JP2016010168A - Resonator and wireless power supply system - Google Patents

Resonator and wireless power supply system Download PDF

Info

Publication number
JP2016010168A
JP2016010168A JP2014127562A JP2014127562A JP2016010168A JP 2016010168 A JP2016010168 A JP 2016010168A JP 2014127562 A JP2014127562 A JP 2014127562A JP 2014127562 A JP2014127562 A JP 2014127562A JP 2016010168 A JP2016010168 A JP 2016010168A
Authority
JP
Japan
Prior art keywords
power
resonator
electric field
support member
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014127562A
Other languages
Japanese (ja)
Inventor
真一郎 拮石
Shinichiro Haneishi
真一郎 拮石
圭介 服田
Keisuke Fukuda
圭介 服田
高木 桂二
Keiji Takagi
桂二 高木
善徳 辻村
Yoshinori Tsujimura
善徳 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2014127562A priority Critical patent/JP2016010168A/en
Publication of JP2016010168A publication Critical patent/JP2016010168A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a resonator and a wireless power supply system capable of effectively suppressing external leakage of an electric field in transmitting power using a magnetic field resonance system.SOLUTION: A resonator 30 used for a wireless power supply system for transmitting power on the basis of a magnetic field resonance system comprises: a resonant coil (winding coil) 41 having a predetermined resonant frequency; a support member 40 for supporting the resonant coil 41; and an electric field suppression part 42 disposed at a position that is inside the support member 40 or on the outer periphery of the support member 40 and differs from a surface vicinity region of the resonant coil 41. The electric field suppression part 42 is made from dielectric material having a first dielectric constant higher than that of material of the support member 40, and has a function for suppressing leakage of an electric field to the outside of the resonator 30.

Description

本発明は、共振器間の磁場の共鳴を利用して送電装置から受電装置に非接触で電力を伝送する無線給電システムに関する。   The present invention relates to a wireless power feeding system that uses a magnetic field resonance between resonators to transmit electric power from a power transmitting device to a power receiving device in a contactless manner.

従来から、送電装置から受電装置に対して非接触で電力を伝送する無線給電システムが要望されている。無線給電システムを実現するための手法としては、電磁誘導を利用した技術や電磁波を利用した技術などが提案されている。近年、無線給電システムに適用可能な技術として、共振器間の磁場の共鳴を利用して送電装置から受電装置に電力を伝送する磁界共鳴方式が注目されている。例えば、特許文献1には、所定距離だけ離して対向配置した2つの共振器の磁場の共鳴により、一方の共振器から他方の共振器に電力を伝送する磁界共鳴方式の基礎的概念が開示されている。また例えば、非特許文献1には、磁界共鳴方式に用いるアンテナとしての共振コイルにおいて高いQ値を実現するための手法が示されている。また例えば、非特許文献2には、磁界共鳴方式において得られる最大の伝送効率に関して理論的な検討がなされており、各々の共振器のQ値を高めることにより伝送効率の向上が可能であることが示されている。また例えば、特許文献2には、無線給電システムの適用対象として電気自動車やプラグインハイブリッド車を想定し、磁界共鳴方式を利用して、車両下部に配設した共振コイルから、車両内に設けた共振コイルに電力を伝送する技術が開示されている。   Conventionally, there is a demand for a wireless power feeding system that transmits power from a power transmission device to a power reception device in a contactless manner. As a technique for realizing a wireless power feeding system, a technique using electromagnetic induction, a technique using electromagnetic waves, and the like have been proposed. In recent years, as a technique applicable to a wireless power feeding system, a magnetic field resonance method in which electric power is transmitted from a power transmission device to a power reception device by using resonance of a magnetic field between resonators has attracted attention. For example, Patent Document 1 discloses a basic concept of a magnetic field resonance method in which electric power is transmitted from one resonator to the other resonator by resonance of magnetic fields of two resonators arranged to face each other at a predetermined distance. ing. Further, for example, Non-Patent Document 1 discloses a method for realizing a high Q value in a resonance coil as an antenna used in a magnetic field resonance method. Further, for example, Non-Patent Document 2 has theoretically studied the maximum transmission efficiency obtained in the magnetic field resonance method, and it is possible to improve the transmission efficiency by increasing the Q value of each resonator. It is shown. Further, for example, in Patent Document 2, an electric vehicle or a plug-in hybrid vehicle is assumed as an application target of a wireless power feeding system, and a magnetic resonance method is used to provide a wireless power feeding system in a vehicle from a resonance coil disposed in a lower portion of the vehicle. A technique for transmitting power to a resonance coil is disclosed.

特表2009−501510号公報Special table 2009-501510 特開2009−106136号公報JP 2009-106136 A

藤枝智之、鈴木雅美、「磁界共鳴方式電力伝送用低損失アンテナの検討」、PIONEER R&D、Vol.21、No.1/2012、p.11−15Tomoyuki Fujieda, Masami Suzuki, “Examination of low-loss antenna for magnetic field resonance power transmission”, PIONEER R & D, Vol. 21, no. 1/2012, p. 11-15 松木英敏、他、「非接触電力伝送技術の最前線」、シーエムシー出版、p.7(2009年8月)Hidetoshi Matsuki, et al., “Frontiers of Non-contact Power Transmission Technology”, CM Publishing, p. 7 (August 2009)

無線給電システムを実現する上で、共振器が発生する電磁波が周囲の電子機器に電磁妨害(EMI: Electro Magnetic Interference)を与えたり、人体に悪影響を与えるなどの課題がある。無線給電システムにおいて1対の共振器間で電力を伝送する場合、主に特定の放射方向の磁界エネルギーが伝送に寄与するが、アンテナとして機能する共振器は磁界のみならず電界でも共振するので、EMIや人体防護の観点から、漏洩する電界への配慮が求められる。例えば、共振器の筐体となる支持部材の各面に金属シールドを形成することにより、外部に放射される電界を遮蔽する手法も考えられる。しかし、金属シールドは、伝送周波数の波長に応じた密閉性が要求されるとともに、金属加工物に高度な加工・成型技術が要求され、また密閉性を高めるほど金属シールド用の金属材料の容量が増え、それにより共振器の重量が増加するという問題がある。   In realizing a wireless power feeding system, there are problems such as electromagnetic interference generated by the resonator causes electromagnetic interference (EMI: Electro Magnetic Interference) to surrounding electronic devices and adverse effects on the human body. When power is transmitted between a pair of resonators in a wireless power feeding system, magnetic energy in a specific radiation direction mainly contributes to transmission, but a resonator that functions as an antenna resonates not only in a magnetic field but also in an electric field. From the viewpoint of EMI and human body protection, consideration for leaking electric fields is required. For example, a method of shielding an electric field radiated to the outside by forming a metal shield on each surface of a support member serving as a housing of the resonator can be considered. However, the metal shield is required to have a hermetic seal according to the wavelength of the transmission frequency, and a high degree of processing and molding technology is required for the metal workpiece, and the capacity of the metal material for the metal shield increases as the hermeticity increases. There is a problem that the weight of the resonator increases due to the increase.

本発明はこれらの問題を解決するためになされたものであり、電力伝送に寄与しない電界の漏洩を簡単な構造で抑制可能な共振器及び無線給電システムを提供することを目的とする。   The present invention has been made to solve these problems, and an object of the present invention is to provide a resonator and a wireless power feeding system that can suppress leakage of an electric field that does not contribute to power transmission with a simple structure.

上記課題を解決するために、本発明の共振器は、主に磁場の共鳴を利用して送電側共振器から受電側共振器に電力を伝送する無線給電システムにおける共振器であって、所定の共振周波数の交流電力と電磁界エネルギーとを相互に変換する共振コイルと、前記共振コイルを支持する支持部材と、前記支持部材の内部又は外周のうち、前記共振コイルの表面近傍領域とは異なる位置に配置され、前記支持部材の材料の誘電率よりも高い第1の誘電率を有する誘電体材料からなる電界抑制部とを備えて構成される。   In order to solve the above-described problems, a resonator according to the present invention is a resonator in a wireless power feeding system that transmits power from a power transmission side resonator to a power reception side resonator mainly using resonance of a magnetic field, A resonance coil that mutually converts alternating-current power and electromagnetic energy at a resonance frequency, a support member that supports the resonance coil, and a position that is different from a region near the surface of the resonance coil inside or around the support member And an electric field suppressing portion made of a dielectric material having a first dielectric constant higher than the dielectric constant of the material of the support member.

本発明の共振器によれば、磁場の共鳴を利用する非接触の電力伝送方式(磁界共鳴方式)の無線給電システムにおいて、送電側及び受電側の各共振器を構成する共振コイルは、支持部材により支持されるとともに、この支持部材の材料の誘電率よりも高い第1の誘電率を有する誘電体材料からなる電界抑制部が支持部材の内部又は外周のうち、共振コイルの表面近傍領域とは異なる位置に配置されている。よって、共振器の動作時に、共振コイルの線間に発生した電界は、高誘電率の電界抑制部によって囲まれる構造となるので、外部への漏洩電界を抑制することができる。これにより、金属シールド等を用いる場合の共振器の重量増加を招くことなく、簡単な構造で無線給電システムのEMI及び人体防護の対策を施すことが可能となる。   According to the resonator of the present invention, in the wireless power feeding system of the non-contact power transmission method (magnetic field resonance method) using magnetic field resonance, the resonance coil constituting each resonator on the power transmission side and the power reception side is the support member. The electric field suppression portion made of a dielectric material having a first dielectric constant higher than the dielectric constant of the material of the support member is a region near the surface of the resonant coil in the support member. They are located at different positions. Therefore, since the electric field generated between the lines of the resonance coil during the operation of the resonator has a structure surrounded by the high dielectric constant electric field suppression unit, the leakage electric field to the outside can be suppressed. This makes it possible to take measures against EMI and human body protection of the wireless power feeding system with a simple structure without causing an increase in the weight of the resonator when a metal shield or the like is used.

本発明の共振器において、前記共振コイルの表面近傍領域に配置され、前記支持部材の材料の誘電率よりも高く前記第1の誘電率よりも低い第2の誘電率を有する誘電体セラミック材料からなる電界集中部を更に設けることができる。このような電界集中部により、共振コイルの線間に発生した前述の電界が低損失の誘電体セラミック材料に集中するため、共振コイルのQ値を高めることができる。これにより、前述の外部への漏洩電界を抑制する効果に加えて、Q値の高い共振コイルを用いて無線給電システムの伝送効率の向上が可能となる。なお、「共振コイルの表面近傍領域」としては、共振コイルの表面に接する領域か、あるいは、共振コイルの表面からの距離が共振コイルを構成する線状導体の線間ピッチより十分に小さくなるような領域であることが望ましい。   In the resonator of the present invention, the dielectric ceramic material is disposed in a region near the surface of the resonance coil and has a second dielectric constant that is higher than a dielectric constant of the material of the support member and lower than the first dielectric constant. The electric field concentration portion can be further provided. Such an electric field concentration portion concentrates the above-described electric field generated between the lines of the resonance coil on the low-loss dielectric ceramic material, so that the Q value of the resonance coil can be increased. Thereby, in addition to the effect of suppressing the leakage electric field to the outside described above, it is possible to improve the transmission efficiency of the wireless power feeding system using the resonance coil having a high Q value. Note that the “region in the vicinity of the surface of the resonance coil” is a region that is in contact with the surface of the resonance coil, or the distance from the surface of the resonance coil is sufficiently smaller than the pitch between the linear conductors constituting the resonance coil. It is desirable that it is a region.

前述の電界集中部は、前記共振コイルの表面近傍領域の全部に配置してもよいが、前記共振コイルの表面近傍領域の一部に配置してもよい。電界集中部を一部に配置しても共振器の所望のQ値が得られる場合、電界集中部を構成する誘電体セラミック材料を減らすことで共振器の重量増加を抑えることができる。   The electric field concentrating portion described above may be disposed in the entire region near the surface of the resonance coil, or may be disposed in a part of the region near the surface of the resonance coil. In the case where a desired Q value of the resonator can be obtained even if the electric field concentrating portion is partially arranged, an increase in the weight of the resonator can be suppressed by reducing the dielectric ceramic material constituting the electric field concentrating portion.

電界抑制部を構成する誘電体材料は、誘電正接tanδが10−2以上とすることが望ましい。誘電体材料の誘電正接tanδが10−2に満たないと、電界抑制部の損失に基づく電界の減衰量が不十分になるためである。また、電界集中部を構成する誘電体セラミック材料は、比誘電率εrを8以上とし、誘電正接tanδを10−2以下とすることが望ましい。誘電体セラミック材料の比誘電率εrが8に満たないと、共振コイルの線間の電界を集中させてQ値を高める効果が不十分になるし、誘電体セラミック材料の誘電正接tanδが10−2を超えると、誘電体損の増加によりQ値が低下するからである。 As for the dielectric material which comprises an electric field suppression part, it is desirable for the dielectric loss tangent tan-delta to be 10 <-2 > or more. This is because if the dielectric loss tangent tan δ of the dielectric material is less than 10 −2 , the amount of attenuation of the electric field based on the loss of the electric field suppressing unit is insufficient. In addition, it is desirable that the dielectric ceramic material constituting the electric field concentration portion has a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −2 or less. If the relative dielectric constant εr of the dielectric ceramic material is less than 8, the effect of increasing the Q value by concentrating the electric field between the lines of the resonant coil becomes insufficient, and the dielectric loss tangent tan δ of the dielectric ceramic material is 10 −. This is because when the ratio exceeds 2 , the Q value decreases due to an increase in dielectric loss.

また、上記課題を解決するために、本発明の無線給電システムは、主に磁場の共鳴を利用して送電装置から受電装置に電力を伝送する無線給電システムであって、前記送電装置は、所定の周波数の交流電力を供給する電源と、前記電源から供給された前記交流電力に共振し、前記交流電力を電磁界エネルギーとして送電する送電側共振器とを備え、前記受電装置は、前記送電側共振コイルと前記磁場の共鳴により結合し、前記電磁界エネルギーを交流電力として受電する受電側共振器と、前記受電側共振器により受電された前記交流電力により動作する回路部とを備え、前記送電側共振器及び前記受電側共振器の各々は、所定の共振周波数の交流電力と電磁界エネルギーとを相互に変換する共振コイルと、前記共振コイルを支持する支持部材と、前記支持部材の内部又は外周のうち、前記共振コイルの表面近傍領域とは異なる位置に配置され、前記支持部材の材料の誘電率よりも高い第1の誘電率を有する誘電体材料からなる電界抑制部とを備えて構成される。   In order to solve the above-described problem, a wireless power feeding system according to the present invention is a wireless power feeding system that mainly transmits power from a power transmission device to a power reception device by using resonance of a magnetic field. A power source that supplies alternating-current power of a frequency, and a power-transmission-side resonator that resonates with the alternating-current power supplied from the power source and transmits the alternating-current power as electromagnetic energy, and the power receiving device includes the power transmission side A power receiving side resonator coupled with a resonance coil by resonance of the magnetic field and receiving the electromagnetic field energy as AC power; and a circuit unit operated by the AC power received by the power receiving side resonator, the power transmission Each of the side resonator and the power receiving side resonator includes a resonance coil that mutually converts AC power and electromagnetic field energy of a predetermined resonance frequency, and a support member that supports the resonance coil An electric field made of a dielectric material having a first dielectric constant higher than the dielectric constant of the material of the support member, which is disposed at a position different from the region near the surface of the resonance coil, inside or around the support member. And a suppression unit.

本発明の無線給電システムによれば、上述の特徴を有する共振器を、送電装置の送電側共振器と、受電装置の受電側共振器のそれぞれに適用することができる。よって、送電装置においては、電源から供給される交流電力に共振する送電側共振器が電磁界エネルギーを伝送し、受電装置においては、受電側共振器が電磁界エネルギーを受け取って後段の回路部に交流電力を出力する。例えば、本発明の無線給電システムは、電気自動車やプラグインハイブリッド車などの車両への電源供給などの多様な用途に利用することができる。なお、本発明の無線給電システムにおける共振器の構造は上述した通りであり、電界抑制部により外部への漏洩電界を抑制する効果を得られる点も同様である。   According to the wireless power feeding system of the present invention, the resonator having the above characteristics can be applied to each of the power transmission side resonator of the power transmission device and the power reception side resonator of the power reception device. Therefore, in the power transmission device, the power transmission side resonator that resonates with the AC power supplied from the power supply transmits the electromagnetic field energy, and in the power reception device, the power reception side resonator receives the electromagnetic field energy and enters the subsequent circuit unit. Output AC power. For example, the wireless power feeding system of the present invention can be used for various applications such as power supply to vehicles such as electric vehicles and plug-in hybrid vehicles. The structure of the resonator in the wireless power feeding system of the present invention is as described above, and the same is true in that the effect of suppressing the leakage electric field to the outside can be obtained by the electric field suppressing unit.

本発明によれば、共振コイルと支持部材を備える共振器において、共振コイルの線間に発生した電界の周囲に高誘電率の誘電体材料からなる電界抑制部を設けたので、外部への漏洩電界を効果的に抑制でき、簡単な構造でEMI及び人体防護への対策を施すことが可能な無線給電システムを実現することができる。   According to the present invention, in the resonator including the resonance coil and the support member, since the electric field suppression unit made of a dielectric material having a high dielectric constant is provided around the electric field generated between the lines of the resonance coil, leakage to the outside A wireless power feeding system that can effectively suppress an electric field and can take measures against EMI and human body protection with a simple structure can be realized.

本発明を適用した無線給電システムの一構成例を示すブロック図である。It is a block diagram which shows one structural example of the radio | wireless electric power feeding system to which this invention is applied. 送電装置における送電側共振器及びそれに関連する回路部分と、受電装置における受電側共振器及びそれに関連する回路部分との等価回路の一例を示す図である。It is a figure which shows an example of the equivalent circuit of the power transmission side resonator and its related circuit part in a power transmission apparatus, and the power receiving side resonator and its related circuit part in a power receiving apparatus. 第1の構造例に係る共振器の断面構造図である。FIG. 4 is a cross-sectional structure diagram of a resonator according to a first structure example. 第1の構造例に係る共振器を部分的に透視した上面図である。It is the top view which partially saw through the resonator which concerns on the 1st structural example. 第2の構造例に係る共振器の断面構造図である。It is a cross-section figure of the resonator which concerns on the 2nd structural example. 第2の構造例に係る共振器を部分的に透視した上面図である。It is the top view which partially saw through the resonator concerning the 2nd structural example. 第3の構造例に係る共振器の断面構造図である。It is a cross-section figure of the resonator which concerns on a 3rd structural example. 第3の構造例に係る共振器を部分的に透視した上面図である。It is the top view which partially saw through the resonator which concerns on a 3rd structural example.

以下、本発明の好適な実施形態について、図面を参照しながら説明する。ただし、以下に述べる実施形態は本発明の技術思想を適用した形態の一例であって、本発明が本実施形態の内容により限定されることはない。   Preferred embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below is an example of a form to which the technical idea of the present invention is applied, and the present invention is not limited by the content of the present embodiment.

図1は、本発明を適用した無線給電システムの一構成例を示すブロック図である。図1に示す無線給電システムは、送電装置1から受電装置2に非接触(無線)で電力を伝送するシステムである。例えば、車両に内蔵された受電装置2に対し、地面や路面に配設された送電装置1から非接触で給電を行う無線給電システムを挙げることができる。   FIG. 1 is a block diagram showing a configuration example of a wireless power feeding system to which the present invention is applied. The wireless power feeding system illustrated in FIG. 1 is a system that transmits power from the power transmission device 1 to the power reception device 2 in a contactless (wireless) manner. For example, a wireless power feeding system that feeds power to the power receiving device 2 built in the vehicle in a non-contact manner from the power transmitting device 1 disposed on the ground or road surface can be given.

図1に示すように、送電装置1は、AC/DCコンバータ10と、高周波電源11と、整合回路12と、送電側共振器13と、無線通信部14と、制御部15とを含んで構成される。また、受電装置2は、受電側共振器20と、整合回路21と、整流器22と、バッテリ23と、負荷回路24と、無線通信部25と、制御部26とを含んで構成される。   As shown in FIG. 1, the power transmission device 1 includes an AC / DC converter 10, a high frequency power source 11, a matching circuit 12, a power transmission side resonator 13, a wireless communication unit 14, and a control unit 15. Is done. The power receiving device 2 includes a power receiving resonator 20, a matching circuit 21, a rectifier 22, a battery 23, a load circuit 24, a wireless communication unit 25, and a control unit 26.

送電装置1において、AC/DCコンバータ10は、商用電源等の交流電力を直流電力に変換する。高周波電源11は、AC/DCコンバータ10から供給される直流電力を用いて所定の周波数の高周波電力を発生する発振器である。整合回路12は、高周波電力を供給する高周波電源11の出力側と後段の送電側共振器13とのインピーダンス整合を行う。送電側共振器13は、整合回路12を介して供給される高周波電力を受け、その所定の周波数で共振して電磁界エネルギーを生成する共振器である。送電側共振器13の具体的な構造と作用については後述する。   In the power transmission device 1, the AC / DC converter 10 converts AC power from a commercial power source or the like into DC power. The high frequency power supply 11 is an oscillator that generates high frequency power of a predetermined frequency using DC power supplied from the AC / DC converter 10. The matching circuit 12 performs impedance matching between the output side of the high frequency power supply 11 that supplies high frequency power and the power transmission side resonator 13 in the subsequent stage. The power transmission side resonator 13 is a resonator that receives high frequency power supplied via the matching circuit 12 and resonates at a predetermined frequency to generate electromagnetic field energy. The specific structure and operation of the power transmission side resonator 13 will be described later.

受電装置2において、受電側共振器20は、送電装置1の送電側共振器13と磁気的に結合し、磁界共鳴に基づき上述の所定の周波数で共振して高周波電力を発生する共振器である。本実施形態において、受電側共振器20は、基本的に送電装置1の送電側共振器13と同一の構造としてよい。整合回路21は、受電側共振器20と後段の整流器22とのインピーダンス整合を行う。整流器22は、整合回路21を経由して供給される高周波電力を整流して直流電力に変換する。蓄電器として機能するバッテリ23は、整流器22を介して供給される電力を蓄える二次電池である。負荷回路24は、バッテリ23から供給される放電電流に応じて動作する回路であって、受電装置2の取り付け対象に含まれる多様な構成要素が想定される。   In the power receiving device 2, the power receiving resonator 20 is a resonator that is magnetically coupled to the power transmitting resonator 13 of the power transmitting device 1 and resonates at the predetermined frequency based on the magnetic field resonance to generate high frequency power. . In the present embodiment, the power reception side resonator 20 may basically have the same structure as the power transmission side resonator 13 of the power transmission device 1. The matching circuit 21 performs impedance matching between the power-receiving-side resonator 20 and the subsequent rectifier 22. The rectifier 22 rectifies the high-frequency power supplied via the matching circuit 21 and converts it into DC power. The battery 23 that functions as a storage battery is a secondary battery that stores electric power supplied via the rectifier 22. The load circuit 24 is a circuit that operates in accordance with the discharge current supplied from the battery 23, and various components included in the attachment target of the power receiving device 2 are assumed.

一方、送電装置1の制御部15は、送電装置1の全体の動作を制御する。同様に、受電装置2の制御部26は、受電装置2の全体の動作を制御する。各々の制御部15、26は、例えば、無線給電システムにより定められた処理を実行するプロセッサと、データおよびプログラムを記憶するメモリを含む。また、送電装置1の無線通信部14と受電装置2の無線通信部25は、上述の送電側共振器13及び受電側共振器20の間の電力の伝送とは別に、それぞれの制御部15、26で必要な情報を無線により相互に伝送する手段であり、例えば、送受信回路とアンテナを含んで構成される。   On the other hand, the control unit 15 of the power transmission device 1 controls the overall operation of the power transmission device 1. Similarly, the control unit 26 of the power receiving device 2 controls the overall operation of the power receiving device 2. Each control unit 15 and 26 includes, for example, a processor that executes processing determined by the wireless power feeding system, and a memory that stores data and programs. In addition, the wireless communication unit 14 of the power transmission device 1 and the wireless communication unit 25 of the power reception device 2 are respectively connected to the control units 15 separately from the transmission of power between the power transmission side resonator 13 and the power reception side resonator 20 described above. 26 is a means for transmitting necessary information to each other wirelessly, and includes, for example, a transmission / reception circuit and an antenna.

次に、図1の無線給電システムのうち、送電側共振器13及び受電側共振器20の構造及び動作について説明する。本実施形態において、送電側共振器13及び受電側共振器20は、いずれも所定の共振周波数の交流電力と電磁界エネルギーを相互に変換する共振コイルを含み、送電側共振器13及び受電側共振器20を比較的近い距離で対向させて配置して両者を磁気的に結合させた状態で用いられる。このような状態で、送電側共振器13から主に磁界エネルギーが受電側共振器20に伝送され、いわゆる磁界共鳴方式に基づく非接触の電力伝送が可能となる。   Next, the structure and operation of the power transmission side resonator 13 and the power reception side resonator 20 in the wireless power feeding system of FIG. 1 will be described. In the present embodiment, each of the power transmission side resonator 13 and the power reception side resonator 20 includes a resonance coil that mutually converts AC power and electromagnetic field energy of a predetermined resonance frequency, and the power transmission side resonator 13 and the power reception side resonance. It is used in a state in which the container 20 is disposed facing each other at a relatively close distance and both are magnetically coupled. In such a state, magnetic field energy is mainly transmitted from the power transmission side resonator 13 to the power reception side resonator 20, and non-contact power transmission based on a so-called magnetic field resonance method becomes possible.

図2は、送電装置1における送電側共振器13及びそれに関連する回路部分と、受電装置2における受電側共振器20及びそれに関連する回路部分との等価回路の一例を示している。送電装置1においては、発振器11aとインピーダンスZoの直列回路の部分は図1の高周波電源11に相当し、インダクタンスL1、容量C1、抵抗R1の直列回路の部分は図1の送電側共振器13に相当し、両者が接続されている。また、受電装置2においては、インダクタンスL2、容量C2、抵抗R2の直列回路の部分は図1の受電側共振器20に相当し、その回路部分と負荷(図1のバッテリ23又は負荷回路24)が接続されている。このように、送電側共振器13と受電側共振器20は同一の等価回路で表されるので、磁界の結合によって同一の共振周波数で共振(共鳴)する。   FIG. 2 shows an example of an equivalent circuit of the power transmission side resonator 13 and the circuit portion related thereto in the power transmission device 1 and the power reception side resonator 20 and the circuit portion related thereto in the power reception device 2. In the power transmission device 1, the part of the series circuit of the oscillator 11a and the impedance Zo corresponds to the high frequency power supply 11 of FIG. 1, and the part of the series circuit of the inductance L1, the capacitor C1, and the resistor R1 is connected to the power transmission side resonator 13 of FIG. Correspondingly, both are connected. Further, in the power receiving device 2, the portion of the series circuit of the inductance L2, the capacitance C2, and the resistor R2 corresponds to the power receiving side resonator 20 in FIG. 1, and the circuit portion and the load (battery 23 or load circuit 24 in FIG. 1). Is connected. Thus, since the power transmission side resonator 13 and the power reception side resonator 20 are represented by the same equivalent circuit, they resonate (resonate) at the same resonance frequency by coupling of magnetic fields.

送電側共振器13及び受電側共振器20において、インダクタンスL1、L2は共振コイルの部分のサイズや巻数に依存して定まり、容量C1、C2は共振コイルの配線間の寄生容量(浮遊容量)に依存して定まる。図2の等価回路において、1対の送電側共振器13及び受電側共振器20の回路部分は、1対のコイルが電磁誘導を生じる回路形式と同様に表現される。ただし、電磁誘導の場合は、Q値が考慮されないために1対のコイルの距離が離れると電力の伝送が困難となるのに対し、本実施形態では、後述の構造及び材料によって共振コイルのQ値を高くできるので、送電側共振器13と受電側共振器20がある程度距離が離れたとしても、磁界結合によって効率的に電力を伝送することができる。   In the power transmission side resonator 13 and the power reception side resonator 20, the inductances L1 and L2 are determined depending on the size and the number of turns of the resonance coil portion, and the capacitances C1 and C2 are parasitic capacitances (stray capacitance) between the wirings of the resonance coil. It depends on you. In the equivalent circuit of FIG. 2, the circuit portions of the pair of power transmission side resonator 13 and the power reception side resonator 20 are expressed in the same manner as a circuit form in which a pair of coils generate electromagnetic induction. However, in the case of electromagnetic induction, since the Q value is not taken into account, it is difficult to transmit power when the distance between the pair of coils is increased. Since the value can be increased, even if the power transmission side resonator 13 and the power reception side resonator 20 are separated from each other to some extent, power can be efficiently transmitted by magnetic field coupling.

ここで、送電側共振器13から受電側共振器20への伝送効率ηは、次の(1)式のfom(性能指数)に関係する。
fom=k(Q1・Q2)1/2 (1)
ただし、k:結合係数
Q1:送電側共振器13の共振コイルのQ値
Q2:受電側共振器20の共振コイルのQ値
Here, the transmission efficiency η from the power transmission side resonator 13 to the power reception side resonator 20 is related to the fom (performance index) of the following equation (1).
fom = k (Q1 · Q2) 1/2 (1)
Where k: coupling coefficient Q1: Q value of resonance coil of power transmission side resonator 13 Q2: Q value of resonance coil of power reception side resonator 20

(1)式において、結合係数kは、送電側共振器13と受電側共振器20の各共振コイル同士の間隔(エアギャップ)に依存し、間隔が大きくなるほど低下する。すなわち、各共振コイルの配置の制約に応じた所与の結合係数kに対し、上述のQ1、Q2が高くなるほど、伝送効率ηを向上させることができる。一般に、角周波数ωにおける共振コイルのQ値は、(2)式により与えられる。
Q=ωL/r (2)
ただし、L:インダクタンス
r:抵抗
In the equation (1), the coupling coefficient k depends on the interval (air gap) between the resonance coils of the power transmission side resonator 13 and the power reception side resonator 20, and decreases as the interval increases. That is, the transmission efficiency η can be improved as the above-described Q1 and Q2 become higher with respect to a given coupling coefficient k according to the restrictions on the arrangement of the resonance coils. In general, the Q value of the resonance coil at the angular frequency ω is given by equation (2).
Q = ωL / r (2)
Where L: inductance r: resistance

(2)式において、抵抗rは、誘電体損、導体損、放射損などの損失の和で表される。本実施形態では、送電側共振器13及び受電側共振器20の構造に基づき共振コイルの損失を低減することにより、共振コイルのQ値の向上を図るものであるが、詳しくは後述する。   In the equation (2), the resistance r is represented by the sum of losses such as dielectric loss, conductor loss, and radiation loss. In the present embodiment, the Q value of the resonance coil is improved by reducing the loss of the resonance coil based on the structure of the power transmission side resonator 13 and the power reception side resonator 20, which will be described in detail later.

次に、図1の送電側共振器13及び受電側共振器20の構造について説明する。上述したように、送電側共振器13及び受電側共振器20の基本構造は同じであるため、以下では、送電側共振器13及び受電側共振器20の両方に適合する共振器(30〜32)を想定して説明を行うものとする。まず、第1の構造例に係る共振器30について図3及び図4を参照して説明する。第1の構造例に関し、図3は共振器30の断面構造図を示し、図4は共振器30の上面図を示す。第1の構造例の共振器30は、円板状の支持部材40と、スパイラル型の巻線コイル41(本発明の共振コイル)と、支持部材40内に配置された電界抑制部42とを備えて構成される。共振器30は、図3に示す伝送方向Rに対向して配置された別の共振器30との間で磁界を主とする電磁界エネルギーを伝送する。なお、図4の上面図は、図3の共振器30のうち、支持部材40の上面部40a及び充填部40dと電界抑制部42の上部42a及び底部42bとを透視した状態で示している。   Next, the structure of the power transmission side resonator 13 and the power reception side resonator 20 of FIG. 1 is demonstrated. As described above, since the basic structures of the power transmission side resonator 13 and the power reception side resonator 20 are the same, in the following, resonators (30 to 32) that are suitable for both the power transmission side resonator 13 and the power reception side resonator 20. ) Is assumed. First, the resonator 30 according to the first structural example will be described with reference to FIGS. 3 and 4. As for the first structural example, FIG. 3 shows a sectional structural view of the resonator 30, and FIG. 4 shows a top view of the resonator 30. The resonator 30 of the first structural example includes a disk-shaped support member 40, a spiral winding coil 41 (resonance coil of the present invention), and an electric field suppressing unit 42 disposed in the support member 40. It is prepared for. The resonator 30 transmits electromagnetic field energy mainly including a magnetic field to and from another resonator 30 disposed to face the transmission direction R shown in FIG. 4 shows the resonator 30 of FIG. 3 in a state where the upper surface portion 40a and the filling portion 40d of the support member 40 and the upper portion 42a and the bottom portion 42b of the electric field suppressing portion 42 are seen through.

第1の構造例において、支持部材40は、共振器30の全体を支持する筐体としての役割があり、例えば、一般的な樹脂材料により形成され、所定の厚みを有する円板状の部材である。図3及び図4においては、支持部材40を、上面部40a、底面部40b、側面部40c、充填部40dに区分して示している。支持部材40の形状及び構造は、図4の例には限られないが、巻線コイル41の一定の形状を確保でき、かつ十分な機械的強度を得られる構造を有することが望ましい。支持部材40の内部には、巻線コイル41及び電界抑制部42が固定された状態で配置されている。巻線コイル41と電界抑制部42とは接していない(離間している)。なお、支持部材40の充填部40dは、巻線コイル41を固定可能である限り、内部空間が存在する構造であってもよい。   In the first structural example, the support member 40 has a role as a housing that supports the entire resonator 30, and is a disk-shaped member that is formed of a general resin material and has a predetermined thickness, for example. is there. 3 and 4, the support member 40 is divided into an upper surface portion 40a, a bottom surface portion 40b, a side surface portion 40c, and a filling portion 40d. The shape and structure of the support member 40 is not limited to the example of FIG. 4, but it is desirable that the support member 40 has a structure that can ensure a certain shape of the winding coil 41 and obtain sufficient mechanical strength. Inside the support member 40, the winding coil 41 and the electric field suppression part 42 are arranged in a fixed state. The winding coil 41 and the electric field suppressing part 42 are not in contact (separated). The filling portion 40d of the support member 40 may have a structure in which an internal space exists as long as the winding coil 41 can be fixed.

巻線コイル41は、支持部材40の厚さ方向の略中央の位置に配置され、スパイラル状に巻いた状態の線状導体(例えば、銅線)である。図4に示すように、巻線コイル41は所定の線径及び所定の線間ピッチで形成される。ただし、巻線コイル41のサイズ、巻き数、線状導体の線径及び線間ピッチは、共振器30のサイズ、共振周波数、Q値などの設計条件に応じて適切に決定することができる。なお、図3の例では、巻線コイル41を構成する線状導体が円形断面で表されるが、方形断面であってもよい。   The winding coil 41 is a linear conductor (for example, copper wire) that is disposed at a substantially central position in the thickness direction of the support member 40 and is wound in a spiral shape. As shown in FIG. 4, the winding coil 41 is formed with a predetermined wire diameter and a predetermined pitch between lines. However, the size of the winding coil 41, the number of turns, the wire diameter of the linear conductor, and the pitch between the wires can be appropriately determined according to design conditions such as the size of the resonator 30, the resonance frequency, and the Q value. In addition, in the example of FIG. 3, the linear conductor which comprises the winding coil 41 is represented by a circular cross section, However, A square cross section may be sufficient.

巻線コイル41の両端は開放(オープン)されていてもよいし、あるいは回路素子に接続されていてもよい。巻線コイル41の両端が開放されている状態で共振器30に給電するには、例えば、近傍に配置したループ素子を介して共振器30に給電すればよい。また、共振器30に対し、巻線コイル41の一端にキャパシタを直列に接続してもよいし、巻線コイル41の両端にキャパシタを並列に接続してもよい。このようなキャパシタの容量値を適切に設定することにより、共振器30の共振周波数やQ値を調整することができる。   Both ends of the winding coil 41 may be opened (open) or may be connected to circuit elements. In order to supply power to the resonator 30 with both ends of the winding coil 41 open, for example, power may be supplied to the resonator 30 via a loop element arranged in the vicinity. Further, with respect to the resonator 30, a capacitor may be connected in series to one end of the winding coil 41, or a capacitor may be connected in parallel to both ends of the winding coil 41. By appropriately setting the capacitance value of such a capacitor, the resonance frequency and Q value of the resonator 30 can be adjusted.

電界抑制部42は、高誘電率のセラミック材料により形成された部材であり、支持部材40の上面部40a、底面部40b、側面部40cの全体と充填部40dとの間に配置されている。電界抑制部42は、支持部材40の誘電率よりも高い誘電率(本発明の第1の誘電率)を有するセラミック材料により形成され、例えば、比誘電率εが100を超える程度のセラミック材料を用いることが望ましい。なお、支持部材40の一般的な樹脂材料としては、例えば、比誘電率εrが2程度となるので、それに比べて電界抑制部42の誘電率は十分に高い値に設定される。電界抑制部42のセラミック材料としては、例えば、チタン酸バリウム(εr>1000、tanδ>10−2)を用いることができる。図3に示すように、電界抑制部42は、上部42a、底部42b、側部42cにより構成される。 The electric field suppressing portion 42 is a member formed of a ceramic material having a high dielectric constant, and is disposed between the entire top surface portion 40a, bottom surface portion 40b, and side surface portion 40c of the support member 40 and the filling portion 40d. The electric field suppressing part 42 is formed of a ceramic material having a dielectric constant higher than the dielectric constant of the support member 40 (first dielectric constant of the present invention). For example, a ceramic material having a relative dielectric constant ε exceeding 100 is used. It is desirable to use it. In addition, as a general resin material of the support member 40, for example, since the relative dielectric constant εr is about 2, the dielectric constant of the electric field suppressing unit 42 is set to a sufficiently high value. For example, barium titanate (εr> 1000, tan δ> 10 −2 ) can be used as the ceramic material of the electric field suppressing unit 42. As shown in FIG. 3, the electric field suppression part 42 is comprised by the upper part 42a, the bottom part 42b, and the side part 42c.

電界抑制部42の役割は、共振器30の各方向に漏洩する電界を抑制することにある。電界抑制部42の上部42a、底部42b、側部42cは、それぞれ支持部材40の上面部40a、底面部40b、側面部40cの内側に配置されるので、巻線コイル41から放射される電界の全方位を取り囲む構造となっている。電界抑制部42は極めて誘電率が高いことから、巻線コイル41から各方向に放射される電界は電界抑制部42の内部で収束して外部に透過する電界が減衰するので、電界抑制部42を透過して外部に漏洩する電界を抑制することができる。なお、電界抑制部42の上部42aは、巻線コイル41から伝送方向Rに放射される磁界には影響を与えない。   The role of the electric field suppressing unit 42 is to suppress the electric field leaking in each direction of the resonator 30. Since the upper part 42a, the bottom part 42b, and the side part 42c of the electric field suppressing part 42 are disposed inside the upper surface part 40a, the bottom part 40b, and the side part 40c of the support member 40, respectively, The structure surrounds all directions. Since the electric field suppression unit 42 has a very high dielectric constant, the electric field radiated from the winding coil 41 in each direction converges inside the electric field suppression unit 42 and attenuates the electric field transmitted to the outside. The electric field which permeate | transmits and leaks outside can be suppressed. The upper portion 42a of the electric field suppressing unit 42 does not affect the magnetic field radiated from the winding coil 41 in the transmission direction R.

上述したように、電界抑制部42は、共振器30の磁界エネルギーの伝送には寄与しないことから、損失が大きいセラミック材料を用いても支障はない。この場合、ある程度損失が大きいセラミック材料を用いて電界抑制部42を構成すれば、電界抑制部42を通過する電界エネルギーが熱となって消費され、電界抑制部42を透過する電界の減衰量を高めることができる。このような観点から、前述のチタン酸バリウムのように、誘電正接tanδが10−2以上のセラミック材料を用いて電界抑制部42を構成することが望ましい。また、電界抑制部42が厚いほど電界漏洩の抑制効果を高めることができるが、共振器30のサイズや重量の制約を考慮して、電界抑制部42の厚さを設定する必要がある。例えば、電界抑制部42の厚さは、0.5mm以上に設定することが望ましい。 As described above, since the electric field suppressing unit 42 does not contribute to the transmission of the magnetic field energy of the resonator 30, there is no problem even if a ceramic material having a large loss is used. In this case, if the electric field suppression unit 42 is configured using a ceramic material having a certain amount of loss, the electric field energy passing through the electric field suppression unit 42 is consumed as heat, and the attenuation amount of the electric field transmitted through the electric field suppression unit 42 is reduced. Can be increased. From this point of view, it is desirable to configure the electric field suppressing portion 42 using a ceramic material having a dielectric loss tangent tan δ of 10 −2 or more like the aforementioned barium titanate. Further, the thicker the electric field suppressing unit 42, the higher the effect of suppressing electric field leakage. However, it is necessary to set the thickness of the electric field suppressing unit 42 in consideration of restrictions on the size and weight of the resonator 30. For example, it is desirable to set the thickness of the electric field suppressing part 42 to 0.5 mm or more.

以上のように、第1の構造例を採用することにより、磁界共鳴方式により送電側共振器13から受電側共振器20に電磁界エネルギーを伝送する際、その周囲への漏洩電界の十分な抑制が可能となる。従って、本実施形態の無線給電システムにおける有効なEMI対策の手段を提供でき、人体への安全性や周囲の機器へ影響軽減などの効果を高めることができる。また、共振器30に金属シールドを施す場合は、密閉性の実現のための構造の複雑化や、共振器30の重量増加が問題となるのに対し、セラミック材料を用いた電界抑制部42の場合は、共振器30の構造の複雑化や重量増加を回避する点でも有利である。   As described above, by adopting the first structural example, when the electromagnetic field energy is transmitted from the power transmission side resonator 13 to the power reception side resonator 20 by the magnetic field resonance method, the leakage electric field to the surroundings is sufficiently suppressed. Is possible. Therefore, it is possible to provide an effective EMI countermeasure means in the wireless power feeding system of the present embodiment, and it is possible to enhance effects such as safety to the human body and reduction of influence on surrounding devices. Further, when the metal shield is applied to the resonator 30, the structure of the airtight structure is complicated and the weight of the resonator 30 is increased. In this case, it is advantageous in that the structure of the resonator 30 is not complicated and the weight is increased.

次に、第2の構造例に係る共振器31について図5及び図6を参照して説明する。第2の構造例に関し、図5は共振器31の断面構造図を示し、図6は共振器31の上面図を示している。図5及び図6は、第1の構造例の図3及び図4にそれぞれ対応する。第2の構造例の共振器31のうち、支持部材40と、巻線コイル41と、電界抑制部42とについては、第1の構造例の共振器30と共通であるので、それらの説明は省略する。一方、第2の構造例の共振器31のうち、第1の構造例の共振器30と異なる点は、巻線コイル41の両面に配置された誘電体セラミック材料からなる電界集中部43を備える点である。   Next, a resonator 31 according to a second structure example will be described with reference to FIGS. FIG. 5 shows a cross-sectional structure diagram of the resonator 31 and FIG. 6 shows a top view of the resonator 31 with respect to the second structure example. 5 and 6 correspond to FIGS. 3 and 4 of the first structural example, respectively. Among the resonators 31 of the second structure example, the support member 40, the winding coil 41, and the electric field suppressing unit 42 are common to the resonator 30 of the first structure example, and therefore their descriptions are as follows. Omitted. On the other hand, the resonator 31 of the second structure example is different from the resonator 30 of the first structure example in that the electric field concentrating portion 43 made of a dielectric ceramic material is provided on both surfaces of the winding coil 41. Is a point.

図5に示すように、電界集中部43は、巻線コイル41の表面近傍領域の全部に配置されている。すなわち、巻線コイル41の両側の表面を全体的に挟むように電界集中部43が配置されている。よって、電界集中部43の平面視の形状は、図6に示すように、全体が円形であって、中央が円形に開口されている。電界集中部43に用いる誘電体セラミック材料は、少なくとも、支持部材40の材料の誘電率よりも高く、かつ、電界抑制部42の誘電率よりも低い誘電率(本発明の第2の誘電率)を有している。具体的には、比誘電率εrが8以上で、かつ、誘電正接tanδが10−2以下の誘電体セラミック材料を用いて電界集中部43を形成することが望ましい。 As shown in FIG. 5, the electric field concentrating portion 43 is disposed in the entire surface vicinity region of the winding coil 41. That is, the electric field concentration portion 43 is arranged so as to sandwich the entire surface of both sides of the winding coil 41. Therefore, as shown in FIG. 6, the shape of the electric field concentration portion 43 in plan view is circular as a whole, and the center is opened in a circle. The dielectric ceramic material used for the electric field concentration portion 43 is at least a dielectric constant higher than the dielectric constant of the material of the support member 40 and lower than the dielectric constant of the electric field suppressing portion 42 (second dielectric constant of the present invention). have. Specifically, it is desirable to form the electric field concentration portion 43 using a dielectric ceramic material having a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −2 or less.

電界集中部43の役割は、支持部材40との誘電率の相違により、巻線コイル41の巻線間に発生する電界を電界集中部43に集中させて巻線コイル41のQ値を高めることにある。前述したように、共振器30間の伝送は磁界が主であるため、巻線コイル41の線間の電界は伝送には寄与しないが、実際には巻線コイル41の線間の電界が支持部材40の樹脂材料を通過する際の損失(主に誘電体損)を小さくする必要がある。そのため、巻線コイル41の表面近傍領域に、支持部材40よりも誘電率が高い誘電体材料を配置することにより、巻線コイル41の近傍に電界を集中させ(電気力線の密度を高め)、これにより電界が支持部材40を通過する際の損失の低減を図るものである。なお、巻線コイル41と電界集中部43の間に樹脂材料等が存在すると、そこを電界が通過して損失が発生するので、巻線コイル41と電界集中部43はできるだけ密着させた状態で配置することが望ましい。   The role of the electric field concentrating portion 43 is to increase the Q value of the winding coil 41 by concentrating the electric field generated between the windings of the winding coil 41 on the electric field concentrating portion 43 due to the difference in dielectric constant with the support member 40. It is in. As described above, since the magnetic field is mainly transmitted between the resonators 30, the electric field between the lines of the winding coil 41 does not contribute to the transmission, but the electric field between the lines of the winding coil 41 is actually supported. It is necessary to reduce the loss (mainly dielectric loss) when the member 40 passes through the resin material. Therefore, by arranging a dielectric material having a dielectric constant higher than that of the support member 40 in the region in the vicinity of the surface of the winding coil 41, the electric field is concentrated in the vicinity of the winding coil 41 (the density of electric lines of force is increased). Thus, the loss when the electric field passes through the support member 40 is reduced. If a resin material or the like is present between the winding coil 41 and the electric field concentration portion 43, an electric field passes through the resin material and loss occurs, so that the winding coil 41 and the electric field concentration portion 43 are in close contact as much as possible. It is desirable to arrange.

以上のように、第2の構造例を採用することにより、巻線コイル41の表面近傍領域に配置した電界集中部43に線間の電界を集中させて巻線コイル41のQ値を高めることができるので、本実施形態の無線給電システムにおいて良好な伝送効率を実現することができる。また、第2の構造例では、第1の構造例と同様の電界抑制部42に加えて、上述の電界集中部43を更に設けたので、電界集中部43により低減された電界を更に電界抑制部42により抑制できるので、外部への電界漏洩の抑制効果を一層高めることができる。電界集中部43と電界抑制部42とは異なる位置に配置されている。なお、電界集中部43は、巻線コイル41のQ値に関連するので、電界抑制部42とは異なり、損失が小さいセラミック材料を用いることが望ましい。   As described above, by adopting the second structural example, the Q value of the winding coil 41 is increased by concentrating the electric field between the lines on the electric field concentration portion 43 arranged in the region near the surface of the winding coil 41. Therefore, good transmission efficiency can be realized in the wireless power feeding system of this embodiment. Further, in the second structure example, in addition to the electric field suppressing portion 42 similar to that in the first structural example, the above-described electric field concentration portion 43 is further provided, so that the electric field reduced by the electric field concentration portion 43 is further suppressed. Since it can suppress by the part 42, the suppression effect of the electric field leakage to the outside can be improved further. The electric field concentration part 43 and the electric field suppression part 42 are arranged at different positions. Since the electric field concentrating portion 43 is related to the Q value of the winding coil 41, unlike the electric field suppressing portion 42, it is desirable to use a ceramic material with a small loss.

次に、第3の構造例に係る共振器32について図7及び図8を参照して説明する。第3の構造例に関し、図7は共振器32の断面構造図を示し、図8は共振器32の上面図を示している。図7及び図8は、第1の構造例の図3及び図4(第2の構造例の図5及び図6)にそれぞれ対応する。ここで、図7は、図8のA−A断面における断面構造図であるとする。第3の構造例の共振器32のうち、支持部材40と、巻線コイル41と、電界抑制部42とについては、第1及び第2の構造例の共振器30、31と共通であるので、それらの説明は省略する。一方、第3の構造例の共振器32のうち、巻線コイル41の両面に配置された誘電体セラミック材料からなる電界集中部43を備える点は第2の構造例と同様であるが、電界集中部43の平面視の構造が第2の構造例とは異なっている。   Next, a resonator 32 according to a third structure example will be described with reference to FIGS. FIG. 7 is a sectional structural view of the resonator 32 and FIG. 8 is a top view of the resonator 32 regarding the third structural example. 7 and 8 correspond to FIGS. 3 and 4 of the first structural example (FIGS. 5 and 6 of the second structural example), respectively. Here, FIG. 7 is a cross-sectional structure diagram taken along the line AA of FIG. Among the resonators 32 of the third structural example, the support member 40, the winding coil 41, and the electric field suppressing unit 42 are common to the resonators 30 and 31 of the first and second structural examples. These descriptions are omitted. On the other hand, the resonator 32 of the third structural example is similar to the second structural example in that the resonator 32 of the third structural example includes an electric field concentration portion 43 made of a dielectric ceramic material disposed on both surfaces of the winding coil 41. The structure of the concentrated portion 43 in plan view is different from that of the second structure example.

具体的には、図8に示す電界集中部43は、巻線コイル41の表面近傍領域の全部ではなく、一部に配置されている。図8の例では、巻線コイル41の周方向の所定位置に配置された3個の板状部材からなる電界集中部43が示されている。この場合、図7に示すように、巻線コイル41の両側の表面を挟んで、6個の板状部材からなる電界集中部43が配置されることになる。なお、図7は、図8のA−A断面で見た断面構造であるため、左側にのみ電界集中部43が配置された状態が示される。なお、電界集中部43を構成する板状部材の個数や配置は制約されず、1個の板状部材のみで構成してもよい。   Specifically, the electric field concentration portion 43 shown in FIG. 8 is arranged not in the entire surface vicinity region of the winding coil 41 but in a part thereof. In the example of FIG. 8, an electric field concentration portion 43 including three plate-like members arranged at predetermined positions in the circumferential direction of the winding coil 41 is shown. In this case, as shown in FIG. 7, electric field concentration portions 43 made up of six plate-like members are arranged across the surfaces on both sides of the winding coil 41. 7 shows a cross-sectional structure as viewed in the AA cross section of FIG. 8, and therefore shows a state in which the electric field concentration portion 43 is arranged only on the left side. Note that the number and arrangement of the plate-like members constituting the electric field concentrating portion 43 are not limited, and may be constituted by only one plate-like member.

以上のように、第3の構造例を採用することにより、第2の構造例と同様、電界集中部43による電界の集中に基づき巻線コイル41のQ値を高める効果と、電界抑制部42による外部への電界漏洩の抑制効果の両方を得ることができる。また、第3の構造例の共振器32は、巻線コイル41の表面近傍領域の一部にのみ電界集中部43を配置したので、第2の構造例に比べて誘電体セラミック材料による重量増加を抑えることができる。ただし、巻線コイル41の十分なQ値を確保するためには、巻線コイル41の表面に対する電界集中部43が占める面積比を概ね10%以上に設定することが望ましい。   As described above, by adopting the third structural example, as in the second structural example, the effect of increasing the Q value of the winding coil 41 based on the concentration of the electric field by the electric field concentration unit 43 and the electric field suppression unit 42 are obtained. Thus, it is possible to obtain both of the effect of suppressing electric field leakage to the outside. Further, in the resonator 32 of the third structure example, the electric field concentration portion 43 is disposed only in a part of the surface vicinity region of the winding coil 41, so that the weight increase due to the dielectric ceramic material as compared with the second structure example. Can be suppressed. However, in order to ensure a sufficient Q value of the winding coil 41, it is desirable to set the area ratio of the electric field concentration portion 43 to the surface of the winding coil 41 to approximately 10% or more.

本実施形態では、第1〜第3の構造例の共振器30〜32を例にとって説明したが、それぞれの共振器30〜32に関しては、第1〜第3の構造例に限定されることなく多様な構造を採用することができる。例えば、本実施形態の電界抑制部42は、上部42a、底部42b、側部42cが支持部材40の上面部40a、底面部40b、側面部40cの全面を覆うように配置されているが、電界漏洩の所望の抑制効果が得られる限り、電界抑制部42が支持部材40の上面部40a、底面部40b、側面部40cを部分的に覆う配置であってもよい。   In the present embodiment, the resonators 30 to 32 of the first to third structure examples have been described as examples. However, the resonators 30 to 32 are not limited to the first to third structure examples. Various structures can be adopted. For example, the electric field suppression unit 42 of the present embodiment is arranged such that the upper part 42a, the bottom part 42b, and the side part 42c cover the entire upper surface part 40a, the bottom part 40b, and the side part 40c of the support member 40. As long as the desired suppression effect of leakage is obtained, the electric field suppression part 42 may be arranged to partially cover the upper surface part 40a, the bottom surface part 40b, and the side surface part 40c of the support member 40.

また、本実施形態の電界抑制部42は、送電側共振器13と受電側共振器20とが磁界に加え電界でも結合している場合は、伝送方向Rに面する電界抑制部42を配置しない形態としてもよい。つまり、電界抑制部42に上部42aを設けずに、底部42b及び側部42cが支持部材40の底面部40b及び側面部40cの全面を覆うように配置する形態としてもよい。この場合も、電界漏洩の所望の抑制効果が得られる限り、電界抑制部42が、支持部材40の底面部40b及び側面部40cを部分的に覆う配置であってもよい。   In addition, the electric field suppression unit 42 of the present embodiment does not include the electric field suppression unit 42 facing the transmission direction R when the power transmission side resonator 13 and the power reception side resonator 20 are coupled by an electric field in addition to a magnetic field. It is good also as a form. That is, it is good also as a form arrange | positioned so that the bottom part 42b and the side part 42c may cover the whole surface of the bottom face part 40b and the side part 40c of the supporting member 40, without providing the upper part 42a in the electric field suppression part 42. Also in this case, as long as the desired suppression effect of the electric field leakage is obtained, the electric field suppression portion 42 may be disposed so as to partially cover the bottom surface portion 40b and the side surface portion 40c of the support member 40.

また、本実施形態の電界抑制部42を構成するセラミック材料の形成方法は制約されず、機械的強度を高める目的で、ゴム等の材料にセラミック粉末を装荷した混合材料を用いることができる。また、本実施形態の共振器30〜32として、スパイラル型の巻線コイル41を用いる構造例を説明したが、ヘリカル型の巻線コイルを用いてもよい。さらに、本実施形態の電界抑制部42は、支持部材40の内部に配置されているが、電界漏洩の所望の抑制効果が得られる限り、支持部材40の外周に配置する形態を採用してもよい。例えば、図3の支持部材40のうち充填部40dのみを設け、外側に電界抑制部42が露出する形態である。   Moreover, the formation method of the ceramic material which comprises the electric field suppression part 42 of this embodiment is not restrict | limited, The mixed material which loaded ceramic powder on materials, such as rubber | gum, can be used in order to raise mechanical strength. Moreover, although the structural example using the spiral type winding coil 41 was demonstrated as the resonators 30-32 of this embodiment, you may use a helical type winding coil. Furthermore, although the electric field suppression part 42 of this embodiment is arrange | positioned inside the supporting member 40, even if the form arrange | positioned on the outer periphery of the supporting member 40 is employ | adopted as long as the desired suppression effect of an electric field leakage is acquired. Good. For example, only the filling part 40d is provided in the support member 40 of FIG. 3, and the electric field suppressing part 42 is exposed to the outside.

以上、本実施形態に基づき本発明の内容を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で多様な変更を施すことができる。例えば、本実施形態の無線給電システムとして、図1の構成例を示したが、これに限られることなく、本発明の構造上の特徴を具備する共振器を用いる限り、多様な構成の無線給電システムに対して本発明を適用することができる。また、本発明を適用可能な無線給電システムの用途として、車両への電源供給に言及したが、例えば、携帯電話やノートPCなどの情報端末、TV、家電機器、照明機器、ゲーム機器、医療機器、産業機器など多様な用途の無線給電システムに対して本発明の適用が可能である。さらに、その他の点についても上記実施形態により本発明の内容が限定されるものではなく、本発明の作用効果を得られる限り、上記実施形態に開示した内容には限定されることなく適宜に変更可能である。   The contents of the present invention have been specifically described above based on the present embodiment, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, the configuration example of FIG. 1 is shown as the wireless power supply system of the present embodiment, but the present invention is not limited to this, and as long as the resonator having the structural features of the present invention is used, wireless power supply having various configurations is possible. The present invention can be applied to a system. In addition, as a use of the wireless power supply system to which the present invention can be applied, reference is made to power supply to vehicles. For example, information terminals such as mobile phones and notebook PCs, TVs, home appliances, lighting devices, game devices, and medical devices The present invention can be applied to wireless power feeding systems for various uses such as industrial equipment. Further, the contents of the present invention are not limited by the above-described embodiment with respect to other points, and the contents disclosed in the above-described embodiment are not limited to the contents disclosed in the above-described embodiments as long as the effects of the present invention can be obtained. Is possible.

1…送電装置
2…受電装置
10…AC/DCコンバータ
11…高周波電源
12…整合回路
13…送電側共振器
14…無線通信部
15…制御部
20…受電側共振器
21…整合回路
22…整流器
23…バッテリ
24…負荷回路
25…無線通信部
26…制御部
30、31、32…共振器
40…支持部材
41…巻線コイル
42…電界抑制部
43…電界集中部
DESCRIPTION OF SYMBOLS 1 ... Power transmission apparatus 2 ... Power reception apparatus 10 ... AC / DC converter 11 ... High frequency power supply 12 ... Matching circuit 13 ... Power transmission side resonator 14 ... Wireless communication part 15 ... Control part 20 ... Power reception side resonator 21 ... Matching circuit 22 ... Rectifier DESCRIPTION OF SYMBOLS 23 ... Battery 24 ... Load circuit 25 ... Wireless communication part 26 ... Control part 30, 31, 32 ... Resonator 40 ... Supporting member 41 ... Winding coil 42 ... Electric field suppression part 43 ... Electric field concentration part

Claims (9)

主に磁場の共鳴を利用して送電側共振器から受電側共振器に電力を伝送する無線給電システムにおける共振器であって、
所定の共振周波数の交流電力と電磁界エネルギーとを相互に変換する共振コイルと、
前記共振コイルを支持する支持部材と、
前記支持部材の内部又は外周のうち、前記共振コイルの表面近傍領域とは異なる位置に配置され、前記支持部材の材料の誘電率よりも高い第1の誘電率を有する誘電体材料からなる電界抑制部と、
を備えることを特徴とする共振器。
A resonator in a wireless power feeding system that mainly uses magnetic field resonance to transmit power from a power transmitting resonator to a power receiving resonator,
A resonant coil that mutually converts AC power and electromagnetic energy of a predetermined resonant frequency;
A support member for supporting the resonance coil;
Electric field suppression made of a dielectric material having a first dielectric constant higher than the dielectric constant of the material of the support member, which is arranged at a position different from the region near the surface of the resonance coil, inside or around the support member And
A resonator comprising:
前記共振コイルの表面近傍領域に配置され、前記支持部材の材料の誘電率よりも高く前記第1の誘電率よりも低い第2の誘電率を有する誘電体セラミック材料からなる電界集中部を更に備えることを特徴とする請求項1に記載の共振器。   An electric field concentrating portion made of a dielectric ceramic material disposed in a region near the surface of the resonance coil and having a second dielectric constant that is higher than the dielectric constant of the material of the support member and lower than the first dielectric constant. The resonator according to claim 1. 前記電界集中部は、前記共振コイルの表面近傍領域の全部に配置されていることを特徴とする請求項2に記載の共振器。   The resonator according to claim 2, wherein the electric field concentrating portion is disposed in the entire surface vicinity region of the resonance coil. 前記電界集中部は、前記共振コイルの表面近傍領域の一部に配置されていることを特徴とする請求項2に記載の共振器。   The resonator according to claim 2, wherein the electric field concentration portion is disposed in a part of a region near the surface of the resonance coil. 前記電界抑制部の前記誘電体材料は、誘電正接tanδが10−2以上であることを特徴とする請求項1から4のいずれか1項に記載の共振器。 5. The resonator according to claim 1, wherein the dielectric material of the electric field suppressing unit has a dielectric loss tangent tan δ of 10 −2 or more. 前記電界集中部の前記誘電体セラミック材料は、比誘電率εrが8以上であり、誘電正接tanδが10−2以下であることを特徴とする請求項5に記載の共振器。 The resonator according to claim 5, wherein the dielectric ceramic material of the electric field concentration portion has a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −2 or less. 前記共振コイルは、スパイラル型の巻線コイルにより構成されていることを特徴とする請求項1から6のいずれか1項に記載の共振器   The resonator according to any one of claims 1 to 6, wherein the resonance coil is configured by a spiral wound coil. 主に磁場の共鳴を利用して送電装置から受電装置に電力を伝送する無線給電システムであって、
前記送電装置は、
所定の周波数の交流電力を供給する電源と、
前記電源から供給された前記交流電力に共振し、前記交流電力を電磁界エネルギーとして送電する送電側共振器と、
を備え、
前記受電装置は、
前記送電側共振コイルと前記磁場の共鳴により結合し、前記電磁界エネルギーを交流電力として受電する受電側共振器と、
前記受電側共振器により受電された前記交流電力により動作する回路部と、
を備え、
前記送電側共振器及び前記受電側共振器の各々は、
所定の共振周波数の交流電力と電磁界エネルギーとを相互に変換する共振コイルと、
前記共振コイルを支持する支持部材と、
前記支持部材の内部又は外周のうち、前記共振コイルの表面近傍領域とは異なる位置に配置され、前記支持部材の材料の誘電率よりも高い第1の誘電率を有する誘電体材料からなる電界抑制部と、
を備えることを特徴とする無線給電システム。
A wireless power feeding system that mainly uses magnetic field resonance to transmit power from a power transmitting device to a power receiving device,
The power transmission device is:
A power supply for supplying AC power of a predetermined frequency;
A power transmission-side resonator that resonates with the AC power supplied from the power source and transmits the AC power as electromagnetic energy;
With
The power receiving device is:
A power receiving side resonator coupled with the power transmitting side resonance coil by resonance of the magnetic field and receiving the electromagnetic field energy as AC power;
A circuit unit that operates by the AC power received by the power-receiving-side resonator;
With
Each of the power transmission side resonator and the power reception side resonator is:
A resonant coil that mutually converts AC power and electromagnetic energy of a predetermined resonant frequency;
A support member for supporting the resonance coil;
Electric field suppression made of a dielectric material having a first dielectric constant higher than the dielectric constant of the material of the support member, which is arranged at a position different from the region near the surface of the resonance coil, inside or around the support member And
A wireless power feeding system comprising:
前記送電側共振器及び前記受電側共振器の各々は、前記共振コイルの表面近傍領域に配置され、前記支持部材の材料の誘電率よりも高く前記第1の誘電率よりも低い第2の誘電率を有する誘電体セラミック材料からなる電界集中部を更に備えることを特徴とする請求項8に記載の無線給電システム。   Each of the power transmission side resonator and the power reception side resonator is arranged in a region near the surface of the resonance coil, and has a second dielectric constant higher than a dielectric constant of a material of the support member and lower than the first dielectric constant. The wireless power feeding system according to claim 8, further comprising an electric field concentration portion made of a dielectric ceramic material having a rate.
JP2014127562A 2014-06-20 2014-06-20 Resonator and wireless power supply system Pending JP2016010168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014127562A JP2016010168A (en) 2014-06-20 2014-06-20 Resonator and wireless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014127562A JP2016010168A (en) 2014-06-20 2014-06-20 Resonator and wireless power supply system

Publications (1)

Publication Number Publication Date
JP2016010168A true JP2016010168A (en) 2016-01-18

Family

ID=55227400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014127562A Pending JP2016010168A (en) 2014-06-20 2014-06-20 Resonator and wireless power supply system

Country Status (1)

Country Link
JP (1) JP2016010168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163798A (en) * 2016-03-11 2017-09-14 大成建設株式会社 Buried structure of feed conductor and non-contact type feeding path
JP2017204938A (en) * 2016-05-11 2017-11-16 株式会社リューテック Wireless power supply device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020168A (en) * 2000-06-30 2002-01-23 Japan Fine Ceramics Center Ceramic dielectric material
JP2002293616A (en) * 2001-03-28 2002-10-09 Japan Fine Ceramics Center Ceramic composition
JP2010081563A (en) * 2008-08-27 2010-04-08 Fujitsu Component Ltd Antenna apparatus and communicating system using the same
JP2011065229A (en) * 2009-09-15 2011-03-31 Toppan Printing Co Ltd Non-contact ic card
WO2011055701A1 (en) * 2009-11-04 2011-05-12 株式会社村田製作所 Communication terminal and information processing system
US20120049986A1 (en) * 2010-08-25 2012-03-01 Electronics And Telecommunications Research Institute Apparatus for reducing electric field and radiation field in magnetic resonant coupling coils or magnetic induction device for wireless energy transfer
WO2014034491A1 (en) * 2012-08-31 2014-03-06 日本電気株式会社 Electric power transmission device and electric power transmission method
JP2014096612A (en) * 2012-11-07 2014-05-22 Sony Corp Antenna module, information communication device and information communication system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020168A (en) * 2000-06-30 2002-01-23 Japan Fine Ceramics Center Ceramic dielectric material
JP2002293616A (en) * 2001-03-28 2002-10-09 Japan Fine Ceramics Center Ceramic composition
JP2010081563A (en) * 2008-08-27 2010-04-08 Fujitsu Component Ltd Antenna apparatus and communicating system using the same
JP2011065229A (en) * 2009-09-15 2011-03-31 Toppan Printing Co Ltd Non-contact ic card
WO2011055701A1 (en) * 2009-11-04 2011-05-12 株式会社村田製作所 Communication terminal and information processing system
US20120049986A1 (en) * 2010-08-25 2012-03-01 Electronics And Telecommunications Research Institute Apparatus for reducing electric field and radiation field in magnetic resonant coupling coils or magnetic induction device for wireless energy transfer
WO2014034491A1 (en) * 2012-08-31 2014-03-06 日本電気株式会社 Electric power transmission device and electric power transmission method
JP2014096612A (en) * 2012-11-07 2014-05-22 Sony Corp Antenna module, information communication device and information communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163798A (en) * 2016-03-11 2017-09-14 大成建設株式会社 Buried structure of feed conductor and non-contact type feeding path
JP2017204938A (en) * 2016-05-11 2017-11-16 株式会社リューテック Wireless power supply device

Similar Documents

Publication Publication Date Title
JP6124085B2 (en) Wireless power transmission device, wireless power transmission device and power reception device
Chatterjee et al. Design optimisation for an efficient wireless power transfer system for electric vehicles
JP5934934B2 (en) Wireless power transmission system
JP5172050B2 (en) Wireless power transmission device
US10243411B2 (en) Wireless charger with uniform H-field generator and EMI reduction
JP6168500B2 (en) Wireless power transmission device, power transmission device, and power reception device
KR102552493B1 (en) Wireless charger having electromagnetic wave shielding function
WO2014068989A1 (en) Wireless power transmission system
KR102524585B1 (en) Wireless charger and wireless power receiver
US11777341B2 (en) Wireless power transmitter and wireless power receiver including multiple grounds for reducing electro-magnetic interference
JP2016010168A (en) Resonator and wireless power supply system
JP6164720B2 (en) Coupled resonator type wireless power transmission system
KR102041988B1 (en) Wireless power transfer device
JP2015220891A (en) Resonator and wireless power supply system
JP2014138509A (en) Resonator, and radio power feeding system
JP2016004990A (en) Resonator
CN111092497B (en) Magnetic induction wireless power transmission coil and magnetic induction wireless power transmission system
JP2014050302A (en) Non-contact power supply device
KR20220028434A (en) Resonator for converting electric field energy into magnetic field energy in wireless power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180515