JP2014050302A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2014050302A
JP2014050302A JP2012194122A JP2012194122A JP2014050302A JP 2014050302 A JP2014050302 A JP 2014050302A JP 2012194122 A JP2012194122 A JP 2012194122A JP 2012194122 A JP2012194122 A JP 2012194122A JP 2014050302 A JP2014050302 A JP 2014050302A
Authority
JP
Japan
Prior art keywords
power
coil
resonance
power transmission
transmission side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012194122A
Other languages
Japanese (ja)
Inventor
Yoshihiro Saito
義広 斎藤
Hitoyoshi Kurata
仁義 倉田
Ayako Sato
綾子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012194122A priority Critical patent/JP2014050302A/en
Publication of JP2014050302A publication Critical patent/JP2014050302A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply device capable of reducing the unnecessary radiation generated in non-contact power supply using a resonance technique.SOLUTION: The winding directions of respective coils are controlled so that the whole magnetic flux on the power transmission side generated when power is transmitted to an LC resonance part coil on the power transmission side via an external connection coil on the power transmission side, and the whole magnetic flux on the power reception side generated when power is transmitted to an LC resonance part coil on the power reception side via an LC resonance part coil on the power reception side cancel each other, and the unnecessary radiation generated from a non-contact power supply device can be reduced.

Description

本発明は、非接触給電による電力伝送における不要輻射(漏洩電磁界)を低減可能な非接触給電装置に関する。   The present invention relates to a non-contact power supply apparatus capable of reducing unnecessary radiation (leakage electromagnetic field) in power transmission by non-contact power supply.

近年、送電方法として、電源コードや送電ケーブルを用いない非接触電力伝送が注目されている。この非接触電力伝送おいては、主に電磁誘導を用いた電力伝送および共鳴法による電力伝送の2つの技術が知られている。   In recent years, contactless power transmission that does not use a power cord or a power transmission cable has attracted attention as a power transmission method. In this non-contact power transmission, two techniques are mainly known: power transmission using electromagnetic induction and power transmission by a resonance method.

これらの技術のうち、共鳴法による電力伝送は一対の共振コイルを電磁場において共鳴させ、電磁場を介して電力伝送する非接触の伝送技術であり、数kWといった比較的大きな電力を数m離れた距離を伝送することも可能である。   Among these technologies, power transmission by the resonance method is a non-contact transmission technology in which a pair of resonance coils are resonated in an electromagnetic field and power is transmitted through the electromagnetic field, and a relatively large power such as several kW is several meters away. Can also be transmitted.

そのため、共振コイルを含むコイルユニットの周囲に発生する電磁界は、他の電子機器などに対しては電磁ノイズとなる場合があり、たとえば無線通信機器の障害となることがある。また、電磁場内に導電体がある場合は、電磁界による電磁誘導によって導電体が加熱されることもあり、電子機器の故障を引き起こす原因にもなりかねない。   Therefore, the electromagnetic field generated around the coil unit including the resonance coil may become electromagnetic noise for other electronic devices and the like, which may be an obstacle to the wireless communication device, for example. Further, when there is a conductor in the electromagnetic field, the conductor may be heated by electromagnetic induction by an electromagnetic field, which may cause a failure of the electronic device.

従って、共鳴法を用いた電力伝送においては、電力の伝送方向以外に発生する不要輻射をできるだけ抑えることが望まれている。   Therefore, in power transmission using the resonance method, it is desired to suppress unnecessary radiation generated in directions other than the power transmission direction as much as possible.

たとえば、特許文献1には、漏洩電磁界をできるだけ小さくするため、高周波電源から供給された高周波電力を一次自己共振コイルから二次自己共振コイルに供給する際、一次自己共振コイルおよび二次自己共振コイルに互いに逆向きの電流が流れるように周波数を設定する技術が開示されている。   For example, in Patent Document 1, in order to make the leakage electromagnetic field as small as possible, when the high-frequency power supplied from the high-frequency power source is supplied from the primary self-resonant coil to the secondary self-resonant coil, the primary self-resonant coil and the secondary self-resonant coil are disclosed. A technique for setting a frequency so that currents in opposite directions flow through a coil is disclosed.

特開2011−147213号公報JP 2011-147213 A

しかしながら、特許文献1の技術においては、一次自己共振コイルもしくは二次自己共振コイルのいずれか一方のコイルから発生する電磁界の向きと他方のコイルから発生する電磁界の向きとが互いに逆位相となるため、一次自己共振コイルと二次自己共振コイルとの間に発生する漏洩磁界は低減できるものの、一次コイルから一次自己共振コイルに高周波電力を供給した際に生じる電磁界や、電力を受けた二次自己共振コイルが二次コイルに高周波電力を発生させる際に生じる電磁界は、不要輻射として外部に漏洩してしまうおそれがある。   However, in the technique of Patent Document 1, the direction of the electromagnetic field generated from either the primary self-resonant coil or the secondary self-resonant coil is opposite to the direction of the electromagnetic field generated from the other coil. Therefore, although the leakage magnetic field generated between the primary self-resonant coil and the secondary self-resonant coil can be reduced, the electromagnetic field generated when the high-frequency power is supplied from the primary coil to the primary self-resonant coil or received power An electromagnetic field generated when the secondary self-resonant coil generates high-frequency power in the secondary coil may leak to the outside as unnecessary radiation.

本発明は、上記の課題を解決するためになされたものであり、共鳴法を用いた非接触給電において発生する不要輻射を低減可能な非接触給電装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a non-contact power feeding apparatus capable of reducing unnecessary radiation generated in non-contact power feeding using a resonance method.

本発明による非接触給電装置は、電源回路と、前記電源回路から供給される電力が伝送される送電側外部接続コイルと、前記送電側外部接続コイルに磁気的に結合された送電側LC共振部コイルと、前記送電側LC共振部コイルに対向して配置され前記電力が伝送される受電側LC共振部コイルと、前記受電側LC共振部と磁気的に結合された受電側外部接続コイルと、前記受電側外部接続コイルを介して前記電力が伝送される受電回路と、を備え、前記送電側LC共振部コイルと前記受電側LC共振部コイルとの巻き線方向が反対であり、前記送電側LC共振部コイルと前記送電側外部接続コイルとの巻き線方向とが同一であり、前記受電側LC共振部コイルと前記受電側外部接続コイルとの巻き線方向とが同一であることを特徴とする。   A contactless power supply device according to the present invention includes a power supply circuit, a power transmission side external connection coil to which power supplied from the power supply circuit is transmitted, and a power transmission side LC resonance unit magnetically coupled to the power transmission side external connection coil A coil, a power receiving side LC resonance part coil that is disposed opposite to the power transmission side LC resonance part coil and transmits the power, and a power receiving side external connection coil that is magnetically coupled to the power receiving side LC resonance part, A power receiving circuit through which the power is transmitted via the power receiving side external connection coil, and the winding direction of the power transmitting side LC resonance unit coil and the power receiving side LC resonance unit coil is opposite, and the power transmission side The winding direction of the LC resonance unit coil and the power transmission side external connection coil is the same, and the winding direction of the power reception side LC resonance unit coil and the power reception side external connection coil is the same. To do.

この構成によれば、送電側外部接続コイルを介して送電側LC共振部コイルに電力が伝送される際に生じる送電側全体の磁束と、受電側LC共振部コイルを介して受電側LC共振部コイルに電力が伝送される際に生じる受電側全体の磁束とが互いに打ち消しあい、非接触給電装置から生じる不要輻射を全体的に低減できる。   According to this configuration, the entire power transmission side magnetic flux generated when power is transmitted to the power transmission side LC resonance unit coil via the power transmission side external connection coil, and the power reception side LC resonance unit via the power reception side LC resonance unit coil The magnetic flux generated on the power receiving side when the power is transmitted to the coils cancels each other, so that unnecessary radiation generated from the non-contact power feeding device can be reduced as a whole.

本発明によれば、共鳴法を用いた非接触給電において発生する不要輻射を低減可能な非接触給電装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the non-contact electric power feeder which can reduce the unnecessary radiation generate | occur | produced in the non-contact electric power feeding using the resonance method can be provided.

本発明の実施形態にかかる非接触給電装置の構成図である。It is a lineblock diagram of the non-contact electric supply device concerning the embodiment of the present invention. 送電側LC共振部コイルと受電側LC共振部コイルとの離間距離を変えた時の共振周波数の変化を示す図である。It is a figure which shows the change of the resonant frequency when the separation distance of the power transmission side LC resonance part coil and the power reception side LC resonance part coil is changed. 送電側LC共振部コイルと受電側LC共振部コイルの巻き線方向を反対とし、送電側LC共振部コイルと送電側外部接続コイルとの巻き線方向および受電側LC共振部コイルと受電側外部接続コイルの巻き線方向を同一とした状態で、送電側LC共振部コイルと受電側LC共振部コイルの離間距離を10cmとしたときの受電部インピーダンスと磁界強度の関係を示す図である。The winding direction of the power transmission side LC resonance part coil and the power reception side LC resonance part coil is reversed, the winding direction of the power transmission side LC resonance part coil and the power transmission side external connection coil, and the power reception side LC resonance part coil and the power reception side external connection. It is a figure which shows the relationship between the power receiving part impedance and magnetic field intensity when the separation distance of the power transmission side LC resonance part coil and a power receiving side LC resonance part coil is 10 cm in the state which made the coil winding direction the same. 送電側LC共振部コイルと受電側LC共振部コイルの巻き線方向を同一とし、送電側LC共振部コイルと送電側外部接続コイルとの巻き線方向および受電側LC共振部コイルと受電側外部接続コイルの巻き線方向を同一とした状態で、送電側LC共振部コイルと受電側LC共振部コイルの離間距離を10cmとしたときの受電部インピーダンスと磁界強度の関係を示す図である。The winding direction of the power transmission side LC resonance part coil and the power reception side LC resonance part coil are made the same, the winding direction of the power transmission side LC resonance part coil and the power transmission side external connection coil, and the power reception side LC resonance part coil and the power reception side external connection. It is a figure which shows the relationship between the power receiving part impedance and magnetic field intensity when the separation distance of the power transmission side LC resonance part coil and a power receiving side LC resonance part coil is 10 cm in the state which made the coil winding direction the same. 送電側LC共振部コイルと受電側LC共振部コイルの巻き線方向を同一とし、送電側LC共振部コイルと送電側外部接続コイルとの巻き線方向および受電側LC共振部コイルと受電側外部接続コイルの巻き線方向を反対とした状態で、送電側LC共振部コイルと受電側LC共振部コイルの離間距離を10cmとしたときの受電部インピーダンスと磁界強度の関係を示す図である。The winding direction of the power transmission side LC resonance part coil and the power reception side LC resonance part coil are made the same, the winding direction of the power transmission side LC resonance part coil and the power transmission side external connection coil, and the power reception side LC resonance part coil and the power reception side external connection. It is a figure which shows the relationship between the power receiving part impedance and magnetic field intensity when the separation distance of the power transmission side LC resonance part coil and a power receiving side LC resonance part coil is 10 cm in the state which made the coil winding direction reverse. 送電側LC共振部コイルと受電側LC共振部コイルの巻き線方向を反対とし、送電側LC共振部コイルと送電側外部接続コイルとの巻き線方向を同一、受電側LC共振部コイルと受電側外部接続コイルの巻き線方向を反対とした状態で、送電側LC共振部コイルと受電側LC共振部コイルの離間距離を10cmとしたときの受電部インピーダンスと磁界強度の関係を示す図である。The winding direction of the power transmission side LC resonance unit coil and the power reception side LC resonance unit coil are reversed, and the winding direction of the power transmission side LC resonance unit coil and the power transmission side external connection coil is the same, the power reception side LC resonance unit coil and the power reception side It is a figure which shows the relationship between the power receiving part impedance and magnetic field intensity when the separation distance of the power transmission side LC resonance part coil and a power receiving side LC resonance part coil is 10 cm in the state which made the winding direction of the external connection coil reverse.

図1は本発明の実施形態にかかる非接触給電装置1の構成図である。電源回路102には送電側外部接続コイル103が接続され、この送電側外部接続回路103に送電側LC共振部コイル101が磁気的に結合している。送電側LC共振部コイル101には、たとえばキャパシタンス成分を有するコンデンサ等が接続され、送電側LC共振部11を形成する。この送電側LC共振部11と、送電側外部接続コイル103とで送電側LC共振器10を形成する。   FIG. 1 is a configuration diagram of a non-contact power feeding device 1 according to an embodiment of the present invention. A power transmission side external connection coil 103 is connected to the power supply circuit 102, and the power transmission side LC resonance coil 101 is magnetically coupled to the power transmission side external connection circuit 103. For example, a capacitor having a capacitance component is connected to the power transmission side LC resonance unit coil 101 to form the power transmission side LC resonance unit 11. The power transmission side LC resonator 10 and the power transmission side external connection coil 103 form a power transmission side LC resonator 10.

受電回路202には、受電側外部接続コイル203が接続され、この受電側外部接続回路203に受電側LC共振部コイル201が磁気的に結合している。受電側共振部コイル201には、たとえばキャパシタンス成分を有するコンデンサ等が接続され、受電側LC共振部21を形成する。この受電側LC共振部21と、受電側外部接続コイル203とで受電側LC共振器20を形成する。   A power receiving side external connection coil 203 is connected to the power receiving circuit 202, and a power receiving side LC resonance section coil 201 is magnetically coupled to the power receiving side external connection circuit 203. For example, a capacitor having a capacitance component is connected to the power reception side resonance unit coil 201 to form the power reception side LC resonance unit 21. The power receiving side LC resonator 20 and the power receiving side external connection coil 203 form a power receiving side LC resonator 20.

送電側LC共振部コイル101と受電側LC共振部コイル201とは、対向するように配置され、電気的な接続をすることなく離間している。   The power transmission side LC resonance part coil 101 and the power reception side LC resonance part coil 201 are disposed so as to face each other, and are separated without being electrically connected.

この非接触給電装置1における不要輻射の低減は、以下のように達成される。   Reduction of unnecessary radiation in the non-contact power feeding device 1 is achieved as follows.

電源回路102から送電側外部接続コイル103供給された電力は、磁気的に結合している送電側LC共振部コイル101に供給される。このとき、送電側外部接続コイル103と送電側LC共振部コイル101との巻き線方向が同一であるため、送電側LC共振器10には一方向のみの磁束が発生する。   The power supplied from the power supply circuit 102 to the power transmission side external connection coil 103 is supplied to the power transmission side LC resonance unit coil 101 that is magnetically coupled. At this time, since the winding direction of the power transmission side external connection coil 103 and the power transmission side LC resonance part coil 101 is the same, the power transmission side LC resonator 10 generates a magnetic flux only in one direction.

送電側LC共振部コイル101が受けた電力は、対向する位置に離間して配置された受電側LC共振部コイル201と同じ共振周波数で磁気的に共鳴するため、この電力を受け取ることになる。   Since the power received by the power transmission side LC resonance unit coil 101 magnetically resonates at the same resonance frequency as that of the power reception side LC resonance unit coil 201 that is spaced apart from the opposing position, this power is received.

次に、受電側LC共振部コイル201は、この受け取った電力を磁気的に結合した受電側外部接続コイル203を経由し、受電回路202に供給する。このとき、受電側外部接続コイル203と受電側LC共振部コイル201との巻き線方向は同一であり、なおかつ受電側LC共振部コイル201と送電側LC共振部コイル101との巻き線方向は反対となっているため、受電側LC共振器20には送電側LC共振器10と反対の方向に磁束が発生する。   Next, the power receiving side LC resonance part coil 201 supplies the received power to the power receiving circuit 202 via the power receiving side external connection coil 203 magnetically coupled. At this time, the winding direction of the power receiving side external connection coil 203 and the power receiving side LC resonance unit coil 201 is the same, and the winding direction of the power receiving side LC resonance unit coil 201 and the power transmission side LC resonance unit coil 101 is opposite. Therefore, a magnetic flux is generated in the power receiving side LC resonator 20 in the direction opposite to that of the power transmitting side LC resonator 10.

そのため、送電側LC共振器10と受電側LC共振器20は逆位相となり、非接触給電装置1全体の不要輻射を低減することができる。   Therefore, the power transmission side LC resonator 10 and the power reception side LC resonator 20 are in opposite phases, and unnecessary radiation of the entire contactless power supply device 1 can be reduced.

図1においては、電源回路102と送電側外部接続コイル103とは直接接続されているが、それらの間にインピーダンスを変換する回路を介しても良い。同様に受電回路202と受電側外部接続コイル203とは直接接続されていてもよいし、それらの間にインピーダンスを変換する回路を介しても良い。インピーダンスを変換する回路を介することによって、伝送されずに反射によって電源回路に戻った電力や、コイルの抵抗成分が不要輻射とならないように吸収できる。   In FIG. 1, the power supply circuit 102 and the power transmission side external connection coil 103 are directly connected, but a circuit for converting impedance between them may be provided. Similarly, the power receiving circuit 202 and the power receiving side external connection coil 203 may be directly connected, or a circuit for converting impedance between them may be used. By passing through the circuit that converts the impedance, it is possible to absorb the power that has not been transmitted and returned to the power supply circuit by reflection and the resistance component of the coil so as not to become unnecessary radiation.

次に、図2を用いて送電側LC共振部コイル101と受電側LC共振部コイル201との離間距離を変えた時の共振周波数の変化を説明する。   Next, changes in the resonance frequency when the separation distance between the power transmission side LC resonance unit coil 101 and the power reception side LC resonance unit coil 201 is changed will be described with reference to FIG.

図2において、横軸は周波数、縦軸はインピーダンスを示しており、曲線は送電側外部接続コイル103又は受電側外部接続コイル203から測定したインピーダンスの周波数特性を表している。図2の(a)から(d)は、送電側LC共振器10と受電側LC共振器20との距離が離れた状態から次第に近づいたときの、インピーダンスの周波数特性である。   In FIG. 2, the horizontal axis represents frequency, the vertical axis represents impedance, and the curve represents the frequency characteristics of impedance measured from the power transmission side external connection coil 103 or the power reception side external connection coil 203. 2A to 2D show the frequency characteristics of the impedance when the distance between the power transmission side LC resonator 10 and the power reception side LC resonator 20 gradually approaches from a state where the distance is long.

図2(a)は送電側LC共振器10と受電側LC共振器20とが十分に離れ、互いのLC共振器の影響を受けない状態を示している。このように送電側LC共振器10と受電側LC共振器20が十分離れた状態では、結合係数kとコイルのQ(Quality Factor)との積が1より小さくなり、送受電コイル間の電力伝送が十分に行われない。   FIG. 2A shows a state in which the power transmission side LC resonator 10 and the power reception side LC resonator 20 are sufficiently separated from each other and are not affected by the mutual LC resonators. Thus, in a state where the power transmission side LC resonator 10 and the power reception side LC resonator 20 are sufficiently separated from each other, the product of the coupling coefficient k and the coil Q (Quality Factor) is smaller than 1, and power transmission between the power transmission and reception coils is performed. Is not done enough.

図2(b)は送電側LC共振器10と受電側LC共振器20が近づき、送電側LC共振器10と受電側LC共振器20とが臨界結合の状態にあることを示している。臨界結合状態とは、コイルのQと結合係数kとの積が1に等しい状態を言い、良好な伝送ができることが知られている。   FIG. 2B shows that the power transmission side LC resonator 10 and the power reception side LC resonator 20 are close to each other, and the power transmission side LC resonator 10 and the power reception side LC resonator 20 are in a critically coupled state. The critical coupling state is a state in which the product of the coil Q and the coupling coefficient k is equal to 1, and it is known that good transmission can be performed.

さらに、送電側LC共振器10と受電側LC共振器20とを近づけていくと、図2(c)、(d)のように次第に共振周波数が分離していく。   Furthermore, when the power transmission side LC resonator 10 and the power reception side LC resonator 20 are brought closer to each other, the resonance frequencies are gradually separated as shown in FIGS.

図2(c)、(d)は、コイルのQと結合係数kとの積が1より大きい状態を示している。つまり、kQ>1の状態にあると、送受電LC共振器は、点線で示す自己共振周波を中心に低い周波数のピーク501と高い周波数のピーク502の2つのピークを有することになる。これは、互いに相手のLC共振器の影響を受けていることを示している。   2C and 2D show a state where the product of the coil Q and the coupling coefficient k is larger than 1. FIG. That is, when in the state of kQ> 1, the power transmitting / receiving LC resonator has two peaks, a low frequency peak 501 and a high frequency peak 502 centering on the self-resonant frequency indicated by the dotted line. This indicates that they are mutually influenced by the counterpart LC resonator.

この2つのピークの共振周波数のうち、低い方の周波数をf1、高い方の周波数をf2としたとき、送電側LC共振器10に接続された電源回路102は、f1、f2の少なくともどちらかの周波数成分を有する交流電力を送電側LC共振器10に伝送することなる。   Of these two peak resonance frequencies, when the lower frequency is f1 and the higher frequency is f2, the power supply circuit 102 connected to the power transmission side LC resonator 10 has at least one of f1 and f2. AC power having a frequency component is transmitted to the power transmission side LC resonator 10.

[実施例1]
図1の非接触給電装置において、送電側LC共振部コイル101と受電側LC共振部コイル201を、内径120mm、外径260mm、ターン数7回で構成した平面コイルとし、それぞれのコイルの両端に7pFのコンデンサを接続した。このとき、送電側LC共振部コイル101と受電側LC共振部コイル103とは巻き線方向を反対にした。
[Example 1]
In the non-contact power feeding apparatus of FIG. 1, the power transmission side LC resonance unit coil 101 and the power reception side LC resonance unit coil 201 are planar coils configured with an inner diameter of 120 mm, an outer diameter of 260 mm, and a number of turns of seven. A 7 pF capacitor was connected. At this time, the winding direction of the power transmission side LC resonance part coil 101 and that of the power reception side LC resonance part coil 103 were reversed.

送電側外部接続コイル103として、ターン数1回のコイル(外部接続コイル)を、送電側LC共振部コイル101と同一平面上であって、かつ、送電側LC共振部コイル101の内周から、その巻き軸方向に10mm離れた円周上に配置した。このとき、送電側外部接続コイル103の巻き線方向は、送電側LC共振コイル101の巻き線方向と同一にした。   As the power transmission side external connection coil 103, a coil having one turn (external connection coil) is on the same plane as the power transmission side LC resonance unit coil 101 and from the inner periphery of the power transmission side LC resonance unit coil 101. It arrange | positioned on the periphery 10 mm away in the winding-axis direction. At this time, the winding direction of the power transmission side external connection coil 103 was made the same as the winding direction of the power transmission side LC resonance coil 101.

受電側外部接続コイル203として、ターン数1回のコイル(外部接続コイル)を、受電側LC共振部コイル201と同一平面上であって、かつ受電側LC共振部コイル201の内周から、その巻き軸方向に10mm離れた円周上に配置した。このとき、受電側外部接続コイル203の巻き線方向は、受電側LC共振コイル201の巻き線方向と同一にした。   As the power receiving side external connection coil 203, a coil having one turn (external connection coil) is on the same plane as the power receiving side LC resonance unit coil 201 and from the inner periphery of the power reception side LC resonance unit coil 201. It arrange | positioned on the circumference 10 mm away in the winding axis direction. At this time, the winding direction of the power receiving side external connection coil 203 was the same as the winding direction of the power receiving side LC resonance coil 201.

本実施例では、送受電側LC共振部コイルや送受電側外部接続コイルの形状は、いずれも円形の平面状に巻かれた渦巻状コイルとしたが、これに限らず四角形状、多角形形状のコイルでもよいし、棒状の磁性体や円柱状の空芯にソレノイド状に巻かれたコイルでもよい。   In this embodiment, the shape of the power transmission / reception side LC resonance part coil or the power transmission / reception side external connection coil is a spiral coil wound in a circular flat shape, but is not limited to this, and is rectangular or polygonal. Or a coil wound in a solenoid shape around a rod-shaped magnetic body or a cylindrical air core.

本実施例では、巻き線として銅製の単線を用いたが、撚り線、平角線を用いても構わないし、回路基板上に配置された導体パターンを用いても構わない。また、巻き線の線種は銅線に限らず、アルミ線、アルミ銅クラッド線でもよい。   In this embodiment, a single copper wire is used as the winding, but a stranded wire or a rectangular wire may be used, or a conductor pattern arranged on a circuit board may be used. The wire type of the winding is not limited to a copper wire, and may be an aluminum wire or an aluminum copper clad wire.

また、送電側LC共振器10および受電側LC共振器20の単独での共振周波数をそれぞれ12MHzとなるよう設定した。そして、図2(c)、(d)に示される2つの共振周波数のピーク501,502が現われるように、送電側共振部コイル101と受電側共振部コイルとの離間距離は10cmとした。   In addition, the resonance frequencies of the power transmission side LC resonator 10 and the power reception side LC resonator 20 were set to be 12 MHz, respectively. And the separation distance of the power transmission side resonance part coil 101 and the power reception side resonance part coil was 10 cm so that the two peaks 501 and 502 of the resonance frequency shown by FIG.2 (c), (d) may appear.

磁界強度(A/m)は、ループアンテナを用い、送電側LC共振器10から半径3mの円周上で最大の磁界強度(A/m)を測定した。つまり、この磁界強度(A/m)の値が、送電側LC共振器10の周囲での不要輻射を示すことになる。   For the magnetic field strength (A / m), a loop antenna was used, and the maximum magnetic field strength (A / m) was measured on the circumference of a radius of 3 m from the power transmission side LC resonator 10. That is, the value of the magnetic field strength (A / m) indicates unnecessary radiation around the power transmission side LC resonator 10.

このように構成された非接触給電装置において、送電部インピーダンス(Z)を0.1Ω〜200Ω、受電部インピーダンスを0.1Ω〜100Ωの範囲において、インピーダンスの値を変化させながら、電源回路102から10Wの電力を受電回路202に送電したときの磁界強度(不要輻射)(A/m)を測定した結果を図3に示す。   In the non-contact power supply apparatus configured as described above, the power supply unit impedance (Z) is 0.1Ω to 200Ω, and the power reception unit impedance is in the range of 0.1Ω to 100Ω. FIG. 3 shows the result of measuring the magnetic field strength (unwanted radiation) (A / m) when 10 W of power is transmitted to the power receiving circuit 202.

図3(a)は、2つのピークの共振周波数のうち、低い側の共振周波数f1を用いて送受電を行ったときの受電部インピーダンスに対する磁界強度(A/m)を示し、図3(b)は、2つのピークの共振周波数のうち、高い側の共振周波数f2を用いて送受電を行ったときの受電部インピーダンスに対する磁界強度(A/m)を示している。   FIG. 3A shows the magnetic field strength (A / m) with respect to the impedance of the power receiving unit when power is transmitted / received using the lower resonance frequency f1 of the two peak resonance frequencies. ) Shows the magnetic field strength (A / m) with respect to the power receiving section impedance when power is transmitted and received using the higher resonance frequency f2 of the two peak resonance frequencies.

図3(a)、(b)の結果から分かるとおり、いずれも送電部インピーダンス(Z)が低く、受電部インピーダンスが およそ10Ωでの磁界強度(A/m)が最も弱くなった。この磁界強度(A/m)の値は、送電側LC共振器10に発生した磁束と受電側LC共振器20に発生した磁束が互いに打ち消され、不要輻射として漏洩した磁束とみることができる。このとき、共振周波数f1よりもf2で送受電を行った方が、磁界強度(A/m)はより弱くなることが分かる。   As can be seen from the results of FIGS. 3 (a) and 3 (b), the power transmission unit impedance (Z) was low, and the magnetic field strength (A / m) at the power reception unit impedance of about 10Ω was the weakest. The value of the magnetic field strength (A / m) can be regarded as a magnetic flux leaked as unnecessary radiation because the magnetic flux generated in the power transmission side LC resonator 10 and the magnetic flux generated in the power reception side LC resonator 20 cancel each other. At this time, it is understood that the magnetic field strength (A / m) becomes weaker when power is transmitted and received at f2 than at the resonance frequency f1.

[比較例1]
送電側LC共振部コイル101と受電側LC共振部コイル201の巻き線方向を同一とし、送電側LC共振部コイル101と送電側外部接続コイル103との巻き線方向および受電側LC共振部コイル201と受電側外部接続コイル203の巻き線方向を同一とした状態で、実施例1と同様に、送電部インピーダンス(Z)を0.1Ω〜200Ω、受電部インピーダンスを0.1Ω〜100Ωの範囲において、インピーダンスの値を変化させながら、電源回路102から10Wの電力を受電回路202に送電したときの磁界強度(不要輻射)(A/m)を測定した結果を図4に示す。
[Comparative Example 1]
The winding direction of the power transmission side LC resonance part coil 101 and the power reception side LC resonance part coil 201 is made the same, the winding direction of the power transmission side LC resonance part coil 101 and the power transmission side external connection coil 103 and the power reception side LC resonance part coil 201. In the state where the winding direction of the power receiving side external connection coil 203 is the same, the power transmission unit impedance (Z) is in the range of 0.1Ω to 200Ω and the power reception unit impedance is in the range of 0.1Ω to 100Ω, as in the first embodiment. FIG. 4 shows the result of measuring the magnetic field strength (unwanted radiation) (A / m) when power of 10 W is transmitted from the power supply circuit 102 to the power receiving circuit 202 while changing the impedance value.

図4(a)は、2つのピークの共振周波数のうち、低い側の共振周波数f1を用いて送受電を行ったときの受電部インピーダンスに対する磁界強度(A/m)を示し、図4(b)は、2つのピークの共振周波数のうち、高い側の共振周波数f2を用いて送受電を行ったときの受電部インピーダンスに対する磁界強度(A/m)を示している。   FIG. 4A shows the magnetic field strength (A / m) with respect to the impedance of the power receiving unit when power is transmitted / received using the lower resonance frequency f1 of the two peak resonance frequencies. ) Shows the magnetic field strength (A / m) with respect to the power receiving section impedance when power is transmitted and received using the higher resonance frequency f2 of the two peak resonance frequencies.


比較例1においては、すべてのコイルの巻き線方向が同一であるため、送電側LC共振部コイル、受電側LC共振部コイル、送電側外部接続コイルおよび受電側外部接続コイルのいずれのコイル間にも磁束を打ち消しあう関係が存在していない。

In Comparative Example 1, since the winding direction of all the coils is the same, between any of the power transmission side LC resonance unit coil, the power reception side LC resonance unit coil, the power transmission side external connection coil, and the power reception side external connection coil However, there is no relationship that cancels out the magnetic flux.

従って実施例1と比較すると、共振周波数がf1、f2いずれの場合であっても、磁界強度(A/m)は強くなっている。ただし、実施例1と同様に共振周波数f1よりもf2で送受電を行った方が、磁界強度(A/m)は弱くなっていることが分かる。   Therefore, as compared with Example 1, the magnetic field strength (A / m) is higher regardless of whether the resonance frequency is f1 or f2. However, it is understood that the magnetic field strength (A / m) is weaker when power is transmitted and received at f2 than at the resonance frequency f1 as in the first embodiment.

[比較例2]
次に、送電側LC共振部コイル101と受電側LC共振部コイル201の巻き線方向を同一とし、送電側LC共振部コイル101と送電側外部接続コイル103との巻き線方向および受電側LC共振部コイル201と受電側外部接続コイル203の巻き線方向とを反対とした状態で、実施例1と同様に、送電部インピーダンス(Z)を0.1Ω〜200Ω、受電部インピーダンスを0.1Ω〜100Ωの範囲において、インピーダンスの値を変化させながら、電源回路102から10Wの電力を受電回路202に送電したときの磁界強度(不要輻射)(A/m)を測定した結果を図5に示す。
[Comparative Example 2]
Next, the winding direction of the power transmission side LC resonance part coil 101 and the power reception side LC resonance part coil 201 are made the same, the winding direction of the power transmission side LC resonance part coil 101 and the power transmission side external connection coil 103, and the power reception side LC resonance. In the state where the winding direction of the power coil 201 and the power receiving side external connection coil 203 is opposite, the power transmission impedance (Z) is 0.1Ω to 200Ω and the power reception impedance is 0.1Ω to the same as in the first embodiment. FIG. 5 shows the result of measuring the magnetic field strength (unwanted radiation) (A / m) when 10 W of power is transmitted from the power supply circuit 102 to the power receiving circuit 202 while changing the impedance value in the range of 100Ω.

図5(a)は、2つのピークの共振周波数のうち、低い側の共振周波数f1を用いて送受電を行ったときの受電部インピーダンスに対する磁界強度(A/m)を示し、図5(b)は、2つのピークの共振周波数のうち、高い側の共振周波数f2を用いて送受電を行ったときの受電部インピーダンスに対する磁界強度(A/m)を示している。   FIG. 5A shows the magnetic field strength (A / m) with respect to the power receiving unit impedance when power is transmitted and received using the lower resonance frequency f1 of the two peak resonance frequencies. ) Shows the magnetic field strength (A / m) with respect to the power receiving section impedance when power is transmitted and received using the higher resonance frequency f2 of the two peak resonance frequencies.

比較例2においては、送電側LC共振コイル101と受電側LC共振コイルとが巻き線方向が同一で、送電側外部接続コイル103と受電側外部接続コイル203とがいずれも送受電LC共振部コイルとは反対の巻き線方向となっている。つまり、送受電LC共振部コイルと送受電外部接続コイルとの巻き線方向が反対になっているため、双方に発生する磁束は一部が打ち消されあうものの、打ち消されない磁束は不要輻射となって漏洩すると考えられる。   In Comparative Example 2, the power transmission side LC resonance coil 101 and the power reception side LC resonance coil have the same winding direction, and the power transmission side external connection coil 103 and the power reception side external connection coil 203 are both power transmission / reception LC resonance part coils. The winding direction is the opposite of. In other words, since the winding direction of the power transmission / reception LC resonance part coil and the power transmission / reception external connection coil is opposite, the magnetic flux generated in both is partially canceled, but the magnetic flux that is not canceled becomes unnecessary radiation. It is thought that it leaks.

実施例1と比較すると、比較例1と同様に共振周波数がf1、f2いずれの場合であっても、磁界強度(A/m)は強くなっている。ただし、実施例1と同様に共振周波数f1よりもf2で送受電を行った方が、磁界強度(A/m)は弱くなっていることが分かる。   Compared to Example 1, the magnetic field strength (A / m) is higher in both cases where the resonance frequency is f1 or f2 as in Comparative Example 1. However, it is understood that the magnetic field strength (A / m) is weaker when power is transmitted and received at f2 than at the resonance frequency f1 as in the first embodiment.

[比較例3]
送電側LC共振部コイルと受電側LC共振部コイルの巻き線方向を反対とし、送電側LC共振部コイルと送電側外部接続コイルとの巻き線方向を同一、受電側LC共振部コイルと受電側外部接続コイルの巻き線方向を反対とした状態で、実施例1と同様に、インピーダンスの値を変化させながら、電源回路102から10Wの電力を受電回路202に送電したときの磁界強度(不要輻射)(A/m)を測定した結果を図6に示す。
[Comparative Example 3]
The winding direction of the power transmission side LC resonance unit coil and the power reception side LC resonance unit coil are reversed, and the winding direction of the power transmission side LC resonance unit coil and the power transmission side external connection coil is the same, the power reception side LC resonance unit coil and the power reception side In the state where the winding direction of the external connection coil is reversed, the magnetic field strength (unnecessary radiation) when power of 10 W is transmitted from the power supply circuit 102 to the power receiving circuit 202 while changing the impedance value as in the first embodiment. ) (A / m) is shown in FIG.

図6(a)は、2つのピークの共振周波数のうち、低い側の共振周波数f1を用いて送受電を行ったときの受電部インピーダンスに対する磁界強度(A/m)を示し、図6(b)は、2つのピークの共振周波数のうち、高い側の共振周波数f2を用いて送受電を行ったときの受電部インピーダンスに対する磁界強度(A/m)を示している。   FIG. 6A shows the magnetic field strength (A / m) with respect to the impedance of the power receiving unit when power is transmitted / received using the lower resonance frequency f1 of the two peak resonance frequencies. ) Shows the magnetic field strength (A / m) with respect to the power receiving section impedance when power is transmitted and received using the higher resonance frequency f2 of the two peak resonance frequencies.

比較例3においては、送電LC共振部コイル101と送電外部接続コイル103と受電側外部接続コイル203の巻き線方向が同一で、受電側LC共振部コイル201の巻き線方向のみが反対になっているため、両方向に発生する磁束は一部が打ち消されあうものの、打ち消されない磁束は不要輻射となって漏洩すると考えられる。   In Comparative Example 3, the winding direction of the power transmission LC resonance unit coil 101, the power transmission external connection coil 103, and the power reception side external connection coil 203 is the same, and only the winding direction of the power reception side LC resonance unit coil 201 is reversed. Therefore, although the magnetic fluxes generated in both directions are partially canceled, it is considered that the magnetic flux that is not canceled leaks as unnecessary radiation.

実施例1と比較すると、比較例1、2と同様に共振周波数がf1、f2いずれの場合であっても、磁界強度(A/m)は強くなっている。ただし、実施例1と同様に共振周波数f1よりもf2で送受電を行った方が、磁界強度(A/m)は弱くなっていることが分かる。これは図3に従って説明したとおり、送電側LC共振器10と受電側LC共振器との間の送受電が、2つの共振周波数のピークが現われる距離において行われる場合、共振周波数の高いf2を用いた方が、より本発明の効果が得られることを示している。   Compared with Example 1, the magnetic field strength (A / m) is higher in both cases where the resonance frequency is f1 or f2, as in Comparative Examples 1 and 2. However, it is understood that the magnetic field strength (A / m) is weaker when power is transmitted and received at f2 than at the resonance frequency f1 as in the first embodiment. As described with reference to FIG. 3, when power transmission / reception between the power transmission side LC resonator 10 and the power reception side LC resonator is performed at a distance where two resonance frequency peaks appear, f2 having a high resonance frequency is used. This shows that the effect of the present invention can be obtained more.

この様に送電側LC共振部コイルと受電側LC共振部コイルおよび各々の外部接続コイルの巻き線方向を制御することにより、発生する磁束の打消し効果を得ることができ不要輻射の低減がなされる。   In this way, by controlling the winding direction of the power transmission side LC resonance unit coil, the power reception side LC resonance unit coil, and each external connection coil, the effect of canceling the generated magnetic flux can be obtained, and unnecessary radiation can be reduced. The

以上のように、本発明に係る非接触給電装置は、小電力品や大電力品などに関わり無く使え、電気自動車やハイブリッド自動車への給電や携帯電話、モバイルフォン、携帯情報機器、家電機器、工作機械、工業用搬送機器、工作機械、大型移動用車両等の駆動系への給電や車両間の給電等に有用である。   As described above, the non-contact power supply device according to the present invention can be used regardless of a low-power product or a high-power product, power supply to an electric vehicle or a hybrid vehicle, a mobile phone, a mobile phone, a portable information device, a home appliance, It is useful for power supply to drive systems such as machine tools, industrial transfer equipment, machine tools, and large-sized moving vehicles, and power supply between vehicles.

10 送電側LC共振器
11 送電側LC共振部
20 受電側LC共振器
21 受電側LC共振部
101 送電側LC共振部コイル
102 電源回路
103 送電側外部接続コイル
201 受電側LC共振部コイル
202 受電回路
203 受電側外部接続コイル
DESCRIPTION OF SYMBOLS 10 Power transmission side LC resonator 11 Power transmission side LC resonance part 20 Power reception side LC resonator 21 Power reception side LC resonance part 101 Power transmission side LC resonance part coil 102 Power supply circuit 103 Power transmission side external connection coil 201 Power reception side LC resonance part coil 202 Power reception circuit 203 Power receiving side external connection coil

Claims (1)

電源回路と、
前記電源回路から供給される電力が伝送される送電側外部接続コイルと、
前記送電側外部接続コイルに磁気的に結合された送電側LC共振部コイルと、
前記送電側LC共振部コイルに対向して配置され前記電力が伝送される受電側LC共振部コイルと、
前記受電側LC共振部と磁気的に結合された受電側外部接続コイルと、
前記受電側外部接続コイルを介して前記電力が伝送される受電回路と、を備え、
前記送電側LC共振部コイルと前記受電側LC共振部コイルとの巻き線方向が反対であり、
前記送電側LC共振部コイルと前記送電側外部接続コイルとの巻き線方向とが同一であり、
前記受電側LC共振部コイルと前記受電側外部接続コイルとの巻き線方向とが同一であることを特徴とする非接触給電装置。

A power circuit;
A power transmission side external connection coil to which power supplied from the power supply circuit is transmitted;
A power transmission side LC resonance part coil magnetically coupled to the power transmission side external connection coil;
A power receiving side LC resonance unit coil that is arranged opposite to the power transmission side LC resonance unit coil and transmits the power;
A power receiving side external connection coil magnetically coupled to the power receiving side LC resonance unit;
A power receiving circuit through which the power is transmitted via the power receiving side external connection coil,
Winding directions of the power transmission side LC resonance part coil and the power reception side LC resonance part coil are opposite,
The winding direction of the power transmission side LC resonance part coil and the power transmission side external connection coil is the same,
The non-contact power feeding device, wherein a winding direction of the power receiving side LC resonance part coil and the power receiving side external connection coil is the same.

JP2012194122A 2012-09-04 2012-09-04 Non-contact power supply device Pending JP2014050302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012194122A JP2014050302A (en) 2012-09-04 2012-09-04 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012194122A JP2014050302A (en) 2012-09-04 2012-09-04 Non-contact power supply device

Publications (1)

Publication Number Publication Date
JP2014050302A true JP2014050302A (en) 2014-03-17

Family

ID=50609435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012194122A Pending JP2014050302A (en) 2012-09-04 2012-09-04 Non-contact power supply device

Country Status (1)

Country Link
JP (1) JP2014050302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516439A (en) * 2014-03-31 2017-06-15 クアルコム,インコーポレイテッド System, apparatus, and method for configuration of a wireless power receiver coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516439A (en) * 2014-03-31 2017-06-15 クアルコム,インコーポレイテッド System, apparatus, and method for configuration of a wireless power receiver coil

Similar Documents

Publication Publication Date Title
US10158256B2 (en) Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency
US20160013661A1 (en) Resonators for wireless power transfer systems
US10685780B2 (en) Electric power feed apparatus, electric power feed system, and electronic apparatus
JP5781882B2 (en) Power transmission device, vehicle, and power transmission system
US20110163609A1 (en) Wireless power feed system
US20130082535A1 (en) Wireless power transfer device and wireless power transfer method
KR102524585B1 (en) Wireless charger and wireless power receiver
EP2643916A2 (en) Wireless power utilization in a local computing environment
KR20180042446A (en) Near field communication and wireless power delivery dual mode antennas for metal back devices
WO2013002240A1 (en) Power feeding system design method and power feeding system
JP2015186426A (en) Power reception system
CN103814420A (en) Wireless power transmission device and method thereof
JP6168500B2 (en) Wireless power transmission device, power transmission device, and power reception device
JP2012191699A (en) Wireless power transmission method utilizing magnetic field resonance
JP2018011475A (en) Receiving device and radio transmission system
CN108401472B (en) Uniform wireless charging device
JP2013132171A (en) Power transmitter, power receiver, and power transmission system
JP2014050302A (en) Non-contact power supply device
JP2013223338A (en) Power transmission system
KR102040330B1 (en) Wireless Power Relay Apparatus and Wireless Power Transmission System
JP2015089259A (en) Antenna coil unit
JP2012191697A (en) Non-contact power transmission apparatus
KR101371058B1 (en) Coil assembly for power transmission, coil assembly for power receiving and wireless power transfer apparatus using electric resonance
KR20170124185A (en) Apparatus for receiving wireless power
JP6444510B2 (en) Wireless power transmission apparatus and receiving apparatus