JP2017195707A - Wireless power supply device - Google Patents

Wireless power supply device Download PDF

Info

Publication number
JP2017195707A
JP2017195707A JP2016084850A JP2016084850A JP2017195707A JP 2017195707 A JP2017195707 A JP 2017195707A JP 2016084850 A JP2016084850 A JP 2016084850A JP 2016084850 A JP2016084850 A JP 2016084850A JP 2017195707 A JP2017195707 A JP 2017195707A
Authority
JP
Japan
Prior art keywords
power supply
wireless power
main coil
coil
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016084850A
Other languages
Japanese (ja)
Inventor
粟井 郁雄
Ikuo Awai
郁雄 粟井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYUTECH CO Ltd
Original Assignee
RYUTECH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYUTECH CO Ltd filed Critical RYUTECH CO Ltd
Priority to JP2016084850A priority Critical patent/JP2017195707A/en
Publication of JP2017195707A publication Critical patent/JP2017195707A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a wireless power supply device that can supply power to a wide range and on top of that can make an electric field smaller.SOLUTION: A wireless power supply device 1 includes: a power transmission side resonator 4 including a main coil 41 wound in a spiral in a flat shape and a sub-coil 42 wound in a solenoid in the vicinity of the outer periphery of the main coil 41 without being connected with the outer periphery; and a transmission side controller 5 for controlling excitation of the power transmission side resonator 4. The main coil 41 is provided on the back of an insulation plate 45, and the sub-coil 42 is wound in a solenoid at a side of the insulation plate 45.SELECTED DRAWING: Figure 2

Description

本発明は、受電側装置に無線で電力供給を行い得るワイヤレス電力供給装置に関する。   The present invention relates to a wireless power supply device that can wirelessly supply power to a power receiving device.

電磁界は、放射電磁界(電磁波)と非放射電磁界(エバネッセント場)に分類できる。非放射電磁界を用いて送電側装置から受電側装置に無線で電力を供給するワイヤレス電力供給システムには、結合共振器型、電磁誘導型、容量結合型などがある。この中で、結合共振器型のワイヤレス電力供給システムでは、送電側装置の送電側共振器と受電側装置の受電側共振器を電磁界を介して共振させることにより電力を伝送することで、簡便な構成で高効率の電力供給を可能としている。   Electromagnetic fields can be classified into radiated electromagnetic fields (electromagnetic waves) and non-radiated electromagnetic fields (evanescent fields). Wireless power supply systems that wirelessly supply power from a power transmission side device to a power reception side device using a non-radiating electromagnetic field include a coupled resonator type, an electromagnetic induction type, and a capacitive coupling type. Among these, in the coupled resonator type wireless power supply system, it is easy to transmit power by resonating the power transmitting side resonator of the power transmitting side device and the power receiving side resonator of the power receiving side device via an electromagnetic field. A highly efficient power supply is possible with a simple configuration.

特許文献1と特許文献2は、本願発明者が発明者の一人であり、それらには結合共振器型のワイヤレス電力供給システムに関する技術が記載されている。特許文献1には、送電側装置において2個の送電側共振器が互いに対向し一方にだけ交流電流が供給されており、受電側装置の受電側共振器はそれらの間に配置されるものが開示されている。互いに対向する2個の送電側共振器を用いることで、高伝送効率で受電側装置に電力供給を行うことができる。   In Patent Document 1 and Patent Document 2, the inventor of the present application is one of the inventors, and a technique related to a coupled resonator type wireless power supply system is described in them. In Patent Document 1, two power transmission side resonators face each other in the power transmission side device and an alternating current is supplied to only one of them, and the power reception side resonator of the power reception side device is disposed between them. It is disclosed. By using two power transmission side resonators facing each other, power can be supplied to the power receiving side device with high transmission efficiency.

また、特許文献2には、送電側装置において2個のコイルが近接して平行に配置され接続されることで1個の送電側共振器が構成されるものが開示されている。それにより、2個のコイルにより周囲の誘電体の影響を受けやすい電界を送電側共振器の中に閉じ込めて小さくし、主に磁界により受電側装置に電力供給を行うことで、伝送効率の低下を抑制している。   Patent Document 2 discloses a power transmission side device in which two coils are arranged close to each other in parallel and connected to form one power transmission side resonator. As a result, the electric field that is susceptible to the influence of surrounding dielectrics is confined in the power transmission resonator by two coils, and the power is supplied to the power receiving device mainly by the magnetic field, thereby reducing the transmission efficiency. Is suppressed.

特開2014−039665号公報JP 2014-039665 A 特開2014−096872号公報JP 2014-096872 A

ところで、ワイヤレス電力供給システムは、様々な応用形態が考えられる。その中には、例えば、電力供給マットに送電側共振器を配置し、受電側共振器の位置が電力供給マットの中心部であっても周辺部であっても広範囲に電力供給を行おうとする応用形態もある。このような電力供給マットは、人体の手などが触れるか或いは極めて近くに来る機会が多い。   By the way, various application forms can be considered for the wireless power supply system. Among them, for example, a power transmission side resonator is arranged on a power supply mat, and power is supplied over a wide range regardless of whether the power reception side resonator is located at the center or the periphery of the power supply mat. There is also an application form. Such a power supply mat has many occasions where a human hand touches or comes very close.

電磁界は、人体への長期的な影響は未解明ではあるが、人体への影響の面からは小さくするのが望ましい。これに対し、電力供給の面からは、送電側共振器と受電側共振器の間の電磁界は、ある程度大きい方が望ましい。そこで、本願発明者は、特許文献2に示したように電界を小さくすることが、人体への影響の面と電力供給の面の両方を考慮すると、非常に有効であると思料し、本願発明を案出した。   Although the long-term effects on the human body have not been elucidated, it is desirable to reduce the electromagnetic field in terms of the effects on the human body. On the other hand, from the viewpoint of power supply, it is desirable that the electromagnetic field between the power transmission side resonator and the power reception side resonator is somewhat large. Therefore, the inventor of the present application considers that reducing the electric field as shown in Patent Document 2 is very effective in consideration of both the influence on the human body and the aspect of power supply, and the present invention. Devised.

本発明は、係る事由に鑑みてなされたものであり、その目的は、ワイヤレス電力供給システムに用いられるワイヤレス電力供給装置(送電側装置)であって、広範囲に電力供給が可能であり、しかも電界を小さくできるものを提供することにある。   The present invention has been made in view of the above reasons, and an object of the present invention is a wireless power supply device (power transmission side device) used in a wireless power supply system, which can supply power in a wide range and has an electric field. It is to provide what can reduce the size.

上記目的を達成するために、請求項1に記載のワイヤレス電力供給装置は、平面的にスパイラル状に巻かれた主コイル、及び、該主コイルの外周部の近傍にその外周部に接続されることなくソレノイド状又は平面的にスパイラル状に巻かれた副コイル、を有する送電側共振器と、該送電側共振器の励振を制御する送信側制御器と、を備えてなることを特徴とする。   In order to achieve the above object, a wireless power supply device according to claim 1 is connected to an outer peripheral portion of a main coil wound in a plane in a spiral shape and in the vicinity of the outer peripheral portion of the main coil. A power transmission side resonator having a secondary coil wound in a solenoid shape or in a spiral shape without a solenoid, and a transmission side controller for controlling excitation of the power transmission side resonator. .

請求項2に記載のワイヤレス電力供給装置は、請求項1に記載のワイヤレス電力供給装置において、前記主コイルは、絶縁板の裏面に設けられ、前記副コイルは、前記絶縁板の側面にソレノイド状に巻かれていることを特徴とする。   The wireless power supply device according to claim 2 is the wireless power supply device according to claim 1, wherein the main coil is provided on a back surface of the insulating plate, and the sub-coil is solenoid-shaped on a side surface of the insulating plate. It is characterized by being wound around.

本発明のワイヤレス電力供給装置によれば、広範囲に電力供給が可能であり、しかも電界を小さくできる。   According to the wireless power supply apparatus of the present invention, power can be supplied over a wide range, and the electric field can be reduced.

本発明の実施形態に係るワイヤレス電力供給装置の全体構成を示す側面図である。1 is a side view showing an overall configuration of a wireless power supply apparatus according to an embodiment of the present invention. 同上のワイヤレス電力供給装置の送電側共振器の構成を示すものであって、(a)が底面図、(b)が側面図である。The structure of the power transmission side resonator of a wireless power supply apparatus same as the above is shown, (a) is a bottom view, and (b) is a side view. 同上のワイヤレス電力供給装置の送電側共振器の構成の一部を拡大して示す側面視断面図である。It is side surface sectional drawing which expands and shows a part of structure of the power transmission side resonator of a wireless power supply apparatus same as the above. 2個のコイルによって発生する奇モードの電磁界を説明するための模式図であって、(a)が電界を示すもの、(b)が磁界を示すものである。It is a schematic diagram for demonstrating the odd-mode electromagnetic field generated by two coils, (a) shows an electric field, (b) shows a magnetic field. 同上のワイヤレス電力供給装置の磁場の様子を模式的に示す側面図であって、(a)が副コイルを有する場合のもの、(b)が副コイルを省いた場合のものである。It is a side view which shows typically the mode of the magnetic field of a wireless power supply apparatus same as the above, Comprising: (a) is a case where it has a subcoil, (b) is a thing when a subcoil is omitted. 実験結果の電界分布を示す特性図であって、(a)が本発明の実施形態に係るワイヤレス電力供給装置のもの、(b)が従来技術のワイヤレス電力供給装置のものである。It is a characteristic view which shows the electric field distribution of an experimental result, Comprising: (a) is a thing of the wireless power supply apparatus which concerns on embodiment of this invention, (b) is a thing of the wireless power supply apparatus of a prior art. 実験結果の磁界分布を示す特性図であって、(a)が本発明の実施形態に係るワイヤレス電力供給装置のもの、(b)が従来技術のワイヤレス電力供給装置のものである。It is a characteristic view which shows the magnetic field distribution of an experimental result, Comprising: (a) is a thing of the wireless power supply apparatus which concerns on embodiment of this invention, (b) is a thing of the wireless power supply apparatus of a prior art. 実験結果の結合係数を示す特性図であって、(a)が本発明の実施形態に係るワイヤレス電力供給装置のもの、(b)が従来技術のワイヤレス電力供給装置のものである。It is a characteristic view which shows the coupling coefficient of an experimental result, Comprising: (a) is a thing of the wireless power supply apparatus which concerns on embodiment of this invention, (b) is a thing of the wireless power supply apparatus of a prior art. 実験で用いた受電側共振器を示す底面図である。It is a bottom view which shows the power receiving side resonator used in experiment.

以下、本発明を実施するための形態を図面を参照しながら説明する。本発明の実施形態に係るワイヤレス電力供給装置1は、図1に示すように、ワイヤレス電力供給システム3に用いられる。ワイヤレス電力供給システム3は、ワイヤレス電力供給装置1と、それから無線で電力供給を受け得る受電側装置2と、を含む。ワイヤレス電力供給装置1は、例えば、電力供給マットとすることができる。電力供給マットは、表面(受電側装置2が配置される側の面)が平らでその中央部であっても周辺部であっても広範囲に受電側装置2に電力供給を行うことができるものである。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. A wireless power supply apparatus 1 according to an embodiment of the present invention is used in a wireless power supply system 3 as shown in FIG. The wireless power supply system 3 includes a wireless power supply device 1 and a power receiving side device 2 that can receive power supply wirelessly therefrom. The wireless power supply device 1 can be a power supply mat, for example. The power supply mat has a flat surface (surface on the side where the power receiving side device 2 is arranged) and can supply power to the power receiving side device 2 in a wide range regardless of whether it is in the central portion or the peripheral portion. It is.

ワイヤレス電力供給装置1は、送電側共振器4と送信側制御器5とを備えている。その送電側共振器4は、図2(a)、(b)に示すように、主コイル41と副コイル42とを有している。   The wireless power supply device 1 includes a power transmission side resonator 4 and a transmission side controller 5. The power transmission side resonator 4 has a main coil 41 and a subcoil 42 as shown in FIGS. 2 (a) and 2 (b).

主コイル41は、絶縁膜で被覆した電気導線が平面的にスパイラル状に巻かれたものである。主コイル41は、矩形状に巻かれたものとすることができる(図2(a)参照)。その他、円形状や多角形状(例えば、六角形状)に巻かれたものや更に複雑な形状に巻かれたものにすることも可能である。また、図2(a)に示す主コイル41において、中央部では疎に巻き、周辺部では密に巻いているのは、主コイル41から発生する磁界の強度の均一化の目的のためである。また、主コイル41には、両端(内端及び外端)の間にコンデンサ43を接続して共振周波数を調整することができる。   The main coil 41 is formed by spirally winding an electric conductor covered with an insulating film in a planar manner. The main coil 41 can be wound in a rectangular shape (see FIG. 2A). In addition, it is also possible to use a circular shape or a polygonal shape (for example, a hexagonal shape) or a more complicated shape. In addition, in the main coil 41 shown in FIG. 2A, the sparse winding is performed in the central portion and the winding is densely performed in the peripheral portion for the purpose of uniformizing the strength of the magnetic field generated from the main coil 41. . In addition, a resonance frequency can be adjusted by connecting a capacitor 43 between both ends (inner end and outer end) of the main coil 41.

副コイル42は、絶縁膜で被覆した電気導線がソレノイド状に巻かれたものである(図2(b)参照)。副コイル42は、主コイル41の外周部の近傍であって(図3参照))、受電側装置2が配置される側に向かって設けられている。また、副コイル42は、主コイル41の外周部のいずれの箇所にも接続(電気的に接続)されない。また、副コイル42には、両端(主コイル41に近い端及び主コイル41から遠い端)の間にコンデンサ44を接続して共振周波数を調整することができる(図2(b)参照)。   The subcoil 42 is obtained by winding an electric conductor covered with an insulating film in a solenoid shape (see FIG. 2B). The subcoil 42 is provided in the vicinity of the outer peripheral portion of the main coil 41 (see FIG. 3), and is provided toward the side where the power receiving side device 2 is disposed. Further, the sub coil 42 is not connected (electrically connected) to any part of the outer peripheral portion of the main coil 41. Further, the resonance frequency can be adjusted by connecting a capacitor 44 between both ends (an end close to the main coil 41 and an end far from the main coil 41) to the sub-coil 42 (see FIG. 2B).

このような送電側共振器4は、絶縁板45(例えば、ポリエチレン製など)を用いて、絶縁板45の裏面上に主コイル41を配置し、また、絶縁板45の側面に副コイル42を配置すると、主コイル41と副コイル42が配置し易い。   In such a power transmission side resonator 4, the main coil 41 is disposed on the back surface of the insulating plate 45 using an insulating plate 45 (for example, made of polyethylene), and the sub-coil 42 is disposed on the side surface of the insulating plate 45. If it arrange | positions, the main coil 41 and the subcoil 42 will be easy to arrange | position.

送信側制御器5は、送電側共振器4の励振を制御するものである。送信側制御器5は、詳細には、高周波電源5aと結合ループ5bを有する(図1参照)。高周波電源5aは、インピーダンスの整合を行う結合ループ5bを介して送電側共振器4の主コイル41を励振する。つまり、高周波電源5aはその出力信号を結合ループ5bに出力し、結合ループ5bは主コイル41に電磁誘導結合している。結合ループ5bは、それを変形したり、他の公知のインピーダンス整合手段で置き換えたりすることも可能である。例えば、結合ループ5bにコンデンサを直列接続して送電側共振器4の共振周波数(より詳細には、後述する奇モードの共振周波数)に合わせて共振させるという手段がある。このようにすれば、結合ループ5bと主コイル41との結合強度の調整を主コイル41と副コイル42の間の距離を変えることによって容易に実現でき、更には、受電側装置2が複数になった場合の負荷の増加への対応も容易になる。   The transmission side controller 5 controls the excitation of the power transmission side resonator 4. Specifically, the transmission-side controller 5 includes a high-frequency power source 5a and a coupling loop 5b (see FIG. 1). The high frequency power source 5a excites the main coil 41 of the power transmission side resonator 4 through a coupling loop 5b that performs impedance matching. That is, the high frequency power source 5 a outputs the output signal to the coupling loop 5 b, and the coupling loop 5 b is electromagnetically coupled to the main coil 41. The coupling loop 5b can be deformed or replaced with other known impedance matching means. For example, there is a means in which a capacitor is connected in series to the coupling loop 5b to resonate in accordance with a resonance frequency of the power transmission side resonator 4 (more specifically, an odd-mode resonance frequency described later). In this way, the adjustment of the coupling strength between the coupling loop 5b and the main coil 41 can be easily realized by changing the distance between the main coil 41 and the sub-coil 42. It becomes easy to cope with the increase in load in the case of becoming.

このようなワイヤレス電力供給装置1では、送信側制御器5によって励振された主コイル41 は、周囲の領域 に電磁界(非放射電磁界)を発生させる。そうすると、副コイル42は、主コイル41が発生する電磁界に結合して励振される。そして、副コイル42も周囲の領域に電磁界(非放射電磁界)を発生させる。それにより、主コイル41と副コイル42によって発生し分布する電磁界は、主コイル41が発生する電磁界と副コイル42が発生する電磁界が合成されたものとなる。   In such a wireless power supply device 1, the main coil 41 excited by the transmission-side controller 5 generates an electromagnetic field (non-radiated electromagnetic field) in the surrounding area. Then, the subcoil 42 is excited by being coupled to the electromagnetic field generated by the main coil 41. The subcoil 42 also generates an electromagnetic field (non-radiating electromagnetic field) in the surrounding area. As a result, the electromagnetic field generated and distributed by the main coil 41 and the subcoil 42 is a combination of the electromagnetic field generated by the main coil 41 and the electromagnetic field generated by the subcoil 42.

一般に、2個のコイル(図4(a)、(b)中C1、C2で示す。)によって発生し分布する電磁界では、周波数が互いに少しだけ異なる2個の共振モード、すなわち、2個のコイルによって発生した電界が互いに逆相である奇モードの共振モードと互いに同相である偶モードの共振モード、を有することになる。ここで、奇モードの共振モードでは、図4(a)に示すように、2個のコイルによって発生した電界(図中のE1及びE2)が合成されて、それらは逆相であるので、合成された電界(図中のE3)は小さくなる。なお、奇モードの共振周波数は、偶モードの共振周波数よりも低い周波数である。   In general, in an electromagnetic field generated and distributed by two coils (denoted by C1 and C2 in FIGS. 4A and 4B), two resonance modes whose frequencies are slightly different from each other, that is, two The electric field generated by the coil has an odd-mode resonance mode that is opposite in phase and an even-mode resonance mode that is in phase with each other. Here, in the odd mode resonance mode, as shown in FIG. 4A, the electric fields (E1 and E2 in the figure) generated by the two coils are combined and are in reverse phase. The applied electric field (E3 in the figure) becomes smaller. The odd mode resonance frequency is lower than the even mode resonance frequency.

従って、送電側共振器4は主コイル41と副コイル42を有するので、主コイル41の電界に副コイル42の電界が合成され、奇モードの共振モードを用いると(奇モードの共振モードを用いて電力供給を行うと)、ワイヤレス電力供給装置1から生じる電界は小さいものとなる。また、合成された電界の方向は、奇モードの共振モードでは、多くの箇所で主コイル41に平行な方向に近づく。それにより、奇モードの共振モードを用いると、電界が実質的に到達する距離(主コイル41からの距離)を短くすることができる。   Therefore, since the power transmission side resonator 4 has the main coil 41 and the subcoil 42, when the electric field of the subcoil 42 is combined with the electric field of the main coil 41 and the odd mode resonance mode is used (the odd mode resonance mode is used). When electric power is supplied), the electric field generated from the wireless power supply device 1 is small. Further, the direction of the synthesized electric field approaches a direction parallel to the main coil 41 at many places in the odd-mode resonance mode. Thus, when an odd-mode resonance mode is used, the distance that the electric field substantially reaches (distance from the main coil 41) can be shortened.

また、一般に、奇モードの共振モードでは、2個のコイルによって発生した磁界は互いに同相であり、偶モードの共振モードでは磁界は互いに逆相である。そして、奇モードの共振モードでは、図4(b)に示すように、2個のコイルによって発生した磁界(図中のH1及びH2)が合成される(図中のH3)。   In general, in the odd mode resonance mode, the magnetic fields generated by the two coils are in phase with each other, and in the even mode resonance mode, the magnetic fields are in opposite phases. In the odd-mode resonance mode, as shown in FIG. 4B, the magnetic fields (H1 and H2 in the figure) generated by the two coils are combined (H3 in the figure).

送電側共振器4は主コイル41と副コイル42を有するので、主コイル41の磁界に副コイル42の磁界が合成され、図5(a)に示すように、奇モードの共振モードでは、合成された磁界(矢印で示す。)は、周辺部(主コイル41の周辺部)における磁界の方向が垂直方向(中央部の磁界の方向)に近づく。それにより、受電側装置2への電力供給の伝送効率を一様化することができる(場所による差を少なくすることができる)。その結果、広範囲に電力供給が可能になる。なお、図5(b)は、送電側共振器4が含むのは主コイル41だけで副コイル42は含まないようにした場合の磁界を示したものである。   Since the power transmission side resonator 4 has the main coil 41 and the subcoil 42, the magnetic field of the subcoil 42 is combined with the magnetic field of the main coil 41. As shown in FIG. The magnetic field (indicated by arrows) of the applied magnetic field approaches the vertical direction (the direction of the magnetic field in the central portion) in the peripheral portion (the peripheral portion of the main coil 41). Thereby, the transmission efficiency of the power supply to the power receiving side device 2 can be made uniform (difference due to location can be reduced). As a result, power can be supplied over a wide range. FIG. 5B shows a magnetic field when the power transmission side resonator 4 includes only the main coil 41 and does not include the sub coil 42.

このように、ワイヤレス電力供給装置1は、広範囲に電力供給が可能であり、しかも電界を小さくできる。   As described above, the wireless power supply device 1 can supply power over a wide range and can reduce the electric field.

従って、ワイヤレス電力供給装置1が電力供給マットならば、電界を小さくしつつ、その表面の中央部に受電側装置2が有っても或いは周辺部に受電側装置2が有っても広範囲に電力供給を行うことができる。   Therefore, if the wireless power supply device 1 is a power supply mat, it is possible to reduce the electric field in a wide range regardless of whether the power receiving side device 2 is present in the central portion of the surface or the power receiving side device 2 is present in the peripheral portion. Electric power can be supplied.

次に、ワイヤレス電力供給装置1の特性を従来技術のワイヤレス電力供給装置101と比較しながら以下説明する。従来技術のワイヤレス電力供給装置101は、ワイヤレス電力供給装置1の副コイル42が省かれたものとした。ワイヤレス電力供給装置1とワイヤレス電力供給装置101の以下示す特性は、実験によるものである。主コイル41と副コイル42に用いられる電気導線の直径は、1mmとした。   Next, the characteristics of the wireless power supply apparatus 1 will be described below in comparison with the wireless power supply apparatus 101 of the prior art. The wireless power supply apparatus 101 of the prior art is configured such that the auxiliary coil 42 of the wireless power supply apparatus 1 is omitted. The following characteristics of the wireless power supply apparatus 1 and the wireless power supply apparatus 101 are experimental results. The diameter of the electric conducting wire used for the main coil 41 and the subcoil 42 was 1 mm.

主コイル41は、矩形に巻き、中央部のピッチを20mm、周辺部のピッチを2mmにして50cm×50cmの大きさとした。主コイル41には、86pFのコンデンサ43を接続した。副コイル42は、3巻のソレノイド状に密着して巻いたものとし、できるだけ主コイル41に近づけた。副コイル42には、1.74nFのコンデンサ44を接続した。主コイル41はポリエチレン製の絶縁板45(5mmの厚さ)の裏面上に配置し、副コイル42は絶縁板45の側面に配置した。ワイヤレス電力供給装置1は、奇モードの共振モードを用いその共振周波数は509.9kHzとし、ワイヤレス電力供給装置101は共振周波数636.0kHzとした。送信側制御器5の高周波電源5aからは、0.5Wの電力が出力されるようにした。   The main coil 41 was wound in a rectangular shape with a central portion having a pitch of 20 mm and a peripheral portion having a pitch of 2 mm and a size of 50 cm × 50 cm. A 86 pF capacitor 43 was connected to the main coil 41. The sub-coil 42 was wound in close contact with a three-turn solenoid, and was brought as close to the main coil 41 as possible. A 1.74 nF capacitor 44 was connected to the subcoil 42. The main coil 41 was arranged on the back surface of a polyethylene insulating plate 45 (5 mm thick), and the sub-coil 42 was arranged on the side surface of the insulating plate 45. The wireless power supply device 1 uses an odd-mode resonance mode, the resonance frequency is 509.9 kHz, and the wireless power supply device 101 is the resonance frequency 636.0 kHz. The high frequency power source 5a of the transmission side controller 5 is configured to output 0.5 W of power.

図6(a)に示すのは、ワイヤレス電力供給装置1の電界分布であり、図6(b)に示すのは、ワイヤレス電力供給装置101の電界分布である。図中の曲線a、a’は、絶縁板45(主コイル41と副コイル42が配置された絶縁板45)からの距離が0cmのところの電界強度であり、曲線b、b’は、絶縁板45からの距離が1cmのところの電界強度であり、曲線c、c’は、絶縁板45からの距離が2cmのところの電界強度である。   FIG. 6A shows the electric field distribution of the wireless power supply apparatus 1, and FIG. 6B shows the electric field distribution of the wireless power supply apparatus 101. Curves a and a ′ in the figure are the electric field strengths at a distance of 0 cm from the insulating plate 45 (insulating plate 45 in which the main coil 41 and the subcoil 42 are arranged), and the curves b and b ′ are the insulations. The electric field strength at a distance of 1 cm from the plate 45 and the curves c and c ′ are the electric field strengths at a distance of 2 cm from the insulating plate 45.

ワイヤレス電力供給装置1では、主コイル41の周辺部(主コイル41の中心からの距離が25cmの近傍)では電界が増加しているが、全体にわたってワイヤレス電力供給装置101よりも電界は小さくなっている。   In the wireless power supply device 1, the electric field increases in the peripheral portion of the main coil 41 (near the distance from the center of the main coil 41 is 25 cm), but the electric field is smaller than the wireless power supply device 101 throughout. Yes.

図7(a)に示すのは、ワイヤレス電力供給装置1の磁界分布であり、図7(b)に示すのは、ワイヤレス電力供給装置101の磁界分布である。図中の曲線d、d’は、絶縁板45からの距離が0cmのところの磁界強度であり、曲線e、e’は、絶縁板45からの距離が1cmのところの磁界強度であり、曲線f、f’は、絶縁板45からの距離が2cmのところの磁界強度である。   FIG. 7A shows the magnetic field distribution of the wireless power supply apparatus 1, and FIG. 7B shows the magnetic field distribution of the wireless power supply apparatus 101. Curves d and d 'in the figure are magnetic field strengths at a distance of 0 cm from the insulating plate 45, and curves e and e' are magnetic field strengths at a distance of 1 cm from the insulating plate 45. f and f ′ are the magnetic field strengths at a distance of 2 cm from the insulating plate 45.

ワイヤレス電力供給装置1では、ワイヤレス電力供給装置101よりも磁界強度が均一化されている。   In the wireless power supply device 1, the magnetic field strength is made more uniform than in the wireless power supply device 101.

図8(a)に示すのは、ワイヤレス電力供給装置1と受電側装置2の間の結合係数であり、図8(b)に示すのは、ワイヤレス電力供給装置101と受電側装置2の間の結合係数である。受電側装置2の受電側共振器6のコイル61は、直径0.2mmの電気導線をピッチ1.2mmで、図9に示すように、矩形に巻いて5cm×5cmの大きさとした。コイル61には、5.05nFのコンデンサ62を接続した。図8(a)、(b)中の曲線g、g’は、絶縁板45からの距離が0cmのところの結合係数であり、曲線h、h’は、絶縁板45からの距離が1cmのところの結合係数であり、曲線i、i’は、絶縁板45からの距離が2cmのところの結合係数である。   FIG. 8A shows a coupling coefficient between the wireless power supply device 1 and the power receiving side device 2, and FIG. 8B shows a connection coefficient between the wireless power supply device 101 and the power receiving side device 2. Is the coupling coefficient. The coil 61 of the power-receiving-side resonator 6 of the power-receiving-side device 2 has a size of 5 cm × 5 cm by winding an electric conducting wire having a diameter of 0.2 mm at a pitch of 1.2 mm and winding it into a rectangle as shown in FIG. A 5.05 nF capacitor 62 was connected to the coil 61. Curves g and g ′ in FIGS. 8A and 8B are coupling coefficients where the distance from the insulating plate 45 is 0 cm, and the curves h and h ′ are those where the distance from the insulating plate 45 is 1 cm. However, the curves i and i ′ are the coupling coefficients when the distance from the insulating plate 45 is 2 cm.

ワイヤレス電力供給装置1では、結合係数は極めて良好な一様性を示している。従って、広範囲に電力供給が可能であることが分かる。なお、ワイヤレス電力供給装置101では、結合係数はワイヤレス電力供給装置1よりも一様性が良くない。   In the wireless power supply device 1, the coupling coefficient shows extremely good uniformity. Therefore, it can be seen that power can be supplied in a wide range. In the wireless power supply apparatus 101, the coupling coefficient is not more uniform than the wireless power supply apparatus 1.

以上、本発明の実施形態に係るワイヤレス電力供給装置について説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、副コイル42は、電界分布、磁界分布、それに応じて結合係数は、上述したものから少し変わってくるが、平面的にスパイラル状に巻かれるようにすることも可能である。   The wireless power supply apparatus according to the embodiment of the present invention has been described above. However, the present invention is not limited to that described in the above-described embodiment, and various modifications within the scope of the matters described in the claims. Design changes are possible. For example, the electric field distribution, the magnetic field distribution, and the coupling coefficient corresponding to the subcoil 42 slightly change from those described above, but it is also possible to be wound in a spiral shape in a plane.

1 ワイヤレス電力供給装置
2 受電側装置
3 ワイヤレス電力供給システム
4 送電側共振器
41 主コイル
42 副コイル
45 絶縁板
5 送信側制御器
DESCRIPTION OF SYMBOLS 1 Wireless power supply apparatus 2 Power receiving side apparatus 3 Wireless power supply system 4 Power transmission side resonator 41 Main coil 42 Subcoil 45 Insulating plate 5 Transmission side controller

Claims (2)

平面的にスパイラル状に巻かれた主コイル、及び、該主コイルの外周部の近傍にその外周部に接続されることなくソレノイド状又は平面的にスパイラル状に巻かれた副コイル、を有する送電側共振器と、
該送電側共振器の励振を制御する送信側制御器と、
を備えてなることを特徴とするワイヤレス電力供給装置。
A power transmission having a main coil wound in a spiral shape in a plane and a sub-coil wound in a solenoid shape or a spiral shape in a plane without being connected to the outer periphery in the vicinity of the outer periphery of the main coil Side resonators,
A transmission side controller for controlling excitation of the power transmission side resonator;
A wireless power supply device comprising:
請求項1に記載のワイヤレス電力供給装置において、
前記主コイルは、絶縁板の裏面に設けられ、
前記副コイルは、前記絶縁板の側面にソレノイド状に巻かれていることを特徴とするワイヤレス電力供給装置。
The wireless power supply device according to claim 1.
The main coil is provided on the back surface of the insulating plate,
The wireless power supply device according to claim 1, wherein the sub coil is wound in a solenoid shape on a side surface of the insulating plate.
JP2016084850A 2016-04-20 2016-04-20 Wireless power supply device Pending JP2017195707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084850A JP2017195707A (en) 2016-04-20 2016-04-20 Wireless power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084850A JP2017195707A (en) 2016-04-20 2016-04-20 Wireless power supply device

Publications (1)

Publication Number Publication Date
JP2017195707A true JP2017195707A (en) 2017-10-26

Family

ID=60155075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084850A Pending JP2017195707A (en) 2016-04-20 2016-04-20 Wireless power supply device

Country Status (1)

Country Link
JP (1) JP2017195707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109166709A (en) * 2018-09-05 2019-01-08 上海安费诺永亿通讯电子有限公司 Coil, wireless power transmitters and receivers, near-field communication device and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132841A1 (en) * 2011-03-29 2012-10-04 ソニー株式会社 Power supply device, power supply system, and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132841A1 (en) * 2011-03-29 2012-10-04 ソニー株式会社 Power supply device, power supply system, and electronic device
US20140008974A1 (en) * 2011-03-29 2014-01-09 Sony Corporation Electric power feed apparatus, electric power feed system, and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109166709A (en) * 2018-09-05 2019-01-08 上海安费诺永亿通讯电子有限公司 Coil, wireless power transmitters and receivers, near-field communication device and electronic equipment
CN109166709B (en) * 2018-09-05 2021-10-08 上海安费诺永亿通讯电子有限公司 Coil, wireless power transmitter and receiver, near field communicator, and electronic device

Similar Documents

Publication Publication Date Title
JP6264437B2 (en) Power supply device, power supply system, and electronic device
JP6124085B2 (en) Wireless power transmission device, wireless power transmission device and power reception device
WO2012157454A1 (en) Power supply device, power supply system, and electronic device
JP2011142748A (en) Wireless power supply system
KR20110049659A (en) Space-adaptive wireless power transmission system and method using resonance of evanescent waves
JP5667019B2 (en) Wireless power transmission apparatus and method
US10204731B2 (en) Transmitting coil structure and wireless power transmitting terminal using the same
JP6168500B2 (en) Wireless power transmission device, power transmission device, and power reception device
JP5354874B2 (en) Inductive power supply system
CN105706195A (en) Wireless power transfer systems containing foil-type transmitter and receiver coils
JP2018011475A (en) Receiving device and radio transmission system
JP6164720B2 (en) Coupled resonator type wireless power transmission system
JP2016076645A (en) Planar coil
JP2017195707A (en) Wireless power supply device
KR20130130195A (en) Transmitter used in wireless power transfer and wireless power transfer system having the same
JP2016004990A (en) Resonator
JP2015220891A (en) Resonator and wireless power supply system
JP5971703B2 (en) Wireless power transmission device
KR101305790B1 (en) Apparatus for transmitting wireless power and apparatus for receiving wireless power
JP6444510B2 (en) Wireless power transmission apparatus and receiving apparatus
JP6365108B2 (en) Coil unit
JP2013081331A (en) Non-contact power transmission apparatus
KR101833744B1 (en) A coil for wireless power transmission and a transmitter and receiver for the same
KR101786086B1 (en) A transmitter and receiver for wireless power transmission with minimized flux linkage
WO2013128518A1 (en) Power transmitting device, power receiving device, power supply system, and electronic device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201104