JP2011205757A - Electromagnetic field resonance power transmission device - Google Patents

Electromagnetic field resonance power transmission device Download PDF

Info

Publication number
JP2011205757A
JP2011205757A JP2010069299A JP2010069299A JP2011205757A JP 2011205757 A JP2011205757 A JP 2011205757A JP 2010069299 A JP2010069299 A JP 2010069299A JP 2010069299 A JP2010069299 A JP 2010069299A JP 2011205757 A JP2011205757 A JP 2011205757A
Authority
JP
Japan
Prior art keywords
coil
resonance
power transmission
power
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010069299A
Other languages
Japanese (ja)
Inventor
Masaya Ishida
将也 石田
Toshiaki Watanabe
俊明 渡辺
Masahiro Hanazawa
理宏 花澤
Hiroya Tanaka
宏哉 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2010069299A priority Critical patent/JP2011205757A/en
Publication of JP2011205757A publication Critical patent/JP2011205757A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils

Abstract

PROBLEM TO BE SOLVED: To avoid the deterioration of transmission efficiency even if a distance between a power transmission coil and a power receiving coil is varied.SOLUTION: This electromagnetic field resonance power transmission device comprises the power transmission coil, a power transmission device which supplies transmission power to the power transmission coil, the power receiving coil which resonates with the power transmission coil in an electromagnetic field, and a power receiving device which receives power from the power receiving coil, and supplies it to a load. Each of the power transmission coil 10 and the power receiving coil 40 has at least a first-group resonance coil pair which sets two resonance frequencies between the power transmission coil and the power receiving coil as a first group, and a second-group coil pair which sets two resonance frequencies different from the first group of resonance frequencies as a second group.

Description

本発明は、送電コイルと受電コイルとを用いた電磁界共鳴による無線の電力伝送装置に関する。電子機器のバッテリに対する給電のための電力伝送に用いることができる。   The present invention relates to a wireless power transmission device using electromagnetic resonance using a power transmission coil and a power reception coil. It can be used for power transmission for power supply to a battery of an electronic device.

非接触による電力伝送方式には、大きくは、次の2つの方式に分類される。第1は、非放射による電力伝送であり、第2は、放射による電力伝送である。第1の方式には、主として、トランスの原理を用いた電磁誘導方式と、近接場(近接場に蓄積される静的エネルギー)の電磁界共鳴による電磁界結合方式とがある。また、第2の方式には、マイクロ波送電による方式と、レーザ送電による方式とがある。本発明は、電磁界共鳴方式を用いた電力伝送装置に関するものである。   The non-contact power transmission system is roughly classified into the following two systems. The first is power transmission by non-radiation, and the second is power transmission by radiation. The first method mainly includes an electromagnetic induction method using the principle of a transformer and an electromagnetic field coupling method by electromagnetic resonance of a near field (static energy accumulated in the near field). The second method includes a method using microwave power transmission and a method using laser power transmission. The present invention relates to a power transmission device using an electromagnetic resonance method.

電磁誘導方式を用いた電力伝送として、下記特許文献1、2の技術が知られている。特許文献1の技術は、固定部から回転部への電力伝送に、5〜10mmだけ離間した送電コイルと受電コイルとの一対の電力コイルを用いて非接触で電力を伝送する装置が開示されている。同文献によると、数百kHzの周波数電力を固定部から回転部へ伝送し、回転部に設置された各種のセンサの検出信号を、電力コイルの外に設けた一対のデータコイルで、回転部から固定部へ、数MHzの信号で伝送するようにしている。また、固定部の送電コイルの入力インピーダンスが、送電コイルと受電コイルとの間隔により変化するので、送電コイルへの給電効率を向上させるために、送電コイルへ供給する電力の周波数を変化させることが行われている。また、特許文献2においても、一次コイルから無線電力を供給して、一次コイルと電磁結合する2次コイルで受電して、2次コイルに接続されたバッテリーに充電する装置が開示されている。この文献の技術は、2次コイルで発生する磁場を遮蔽する技術である。   As electric power transmission using an electromagnetic induction method, techniques of Patent Documents 1 and 2 below are known. The technique of Patent Document 1 discloses a device that transmits power in a non-contact manner using a pair of power coils of a power transmission coil and a power reception coil separated by 5 to 10 mm for power transmission from a fixed part to a rotating part. Yes. According to the document, a frequency power of several hundred kHz is transmitted from the fixed unit to the rotating unit, and the detection signals of various sensors installed in the rotating unit are transmitted by a pair of data coils provided outside the power coil. The signal is transmitted with a signal of several MHz from to the fixed part. Moreover, since the input impedance of the power transmission coil of the fixed portion changes depending on the distance between the power transmission coil and the power reception coil, the frequency of the power supplied to the power transmission coil can be changed in order to improve the power feeding efficiency to the power transmission coil. Has been done. Patent Document 2 also discloses a device that supplies wireless power from a primary coil, receives power by a secondary coil that is electromagnetically coupled to the primary coil, and charges a battery connected to the secondary coil. The technique of this document is a technique for shielding a magnetic field generated by a secondary coil.

電磁界共鳴方式として、最近、注目されている下記非特許文献1に開示の技術が知られている。同非特許文献1の技術は、2m程度離間された、半径25cmのループ状の強く磁気結合した一対の電磁界共鳴コイルを用いて、9.9MHzの正弦波電力を伝送できる技術が開示されている。   As an electromagnetic resonance method, a technique disclosed in the following Non-Patent Document 1 which has recently been attracting attention is known. The technique of Non-Patent Document 1 discloses a technique capable of transmitting 9.9 MHz sine wave power using a pair of strongly magnetically coupled electromagnetic resonance coils having a radius of 25 cm and spaced apart by about 2 m. Yes.

特開平8−340285JP-A-8-340285 特開2009−268334JP 2009-268334 A

Wireless Power Transfer via Strongly Coupled Magnetic Resonances, Andre Kurs, et.al, Science Vol.317, 6 July 2007Wireless Power Transfer via Strongly Coupled Magnetic Resonances, Andre Kurs, et.al, Science Vol.317, 6 July 2007

上記の特許文献1、2の方法は、コイルの外部に共振回路を設ける方式であり、Q値が小さく、効率の良い電力伝送はできない。この方式は、本質的には、電磁誘導方式であるため、原理的には、結合係数を大きくする方向の技術であり、両コイル間の距離は、5〜10mm程度と狭くせざるを得ず、且つ、伝送効率が低くならざるを得ないという問題がある。また、10mm以上、距離が離れると、効率の良い伝送ができないばかりか、送電コイルの入力インピーダンスが変化するために、送電周波数の調整が必要である。また、これらの電力伝送方式においては、外部共振回路を用いるため、共振特性は単峰性の特性である。   The methods disclosed in Patent Documents 1 and 2 are systems in which a resonance circuit is provided outside the coil, and the Q value is small, so that efficient power transmission cannot be performed. Since this method is essentially an electromagnetic induction method, in principle, it is a technique for increasing the coupling coefficient, and the distance between the two coils must be narrowed to about 5 to 10 mm. In addition, there is a problem that the transmission efficiency has to be low. Further, when the distance is 10 mm or more, not only efficient transmission is possible, but also the input impedance of the power transmission coil changes, so that the power transmission frequency needs to be adjusted. In these power transmission systems, since an external resonance circuit is used, the resonance characteristics are unimodal characteristics.

一方、電磁界結合方式の上記の非特許文献1に開示の技術は、原理的には、自己共振周波数を有するコイル(自己共鳴コイル、self-resonant coil) を用いて、送電コイルと受電コイルを全体としての近接場エネルギーによる電磁界共鳴を用いた方式であり、原理上、Q値が高く、比較的長距離の伝送が可能であり、放射損失が少ないため、伝送効率が高い無線電力伝送方式である。また、電磁界共鳴を用いている関係上、周波数と送電コイルと受電コイルの自己インダクタンスが大きければ、結合係数は小さくとも(原理的には、0に近い状態でも)、高い伝送効率を実現することができる。この結果、非特許文献1によれば、1m程度、両電力コイルを離間させても、90%以上の伝送効率が実現できている。この共鳴の周波数特性は、双峰性の特性を示す。   On the other hand, the technique disclosed in the above-mentioned Non-Patent Document 1 of the electromagnetic field coupling method, in principle, uses a coil (self-resonant coil) having a self-resonant frequency to connect a power transmission coil and a power reception coil. Wireless power transmission system that uses electromagnetic resonance based on near-field energy as a whole, and in principle, has a high Q value, can be transmitted over a relatively long distance, and has low radiation loss, resulting in high transmission efficiency. It is. In addition, due to the use of electromagnetic resonance, if the frequency, the self-inductance of the power transmission coil and the power reception coil are large, even if the coupling coefficient is small (in principle, close to 0), high transmission efficiency is realized. be able to. As a result, according to Non-Patent Document 1, a transmission efficiency of 90% or more can be realized even if both power coils are separated by about 1 m. The frequency characteristic of this resonance shows a bimodal characteristic.

しかしながら、非特許文献1の技術を用いて、大電力を送電する場合に、送電コイルと受電コイル間の距離が変化すると、伝送効率が高くなる2つの共振周波数が変化し、送電電力の周波数を伝送効率が最大となる周波数に最適設定していても、両コイル間の距離が長くなると、伝送効率が低下するという問題が発生する。   However, when transmitting a large amount of power using the technique of Non-Patent Document 1, if the distance between the power transmission coil and the power reception coil changes, the two resonance frequencies that increase the transmission efficiency change, and the frequency of the transmission power is changed. Even when the optimum frequency is set for the transmission efficiency, if the distance between the two coils is increased, the transmission efficiency is lowered.

本発明は、この問題を解決するために成されたものであり、送電コイルと受電コイル間の距離が変化しても、常に、最大の伝送効率が得られるようにすることである。   The present invention has been made to solve this problem, and is to always obtain the maximum transmission efficiency even if the distance between the power transmission coil and the power reception coil changes.

第1の発明は、自己共振周波数を有する送電コイルと、この送電コイルに送電電力を供給する送電装置と、この送電コイルと電磁結合する自己共振周波数を有する受電コイルと、この受電コイルから、固定された単一の送電周波数の電力を入力して負荷に電力を供給する受電装置とを有する電磁界共鳴電力伝送装置において、送電コイルと受電コイルの少なくとも一方は、複数設けられており、送電コイルと受電コイルの間には、結合係数が最大となる最大結合状態において、3以上の共鳴周波数が存在し、共鳴周波数を、送電コイルと受電コイルとの間の使用可能距離範囲における距離の変化に対して、2以上の共鳴周波数が、順次、送電周波数に一致するように配置したことを特徴とする電磁界共鳴電力伝送装置である。   A first invention includes a power transmission coil having a self-resonance frequency, a power transmission device that supplies transmission power to the power transmission coil, a power reception coil having a self-resonance frequency that is electromagnetically coupled to the power transmission coil, and a fixed power from the power reception coil. In the electromagnetic resonance power transmission device having a power receiving device that inputs power of a single power transmission frequency and supplies power to a load, at least one of the power transmission coil and the power receiving coil is provided in a plurality. There is a resonance frequency of 3 or more between the power receiving coil and the power receiving coil in the maximum coupling state where the coupling coefficient is maximum, and the resonance frequency is changed to a change in distance in the usable distance range between the power transmitting coil and the power receiving coil. On the other hand, the electromagnetic resonance power transmission apparatus is characterized in that two or more resonance frequencies are sequentially arranged so as to coincide with the power transmission frequency.

また、第2の発明は、第1の発明において、送電コイルと受電コイルは、送電コイルと受電コイルの間の最大結合状態において存在する2つの共鳴周波数を第1組とする第1組の共鳴コイル対と、第1組の共鳴周波数とは異なる、最大結合状態において存在する2つの共鳴周波数を第2組とする第2組の共鳴コイル対とを、少なくととも2組以上有することを特徴とする。   Further, according to a second invention, in the first invention, the power transmission coil and the power reception coil are a first set of resonances in which two resonance frequencies existing in a maximum coupling state between the power transmission coil and the power reception coil are the first set. It is characterized by having at least two or more pairs of coil pairs and a second set of resonance coils different from the first set of resonance frequencies and having two resonance frequencies existing in a maximum coupling state as a second set. And

上記発明では、送電コイルと受電コイルは、自己共振周波数を有したコイル(外部共振回路を有しない自己共鳴コイル、self-resonant coil)が用いられる。一対の送電コイルと受電コイルの共鳴特性は、結合係数が最大となる最大結合状態から結合係数が零となる状態までの共鳴状態において、2つの共鳴周波数でピークを有する双峰性の特性を有している。本発明は、少なくとも2組の送電コイルと受電コイル対とを用いている。そして、ある組の2つの共鳴周波数は、他の組の2つの共鳴周波数とは異なるように、送電コイルと受電コイルの共鳴特性が設定されている。2つの共鳴周波数の間隔や位置は、送電コイルと受電コイルの自己インダクタンス、相互インダクタンス、線間容量を適正に設定することで行われる。すなわち、コイルの半径、巻き数、線間距離や線間媒体の誘電率や透磁率などを適正に設定することで、共鳴特性を設計することができる。   In the above invention, a coil having a self-resonant frequency (a self-resonant coil having no external resonant circuit) is used as the power transmitting coil and the power receiving coil. The resonance characteristics of the pair of power transmission coil and power reception coil have a bimodal characteristic having peaks at two resonance frequencies in the resonance state from the maximum coupling state where the coupling coefficient is maximum to the state where the coupling coefficient is zero. is doing. The present invention uses at least two power transmission coils and power reception coil pairs. The resonance characteristics of the power transmission coil and the power reception coil are set so that two resonance frequencies of a certain group are different from two resonance frequencies of another group. The interval and position of the two resonance frequencies are determined by appropriately setting the self-inductance, the mutual inductance, and the line capacitance of the power transmission coil and the power reception coil. That is, the resonance characteristics can be designed by appropriately setting the coil radius, the number of turns, the distance between the lines, the dielectric constant and the magnetic permeability of the medium between the lines.

本発明では、少なくとも異なる3つ、望ましい状態では4つ以上の共鳴周波数が得られる。送電コイルと受電コイルとを1組だけ用いて、送電コイルと受電コイル間の距離が、ある所定値である場合に、送電周波数を、一方の共鳴周波数に設定したとする。この時は、両コイル間の距離がこの所定値である時には、最大の電力伝送効率が得られる。しかし、送電コイルと受電コイルとの間の距離が、この所定値よりも長くなると、2つの共鳴周波数の間隔は狭くなり、この所定値よりも短くなると、2つの共鳴周波数の間隔は広くなる。このため、送電周波数を固定した場合には、両コイル間の距離が所定値から変化すると、伝送効率は、低下する。   In the present invention, at least three different resonance frequencies are obtained, and four or more resonance frequencies are obtained in a desired state. It is assumed that the power transmission frequency is set to one resonance frequency when only one set of the power transmission coil and the power reception coil is used and the distance between the power transmission coil and the power reception coil is a predetermined value. At this time, when the distance between the two coils is the predetermined value, the maximum power transmission efficiency can be obtained. However, when the distance between the power transmission coil and the power receiving coil is longer than the predetermined value, the interval between the two resonance frequencies is narrowed, and when the distance is shorter than the predetermined value, the interval between the two resonance frequencies is widened. For this reason, when the power transmission frequency is fixed, if the distance between the two coils changes from a predetermined value, the transmission efficiency decreases.

ところが、本発明によると、少なくとも異なる3つの共鳴周波数(重なりがなければ、少なくとも4つの共鳴周波数)を有しているために、全体として、共鳴する周波数帯域幅を広くすることができる。この結果、送電コイルと受電コイルとの間隔が変化して、3つの共鳴周波数が変化しても、共鳴周波数が、順次、送電周波数に一致するようになるので、伝送効率が低下することがない。   However, according to the present invention, since it has at least three different resonance frequencies (at least four resonance frequencies if there is no overlap), the frequency bandwidth to be resonated can be widened as a whole. As a result, even if the distance between the power transmission coil and the power reception coil changes and the three resonance frequencies change, the resonance frequency sequentially matches the power transmission frequency, so that the transmission efficiency does not decrease. .

また、第3の発明は、第2の発明において、最大結合状態において、任意の組である第1組の2つの共鳴周波数は、他の任意の組である第2組の共鳴周波数の2つの共鳴周波数の間に存在することを特徴とする。
この場合には、送電コイルと受電コイルとの間隔が広くなって、それぞれの組の2つの共鳴周波数の間隔が狭くなっても、全体として共鳴周波数帯域が狭くなるだけであり、共鳴周波数が、順次、送電周波数に一致するようになるから、この帯域に送電周波数が存在する限り、送電コイルと受電コイルとの間隔が変化しても、伝送効率は低下しない。
Further, in the second invention according to the second invention, in the maximum coupling state, the two resonance frequencies of the first set which is an arbitrary set are two of the resonance frequencies of the second set which is another arbitrary set. It exists between resonance frequencies.
In this case, even if the interval between the power transmission coil and the power reception coil is increased and the interval between the two resonance frequencies of each set is reduced, the resonance frequency band is only reduced as a whole. Since the frequency sequentially matches the power transmission frequency, the transmission efficiency does not decrease even if the interval between the power transmission coil and the power reception coil changes as long as the power transmission frequency exists in this band.

また、第4の発明は、第3の発明において、送電コイルと受電コイルが結合していない時に2つの共鳴周波数が一致する周波数である自己共振周波数は、全ての組において一致することを特徴とする。
すなわち、送電コイルと受電コイル間の距離が長くなり、距離の短い共鳴コイル対から、順次、臨界結合状態になると、各組の2つの共鳴周波数は、順次に、1つの自己共振周波数になる。本発明は、この1つの周波数が、全ての組について等しいようしたものである。各組の共鳴コイル対の自己インダクタンスを、全組で等しくすれば、このことは実現できる。
According to a fourth aspect, in the third aspect, the self-resonant frequency, which is a frequency at which the two resonance frequencies coincide when the power transmitting coil and the power receiving coil are not coupled, is the same in all the sets. To do.
That is, when the distance between the power transmission coil and the power reception coil becomes long and the critical coupling state is sequentially obtained from the resonance coil pair having a short distance, the two resonance frequencies of each set sequentially become one self-resonance frequency. The present invention is such that this one frequency is the same for all sets. This can be achieved if the self-inductance of each set of resonant coil pairs is the same for all sets.

また、第5の発明は、第3又は第4の発明において、最大結合状態において、各組の共鳴コイル対における相互インダクタンスを、順次、増大させたことを特徴とする。すなわち、共鳴コイル対の相互インダクタンスを、このように、順次、増大させることで、各組の2つの共鳴周波数の間隔を、順次、拡大することができる。
この条件で、さらに、各組の共鳴コイル対の自己インダクタンスを、全組で等しくすれば、第3発明に係る共鳴周波数の配置関係を実現することができる。
The fifth invention is characterized in that, in the third or fourth invention, the mutual inductance in each pair of resonance coil pairs is sequentially increased in the maximum coupling state. That is, by sequentially increasing the mutual inductance of the resonance coil pair in this manner, the interval between the two resonance frequencies of each group can be sequentially increased.
Under this condition, if the self-inductance of each pair of resonance coil pairs is made equal for all the pairs, the resonance frequency arrangement relationship according to the third invention can be realized.

第6の発明は、第2の発明において、最大結合状態において、任意の組である第1組の2つの共鳴周波数の間に、残りの全ての組の中の任意の1組である第2組の2つの共鳴周波数のうちの一方の共鳴周波数のみが存在することを特徴とする。
すなわち、ある組の2つの共鳴周波数の間に、他の全ての組の2つの共鳴周波数の一方の共鳴周波数が全て、存在するように配置させたものである。この場合には、送電コイルと受電コイルとの距離が長くなって、臨界結合状態に達した時に、1つの周波数となる自己共振周波数は、各組毎に、異なることになる。送電コイルと受電コイルとの間隔が長くなると、各組の2つの共鳴周波数の間隔が狭くなるだけであるから、最も外側に位置する2つの共鳴周波数の間に、送電周波数が存在する限り、伝送効率の低下が防止される。
According to a sixth invention, in the second invention, in the maximum coupling state, the second set which is an arbitrary set of all the remaining sets between the two resonance frequencies of the first set which is an arbitrary set. Only one of the two resonance frequencies of the set is present.
That is, it is arranged so that all of one resonance frequency of two resonance frequencies of all other groups exist between two resonance frequencies of a certain group. In this case, when the distance between the power transmission coil and the power reception coil becomes long and the critical coupling state is reached, the self-resonant frequency that becomes one frequency is different for each group. If the interval between the power transmission coil and the power reception coil is increased, the interval between the two resonance frequencies of each set is only narrowed. Therefore, as long as the power transmission frequency exists between the two outermost resonance frequencies, transmission is performed. A reduction in efficiency is prevented.

第7の発明は、第6の発明において、最大結合状態において、各組の共鳴コイル対の2つの共鳴周波数の間隔は、全組について等しいことを特徴とする。
この状態は、第8の発明のように、最大結合状態において、各組の共鳴コイル対の相互インダクタンスは、全組について等しくすれば、実現できる。
According to a seventh aspect, in the sixth aspect, in the maximum coupling state, the interval between the two resonance frequencies of each pair of resonance coil pairs is the same for all sets.
This state can be realized if the mutual inductance of each pair of resonance coil pairs is equal for all the sets in the maximum coupling state as in the eighth invention.

また、第3乃至第5の何れか1つの発明に用いられる共鳴コイル対と、第6乃至第8の何れか1つの発明に用いられる共鳴コイル対とを、混在させても良い。
さらに、第10の発明のように、最大結合状態において、共鳴コイル対の共鳴周波数を等間隔に配置しても良い。
これらの共鳴周波数の間隔は、なるべく狭くすることにより、距離に対する伝送効率の変動を抑制することができ、送電コイルと受電コイルの間の距離が変化しても、安定した効率の高い送電を実現することができる。
Further, the resonance coil pair used in any one of the third to fifth inventions and the resonance coil pair used in any one of the sixth to eighth inventions may be mixed.
Further, as in the tenth aspect, the resonance frequencies of the resonance coil pairs may be arranged at equal intervals in the maximum coupling state.
By reducing the distance between these resonant frequencies as much as possible, fluctuations in transmission efficiency with respect to distance can be suppressed, and stable and efficient power transmission can be achieved even if the distance between the power transmission coil and the power reception coil changes. can do.

また、各共鳴周波数が異なる共鳴コイル対を多数組設けることで、全体として共鳴周波数の帯域を広帯域化できる。送電コイルと受電コイル対とを多数組、例えば、n組設けることで、2n個の異なる共鳴周波数を得ることができる。その結果、共鳴周波数帯域を拡大することができる。また、各組の2つの共鳴周波数の間隔を狭く設定すれば、全体としての共鳴周波数帯域おける両コイル間の距離に対する伝送効率の変動を抑制することができる。   Moreover, by providing a large number of resonance coil pairs having different resonance frequencies, the resonance frequency band can be broadened as a whole. By providing a large number, for example, n sets, of power transmission coils and power reception coil pairs, 2n different resonance frequencies can be obtained. As a result, the resonance frequency band can be expanded. Further, if the interval between the two resonance frequencies of each group is set narrow, it is possible to suppress fluctuations in transmission efficiency with respect to the distance between the coils in the resonance frequency band as a whole.

本装置は、このような、送電コイルから電力を送電して、受電コイルを受電して、電気自動車のバッテリや、電気機器のバッテリなどを充電する方法に用いることができる。   The present apparatus can be used in such a method of transmitting electric power from a power transmission coil, receiving power from the power reception coil, and charging a battery of an electric vehicle, a battery of an electric device, or the like.

本発明の装置によると、送電コイルと受電コイルとの位置関係に係わらず、一定の送電周波数における伝送効率の低下を抑制することができる。換言すれば、伝送効率を低下させない送電コイルと受電コイルとの間の距離を拡大することができる。   According to the apparatus of the present invention, it is possible to suppress a decrease in transmission efficiency at a constant power transmission frequency regardless of the positional relationship between the power transmission coil and the power reception coil. In other words, the distance between the power transmission coil and the power reception coil that does not decrease the transmission efficiency can be increased.

本発明の具体的な実施例1の全体構成を示した構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which showed the whole structure of the specific Example 1 of this invention. 実施例1の装置におる共鳴周波数の配置を示した伝送効率の周波数特性図。The frequency characteristic figure of the transmission efficiency which showed arrangement | positioning of the resonant frequency in the apparatus of Example 1. FIG. 実施例1の装置におる共鳴周波数と、送電コイルと受電コイルとの間の距離との関係を示した距離特性図。The distance characteristic figure which showed the relationship between the resonant frequency in the apparatus of Example 1, and the distance between a power transmission coil and a receiving coil. 実施例2の装置におる共鳴周波数の配置を示した伝送効率の周波数特性図。The frequency characteristic figure of the transmission efficiency which showed arrangement | positioning of the resonant frequency in the apparatus of Example 2. FIG. 実施例2の装置におる共鳴周波数と、送電コイルと受電コイルとの間の距離との関係を示した距離特性図。The distance characteristic figure which showed the relationship between the resonant frequency in the apparatus of Example 2, and the distance between a power transmission coil and a receiving coil. 実施例3の装置におる共鳴周波数の配置を示した伝送効率の周波数特性図。The frequency characteristic figure of the transmission efficiency which showed arrangement | positioning of the resonant frequency in the apparatus of Example 3. FIG. 実施例3の装置におる共鳴周波数と、送電コイルと受電コイルとの間の距離との関係を示した距離特性図。The distance characteristic figure which showed the relationship between the resonant frequency in the apparatus of Example 3, and the distance between a power transmission coil and a receiving coil. 実施例4の装置におる共鳴周波数の配置を示した伝送効率の周波数特性図。The frequency characteristic figure of the transmission efficiency which showed arrangement | positioning of the resonant frequency in the apparatus of Example 4. FIG. 実施例4の装置におる共鳴周波数の配置を示した伝送効率の周波数特性図。The frequency characteristic figure of the transmission efficiency which showed arrangement | positioning of the resonant frequency in the apparatus of Example 4. FIG. 上記実施例の装置を用いた変形例の装置を示した構成図。The block diagram which showed the apparatus of the modification using the apparatus of the said Example. 上記実施例の装置を用いた他の変形例の装置を示した構成図。The block diagram which showed the apparatus of the other modification using the apparatus of the said Example.

以下、本発明の具体的な実施例について図を参照に説明するが、本発明は実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to the examples.

図1は、実施例1の全体の構成を示している。送電側には、送電コイル10が設けられている。送電コイル10は、第1送電コイル11と、第1送電コイル11の内側に設けられた第1送電コイル11より半径の小さな第2送電コイル13と、これらの送電コイル11、13と電磁結合する入力コイル12とを有している。入力コイル12は、信号発生装置21の出力する正弦波を電力増幅する電力増幅器20(電力トランジスタ)から給電される。また、受電側は、受電コイル40を有している。この受電コイル40は、第1送電コイル11と電磁界結合する第1受電コイル41と、第2送電コイル13と電磁結合する第2受電コイル43と、これらの受電コイル41、43に電磁結合し、受電電力を外部へ出力するための出力コイル42とを有している。出力コイル42は整流器などの受電装置50に接続されており、受電電力が整流された後に、バッテリなどの負荷51に給電される。第2受電コイル43の半径は、第1受電コイル41の半径よりも小さく、第2受電コイル43は、第1受電コイル41の内側に設けられている。第1送電コイル11と第1受電コイル41とで第1組の共鳴コイル対が構成される。また、第2送電コイル13と第2受電コイル43とで第2組の共鳴コイル対が構成される。   FIG. 1 shows the overall configuration of the first embodiment. A power transmission coil 10 is provided on the power transmission side. The power transmission coil 10 is electromagnetically coupled to the first power transmission coil 11, the second power transmission coil 13 having a smaller radius than the first power transmission coil 11 provided inside the first power transmission coil 11, and the power transmission coils 11 and 13. And an input coil 12. The input coil 12 is fed by a power amplifier 20 (power transistor) that amplifies the sine wave output from the signal generator 21. The power receiving side has a power receiving coil 40. The power receiving coil 40 is electromagnetically coupled to the first power receiving coil 41 that is electromagnetically coupled to the first power transmitting coil 11, the second power receiving coil 43 that is electromagnetically coupled to the second power transmitting coil 13, and the power receiving coils 41 and 43. And an output coil 42 for outputting received power to the outside. The output coil 42 is connected to a power receiving device 50 such as a rectifier. After the received power is rectified, the output coil 42 is fed to a load 51 such as a battery. The radius of the second power receiving coil 43 is smaller than the radius of the first power receiving coil 41, and the second power receiving coil 43 is provided inside the first power receiving coil 41. The first power transmission coil 11 and the first power reception coil 41 constitute a first set of resonance coil pairs. The second power transmission coil 13 and the second power reception coil 43 constitute a second set of resonance coil pairs.

第1送電コイル11と第1受電コイル41とは、電磁界共鳴をするコイル(自己共鳴コイル、self-resonant coil)である。また、第2送電コイル13と第2受電コイル43とは、電磁界共鳴をするコイル(自己共鳴コイル、self-resonant coil)である。第1送電コイル11は、第1受電コイル41と磁気結合する相互インダクタンスと、漏れインダクタンス(=自己インダクタンス−相互インダクタンス)と、第1送電コイル11の形状から等価的に発生する容量とによる共鳴回路を構成している。また、第1受電コイル41は、第1送電コイル11と磁気結合する相互インダクタンスと、漏れインダクタンス(=自己インダクタンス−相互インダクタンス)と、第1受電コイル41の形状から等価的に発生する容量とによる共振回路を構成している。   The first power transmission coil 11 and the first power reception coil 41 are coils that perform electromagnetic field resonance (self-resonant coils). The second power transmission coil 13 and the second power reception coil 43 are coils that perform electromagnetic field resonance (self-resonant coils). The first power transmission coil 11 is a resonance circuit including a mutual inductance magnetically coupled to the first power reception coil 41, a leakage inductance (= self-inductance-mutual inductance), and a capacitance that is equivalently generated from the shape of the first power transmission coil 11. Is configured. The first power receiving coil 41 is based on a mutual inductance magnetically coupled to the first power transmitting coil 11, a leakage inductance (= self-inductance−mutual inductance), and a capacitance that is equivalently generated from the shape of the first power receiving coil 41. A resonant circuit is configured.

同様に、第2送電コイル13は、第2受電コイル43と電磁界共鳴する相互インダクタンスと、漏れインダクタンスと、第2送電コイル13の線間に存在する容量とによる共振回路を構成している。また、第2受電コイル43は、第2送電コイル13と電磁界共鳴する相互インダクタンスと、漏れインダクタンスと、第2受電コイル43の線間に存在する容量とによる共振回路を構成している。   Similarly, the second power transmission coil 13 constitutes a resonance circuit including a mutual inductance that electromagnetically resonates with the second power reception coil 43, a leakage inductance, and a capacitance that exists between the lines of the second power transmission coil 13. The second power receiving coil 43 constitutes a resonance circuit including a mutual inductance that resonates with the second power transmitting coil 13, a leakage inductance, and a capacitance that exists between the lines of the second power receiving coil 43.

第1送電コイル11と第1受電コイル41とは、近接場で電磁界結合した状態にあり、図2に示すように、2つの共鳴周波数f1L、f1Uを有した双峰性の共鳴特性を有している。また、第2送電コイル13と第2受電コイル43とは、近接場で電磁界結合した状態にあり、図2に示すように、2つの共鳴周波数f2L、f2Uを有した双峰性の共鳴特性を有している。なお、4つの共鳴周波数に関して、f1L<f2L<f2U<f1Uの関係が成立する。すなわち、第2送電コイル13と第2受電コイル43から成る第2組の共鳴コイル対の2つの共鳴周波数f2L、f2U(ただし、f2L<f2U)は、第1送電コイル11と第1受電コイル41から成る第1組の共鳴コイル対の共鳴周波数f1Lと共鳴周波数f1U(ただし、f1L<f1U)の間に存在する。この状態は、各コイルの自己インダクタンスと分布容量を等しくして、第1組の共鳴コイル対である第1送電コイル11と第1受電コイル41との相互インダクタンスを、第2組の第2送電コイル13と第2受電コイル43との相互インダクタンスよりも、大きくすることで実現することができる。 The first power transmission coil 11 and the first power reception coil 41 are in an electromagnetically coupled state in the near field, and, as shown in FIG. 2, a bimodal resonance characteristic having two resonance frequencies f 1L and f 1U. have. Further, the second power transmission coil 13 and the second power reception coil 43 are in an electromagnetically coupled state in the near field, and as shown in FIG. 2, the bimodality having two resonance frequencies f 2L and f 2U is provided. Has resonance characteristics. Note that the relationship of f 1L <f 2L <f 2U <f 1U is established for the four resonance frequencies. That is, the two resonance frequencies f 2L and f 2U (where f 2L <f 2U ) of the second pair of resonance coils consisting of the second power transmission coil 13 and the second power reception coil 43 are It exists between the resonance frequency f 1L and the resonance frequency f 1U (where f 1L <f 1U ) of the first pair of resonance coils consisting of one power receiving coil 41. In this state, the self-inductance and the distributed capacity of each coil are made equal, and the mutual inductance between the first power transmission coil 11 and the first power reception coil 41 which are the first set of resonance coil pairs is changed to the second set of the second power transmission. This can be realized by increasing the mutual inductance between the coil 13 and the second power receiving coil 43.

今、本実施例の電力伝送装置において、送電コイル10と受電コイル40との間の距離Lは、最短距離L1 、最長距離L2 との間で、使用されるものとする。すなわち、L1 ≦L≦L2 を満たす。通常は、最短距離L1 で、最も使用されることが多く、距離Lが、最長距離L2 まで長くなる場合があるものとする。この状態において、2つの共鳴周波数が内側に存在する第2組の共鳴周波数f2L、f2Uのうち伝送効率が高い方の周波数に、送電周波数fs を設定する。この送電周波数fs は固定した値である。今、その周波数を共鳴周波数f2Lとする。距離Lが最短距離L1 にある通常の使用状態では、最も、伝送効率が高くなっている。図3においては、距離L1 とL2 は、送信周波数fs が、それぞれ、共鳴周波数f2L、f1Lに一致する時の距離としているが、実際には、もちろん、距離L1 よりもある範囲だけ近い範囲、距離L2 よりもある範囲だけ遠い範囲でも、伝送効率は低下するが、電力伝送は可能である。図2、図3に示されているように、送電コイル10と受電コイル20との距離Lが、最短距離L1 より次第に長くなると、2つの共鳴周波数f1L,f1Uの間隔と、2つの共鳴周波数f2L,f2Uとの間隔は、共に、次第に狭くなり、特性の谷も低くなる。また、第2送電コイル13と第2受電コイル43から成る第2組の共鳴コイル対と、第1送電コイル11と第1受電コイル41から成る第1組の共鳴コイル対の臨界結合状態における一つの自己共振周波数f0 は、一致している。これは、第1送電コイル11、第1受電コイル41、第2送電コイル13、第2受電コイル43の自己インダクタンスと分布容量を、全て等しくすることで実現できる。 Now, in the power transmission device according to the present embodiment, the distance L between the power transmission coil 10 and the power reception coil 40 is used between the shortest distance L 1 and the longest distance L 2 . That is, L 1 ≦ L ≦ L 2 is satisfied. Usually, the shortest distance L 1 is often used most often, and the distance L may be increased to the longest distance L 2 . In this state, the power transmission frequency f s is set to the frequency having the higher transmission efficiency of the second set of resonance frequencies f 2L and f 2U having two resonance frequencies inside. This power transmission frequency f s is a fixed value. Now, let that frequency be the resonance frequency f 2L . Distance L is in the normal use state in which the shortest distance L 1, most, the transmission efficiency is high. In FIG. 3, the distance L 1 and L 2 are the transmission frequency f s, respectively, the resonance frequency f 2L, although the distance when matching f 1L, in fact, of course, than the distance L 1 Even in a range close to the range or a range far from the distance L 2 , the transmission efficiency is reduced, but power transmission is possible. As shown in FIGS. 2 and 3, when the distance L between the power transmission coil 10 and the power reception coil 20 becomes gradually longer than the shortest distance L 1 , the interval between the two resonance frequencies f 1L and f 1U and the two Both of the intervals between the resonance frequencies f 2L and f 2U are gradually narrowed, and the characteristic valley is also lowered. Further, the second set of resonance coil pairs including the second power transmission coil 13 and the second power reception coil 43 and the first set of resonance coil pairs including the first power transmission coil 11 and the first power reception coil 41 in the critical coupling state. The two self-resonant frequencies f 0 coincide with each other. This can be realized by making the self-inductance and distributed capacity of the first power transmission coil 11, the first power reception coil 41, the second power transmission coil 13, and the second power reception coil 43 all equal.

距離Lが、最短距離L1 より次第に長くなると、共鳴周波数f2Lは、送電周波数fs よりも高くなり、電力伝送が強い共鳴状態から幾分ずれる。しかし、距離Lが、さらに、長くなるにつれて、共鳴周波数f2Lよりも低い共鳴周波数f1Lは、次第に、高くなり、送電周波数fs に接近し、共鳴周波数f1Lは送電周波数fs に一致するようになる。第2組の共鳴コイル対しか存在しない場合には、距離Lが最短距離L1 よりも長くなると、次第に、伝送効率は低下して、電力伝送ができなくなる。しかし、本件発明のように2組の共鳴コイル対を設けることで、送電周波数fs が共鳴周波数f1Lに一致するようになり、伝送効率は回復することになる。この結果として、送電可能な距離Lを拡大することができる。 When the distance L becomes gradually longer than the shortest distance L 1 , the resonance frequency f 2L becomes higher than the power transmission frequency f s and is somewhat deviated from the resonance state where power transmission is strong. However, as the distance L further increases, the resonance frequency f 1L lower than the resonance frequency f 2L gradually increases and approaches the transmission frequency f s , and the resonance frequency f 1L matches the transmission frequency f s . It becomes like this. In the case where only the second set of resonance coil pairs exists, when the distance L becomes longer than the shortest distance L 1 , the transmission efficiency gradually decreases and power transmission becomes impossible. However, by providing two pairs of resonance coils as in the present invention, the power transmission frequency f s matches the resonance frequency f 1L , and the transmission efficiency is restored. As a result, the distance L that can be transmitted can be increased.

実施例1では、4つの共鳴周波数に関して、f1L<f2L<f2U<f1Uとした。実施例2では、第2送電コイル13と第2受電コイル43から成る第2組の共鳴コイル対の2つの共鳴周波数f2L、f2U(ただし、f2L<f2U)と、第1送電コイル11と第1受電コイル41から成る第1組の共鳴コイル対の共鳴周波数f1Lと共鳴周波数f1U(ただし、f1L<f1U)との関係を、図4に示すように、f1L<f2L<f1U<f2Uに設定している。すなわち、第1組の共鳴コイル対の2つの共鳴周波数f1L,f1Uの間に、第2組の共鳴コイル対の2つの共鳴周波数の内の低い方の共鳴週数f2Lだけを存在させるようにしている。この状態は、次の2つの条件を実現させることで、実現される。第1組の共鳴コイル対である第1送電コイル11と第1受電コイル41との相互インダクタンスとコイルの分布容量との積を、第2組の第2送電コイル13と第2受電コイル43との相互インダクタンスとそのコイルの分布容量との積を等しくして、第1組と第2組とにおいて、2つの共鳴周波数の間隔を等しくする。また、第1送電コイル11と第1受電コイル41との自己インダクタンスと分布容量を等しくし、第2送電コイル13と第2受電コイル43との自己インダクタと分布容量を等しくする。そして、第1送電コイル11と第1受電コイル41の自己インダクタンスと分布容量との積を、第2送電コイル13と第2受電コイル43の自己インダクタンスと分布容量との積よりも大きくすることで実現される。すなわち、自己インダクタンスと分布容量との積が大きい程、臨界結合状態での自己共振周波数は小さくなるので、図5に示されるように、第1組の共振コイル対の自己共振周波数f1 を第2組の共振コイル対の自己共振周波数f2 よりも低くすることができる。これらの条件により、図4、5の共鳴周波数の配置と距離特性とを実現することができる。 In Example 1, with respect to the four resonance frequencies, and a f 1L <f 2L <f 2U <f 1U. In the second embodiment, the two resonance frequencies f 2L and f 2U (where f 2L <f 2U ) of the second pair of resonance coils including the second power transmission coil 13 and the second power reception coil 43, and the first power transmission coil As shown in FIG. 4, the relationship between the resonance frequency f 1L and the resonance frequency f 1U (where f 1L <f 1U ) of the first pair of resonance coils consisting of the first power receiving coil 41 and the first receiving coil 41 is f 1L < f 2L <f 1U <f 2U is set. That is, only the lower resonance frequency f 2L of the two resonance frequencies of the second set of resonance coil pairs exists between the two resonance frequencies f 1L and f 1U of the first set of resonance coil pairs. I am doing so. This state is realized by realizing the following two conditions. The product of the mutual inductance of the first power transmission coil 11 and the first power reception coil 41, which are the first set of resonance coil pairs, and the distributed capacity of the coil is expressed as the second power transmission coil 13 and the second power reception coil 43. The product of the mutual inductance of the coil and the distributed capacity of the coil is made equal, and the interval between the two resonance frequencies is made equal in the first set and the second set. Further, the self-inductance and distributed capacity of the first power transmission coil 11 and the first power receiving coil 41 are made equal, and the self inductor and distributed capacity of the second power transmission coil 13 and the second power receiving coil 43 are made equal. And by making the product of the self-inductance and distributed capacity of the 1st power transmission coil 11 and the 1st power receiving coil 41 larger than the product of the self-inductance and distributed capacity of the 2nd power transmission coil 13 and the 2nd power receiving coil 43, Realized. That is, as the product of the self-inductance and distributed capacitance is large, the self-resonant frequency decreases in the critical coupling state, as shown in Figure 5, the first set of resonant coil pairs self resonant frequency f 1 second it can be two sets of lower than the self-resonance frequency f 2 of the resonant coil pairs. Under these conditions, the arrangement of resonance frequencies and the distance characteristics shown in FIGS.

この場合においても、実施例1と同様に、内側に存在する共鳴周波数f2L、f1Uのうち伝送効率が高い方の周波数に、送電周波数fs を設定する。この送電周波数fs は固定した値である。今、その周波数を共鳴周波数f2Lとする。距離Lが最短距離L1 にある通常の使用状態では、最も、伝送効率が高くなっている。図4、図5に示されているように、送電コイル10と受電コイル20との距離Lが、最短距離L1 より次第に長くなると、2つの共鳴周波数f1L,f1Uの間隔と、2つの共鳴周波数f2L,f2Uとの間隔は、共に、次第に狭くなり、特性の谷も低くなる。したがって、共鳴周波数f2Lは、送電周波数fs よりも高くなり、電力伝送が強い共鳴状態から幾分ずれる。しかし、距離Lが、さらに、長くなるにつれて、共鳴周波数f2Lよりも低い共鳴周波数f1Lは、次第に、高くなり、送電周波数fs に接近し、共鳴周波数f1Lは送電周波数fs に一致するようになる。第2組の共鳴コイル対しか存在しない場合には、距離Lが最短距離L1 よりも長くなると、次第に、伝送効率は低下して、電力伝送ができなくなる。しかし、本件発明のように2組の共鳴コイル対を設けることで、送電周波数fs が共鳴周波数f1Lに一致するようになり、伝送効率は回復することになる。この結果として、送電可能な距離Lを拡大することができる。 Also in this case, similarly to the first embodiment, the power transmission frequency f s is set to a frequency having higher transmission efficiency among the resonance frequencies f 2L and f 1U existing inside. This power transmission frequency f s is a fixed value. Now, let that frequency be the resonance frequency f 2L . Distance L is in the normal use state in which the shortest distance L 1, most, the transmission efficiency is high. As shown in FIGS. 4 and 5, when the distance L between the power transmission coil 10 and the power reception coil 20 becomes gradually longer than the shortest distance L 1 , the interval between the two resonance frequencies f 1L and f 1U and the two Both of the intervals between the resonance frequencies f 2L and f 2U are gradually narrowed, and the characteristic valley is also lowered. Accordingly, the resonance frequency f 2L is higher than the power transmission frequency f s and is somewhat deviated from the resonance state where the power transmission is strong. However, as the distance L further increases, the resonance frequency f 1L lower than the resonance frequency f 2L gradually increases and approaches the transmission frequency f s , and the resonance frequency f 1L matches the transmission frequency f s . It becomes like this. In the case where only the second set of resonance coil pairs exists, when the distance L becomes longer than the shortest distance L 1 , the transmission efficiency gradually decreases and power transmission becomes impossible. However, by providing two pairs of resonance coils as in the present invention, the power transmission frequency f s matches the resonance frequency f 1L , and the transmission efficiency is restored. As a result, the distance L that can be transmitted can be increased.

本実施例は多数組の共鳴コイル対を用いた場合である。図6に示すように、n組の共鳴コイル対を用いることで、2n個のピークを有した特性が得られる。第1組の共鳴コイル対の2つの共鳴周波数をf1L、f1U、第2組の共鳴コイル対の2つの共鳴周波数をf2L、f2U、…、第n組の共鳴コイル対の2つの共鳴周波数をfnL、fnUとする。実施例1と同様に、図6に示すように、f1L<f2L<f3L<…<fnL<fnU<…<f3U<f2U<f1Uとする。共鳴周波数の距離Lに対する変化特性は、図7に示すようになる。この状態を実現するのは、実施例1と同様に、各組の共鳴コイル対の自己インダクタンスと分布容量の積を全て等しくして(自己インダクタンス、分布容量を各コイルで等しくする場合を含む)、臨界結合状態での自己共振周波数f0 を一致させ、各組の共鳴コイル対の相互インダクタンスと分布容量の積を、第1組から順に、減少させれば良い。分布容量を各コイルで等しくした場合には、各組の共鳴コイル対の相互インダクタンスを、第1組から順に、減少させれば良い。2つの共鳴周波数は、1/{2π[C(L+Lm )]1/2 }と、1/{2π[C(L−Lm )]1/2 }とで与えられる。Lは、n組の共鳴コイル対を配置した状態での各コイルの自己インダクタンス、Lm は、n組の共鳴コイル対を配置した状態での、各組の共鳴コイル対の相互インダクタンス、各コイルのCは分布容量である。したがって、f1L,…,fnL1,f1U,…,fnUを等間隔とするには、各組の相互インダクタンスと分布容量(分布容量を各コイルで等しくる場合には、各組の相互インダクタンスだけを)を、1/{2π[C(L+Lm )]1/2 }と、1/{2π[C(L−Lm )]1/2 }とが、等間隔となるように設定すれば良い。また、各組の共鳴コイル対において、自己インダクタンスと分布容量との積LCを、全ての組で等しくすることにより、臨界結合状態での自己共振周波数f0 を一致させることができる。 In this embodiment, a large number of resonance coil pairs are used. As shown in FIG. 6, by using n resonance coil pairs, a characteristic having 2n peaks can be obtained. The two resonance frequencies of the first set of resonance coil pairs are f 1L and f 1U , the two resonance frequencies of the second set of resonance coil pairs are f 2L , f 2U,. Let the resonance frequencies be f nL and f nU . As in the first embodiment, as shown in FIG. 6, it is assumed that f 1L <f 2L <f 3L <... <f nL <f nU <... <f 3U <f 2U <f 1U . The change characteristic of the resonance frequency with respect to the distance L is as shown in FIG. In order to realize this state, as in the first embodiment, the product of the self-inductance and the distributed capacity of each pair of resonance coils is made equal (including the case where the self-inductance and the distributed capacity are made equal for each coil). The self-resonant frequency f 0 in the critical coupling state is made to coincide with each other, and the product of the mutual inductance and the distributed capacity of each pair of resonance coils is decreased in order from the first group. When the distributed capacities are made equal for each coil, the mutual inductance of each pair of resonant coil pairs may be decreased sequentially from the first set. The two resonance frequencies are given by 1 / {2π [C (L + L m )] 1/2 } and 1 / {2π [C (L−L m )] 1/2 }. L is the self-inductance of each coil when n resonance coil pairs are arranged, L m is the mutual inductance of each resonance coil pair when n resonance coil pairs are arranged, and each coil C is a distributed capacity. Therefore, in order to make f 1L ,..., F nL 1, f 1U ,..., F nU equally spaced, the mutual inductance and distributed capacity of each set (if the distributed capacity is equal for each coil, each set 1 / {2π [C (L + L m )] 1/2 } and 1 / {2π [C (L−L m )] 1/2 } are equally spaced. Should be set. Further, by making the product LC of the self-inductance and the distributed capacitance equal in all pairs of resonance coil pairs, the self-resonance frequency f 0 in the critical coupling state can be matched.

この場合には、コイル間距離Lが、最短距離L1 の時の下帯域の共鳴周波数のうち最大の周波数である第n組の下側の共鳴周波数fnLに、送電周波数fs を一致させる。コイル間距離Lを、次第に、長くして行くと、順次、共鳴周波数fn-1L,fn-2L,…,f1Lが、送電周波数fs に一致するようになる。したがって、伝送効率を高く維持できる距離範囲を拡大することができる。このようにして、多数の共鳴周波数を発生させることで、共鳴帯域f1L−f1Uにおいて、伝送効率の変動を抑制して、ほぼ一定にすることができる。したがって、2つの共鳴周波数f1L、f1Uが一致する距離まで、送電コイル10と受電コイル40と離間しても、伝送効率を低下させることがない。 In this case, the transmission frequency f s is made to coincide with the lower resonance frequency f nL of the nth set, which is the maximum frequency among the resonance frequencies in the lower band when the inter-coil distance L is the shortest distance L 1 . . As the inter-coil distance L is gradually increased, the resonance frequencies f n-1L , f n-2L ,..., F 1L sequentially coincide with the power transmission frequency f s . Therefore, the distance range in which the transmission efficiency can be maintained high can be expanded. In this way, by generating a large number of resonance frequencies, fluctuations in transmission efficiency can be suppressed and made substantially constant in the resonance band f 1L -f 1U . Therefore, even if the power transmission coil 10 and the power reception coil 40 are separated to a distance where the two resonance frequencies f 1L and f 1U coincide with each other, the transmission efficiency is not lowered.

本実施例は多数組の共鳴コイル対を用いた場合である。図8に示すように、n組の共鳴コイル対を用いることで、2n個のピークを有した特性が得られる。また、図8に示すように、実施例2と同様にして、f1L<f2L<f3L<…<fnL<f1U<f2U<f3U<…<fnUとする。共鳴周波数の距離特性は、図9に示すようになる。臨界結合状態での、各組の自己共振周波数f0 ,…fn は、図9に示すように等間隔とする。自己共振周波数は、1/[2π(CL)1/2 ]で与えられる。1/[2π(CL)1/2 ]が等間隔となるように、n組の共鳴コイル対が配置された状態における各組の共鳴コイル対の自己インダクタンスLと分布容量Cとを決定すれば良い。各コイルで分布容量を等しくするならば、自己インダクタンスLだけを変化させることになる。また、2つの共鳴周波数の間隔を、各組の共鳴コイル対で等しくするには、n組の共鳴コイル対が配置された状態における各組の共鳴コイル対の相互インダクタンスLm と分布容量Cと積を、全ての組で等しくすれば良い。各コイルで分布容量を等しくした場合には、相互インダクタンスを各組で等しくする。この場合も共鳴帯域f1L−fnUにおいて、伝送効率の変動を抑制して、ほぼ一定にすることができる。したがって、2つの共鳴周波数f1L、f1Uが一致する距離まで、送電コイル10と受電コイル40と離間しても、伝送効率を低下させることがない。 In this embodiment, a large number of resonance coil pairs are used. As shown in FIG. 8, by using n resonance coil pairs, a characteristic having 2n peaks can be obtained. Further, as shown in FIG. 8, in the same manner as in Example 2, and f 1L <f 2L <f 3L <... <f nL <f 1U <f 2U <f 3U <... <f nU. The distance characteristic of the resonance frequency is as shown in FIG. The self-resonant frequencies f 0 ,..., F n of each set in the critical coupling state are equally spaced as shown in FIG. The self-resonant frequency is given by 1 / [2π (CL) 1/2 ]. If the self-inductance L and the distributed capacitance C of each resonance coil pair in the state where n resonance coil pairs are arranged are determined so that 1 / [2π (CL) 1/2 ] is equally spaced. good. If the distributed capacitance is made equal in each coil, only the self-inductance L is changed. Also, in order to make the interval between the two resonance frequencies equal for each resonance coil pair, the mutual inductance L m and the distributed capacitance C of each resonance coil pair in a state where n resonance coil pairs are arranged, The product should be equal for all pairs. When the distributed capacity is made equal for each coil, the mutual inductance is made equal for each set. Also in this case, in the resonance band f 1L -f nU , the fluctuation in transmission efficiency can be suppressed and kept almost constant. Therefore, even if the power transmission coil 10 and the power reception coil 40 are separated to a distance where the two resonance frequencies f 1L and f 1U coincide with each other, the transmission efficiency is not lowered.

なお、上記実施例では、電力の入力と電力の出力とを、共鳴コイルとは別に、入力コイル12と出力コイル41を用いて、電磁誘導により、共鳴コイルに給電し、又は、共鳴コイルから受電電力を出力するようにしている。しかし、入力コイル12と出力コイル41を設けることなく、いずれかの送電コイルに直接給電し、何れかの受電コイルから電力を出力するようにしても良い。この場合には、入力コイル12と出力コイル41の給電点は、共鳴コイルの共鳴電流が最大となる位置とする。   In the above embodiment, power input and power output are supplied to the resonance coil by electromagnetic induction using the input coil 12 and the output coil 41 separately from the resonance coil, or received from the resonance coil. The power is output. However, without providing the input coil 12 and the output coil 41, power may be directly supplied to one of the power transmission coils, and power may be output from one of the power reception coils. In this case, the feeding point of the input coil 12 and the output coil 41 is set to a position where the resonance current of the resonance coil is maximized.

また、図10に示すように、上記実施例の共鳴帯域を広帯域にした送電コイル10、60と受電コイル40、70とを、それぞれの軸が平行でないように、もうけても良い。送電コイル10と受電コイル40が、上記実施例の広帯域の共鳴帯域を有した共鳴コイルとなり、送電コイル60と受電コイル70が上記実施例の広帯域の共鳴帯域を有した共鳴コイルとなる。この場合には、送電側のコイルと受電側のコイルの向きが変化した場合にも対応が可能となる。   Moreover, as shown in FIG. 10, you may provide the power transmission coils 10 and 60 and the receiving coils 40 and 70 which made the resonance band wide in the said Example so that each axis | shaft may not be parallel. The power transmission coil 10 and the power receiving coil 40 are the resonance coils having the broadband resonance band of the above-described embodiment, and the power transmission coil 60 and the power receiving coil 70 are the resonance coils having the broadband resonance band of the above-described embodiment. In this case, it is possible to cope with the case where the direction of the coil on the power transmission side and the coil on the power reception side is changed.

また、図11に示すように、上記実施例の共鳴帯域を広帯域にした送電コイル10、60を軸を平行にして、平面上に異なる位置に配置し、受電コイル40、70とを軸を平行にして、平面上に異なる位置に配置しても良い。この場合には、送電側のコイルと受電側のコイルとの対面関係が、平面内で位置ずれを生じても、電磁界共鳴を実現することができる。   Further, as shown in FIG. 11, the power transmission coils 10 and 60 having a wide resonance band in the above embodiment are arranged in different positions on the plane with the axes parallel, and the power reception coils 40 and 70 are parallel with the axes. Thus, they may be arranged at different positions on the plane. In this case, even when the facing relationship between the coil on the power transmission side and the coil on the power reception side is displaced in the plane, electromagnetic field resonance can be realized.

本発明は、電気自動車や電子機器などのバッテリへの給電を非接触で行う装置に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a device that performs power supply to a battery such as an electric vehicle or an electronic device in a non-contact manner.

10…送電コイル
11…第1送電コイル
13…第2送電コイル
41…第1受電コイル
43…第2受電コイル
12…入力コイル
41…出力コイル
10 ... Power transmission coil
DESCRIPTION OF SYMBOLS 11 ... 1st power transmission coil 13 ... 2nd power transmission coil 41 ... 1st power receiving coil 43 ... 2nd power receiving coil 12 ... Input coil 41 ... Output coil

Claims (10)

自己共振周波数を有する送電コイルと、この送電コイルに送電電力を供給する送電装置と、この送電コイルと電磁結合する自己共振周波数を有する受電コイルと、この受電コイルから、固定された単一の送電周波数の電力を入力して負荷に電力を供給する受電装置とを有する電磁界共鳴電力伝送装置において、
前記送電コイルと前記受電コイルの少なくとも一方は、複数設けられており、
前記送電コイルと前記受電コイルの間には、結合係数が最大となる最大結合状態において、3以上の共鳴周波数が存在し、
前記共鳴周波数を、前記送電コイルと前記受電コイルとの間の使用可能距離範囲における距離の変化に対して、2以上の前記共鳴周波数が、順次、前記送電周波数に一致するように配置した
ことを特徴とする電磁界共鳴電力伝送装置。
A power transmission coil having a self-resonance frequency, a power transmission device for supplying transmission power to the power transmission coil, a power reception coil having a self-resonance frequency electromagnetically coupled to the power transmission coil, and a single power transmission fixed from the power reception coil In an electromagnetic resonance power transmission device having a power receiving device that inputs power at a frequency and supplies power to a load,
At least one of the power transmission coil and the power reception coil is provided in plural,
Between the power transmission coil and the power reception coil, there is a resonance frequency of 3 or more in the maximum coupling state where the coupling coefficient is maximum,
The resonance frequency is arranged such that two or more resonance frequencies sequentially match the power transmission frequency with respect to a change in distance in the usable distance range between the power transmission coil and the power receiving coil. A characteristic electromagnetic resonance power transmission device.
前記送電コイルと前記受電コイルは、前記送電コイルと前記受電コイルの間の前記最大結合状態において存在する2つの共鳴周波数を第1組とする第1組の共鳴コイル対と、前記第1組の前記共鳴周波数とは異なる、前記最大結合状態において存在する2つの共鳴周波数を第2組とする第2組の共鳴コイル対とを、少なくととも2組以上有することを特徴とする請求項1に記載の電磁界共鳴電力伝送装置。   The power transmission coil and the power reception coil include a first pair of resonance coils having a first set of two resonance frequencies existing in the maximum coupling state between the power transmission coil and the power reception coil, and the first set of resonance coils. 2. The resonance coil according to claim 1, further comprising at least two or more sets of second resonance coil pairs having a second set of two resonance frequencies different from the resonance frequency and existing in the maximum coupling state. The electromagnetic resonance power transmission device described. 前記最大結合状態において、任意の組である前記第1組の2つの共鳴周波数は、他の任意の組である前記第2組の共鳴周波数の2つの共鳴周波数の間に存在することを特徴とする請求項2に記載の電磁界共鳴電力伝送装置。   In the maximum coupling state, the two resonance frequencies of the first set, which is an arbitrary set, are present between two resonance frequencies of the second set of resonance frequencies, which are another arbitrary set, The electromagnetic resonance power transmission apparatus according to claim 2. 前記送電コイルと前記受電コイルが結合していない時に前記2つの共鳴周波数が一致する周波数である自己共振周波数は、全ての組において一致することを特徴とする請求項3に記載の電磁界共鳴電力伝送装置。   4. The electromagnetic resonance power according to claim 3, wherein a self-resonance frequency, which is a frequency at which the two resonance frequencies match when the power transmission coil and the power reception coil are not coupled, matches in all the sets. Transmission equipment. 前記最大結合状態において、前記各組の共鳴コイル対における相互インダクタンスを、順次、増大させたことを特徴とする請求項3又は請求項4に記載の電磁界共鳴電力伝送装置。   5. The electromagnetic resonance power transmission apparatus according to claim 3, wherein in the maximum coupling state, a mutual inductance in each pair of resonance coil pairs is sequentially increased. 前記最大結合状態において、任意の組である前記第1組の2つの共鳴周波数の間に、残りの全ての組の中の任意の1組である前記第2組の2つの共鳴周波数のうちの一方の共鳴周波数のみが存在することを特徴とする請求項2に記載の電磁界共鳴電力伝送装置。   Among the two resonance frequencies of the second set, which is any one of all the remaining sets, between the two resonance frequencies of the first set, which is an arbitrary set, in the maximum coupling state The electromagnetic resonance power transmission apparatus according to claim 2, wherein only one resonance frequency exists. 前記最大結合状態において、前記各組の共鳴コイル対の2つの共鳴周波数の間隔は、全組について等しいことを特徴とする請求項6に記載の電磁界共鳴電力伝送装置。   The electromagnetic resonance power transmission apparatus according to claim 6, wherein, in the maximum coupling state, an interval between two resonance frequencies of the resonance coil pairs of each group is equal for all groups. 前記最大結合状態において、前記各組の共鳴コイル対の相互インダクタンスは、全組について等しいことを特徴とする請求項6又は請求項7に記載の電磁界共鳴電力伝送装置。   8. The electromagnetic resonance power transmission apparatus according to claim 6, wherein in the maximum coupling state, the mutual inductances of the resonance coil pairs of each group are equal for all the groups. 請求項3乃至請求項5の何れか1項に記載の共鳴コイル対と、請求項6乃至請求項8の何れか1項に記載の共鳴コイル対とを、混在させたことを特徴とする電磁界共鳴電力伝送装置。   An electromagnetic wave characterized in that the resonance coil pair according to any one of claims 3 to 5 and the resonance coil pair according to any one of claims 6 to 8 are mixed. Field resonant power transmission device. 前記最大結合状態において、複数の前記共鳴周波数を等間隔に配置したことを特徴とする請求項1乃至請求項9の何れか1項に記載の電磁界共鳴電力伝送装置。   10. The electromagnetic resonance power transmission device according to claim 1, wherein a plurality of the resonance frequencies are arranged at equal intervals in the maximum coupling state. 11.
JP2010069299A 2010-03-25 2010-03-25 Electromagnetic field resonance power transmission device Pending JP2011205757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069299A JP2011205757A (en) 2010-03-25 2010-03-25 Electromagnetic field resonance power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069299A JP2011205757A (en) 2010-03-25 2010-03-25 Electromagnetic field resonance power transmission device

Publications (1)

Publication Number Publication Date
JP2011205757A true JP2011205757A (en) 2011-10-13

Family

ID=44881788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069299A Pending JP2011205757A (en) 2010-03-25 2010-03-25 Electromagnetic field resonance power transmission device

Country Status (1)

Country Link
JP (1) JP2011205757A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229360A (en) * 2010-03-31 2011-11-10 Nissan Motor Co Ltd Contactless power supply device and contactless power supply method
JP2012034494A (en) * 2010-07-30 2012-02-16 Sony Corp Wireless power feeding system
JP2012034431A (en) * 2010-07-28 2012-02-16 Toyota Motor Corp Coil unit, non-contact power transmission device, non-contact power receiving device, vehicle, and non-contact power feeding system
JP2012044840A (en) * 2010-08-23 2012-03-01 Tdk Corp Coil device and non-contact power transmission device
WO2012157454A1 (en) * 2011-05-19 2012-11-22 ソニー株式会社 Power supply device, power supply system, and electronic device
JP2013536664A (en) * 2010-06-10 2013-09-19 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Coil configuration for inductive power transfer
JP2013219861A (en) * 2012-04-05 2013-10-24 Toyota Motor Corp Vehicle
WO2014073395A1 (en) * 2012-11-09 2014-05-15 株式会社村田製作所 Electrical component and antenna
JP2014096872A (en) * 2012-11-07 2014-05-22 Ikuo Awai Coupled resonator type radio power transmission system, and power reception side resonator used for coupled resonator type radio power transmission system
JPWO2013111344A1 (en) * 2012-01-27 2015-05-11 富士通株式会社 Power receiving apparatus, power transmission system, and power transmission method
WO2017010617A1 (en) * 2015-07-14 2017-01-19 한국지질자원연구원 Method for detecting change in underground environment by using magnetic induction, detection sensor and detection system
KR101783813B1 (en) * 2015-07-14 2017-10-11 한국지질자원연구원 Sensor and system for detecting underground environment change using magnetic induction
KR101783815B1 (en) * 2015-07-14 2017-10-11 한국지질자원연구원 Method for detecting underground environment change using magnetic induction
JP2020061889A (en) * 2018-10-11 2020-04-16 豊田合成株式会社 Power transmission device, power reception device and wireless power feeding system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229360A (en) * 2010-03-31 2011-11-10 Nissan Motor Co Ltd Contactless power supply device and contactless power supply method
JP2013536664A (en) * 2010-06-10 2013-09-19 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Coil configuration for inductive power transfer
JP2012034431A (en) * 2010-07-28 2012-02-16 Toyota Motor Corp Coil unit, non-contact power transmission device, non-contact power receiving device, vehicle, and non-contact power feeding system
US9142986B2 (en) 2010-07-28 2015-09-22 Toyota Jidosha Kabushiki Kaisha Coil unit, non-contact power transmitting apparatus, non-contact power receiving apparatus, vehicle, and non-contact power supply system
US9024481B2 (en) 2010-07-30 2015-05-05 Sony Corporation Wireless feeding system
JP2012034494A (en) * 2010-07-30 2012-02-16 Sony Corp Wireless power feeding system
JP2012044840A (en) * 2010-08-23 2012-03-01 Tdk Corp Coil device and non-contact power transmission device
US9070505B2 (en) 2010-08-23 2015-06-30 Tdk Corporation Coil apparatus and non-contact power transmission apparatus
WO2012157454A1 (en) * 2011-05-19 2012-11-22 ソニー株式会社 Power supply device, power supply system, and electronic device
JPWO2013111344A1 (en) * 2012-01-27 2015-05-11 富士通株式会社 Power receiving apparatus, power transmission system, and power transmission method
JP2013219861A (en) * 2012-04-05 2013-10-24 Toyota Motor Corp Vehicle
US9826670B2 (en) 2012-04-05 2017-11-21 Toyota Jidosha Kabushiki Kaisha Vehicle
JP2014096872A (en) * 2012-11-07 2014-05-22 Ikuo Awai Coupled resonator type radio power transmission system, and power reception side resonator used for coupled resonator type radio power transmission system
WO2014073395A1 (en) * 2012-11-09 2014-05-15 株式会社村田製作所 Electrical component and antenna
WO2017010617A1 (en) * 2015-07-14 2017-01-19 한국지질자원연구원 Method for detecting change in underground environment by using magnetic induction, detection sensor and detection system
KR101783813B1 (en) * 2015-07-14 2017-10-11 한국지질자원연구원 Sensor and system for detecting underground environment change using magnetic induction
KR101783815B1 (en) * 2015-07-14 2017-10-11 한국지질자원연구원 Method for detecting underground environment change using magnetic induction
JP2018524615A (en) * 2015-07-14 2018-08-30 コリア インスティチュート オブ ゲオサイエンス アンド ミネラル リソーセズ(ケイアイジーエイエム) Subsurface environment change detection method, detection sensor, and detection system using magnetic induction
JP2020061889A (en) * 2018-10-11 2020-04-16 豊田合成株式会社 Power transmission device, power reception device and wireless power feeding system
JP7043007B2 (en) 2018-10-11 2022-03-29 豊田合成株式会社 Transmission equipment, power receiving equipment, and wireless power supply system

Similar Documents

Publication Publication Date Title
JP2011205757A (en) Electromagnetic field resonance power transmission device
KR101397243B1 (en) Wireless power transmission for electronic devices including parasitic resonant tank
Mur-Miranda et al. Wireless power transfer using weakly coupled magnetostatic resonators
Garnica et al. Wireless power transmission: From far field to near field
US10490345B2 (en) Contactless power transfer system
KR101646305B1 (en) Parasitic devices for wireless power transfer
KR101480658B1 (en) Wireless power utilization in a local computing environment
JP5502898B2 (en) Wireless power transmission apparatus and wireless power transmission method
EP2775590B1 (en) Coil unit and contactless electric power transmission device
EP3032701B1 (en) Wireless power transmission device
US20120119587A1 (en) Wireless power transfer device
JP2012196117A (en) Wireless power-feeding device, power-receiving device, and power-feeding system
JPWO2012172900A1 (en) Resonant contactless power supply system
JP2011205750A (en) Electromagnetic resonance power transmission device
US8890366B2 (en) Wireless energy transfer using array of resonant objects
CN107508388B (en) Design method of magnetic coupling resonance high-efficiency electric energy transmission coil
JP2012034524A (en) Wireless power transmission apparatus
US11735955B2 (en) Resonant circuit for transmitting electric energy
KR101985022B1 (en) Wireless Power Relay Apparatus and Wireless Power Transmission System
Zable et al. Performance evaluation of WPT circuit suitable for wireless charging
US11539245B2 (en) Resonant circuit for transmitting electric energy without a power amplifier
JP2012191697A (en) Non-contact power transmission apparatus
JP5838685B2 (en) Wireless space power supply system
Yao et al. Coupling Comparison of Magnetic Couplers for Mid-range Wireless Power Transfer Systems
KR101786086B1 (en) A transmitter and receiver for wireless power transmission with minimized flux linkage