonator 5 is composed of a single coil. It is a thing when using a thing. According to FIG. 18, the unloaded Q value is better when the power receiving side resonator 5 is composed of both coils 51 and 52 than when the power receiving side resonator 5 is composed of a single coil. Further, even if the distance A ″ between the coils 51 and 52 of the power-receiving-side resonator 5 is changed, the unloaded Q value hardly changes, and the unloaded Q value tends to improve as the number of turns increases. .

次に、本願発明者が行った実際のサンプルを用いた結合共振器型の無線電力伝送システム1全体の実験について述べる。ここでは、一の送電側共振器2の両コイル21、22の総巻き数と他の送電側共振器3の両コイル31、32の総巻き数を15回とし、一の送電側共振器2の両コイル21、22の互いの距離A及び他の送電側共振器3の両コイル31、32の互いの距離A’を2mmとし、受電側共振器5の両コイル51、52の総巻き数を15回とし、受電側共振器5の両コイル51、52の互いの距離A’’を1mmとした。測定は、一の送電側共振器2と他の送電側共振器3の間の中央、すなわち中心軸(z軸)の座標値が0の箇所で行った。   Next, an experiment of the coupled resonator type wireless power transmission system 1 as a whole using an actual sample performed by the present inventor will be described. Here, the total number of turns of both coils 21 and 22 of one power transmission side resonator 2 and the total number of turns of both coils 31 and 32 of another power transmission side resonator 3 are set to 15 times, and one power transmission side resonator 2 is obtained. The distance A between the coils 21 and 22 and the distance A ′ between the coils 31 and 32 of the other power transmission resonator 3 are 2 mm, and the total number of turns of the coils 51 and 52 of the power reception resonator 5 is 2 mm. The distance A ″ between the coils 51 and 52 of the power receiving resonator 5 was set to 1 mm. The measurement was performed at the center between one power transmission side resonator 2 and another power transmission side resonator 3, that is, at a location where the coordinate value of the central axis (z axis) is zero.

一の送電側共振器2と他の送電側共振器3の間において、受電側共振器5の両側に、図19に示すように、誘電体7として水が入ったプラスチック容器7A、7Bが配置されたときの伝送効率S21の周波数依存性を図20の曲線oに示す。曲線pは、そのプラスチック容器7A、7Bが配置されないときの伝送効率S21の周波数依存性を示している。曲線oと曲線pはほぼ重なっており、伝送効率S21について誘電体7の影響はほとんどないことが分かる。   Between one power transmission resonator 2 and another power transmission resonator 3, plastic containers 7A and 7B containing water as dielectrics 7 are arranged on both sides of the power reception resonator 5 as shown in FIG. The frequency dependence of the transmission efficiency S21 at this time is shown by a curve o in FIG. A curve p shows the frequency dependence of the transmission efficiency S21 when the plastic containers 7A and 7B are not arranged. The curve o and the curve p almost overlap, and it can be seen that the dielectric 7 has little influence on the transmission efficiency S21.

このように、本願発明者が行った上記のシミュレーションと上記の実際のサンプルを用いた実験により、結合共振器型の無線電力伝送システム1によれば、受電側共振器5と一の送電側共振器2の間或いは受電側共振器5と他の送電側共振器3の間に誘電体が存在しても、その誘電体の影響が少なく、伝送効率の低下の抑制が可能になることが分かる。   As described above, according to the coupled resonator type wireless power transmission system 1 based on the simulation performed by the inventors of the present application and the experiment using the actual sample, the power receiving side resonator 5 and the power transmitting side resonance are one. Even if a dielectric exists between the power receivers 2 or between the power receiving resonator 5 and the other power transmitting resonator 3, it can be seen that the influence of the dielectric is small and the reduction in transmission efficiency can be suppressed. .

以上、本発明の実施形態に係る無線電力伝送システムについて説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、結合共振器型の無線電力伝送システム1は、構成を簡略化する場合は、図21に示すように、他の送電側共振器3を省略した結合共振器型の無線電力伝送システム1’に変形することも可能である。この場合、磁界は図8(b)に示した磁界分布H2のように変化が比較的大きいものとなるが、一の送電側共振器2の両コイル21、22の外方の電界強度は小さくなるので、一の送電側共振器2の両コイル21、22の外方に配置された受電側共振器5に電力を伝送するとき、受電側共振器5と一の送電側共振器2の間に誘電体が存在してもその影響が少なく、一の送電側共振器2の共振周波数がシフトして一の送電側共振器2から受電側共振器5への電力の伝送効率が低下すること、を抑制することができる。   The wireless power transmission system according to the embodiment of the present invention has been described above. However, the present invention is not limited to that described in the above-described embodiment, and various modifications within the scope of the matters described in the claims. Design changes are possible. For example, when the configuration of the coupled resonator type wireless power transmission system 1 is simplified, as illustrated in FIG. 21, the coupled resonator type wireless power transmission system 1 ′ in which the other power transmission side resonator 3 is omitted is illustrated. It is also possible to deform it. In this case, the magnetic field changes relatively as shown in the magnetic field distribution H2 shown in FIG. 8B, but the electric field strength outside the coils 21 and 22 of one power transmission resonator 2 is small. Therefore, when power is transmitted to the power receiving resonator 5 disposed outside the two coils 21 and 22 of the one power transmitting resonator 2, the power receiving resonator 5 and the one power transmitting resonator 2 are connected. Even if a dielectric is present in the dielectric, its influence is small, the resonance frequency of one power transmission resonator 2 is shifted, and the power transmission efficiency from one power transmission resonator 2 to the power reception resonator 5 is reduced. Can be suppressed.

また、上記の結合共振器型の無線電力伝送システム1は、受電側共振器5とともに或いはそれにかえて他の構成のいろいろな受電側共振器(例えば、ソレノイド型コイル共振器など)を使用することも可能である。   In addition, the above-described coupled resonator type wireless power transmission system 1 uses various power receiving side resonators (for example, solenoid type coil resonators) having other configurations in addition to or instead of the power receiving side resonator 5. Is also possible.

また、受電側共振器5は、他の結合共振器型の無線電力伝送システムにも使用可能である。この場合、受電側共振器5の周囲に誘電体が存在したとしても、上記と同様な効果が期待できる。   The power-receiving-side resonator 5 can also be used for other coupled resonator type wireless power transmission systems. In this case, even if there is a dielectric around the power receiving resonator 5, the same effect as described above can be expected.

1 結合共振器型の無線電力伝送システム
2 一の送電側共振器
21 送電側共振器2を構成する第1のコイル
21a、21b 第1のコイルの両端
22 送電側共振器2を構成する第2のコイル
22a、22b 第1のコイルの両端
23 送電側共振器2を構成するコンデンサ
3 他の送電側共振器
31 送電側共振器3を構成する第1のコイル
32 送電側共振器3を構成する第2のコイル
33 送電側共振器3を構成するコンデンサ
4 制御器
5 受電側共振器
51 受電側共振器5を構成する第1のコイル
52 受電側共振器5を構成する第2のコイル
53 受電側共振器5を構成するコンデンサ
6 負荷回路
DESCRIPTION OF SYMBOLS 1 Coupling resonator type radio | wireless power transmission system 2 One power transmission side resonator 21 The 1st coils 21a and 21b which comprise the power transmission side resonator 2 Both ends of the 1st coil 22 The 2nd which comprises the power transmission side resonator 2 Coils 22a and 22b of the first coil 23 Capacitors constituting the power transmission side resonator 2 3 Other power transmission side resonators 31 First coil constituting the power transmission side resonator 3 32 Power transmission side resonator 3 Second coil 33 Capacitor constituting power transmission side resonator 3 4 Controller 5 Power receiving side resonator 51 First coil constituting power receiving side resonator 5 52 Second coil constituting power receiving side resonator 5 53 Power receiving Capacitor constituting the side resonator 5 6 Load circuit

Claims (1)

第1のコイル及び第2のコイルと、コンデンサと、を有して構成され、該第1のコイル及び該第2のコイルは、スパイラルコイルであって、それらの間が容量結合によって電界強度が大きく、それらの外方の電界強度が小さくなるように、近接して配置され、該第1のコイルの両端のうちの一つと該第2のコイルの両端のうちの一つが該コンデンサを介して、該第1のコイルの両端のうちの他の一つと該第2のコイルの両端のうちの他の一つがコンデンサを介さずに、それぞれ接続され但し、該第1のコイルの内端と該第2のコイルの内端がコンデンサを介さずに接続されるものを除いた、少なくとも1個の送電側共振器と、
該少なくとも1個の送電側共振器の内の一の送電側共振器の励振を制御する制御器と、
前記一の送電側共振器の前記両コイルの外方に配置されて、前記一の送電側共振器から伝送される電力を受電する受電側共振器と、
を備えることを特徴とする結合共振器型の無線電力伝送システム。
The first coil and the second coil are configured to have a capacitor, and the first coil and the second coil are spiral coils, and the electric field strength is between them by capacitive coupling. Are arranged close to each other so that their electric field strength is small, and one of both ends of the first coil and one of both ends of the second coil are connected via the capacitor. The other end of the first coil and the other end of the second coil are connected to each other without a capacitor , provided that the inner end of the first coil is connected to the other end of the first coil. the inner end of the second coil was divided to be connected without passing through the condenser, and at least one of the power transmission resonator,
A controller for controlling excitation of one power transmission resonator of the at least one power transmission resonator;
A power receiving resonator disposed outside the two coils of the one power transmitting resonator and receiving power transmitted from the one power transmitting resonator;
A coupled resonator type wireless power transmission system comprising:
JP2012245861A 2012-11-07 2012-11-07 Coupled resonator type wireless power transmission system Active JP6164720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012245861A JP6164720B2 (en) 2012-11-07 2012-11-07 Coupled resonator type wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012245861A JP6164720B2 (en) 2012-11-07 2012-11-07 Coupled resonator type wireless power transmission system

Publications (2)

Publication Number Publication Date
JP2014096872A JP2014096872A (en) 2014-05-22
JP6164720B2 true JP6164720B2 (en) 2017-07-19

Family

ID=50939538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012245861A Active JP6164720B2 (en) 2012-11-07 2012-11-07 Coupled resonator type wireless power transmission system

Country Status (1)

Country Link
JP (1) JP6164720B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160035477A1 (en) * 2014-08-01 2016-02-04 J Touch Corporation Thin-film coil component and charging apparatus and method for manufacturing the component
JP6644234B2 (en) * 2014-09-08 2020-02-12 学校法人 龍谷大学 Wireless power transmission equipment
CN107112798A (en) * 2015-01-21 2017-08-29 松下知识产权经营株式会社 Current-collecting device and the non-contact power transmission device for possessing the current-collecting device
WO2016147293A1 (en) * 2015-03-16 2016-09-22 三菱電機エンジニアリング株式会社 Resonance-type power transmission system and resonator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4318742B1 (en) * 2008-10-06 2009-08-26 有限会社日本テクモ Non-contact power supply device
JP5365306B2 (en) * 2009-03-31 2013-12-11 富士通株式会社 Wireless power supply system
JP5471283B2 (en) * 2009-10-19 2014-04-16 Tdk株式会社 Wireless power feeding device, wireless power receiving device, and wireless power transmission system
JP2011205757A (en) * 2010-03-25 2011-10-13 Toyota Central R&D Labs Inc Electromagnetic field resonance power transmission device
JP2012023929A (en) * 2010-07-16 2012-02-02 Equos Research Co Ltd Resonance coil
JP5843309B2 (en) * 2011-02-24 2016-01-13 国立大学法人東北大学 Non-contact power transmission system
JP2012186949A (en) * 2011-03-07 2012-09-27 Hitachi Maxell Energy Ltd Non-contact power transmission device utilizing magnetic field resonance

Also Published As

Publication number Publication date
JP2014096872A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP6097215B2 (en) Wireless power transmission apparatus and multiband resonant power transmission method thereof
JP5934934B2 (en) Wireless power transmission system
KR101159565B1 (en) Long range low frequency resonator and materials
US8994225B2 (en) Wireless power transmission system and resonator for the system
US8901776B2 (en) Wireless power feeder, wireless power receiver, and wireless power transmission system
JP6288519B2 (en) Wireless power transmission system
US9406435B2 (en) Misalignment insensitive wireless power transfer
US20110193421A1 (en) Wireless power feeder, wireless power receiver, and wireless power transmission system
JP2010537496A5 (en)
WO2013002240A1 (en) Power feeding system design method and power feeding system
CN104521100B (en) Contactless power transmission device, electric supply installation and current-collecting device
JP6164720B2 (en) Coupled resonator type wireless power transmission system
CN107148710B (en) Wireless power transfer using stacked resonators
KR101174400B1 (en) Space-adaptive self-resonator for wireless power transfer based on resonance
US9030053B2 (en) Device for collecting energy wirelessly
KR101369415B1 (en) Transmitter used in wireless power transfer and wireless power transfer system having the same
US20200336011A1 (en) Resonant circuit for transmitting electric energy
JP2016004990A (en) Resonator
JP6567329B2 (en) Resonator
JP2015220891A (en) Resonator and wireless power supply system
JP2013081331A (en) Non-contact power transmission apparatus
JP2016010168A (en) Resonator and wireless power supply system
JP2012039674A (en) Resonance coil
Kim et al. High efficient misaligned wireless power transfer using magnetic resonant coupling and additional capacitor
JP2017195707A (en) Wireless power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170616

R150 Certificate of patent or registration of utility model

Ref document number: 6164720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250