JP2014138509A - Resonator, and radio power feeding system - Google Patents

Resonator, and radio power feeding system Download PDF

Info

Publication number
JP2014138509A
JP2014138509A JP2013006635A JP2013006635A JP2014138509A JP 2014138509 A JP2014138509 A JP 2014138509A JP 2013006635 A JP2013006635 A JP 2013006635A JP 2013006635 A JP2013006635 A JP 2013006635A JP 2014138509 A JP2014138509 A JP 2014138509A
Authority
JP
Japan
Prior art keywords
power
resonator
ceramic material
resonance
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013006635A
Other languages
Japanese (ja)
Inventor
Shinichiro Haneishi
真一郎 拮石
Keiji Takagi
桂二 高木
Yoshinori Tsujimura
善徳 辻村
Takio Kojima
多喜男 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013006635A priority Critical patent/JP2014138509A/en
Publication of JP2014138509A publication Critical patent/JP2014138509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radio power feeding system which can achieve miniaturization and suppression of heat evolution in a resonator while maintaining excellent transmission efficiency when transmitting power between paired resonators by using a magnetic field resonance system.SOLUTION: Resonators 30 are used in a radio power feeding system for transmitting power on the basis of the magnetic field resonance method, and each resonator 30 is configured of a resonance coil (winding coil) 32 and a support member (support base) 31 for supporting the resonance coil 32. The resonance coil 32 converts AC power with a predetermined resonance frequency into electromagnetic field energy and vice versa. The support member 31 includes dielectric ceramic material as a main component. With this, dielectric loss and conductor loss can be suppressed when the paired resonators 30 are opposingly arranged in the radio power feeding system, and miniaturization and enhancement of the transmission efficiency of the resonator 30 can be achieved.

Description

本発明は、共振器間の磁場の共鳴を利用して送電装置から受電装置に非接触で電力を伝送する無線給電システムに関する。   The present invention relates to a wireless power feeding system that uses a magnetic field resonance between resonators to transmit electric power from a power transmitting device to a power receiving device in a contactless manner.

従来から、送電装置から受電装置に対して非接触で電力を伝送する無線給電システムが要望されている。無線給電システムを実現するための手法としては、電磁誘導を利用した技術や電磁波を利用した技術などが提案されている。近年、無線給電システムに適用可能な技術として、共振器の磁場の共鳴を利用して送電装置から受電装置に電力を伝送する磁界共鳴方式が注目されている。例えば、特許文献1には、所定距離だけ離して対向配置した2つの共振器の磁場の共鳴により、一方の共振器から他方の共振器に電力を伝送する磁界共鳴方式の基礎的概念が開示されている。また例えば、非特許文献1には、磁界共鳴方式において得られる最大の伝送効率に関して理論的な検討がなされており、各々の共振器のQ値を高めることにより伝送効率の向上が可能であることが示されている。また例えば、非特許文献2には、磁界共鳴方式に用いるアンテナとしての共振コイルにおいて高いQ値を実現するための手法が示されている。また例えば、特許文献2には、無線給電システムの適用対象として電気自動車やプラグインハイブリッド車を想定し、磁界共鳴方式を利用して、車両下部に配設した共振コイルから、車両内に設けた共振コイルに電力を伝送する技術が開示されている。   Conventionally, there is a demand for a wireless power feeding system that transmits power from a power transmission device to a power reception device in a contactless manner. As a technique for realizing a wireless power feeding system, a technique using electromagnetic induction, a technique using electromagnetic waves, and the like have been proposed. In recent years, as a technique applicable to a wireless power feeding system, a magnetic field resonance method in which electric power is transmitted from a power transmission device to a power reception device by using resonance of a magnetic field of a resonator has attracted attention. For example, Patent Document 1 discloses a basic concept of a magnetic field resonance method in which electric power is transmitted from one resonator to the other resonator by resonance of magnetic fields of two resonators arranged to face each other at a predetermined distance. ing. Further, for example, Non-Patent Document 1 has theoretically studied the maximum transmission efficiency obtained in the magnetic field resonance method, and it is possible to improve the transmission efficiency by increasing the Q value of each resonator. It is shown. Further, for example, Non-Patent Document 2 shows a technique for realizing a high Q value in a resonance coil as an antenna used in a magnetic field resonance method. Further, for example, in Patent Document 2, an electric vehicle or a plug-in hybrid vehicle is assumed as an application target of a wireless power feeding system, and a magnetic resonance method is used to provide a wireless power feeding system in a vehicle from a resonance coil disposed in a lower portion of the vehicle. A technique for transmitting power to a resonance coil is disclosed.

特表2009−501510号公報Special table 2009-501510 特開2009−106136号公報JP 2009-106136 A

松木英敏、他、「非接触電力伝送技術の最前線」、シーエムシー出版、p.7(2009年8月)Hidetoshi Matsuki, et al., “Frontiers of Contactless Power Transmission Technology”, CM Publishing, p. 7 (August 2009) 藤枝智之、鈴木雅美、「磁界共鳴方式電力伝送用低損失アンテナの検討」、PIONEER R&D、Vol.21、No.1/2012、p.11−15Tomoyuki Fujieda, Masami Suzuki, “Examination of low-loss antenna for magnetic field resonance power transmission”, PIONEER R & D, Vol. 21, no. 1/2012, p. 11-15

上述の無線給電システムにおける共振器は、例えば、銅線等の巻線コイルを用いた共振コイルと、その共振コイルの形状を確保するための機械的強度を有する支持部材とにより構成される。このような構造の共振器を例えば車両内に設置する場合、その設置空間が制約されるため、できるだけ共振器を小型化することが望ましい。しかし、支持部材として一般的な樹脂材料を用いる場合には、共振コイルの高周波特性を確保するためにインダクタタンス値を高くする必要が生じ、共振コイルの巻線数が増えるために共振器の小型化に支障を来す。また、支持部材として利用する材料は誘電体として作用し、共振器の損失に加わる。さらに、共振コイルの線長が長くなると必然的に導体損が増加するため、特に大電力の無線給電システムに適用する場合、共振コイルの誘電体損・導体損に起因する発熱が問題となる。このような共振コイルによる発熱への対策には、放熱のための構造が必要となるので、これにより小型化が一層困難になる。また、共振器の誘電体損や導体損の増加により伝送効率が低下することは、電気エネルギーの有効利用の観点から望ましくない。さらに、伝送効率の低下により、対向配置される共振器において互いの位置ずれに対する許容度が低下するという不利益を招く。以上のように、磁界共鳴方式を利用した従来の無線給電システムにおいては、小型かつ発熱の小さい共振器を用いて高い伝送効率で電力を伝送することが困難であった。   The resonator in the above-described wireless power feeding system includes, for example, a resonance coil using a winding coil such as a copper wire, and a support member having mechanical strength for ensuring the shape of the resonance coil. When a resonator having such a structure is installed in, for example, a vehicle, the installation space is limited. Therefore, it is desirable to make the resonator as small as possible. However, when a general resin material is used as the support member, it is necessary to increase the inductance value in order to ensure the high-frequency characteristics of the resonance coil, and the number of windings of the resonance coil increases, so that the size of the resonator is reduced. Cause trouble. Further, the material used as the support member acts as a dielectric and adds to the loss of the resonator. Furthermore, since the conductor loss inevitably increases as the line length of the resonance coil increases, heat generation caused by the dielectric loss and conductor loss of the resonance coil becomes a problem particularly when applied to a high-power wireless power feeding system. Such countermeasures against heat generation by the resonance coil require a structure for heat dissipation, which makes it more difficult to reduce the size. Moreover, it is not desirable from the viewpoint of effective use of electric energy that the transmission efficiency is reduced due to an increase in dielectric loss and conductor loss of the resonator. In addition, a decrease in transmission efficiency causes a disadvantage that the tolerance for mutual positional shifts is reduced in the resonators arranged to face each other. As described above, in the conventional wireless power feeding system using the magnetic field resonance method, it is difficult to transmit electric power with high transmission efficiency using a small-sized resonator that generates little heat.

本発明はこれらの問題を解決するためになされたものであり、共振器の小型化及び発熱の抑制が可能で、高い伝送効率を実現し得る無線給電システムを提供することを目的とする。   The present invention has been made to solve these problems, and an object of the present invention is to provide a wireless power feeding system that can reduce the size of a resonator and suppress heat generation, and can realize high transmission efficiency.

上記課題を解決するために、本発明の共振器は、主に磁場の共鳴を利用して送電側共振器から受電側共振器に電力を伝送する無線給電システムにおける共振器であって、所定の共振周波数の交流電力と電磁界エネルギーとを相互に変換する共振コイルと、誘電体セラミック材料を主成分として含み、前記共振コイルを支持する支持部材とを備えて構成される。   In order to solve the above-described problems, a resonator according to the present invention is a resonator in a wireless power feeding system that transmits power from a power transmission side resonator to a power reception side resonator mainly using resonance of a magnetic field, A resonance coil that mutually converts alternating-current power and electromagnetic field energy at a resonance frequency, and a support member that includes a dielectric ceramic material as a main component and supports the resonance coil are configured.

本発明の共振器によれば、磁場の共鳴を利用する非接触の電力伝送方式(磁界共鳴方式)の無線給電システムにおいて、送電側及び受電側の各共振器を構成する共振コイルを支持する支持部材を誘電体セラミック材料を主成分として形成したので、共振器の寄生容量の増加により共振特性の確保が容易となり、共振器の小型化が可能となる。また、誘電体セラミックの低誘電正接特性により誘電体損失の抑制が可能となる。また、共振コイルの線長の短縮により導体損失が低下するので、共振コイルの誘電体損・導体損に起因する共振器の発熱を抑制することができる。さらに、1対の共振器間の伝送効率が向上し、電力エネルギーの無駄を抑制するとともに、1対の共振器が相対的に長い距離で対向する場合や、相対的に大きな位置ずれを生じる場合であっても、良好な電力伝送を維持することができる。   According to the resonator of the present invention, in the wireless power feeding system of the non-contact power transmission method (magnetic field resonance method) using the resonance of the magnetic field, the support for supporting the resonance coil constituting each resonator on the power transmission side and the power reception side. Since the member is made of a dielectric ceramic material as a main component, the increase in parasitic capacitance of the resonator makes it easy to ensure resonance characteristics, and the resonator can be downsized. Further, the dielectric loss can be suppressed by the low dielectric loss tangent characteristic of the dielectric ceramic. Further, since the conductor loss is reduced by shortening the line length of the resonance coil, the heat generation of the resonator due to the dielectric loss and conductor loss of the resonance coil can be suppressed. Furthermore, transmission efficiency between a pair of resonators is improved, waste of power energy is suppressed, and when a pair of resonators face each other at a relatively long distance or when a relatively large displacement occurs Even so, good power transmission can be maintained.

本発明の共振器において、支持部材を構成する誘電体セラミック材料は、比誘電率εrを8以上とし、誘電正接tanδを10−4以下とすることが望ましい。誘電体セラミック材料の比誘電率εrが8に満たないと、共振コイルの巻線数の増加により共振コイルが大型になるし、誘電体セラミック材料の誘電正接tanδが10−4を超えると、誘電体損の増加により伝送効率が低下するからである。 In the resonator of the present invention, it is desirable that the dielectric ceramic material constituting the support member has a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −4 or less. If the relative dielectric constant εr of the dielectric ceramic material is less than 8, the resonant coil becomes large due to an increase in the number of turns of the resonant coil, and if the dielectric loss tangent tan δ of the dielectric ceramic material exceeds 10 −4 , This is because transmission efficiency decreases due to an increase in body loss.

本発明の共振器において、支持部材は多様な構造で形成することができる。例えば、共振コイルの巻線間の電界発生部に誘電体セラミック材料を配置した構造を採用してもよい。これにより、支持部材のうち、共振コイルの特性に寄与する電界発生部のみに誘電体セラミック材料を配置することで、共振器の特性を確保しつつ、誘電体セラミック材料の使用量を減らして材料コストの低減が可能となる。この場合、電界発生部に粉末状の誘電体セラミック材料を充填した構造を採用してもよい。例えば、支持部材を樹脂材料で形成した上で、それを加工して誘電体セラミック材料を配置すれば、支持部材の割れ等の不具合を抑制しながら、誘電体材料の使用量を減らすことができる。   In the resonator of the present invention, the support member can be formed in various structures. For example, you may employ | adopt the structure which has arrange | positioned the dielectric ceramic material in the electric field generation | occurrence | production part between the windings of a resonance coil. As a result, by disposing the dielectric ceramic material only in the electric field generating part that contributes to the characteristics of the resonance coil among the support members, the amount of the dielectric ceramic material can be reduced while ensuring the characteristics of the resonator. Cost can be reduced. In this case, a structure in which the electric field generating portion is filled with a powdered dielectric ceramic material may be employed. For example, if the support member is formed of a resin material and then processed to dispose the dielectric ceramic material, the amount of use of the dielectric material can be reduced while suppressing problems such as cracking of the support member. .

本発明の共振器の支持部材は、樹脂材料に誘電体セラミック材料を添加して形成してもよい。これにより、共振器の必要な特性を得られる範囲内で、誘電体セラミック材料の比率を適宜に調整でき、材料コストの低減に有効である。また、本発明の共振器の支持部材は、ポーラスを有する誘電体セラミック材料により形成してもよい。例えば、支持台のうち、共振コイルが形成されない領域に複数の貫通孔を形成すれば、支持部材の体積削減に応じて誘電体セラミック材料の使用量を減らすことができる。   The support member of the resonator of the present invention may be formed by adding a dielectric ceramic material to a resin material. Thus, the ratio of the dielectric ceramic material can be appropriately adjusted within a range in which the required characteristics of the resonator can be obtained, which is effective in reducing the material cost. Further, the support member of the resonator of the present invention may be formed of a dielectric ceramic material having a porous material. For example, if a plurality of through holes are formed in a region of the support base where the resonance coil is not formed, the amount of dielectric ceramic material used can be reduced according to the volume reduction of the support member.

また、上記課題を解決するために、本発明の無線給電システムは、主に磁場の共鳴を利用して送電装置から受電装置に電力を伝送する無線給電システムであって、前記送電装置は、所定の周波数の交流電力を供給する電源と、前記電源から供給された前記交流電力に共振し、前記交流電力を電磁界エネルギーとして送電する送電側共振器と、を備え、前記受電装置は、前記送電側共振コイルと前記主に磁場の共鳴により結合し、前記電磁界エネルギーを交流電力として受電する受電側共振器と、前記受電側共振器により受電された前記交流電力により動作する回路部とを備え、前記送電側共振器及び前記受電側共振器の各々は、前記交流電力と前記電磁界エネルギーとを相互に変換する共振コイルと、誘電体セラミック材料を主成分として含み、前記共振コイルを支持する支持部材とを備えて構成される。   In order to solve the above-described problem, a wireless power feeding system according to the present invention is a wireless power feeding system that mainly transmits power from a power transmission device to a power reception device by using resonance of a magnetic field. A power source that supplies alternating-current power of a frequency, and a power-transmission-side resonator that resonates with the alternating-current power supplied from the power source and transmits the alternating-current power as electromagnetic energy, and the power receiving device includes the power transmission A power receiving side resonator that is coupled to the side resonance coil mainly by magnetic field resonance and receives the electromagnetic energy as AC power, and a circuit unit that operates by the AC power received by the power receiving side resonator. Each of the power transmitting side resonator and the power receiving side resonator includes a resonance coil that mutually converts the AC power and the electromagnetic field energy, and a dielectric ceramic material as a main component. , And a support member for supporting the resonance coil.

本発明の無線給電システムによれば、上述の特徴を有する共振器を、送電装置の送電側共振器と、受電装置の受電側共振器のそれぞれに適用することができる。よって、送電装置においては、電源から供給される交流電力に共振する送電側共振器が電磁界エネルギーを伝送し、受電装置においては、送電側共振器と主に磁場の共鳴により結合する受電側共振器が、電磁界エネルギーを受け取って後段の回路部に交流電力を出力する。例えば、本発明の無線給電システムは、電気自動車やプラグインハイブリッド車などの車両への電源供給や、携帯電話やノートPCなどの情報端末への電源供給などの多様な用途に利用することができる。   According to the wireless power feeding system of the present invention, the resonator having the above characteristics can be applied to each of the power transmission side resonator of the power transmission device and the power reception side resonator of the power reception device. Therefore, in the power transmission device, the power transmission side resonator that resonates with the AC power supplied from the power supply transmits the electromagnetic field energy, and in the power reception device, the power reception side resonance is coupled with the power transmission side resonator mainly by the resonance of the magnetic field. The device receives the electromagnetic field energy and outputs AC power to the subsequent circuit unit. For example, the wireless power feeding system of the present invention can be used for various applications such as power supply to vehicles such as electric vehicles and plug-in hybrid vehicles, and power supply to information terminals such as mobile phones and notebook PCs. .

なお、本発明の無線給電システムにおいて、送電装置には、電源と送電側共振器との間に接続された送電側整合回路を設け、受電装置には、受電側共振器と回路部との間に接続された受電側整合回路を設けてもよい。この場合、受電装置の回路部には、受電側整合回路から出力された交流電力を整流して直流電力に変換する整流器と、整流器から出力された直流電力を蓄電する蓄電器と、蓄電器に蓄電された直流電力が供給される負荷とを更に設けてもよい。   In the wireless power feeding system of the present invention, the power transmission device is provided with a power transmission side matching circuit connected between the power source and the power transmission side resonator, and the power reception device is provided between the power reception side resonator and the circuit unit. A power-receiving-side matching circuit connected to may be provided. In this case, in the circuit unit of the power receiving device, a rectifier that rectifies AC power output from the power receiving side matching circuit and converts it to DC power, a capacitor that stores DC power output from the rectifier, and a capacitor that stores power. A load to which direct current power is supplied may be further provided.

本発明によれば、主に磁場の共鳴を利用して送電側共振器から受電側共振器に電力を伝送する場合、誘電体セラミック材料を主成分として含む支持部材により共振コイルを支持する構造を採用することにより、共振器の小型化及び発熱の抑制が可能であって、高い伝送効率で共振器間の電力伝送が可能な無線給電システムを実現することができる。   According to the present invention, when power is transmitted from the power transmission side resonator to the power reception side resonator mainly using the resonance of the magnetic field, the structure in which the resonance coil is supported by the support member containing the dielectric ceramic material as a main component is provided. By adopting it, it is possible to realize a wireless power feeding system that can reduce the size of the resonator and suppress the heat generation and can transmit power between the resonators with high transmission efficiency.

本発明を適用した無線給電システムの一構成例を示すブロック図である。It is a block diagram which shows one structural example of the radio | wireless electric power feeding system to which this invention is applied. 送電装置における送電側共振器及びそれに関連する回路部分と、受電装置における受電側共振器及びそれに関連する回路部分との等価回路の一例を示す図である。It is a figure which shows an example of the equivalent circuit of the power transmission side resonator and its related circuit part in a power transmission apparatus, and the power receiving side resonator and its related circuit part in a power receiving apparatus. 本実施形態の共振器の第1の構造例を示す図である。It is a figure which shows the 1st structural example of the resonator of this embodiment. 本実施形態の共振器の第2の構造例を示す図である。It is a figure which shows the 2nd structural example of the resonator of this embodiment. 本実施形態の共振器の第3の構造例を示す図である。It is a figure which shows the 3rd structural example of the resonator of this embodiment. 本実施形態の共振器の第4の構造例を示す図である。It is a figure which shows the 4th structural example of the resonator of this embodiment. 本実施形態の共振器の第5の構造例を示す図である。It is a figure which shows the 5th structural example of the resonator of this embodiment. 本実施形態の共振器の第6の構造例を示す図である。It is a figure which shows the 6th structural example of the resonator of this embodiment. 1対の共振器に対するシミュレーションの条件を示す図である。It is a figure which shows the conditions of the simulation with respect to a pair of resonator. 図9の条件下で実施したシミュレーションに基づき、支持部材の材料に応じた伝送効率ηの特性を示すグラフである。It is a graph which shows the characteristic of the transmission efficiency (eta) according to the material of a supporting member based on the simulation implemented on the conditions of FIG. 1対の共振器が図9に示す位置から、それぞれの中心軸に直交する方向に位置ずれを生じた状態を示す図である。FIG. 10 is a diagram illustrating a state in which a pair of resonators are displaced from the positions illustrated in FIG. 9 in a direction orthogonal to the respective central axes. 図11の状態で実施したシミュレーションに基づき、支持部材を設けない場合及び支持部材にテフロン(登録商標)、アルミナをそれぞれ用いた場合において、位置ずれ量Pと伝送効率ηの関係を示すグラフである。FIG. 12 is a graph showing the relationship between the positional deviation amount P and the transmission efficiency η when a support member is not provided and when Teflon (registered trademark) and alumina are used for the support member based on the simulation performed in the state of FIG. 11. .

以下、本発明の好適な実施形態について、図面を参照しながら説明する。ただし、以下に述べる実施形態は本発明の技術思想を適用した形態の一例であって、本発明が本実施形態の内容により限定されることはない。   Preferred embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below is an example of a form to which the technical idea of the present invention is applied, and the present invention is not limited by the content of the present embodiment.

図1は、本発明を適用した無線給電システムの一構成例を示すブロック図である。図1に示す無線給電システムは、送電装置1から受電装置2に非接触(無線)で電力を伝送するシステムである。例えば、車両に内蔵された受電装置2に対し、地面や路面に配設された送電装置1から非接触で給電を行う無線給電システムや、携帯電話やノートPCなどの情報端末に内蔵された受電装置2に対し、近傍に設置した送電装置1から非接触で給電を行う無線給電システムを挙げることができる。   FIG. 1 is a block diagram showing a configuration example of a wireless power feeding system to which the present invention is applied. The wireless power feeding system illustrated in FIG. 1 is a system that transmits power from the power transmission device 1 to the power reception device 2 in a contactless (wireless) manner. For example, for a power receiving device 2 built in a vehicle, a wireless power feeding system that feeds power in a non-contact manner from a power transmitting device 1 arranged on the ground or road surface, or a power receiving device built in an information terminal such as a mobile phone or a notebook PC. A wireless power feeding system that feeds power to the device 2 in a non-contact manner from the power transmitting device 1 installed in the vicinity can be given.

図1に示すように、送電装置1は、AC/DCコンバータ10と、高周波電源11と、整合回路12と、送電側共振器13と、無線通信部14と、制御部15とを含んで構成される。また、受電装置2は、受電側共振器20と、整合回路21と、整流器22と、バッテリ23と、負荷回路24と、無線通信部25と、制御部26とを含んで構成される。   As shown in FIG. 1, the power transmission device 1 includes an AC / DC converter 10, a high frequency power source 11, a matching circuit 12, a power transmission side resonator 13, a wireless communication unit 14, and a control unit 15. Is done. The power receiving device 2 includes a power receiving resonator 20, a matching circuit 21, a rectifier 22, a battery 23, a load circuit 24, a wireless communication unit 25, and a control unit 26.

送電装置1において、AC/DCコンバータ10は、商用電源等の交流電力を直流電力に変換する。高周波電源11は、AC/DCコンバータ10から供給される直流電力を用いて所定の周波数の高周波電力を発生する発振器である。整合回路12は、高周波電力を供給する高周波電源11の出力側と後段の送電側共振器13とのインピーダンス整合を行う。送電側共振器13は、整合回路12を介して供給される高周波電力を受け、その所定の周波数で共振して電磁界エネルギーを生成する共振器である。送電側共振器13の具体的な構造と作用については後述する。   In the power transmission device 1, the AC / DC converter 10 converts AC power from a commercial power source or the like into DC power. The high frequency power supply 11 is an oscillator that generates high frequency power of a predetermined frequency using DC power supplied from the AC / DC converter 10. The matching circuit 12 performs impedance matching between the output side of the high frequency power supply 11 that supplies high frequency power and the power transmission side resonator 13 in the subsequent stage. The power transmission side resonator 13 is a resonator that receives high frequency power supplied via the matching circuit 12 and resonates at a predetermined frequency to generate electromagnetic field energy. The specific structure and operation of the power transmission side resonator 13 will be described later.

受電装置2において、受電側共振器20は、送電装置1の送電側共振器13と磁気的に結合し、磁界共鳴に基づき上述の所定の周波数で共振して高周波電力を発生する共振器である。本実施形態において、受電側共振器20は、基本的に送電装置1の送電側共振器13と同一の構造としてよい。整合回路21は、受電側共振器20と後段の整流器22とのインピーダンス整合を行う。整流器22は、整合回路21を経由して供給される高周波電力を整流して直流電力に変換する。蓄電器として機能するバッテリ23は、整流器22を介して供給される電力を蓄える二次電池である。負荷回路24は、バッテリ23から供給される放電電流に応じて動作する回路であって、受電装置2の取り付け対象に含まれる多様な構成要素が想定される。   In the power receiving device 2, the power receiving resonator 20 is a resonator that is magnetically coupled to the power transmitting resonator 13 of the power transmitting device 1 and resonates at the predetermined frequency based on the magnetic field resonance to generate high frequency power. . In the present embodiment, the power reception side resonator 20 may basically have the same structure as the power transmission side resonator 13 of the power transmission device 1. The matching circuit 21 performs impedance matching between the power-receiving-side resonator 20 and the subsequent rectifier 22. The rectifier 22 rectifies the high-frequency power supplied via the matching circuit 21 and converts it into DC power. The battery 23 that functions as a storage battery is a secondary battery that stores electric power supplied via the rectifier 22. The load circuit 24 is a circuit that operates in accordance with the discharge current supplied from the battery 23, and various components included in the attachment target of the power receiving device 2 are assumed.

一方、送電装置1の制御部15は、送電装置1の全体の動作を制御する。同様に、受電装置2の制御部26は、受電装置2の全体の動作を制御する。各々の制御部15、26は、例えば、無線給電システムにより定められた処理を実行するプロセッサと、データおよびプログラムを記憶するメモリを含む。また、送電装置1の無線通信部14と受電装置2の無線通信部25は、上述の送電側共振器13及び受電側共振器20の間の電力の伝送とは別に、それぞれの制御部15、26で必要な情報を無線により相互に伝送する手段であり、例えば、送受信回路とアンテナを含んで構成される。   On the other hand, the control unit 15 of the power transmission device 1 controls the overall operation of the power transmission device 1. Similarly, the control unit 26 of the power receiving device 2 controls the overall operation of the power receiving device 2. Each control unit 15 and 26 includes, for example, a processor that executes processing determined by the wireless power feeding system, and a memory that stores data and programs. In addition, the wireless communication unit 14 of the power transmission device 1 and the wireless communication unit 25 of the power reception device 2 are respectively connected to the control units 15 separately from the transmission of power between the power transmission side resonator 13 and the power reception side resonator 20 described above. 26 is a means for transmitting necessary information to each other wirelessly, and includes, for example, a transmission / reception circuit and an antenna.

次に、図1に無線給電システムのうち、送電側共振器13及び受電側共振器20の構造及び動作について説明する。本実施形態において、送電側共振器13及び受電側共振器20は、いずれも所定の共振周波数の交流電力と電磁界エネルギーを相互に変換する共振コイルを含み、送電側共振器13及び受電側共振器20を比較的近い距離で対向させて配置して両者を磁気的に結合させた状態で用いられる。このような状態で、送電側共振器13から主に磁界エネルギーが受電側共振器20に伝送され、いわゆる磁界共鳴方式に基づく非接触の電力伝送が可能となる。   Next, the structure and operation of the power transmission side resonator 13 and the power reception side resonator 20 in the wireless power feeding system will be described with reference to FIG. In the present embodiment, each of the power transmission side resonator 13 and the power reception side resonator 20 includes a resonance coil that mutually converts AC power and electromagnetic field energy of a predetermined resonance frequency, and the power transmission side resonator 13 and the power reception side resonance. It is used in a state in which the container 20 is disposed facing each other at a relatively close distance and both are magnetically coupled. In such a state, magnetic field energy is mainly transmitted from the power transmission side resonator 13 to the power reception side resonator 20, and non-contact power transmission based on a so-called magnetic field resonance method becomes possible.

図2は、送電装置1における送電側共振器13及びそれに関連する回路部分と、受電装置2における受電側共振器20及びそれに関連する回路部分との等価回路の一例を示している。送電装置1においては、発振器11aとインピーダンスZoの直列回路の部分は図1の高周波電源11に相当し、インダクタンスLと容量Cの並列回路の部分は図1の送電側共振器13に相当し、両者の間が抵抗R1を介して接続されている。また、受電装置2においては、インダクタンスLと容量Cの並列回路は図1の受電側共振器20に相当し、その回路部分と負荷(図1のバッテリ23又は負荷回路24)との間が抵抗R2を介して接続されている。このように、送電側共振器13と受電側共振器20は同一の等価回路で表されるので、磁界の結合によって同一の共振周波数で共振(共鳴)する。   FIG. 2 shows an example of an equivalent circuit of the power transmission side resonator 13 and the circuit portion related thereto in the power transmission device 1 and the power reception side resonator 20 and the circuit portion related thereto in the power reception device 2. In the power transmission device 1, the part of the series circuit of the oscillator 11a and the impedance Zo corresponds to the high frequency power supply 11 of FIG. 1, and the part of the parallel circuit of the inductance L and the capacitor C corresponds to the power transmission side resonator 13 of FIG. The two are connected via a resistor R1. In the power receiving device 2, the parallel circuit of the inductance L and the capacitance C corresponds to the power receiving side resonator 20 in FIG. 1, and a resistance is provided between the circuit portion and the load (battery 23 or load circuit 24 in FIG. 1). It is connected via R2. Thus, since the power transmission side resonator 13 and the power reception side resonator 20 are represented by the same equivalent circuit, they resonate (resonate) at the same resonance frequency by coupling of magnetic fields.

送電側共振器13と受電側共振器20において、インダクタンスLは共振コイルの部分のサイズや巻数に依存して定まり、容量Cは共振コイルの配線間の寄生容量(浮遊容量)に依存して定まる。図2の等価回路において、1対の送電側共振器13及び受電側共振器20の回路部分は、1対のコイルが電磁誘導を生じる回路形式と同様に表現される。ただし、電磁誘導の場合は、コイルに磁性体が用いられるためQ値が極めて低くなって1対のコイルの距離が離れると電力の伝送が困難となるのに対し、本実施形態では、後述の構造及び材料によって共振コイルのQ値を高くできるので、送電側共振器13と受電側共振器20がある程度距離が離れたとしても、磁界結合によって効率的に電力を伝送することができる。   In the power transmission side resonator 13 and the power reception side resonator 20, the inductance L is determined depending on the size and the number of turns of the resonance coil portion, and the capacitance C is determined depending on the parasitic capacitance (stray capacitance) between the wirings of the resonance coil. . In the equivalent circuit of FIG. 2, the circuit portions of the pair of power transmission side resonator 13 and the power reception side resonator 20 are expressed in the same manner as a circuit form in which a pair of coils generate electromagnetic induction. However, in the case of electromagnetic induction, since a magnetic material is used for the coil, the Q value becomes extremely low and transmission of power becomes difficult when the distance between the pair of coils is increased. Since the Q value of the resonance coil can be increased depending on the structure and material, even if the power transmission side resonator 13 and the power reception side resonator 20 are separated from each other to some extent, power can be efficiently transmitted by magnetic field coupling.

ここで、送電側共振器13から受電側共振器20への伝送効率ηは、次の(1)式のfom(figure of merit)で等価的に表される。
fom=k(Q1・Q2)1/2 (1)
ただし、k:結合係数
Q1:送電側共振器13の共振コイルのQ値
Q2:受電側共振器20の共振コイルのQ値
Here, the transmission efficiency η from the power transmission side resonator 13 to the power reception side resonator 20 is equivalently expressed by the form (figure of merit) of the following equation (1).
fom = k (Q1 · Q2) 1/2 (1)
Where k: coupling coefficient Q1: Q value of resonance coil of power transmission side resonator 13 Q2: Q value of resonance coil of power reception side resonator 20

(1)式において、結合係数kは、送電側共振器13と受電側共振器20の各共振コイル同士の間隔(エアギャップ)に依存し、間隔が大きくなるほど低下する。すなわち、各共振コイルの配置の制約に応じた所与の結合係数kに対し、上述のQ1、Q2が高くなるほど、伝送効率ηを向上させることができる。一般に、角周波数ωにおける共振コイルのQ値は、(2)式により与えられる。
Q=ωL/r (2)
ただし、L:インダクタンス
r:抵抗
In the equation (1), the coupling coefficient k depends on the interval (air gap) between the resonance coils of the power transmission side resonator 13 and the power reception side resonator 20, and decreases as the interval increases. That is, the transmission efficiency η can be improved as the above-described Q1 and Q2 become higher with respect to a given coupling coefficient k according to the restrictions on the arrangement of the resonance coils. In general, the Q value of the resonance coil at the angular frequency ω is given by equation (2).
Q = ωL / r (2)
Where L: inductance r: resistance

(2)式において、抵抗rは、誘電体損、導体損、放射損の和で表される。このうち特に、本実施形態では、送電側共振器13及び受電側共振器20の構造及び材料の工夫により、誘電体損と導体損を低減することにより、共振コイルのQ値の向上を図るものであるが、詳しくは後述する。   In the equation (2), the resistance r is represented by the sum of dielectric loss, conductor loss, and radiation loss. Among these, in this embodiment, in particular, the Q value of the resonance coil is improved by reducing the dielectric loss and the conductor loss by devising the structures and materials of the power transmission side resonator 13 and the power reception side resonator 20. However, details will be described later.

次に、図1の送電側共振器13及び受電側共振器20の構造について説明する。上述したように、送電側共振器13及び受電側共振器20の基本構造は同じであるため、以下では、送電側共振器13及び受電側共振器20の両方に適合する共振器30を想定して説明を行うものとする。まず、本実施形態の共振器30の第1の構造例について図3を参照して説明する。図3に示すように、第1の構造例に係る共振器30は、誘電体セラミック材料からなる支持台31(本発明の支持部材)と、支持台31上の導体からなるスパイラル型の巻線コイル32(本発明の共振コイル)とにより構成される。   Next, the structure of the power transmission side resonator 13 and the power reception side resonator 20 of FIG. 1 is demonstrated. As described above, since the basic structures of the power transmission side resonator 13 and the power reception side resonator 20 are the same, in the following, a resonator 30 that is compatible with both the power transmission side resonator 13 and the power reception side resonator 20 is assumed. Will be described. First, a first structural example of the resonator 30 of this embodiment will be described with reference to FIG. As shown in FIG. 3, the resonator 30 according to the first structural example includes a support base 31 (support member of the present invention) made of a dielectric ceramic material and a spiral winding made of a conductor on the support base 31. It is comprised with the coil 32 (resonance coil of this invention).

第1の構造例において、支持台31は、誘電率が高いセラミック材料を平板状に加工した部材である。例えば、アルミナやε34材(比誘電率εr=34のセラミック材料を表す。以下同様)などの誘電体セラミック材料を用いることができる。支持台31に用いる誘電体セラミック材料としては、比誘電率εrが8以上で、かつ、誘電正接tanδが10−4以下の材料を用いることが望ましい。これは上述の伝送効率ηの誘電体セラミック材料による依存性の評価結果を反映したものであるが、詳しくは後述する。また、支持台31は共振器30の全体を支持する役割があるので、巻線コイル32の一定の形状を確保でき、かつ十分な機械的強度を得られる程度の厚みに形成することが望ましい。 In the first structural example, the support base 31 is a member obtained by processing a ceramic material having a high dielectric constant into a flat plate shape. For example, a dielectric ceramic material such as alumina or an ε34 material (representing a ceramic material having a relative dielectric constant εr = 34; hereinafter the same) can be used. As the dielectric ceramic material used for the support base 31, it is desirable to use a material having a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −4 or less. This reflects the result of evaluating the dependence of the transmission efficiency η on the dielectric ceramic material, which will be described later in detail. Further, since the support base 31 has a role of supporting the entire resonator 30, it is desirable that the support base 31 be formed to a thickness that can ensure a certain shape of the winding coil 32 and obtain sufficient mechanical strength.

一方、スパイラル型の巻線コイル32は、支持台31の上部表面に配置され、例えば、線状の導体を支持台31上に巻いた状態で載置してもよいし、あるいは支持台31表面にメタライズを施して形成してもよい。また、支持台31の表面には限られず、支持台31の内層に巻線コイル32を形成してもよい。巻線コイル32のサイズ及び巻数は、共振周波数とQ値に応じて適切に決定することができる。本実施形態では、支持台31に高誘電率のセラミック材料を用いるため、必要なQ値に対して巻線コイル32を小さいサイズで形成することができる。   On the other hand, the spiral winding coil 32 is disposed on the upper surface of the support base 31 and may be placed in a state where, for example, a linear conductor is wound on the support base 31, or the surface of the support base 31. You may metallize and form. The winding coil 32 may be formed on the inner layer of the support base 31 without being limited to the surface of the support base 31. The size and the number of turns of the winding coil 32 can be appropriately determined according to the resonance frequency and the Q value. In the present embodiment, since a ceramic material having a high dielectric constant is used for the support base 31, the winding coil 32 can be formed in a small size with respect to a necessary Q value.

次に、本実施形態の共振器30の第2の構造例について図4を参照して説明する。図4に示すように、第2の構造例に係る共振器30は、誘電体セラミック材料からなる支持部材33と、支持部材33の側面に形成されたヘリカル型の巻線コイル34(本発明の共振コイル)とにより構成される。第2の構造例において、支持部材33は、第1の構造例の支持台31と同様の誘電体セラミック材料を円筒状に加工した部材である。一方、ヘリカル型の巻線コイル34は、支持部材33の円筒側面に配置され、第1の構造例の巻線コイル32と同様の手法で形成することができる。第2の構造例においても、巻線コイル34のサイズ及び巻数は、共振周波数とQ値に応じて適切に決定することができる。   Next, a second structural example of the resonator 30 of this embodiment will be described with reference to FIG. As shown in FIG. 4, the resonator 30 according to the second structural example includes a support member 33 made of a dielectric ceramic material, and a helical winding coil 34 formed on the side surface of the support member 33 (the present invention). Resonance coil). In the second structural example, the support member 33 is a member obtained by processing a dielectric ceramic material similar to the support base 31 of the first structural example into a cylindrical shape. On the other hand, the helical winding coil 34 is disposed on the cylindrical side surface of the support member 33 and can be formed by the same method as the winding coil 32 of the first structural example. Also in the second structure example, the size and the number of turns of the winding coil 34 can be appropriately determined according to the resonance frequency and the Q value.

図3及び図4において、共振器30の巻線コイル32、34の両端は開放(オープン)されていてもよいし、あるいは回路素子に接続されていてもよい。巻線コイル32、34の両端が開放されている状態で共振器30に給電するには、例えば、近傍に配置したループ素子を介して共振器30に給電すればよい。また、共振器30に対し、巻線コイル32、34の一端にキャパシタを直列に接続してもよいし、巻線コイル32、34の両端にキャパシタを並列に接続してもよい。このようなキャパシタの容量値を適切に設定することにより、共振器30の共振周波数やQ値を調整することができる。   3 and 4, both ends of the winding coils 32 and 34 of the resonator 30 may be opened (open) or may be connected to circuit elements. In order to supply power to the resonator 30 in a state where both ends of the winding coils 32 and 34 are open, for example, power may be supplied to the resonator 30 via a loop element disposed in the vicinity. Further, with respect to the resonator 30, a capacitor may be connected in series to one end of the winding coils 32 and 34, or a capacitor may be connected in parallel to both ends of the winding coils 32 and 34. By appropriately setting the capacitance value of such a capacitor, the resonance frequency and Q value of the resonator 30 can be adjusted.

なお、第1及び第2の各構造例は、いずれも本実施形態の共振器30の一例であって、所望の共振特性を得られる限り、多様な構造の共振コイルに誘電体セラミック材料を装荷した構造の共振器30を採用することができる。第1及び第2の各構造例の基本的な効果は共通であるが、共振器30の小型化の観点から若干の相違がある。すなわち、第1の構造例は、同一平面内にスパイラル型の巻線コイル32を構成できるので、共振器30の薄型化に適している。一方、第2の構造例は、ヘリカル型の巻線コイル34の巻数を高さ方向に付与して構成できるので、共振器30を平面視で小型化するのに適している。   Each of the first and second structural examples is an example of the resonator 30 of the present embodiment. As long as desired resonance characteristics can be obtained, dielectric ceramic materials are loaded on the resonant coils having various structures. The resonator 30 having the structure described above can be employed. Although the basic effects of the first and second structural examples are common, there are some differences from the viewpoint of reducing the size of the resonator 30. In other words, the first structure example is suitable for reducing the thickness of the resonator 30 because the spiral wound coil 32 can be formed in the same plane. On the other hand, since the second structural example can be configured by applying the number of turns of the helical winding coil 34 in the height direction, it is suitable for downsizing the resonator 30 in plan view.

第1及び第2の各構造例を含め、本実施形態の共振器30の特徴は、誘電体セラミック材料を主成分として含む支持部材によって共振コイルを支持する構造を有する点にある。ここで、本実施形態の共振器30を図2の等価回路に当てはめて考えると、インダクタンスL(図2)の値は巻線コイル32、34の線長に応じて定まり、容量C(図2)の値は巻線コイル32、34のうち互いに隣接する各線間の領域(電界発生部)の寄生容量に応じて定まる。そして、巻線コイル32、34の近傍に高誘電率の誘電体セラミック材料が装荷されていると、寄生容量を増加させることが可能となる。その結果、所定の共振周波数で共振器30を共振させる場合のインダクタンスLを低下させることができるので、巻線コイル32、34の巻数を減らすことにより、共振器30の小型化が可能となる。特に、車両内に共振器30を設ける用途などでは、共振器30の設置スペースが制約されることから、共振器30の小型化は大きなメリットがある。   A feature of the resonator 30 of the present embodiment including the first and second structural examples is that the resonant coil is supported by a support member including a dielectric ceramic material as a main component. Here, when the resonator 30 of the present embodiment is applied to the equivalent circuit of FIG. 2, the value of the inductance L (FIG. 2) is determined according to the line length of the winding coils 32 and 34, and the capacitance C (FIG. 2). ) Is determined according to the parasitic capacitance of the region (electric field generating portion) between the adjacent wires of the winding coils 32 and 34. If a dielectric ceramic material having a high dielectric constant is loaded in the vicinity of the winding coils 32 and 34, the parasitic capacitance can be increased. As a result, since the inductance L when the resonator 30 is resonated at a predetermined resonance frequency can be reduced, the resonator 30 can be downsized by reducing the number of turns of the winding coils 32 and 34. In particular, in applications where the resonator 30 is provided in a vehicle or the like, the installation space of the resonator 30 is restricted, so that downsizing of the resonator 30 has a great merit.

次に、図3の第1の構造例をベースとして、主に支持台31の構造に着目した他の構造例について説明する。図5は、本実施形態の共振器30の第3の構造例を示す。第3の構造例に係る共振器30のうち、図5(A)は上面図を示し、図5(B)は図5(A)のa−a断面における側断面図を示している。第3の構造例に係る共振器30は、第1の構造例と同様のスパイラル型の巻線コイル32と、第1の構造例とは形状が異なる支持台35とにより構成される。具体的には、第1の構造例の支持台31(図3)が平板状であるのに対し、第3の構造例の支持台35は、中央に開口部35aを有する円板状に加工した部材である。なお、支持台35の材料については、第1の構造例と同様の誘電体セラミック材料を用いることができる。   Next, another structural example mainly focusing on the structure of the support base 31 will be described based on the first structural example of FIG. FIG. 5 shows a third structural example of the resonator 30 of the present embodiment. Among the resonators 30 according to the third structural example, FIG. 5A shows a top view, and FIG. 5B shows a side cross-sectional view taken along the line aa of FIG. The resonator 30 according to the third structure example includes a spiral wound coil 32 similar to that of the first structure example, and a support base 35 having a shape different from that of the first structure example. Specifically, the support base 31 (FIG. 3) of the first structure example is flat, whereas the support base 35 of the third structure example is processed into a disk shape having an opening 35a in the center. It is a member. As the material of the support base 35, the same dielectric ceramic material as that in the first structural example can be used.

第3の構造例は、第1の構造例の支持台31のうち巻線コイル32と面していない領域を除去したものであり、巻線コイル32の外周側に沿った円形の平面形状と、巻線コイル32の内周側に沿った円形の開口部35aを有している。これにより、巻線コイル32の各線間の電界発生部に対向する領域のみが誘電体セラミック材料に対向する構造とすることで、巻線コイル32の高周波特性を保ちつつ、支持台35における誘電体セラミック材料の使用量を極力減らすことができる。すなわち、第3の構造例の支持台35は、第1の構造例の支持台31と比べると、電界発生部に対向しない四隅の領域及び中央の開口部35aを合せた面積の分だけ誘電体セラミック材料の使用量が減少し、材料コストの低減に有効である。   The third structure example is obtained by removing a region that does not face the winding coil 32 from the support base 31 of the first structure example, and has a circular planar shape along the outer peripheral side of the winding coil 32. And a circular opening 35 a along the inner peripheral side of the winding coil 32. Thereby, only the area | region which opposes the electric field generation | occurrence | production part between each line | wire of the winding coil 32 is set as the structure which opposes a dielectric ceramic material, The dielectric material in the support stand 35 is maintained, maintaining the high frequency characteristic of the winding coil 32. The amount of ceramic material used can be reduced as much as possible. In other words, the support base 35 of the third structural example has a dielectric material equivalent to the total area of the four corner regions and the central opening 35a that do not face the electric field generating portion, compared to the support base 31 of the first structural example. The amount of ceramic material used is reduced, which is effective in reducing material costs.

図6は、本実施形態の共振器30の第4の構造例を示す図である。第4の構造例に係る共振器30のうち、図6(A)は上面図を示し、図6(B)は図6(A)のa−a断面における側断面図を示している。第4の構造例に係る共振器30は、第1の構造例と同様のスパイラル型の巻線コイル32と、支持台36とにより構成される。第4の構造例の特徴は、平板状の支持台36が、樹脂材料からなる領域36aと、誘電体セラミック材料からなる領域36bとを有する複合部材である点である。領域36aは、第3の構造例の支持台35(図5)と同形状の領域36bを部分的に除去した構造を有し、図6(B)に示すように、領域36bには粉末状の誘電体セラミック材料(焼結体)が固化された状態で充填されている。そして、領域36aの樹脂材料と領域36bの誘電体セラミック材料の界面の部分に、巻線コイル32が配置されている。   FIG. 6 is a diagram illustrating a fourth structure example of the resonator 30 according to the present embodiment. FIG. 6A shows a top view of the resonator 30 according to the fourth structure example, and FIG. 6B shows a side cross-sectional view taken along the line aa of FIG. 6A. The resonator 30 according to the fourth structure example includes a spiral wound coil 32 similar to that of the first structure example, and a support base 36. A feature of the fourth structure example is that the flat support base 36 is a composite member having a region 36a made of a resin material and a region 36b made of a dielectric ceramic material. The region 36a has a structure in which the region 36b having the same shape as the support base 35 (FIG. 5) of the third structure example is partially removed. As shown in FIG. The dielectric ceramic material (sintered body) is filled in a solidified state. And the winding coil 32 is arrange | positioned in the part of the interface of the resin material of the area | region 36a, and the dielectric ceramic material of the area | region 36b.

なお、図6では、領域36aが樹脂材料からなる場合を説明したが、領域36bの粉末状の誘電体セラミックを充填できる構造であれば、樹脂材料以外の材料で領域36aを形成してもよい。また、図6(B)には示されないが、領域36bの上方を覆う樹脂材料等からなる平板状の蓋部材を設けてもよい。   6 illustrates the case where the region 36a is made of a resin material, the region 36a may be formed of a material other than the resin material as long as the region 36b can be filled with the powdered dielectric ceramic. . Further, although not shown in FIG. 6B, a flat lid member made of a resin material or the like covering the area 36b may be provided.

第4の構造例に係る共振器30によれば、第3の実施例と同様、巻線コイル32の電界発生部に対して誘電体セラミック材料が対向配置されるため、良好な高周波特性を保ちつつ、第1の構造例に比べて誘電体セラミック材料の使用量を減らすことができる。また、第4の構造例は、第3の構造例に比べると、樹脂材料と粉末状の誘電体セラミック材料とを用いて支持台36を形成したため、誘電体セラミック材料の割れ等の不具合を招きにくい構造となり、共振器30の強度の向上が可能となる。   According to the resonator 30 according to the fourth structure example, the dielectric ceramic material is disposed opposite to the electric field generating portion of the winding coil 32 as in the third embodiment, so that good high frequency characteristics can be maintained. However, the amount of dielectric ceramic material used can be reduced as compared with the first structural example. Further, in the fourth structure example, compared to the third structure example, the support base 36 is formed using a resin material and a powdery dielectric ceramic material, which causes problems such as cracking of the dielectric ceramic material. The structure is difficult, and the strength of the resonator 30 can be improved.

次に、本実施形態の共振器30の第5の構造例について、図7を参照して説明する。第5の構造例においては、共振器30の基本構造は第1の構造例(図3)と同様であるが、第1の構造例の支持台31とは組成が異なる支持台37を用いている。図7(A)は、第5の構造例の支持台37を部分的に拡大した平面図である。第5の構造例の支持台37は、樹脂材料37aにフィラー状の誘電体セラミック材料37bを添加した材料により形成される。図7(A)の例では、誘電体セラミック材料37bの個々のフィラーが独立に存在する。支持台37の誘電率は、樹脂材料37aと誘電体セラミック材料37bの成分比に応じた所定の値となる。第5の構造例を採用することにより、支持台37の体積に占める誘電体セラミック材料37bの比率を抑制することができ、材料コストの低減に有効である。   Next, a fifth structure example of the resonator 30 of this embodiment will be described with reference to FIG. In the fifth structural example, the basic structure of the resonator 30 is the same as that of the first structural example (FIG. 3), but a support base 37 having a composition different from that of the support base 31 of the first structural example is used. Yes. FIG. 7A is a partially enlarged plan view of the support base 37 of the fifth structural example. The support base 37 of the fifth structural example is formed of a material obtained by adding a filler-like dielectric ceramic material 37b to a resin material 37a. In the example of FIG. 7A, each filler of the dielectric ceramic material 37b exists independently. The dielectric constant of the support base 37 is a predetermined value corresponding to the component ratio of the resin material 37a and the dielectric ceramic material 37b. By adopting the fifth structural example, the ratio of the dielectric ceramic material 37b occupying the volume of the support base 37 can be suppressed, which is effective in reducing the material cost.

また、図7(B)は、第5の構造例の変形例であり、樹脂材料37aにフィラー状の誘電体セラミック材料37bを添加した点は図7(A)と同様であるが、誘電体セラミック材料37bの状態が異なる。すなわち、図7(B)の例では、誘電体セラミック材料37bの個々のフィラーが互いに連結した状態で存在する。発明者らの検証によれば、樹脂材料37aと誘電体セラミック材料37bの成分比が一定であるときの支持台37の誘電率は、図7(A)の例では樹脂材料37aの誘電率が支配的となり、図7(B)の例では誘電体セラミック材料37bの誘電率が支配的となることが確認された。よって、支持台37の誘電率をできるだけ高めるには、図7(B)を採用する方が有利である。   FIG. 7B is a modification of the fifth structural example, and is similar to FIG. 7A in that a filler-like dielectric ceramic material 37b is added to the resin material 37a. The state of the ceramic material 37b is different. That is, in the example of FIG. 7B, the individual fillers of the dielectric ceramic material 37b exist in a state of being connected to each other. According to the verification by the inventors, the dielectric constant of the support base 37 when the component ratio of the resin material 37a and the dielectric ceramic material 37b is constant is the dielectric constant of the resin material 37a in the example of FIG. In the example of FIG. 7B, it was confirmed that the dielectric constant of the dielectric ceramic material 37b was dominant. Therefore, in order to increase the dielectric constant of the support base 37 as much as possible, it is advantageous to employ FIG.

次に、本実施形態の共振器30の第6の構造例について、図8を参照して説明する。第6の構造例に係る共振器30のうち、図8(A)は上面図を示し、図8(B)は図8(A)のa−a断面における側断面図を示している。第6の構造例に係る共振器30は、第1の構造例と同様のスパイラル型の巻線コイル32と、支持台38とにより構成される。第6の構造例の特徴は、ポーラスを有する支持台38を用いる点である。具体的には、図8(A)に示すように、第3の構造例と同じ形状の円板状の支持台38に対し、複数の貫通孔38aが形成されている。図8(B)に示すように、複数の貫通孔38aは、支持台38のうち巻線コイル32が配置されない領域において、所定の径で支持台38を積層方向に貫いている。   Next, a sixth structural example of the resonator 30 of the present embodiment will be described with reference to FIG. Of the resonator 30 according to the sixth structural example, FIG. 8A shows a top view, and FIG. 8B shows a side cross-sectional view taken along the line aa in FIG. 8A. The resonator 30 according to the sixth structure example includes a spiral winding coil 32 similar to the first structure example, and a support base 38. A feature of the sixth structural example is that a support base 38 having a porous structure is used. Specifically, as shown in FIG. 8A, a plurality of through holes 38a are formed in a disk-shaped support base 38 having the same shape as that of the third structural example. As shown in FIG. 8B, the plurality of through holes 38a penetrate the support base 38 in the stacking direction with a predetermined diameter in the region of the support base 38 where the winding coil 32 is not disposed.

第6の構造例を採用することにより、第3の構造例に比べ、支持台38の体積削減に応じて、誘電体セラミック材料の使用量を一層低減することができる。なお、複数の貫通孔38aの個数、位置、径などは、図8の例には限られず、誘電体セラミック材料の使用量と支持台38の強度とに応じて適切に設定することができる。また、第6の構造例においては、複数の貫通孔38aを設ける構造に限られず、誘電体セラミック材料が部分的に除去された構造を有する多様なポーラスを有する支持台38を採用することができる。さらに、第6の構造例においては、誘電体セラミック材料として多孔質セラミックスを用いることにより、ポーラスを有する支持台38を構成してもよい。   By employing the sixth structure example, the amount of the dielectric ceramic material used can be further reduced in accordance with the volume reduction of the support base 38 as compared with the third structure example. Note that the number, position, diameter, and the like of the plurality of through holes 38 a are not limited to the example of FIG. 8, and can be appropriately set according to the amount of dielectric ceramic material used and the strength of the support base 38. Further, the sixth structure example is not limited to a structure in which a plurality of through holes 38a are provided, and a support base 38 having various porous structures having a structure in which a dielectric ceramic material is partially removed can be employed. . Furthermore, in the sixth structural example, the support base 38 having a porous structure may be configured by using porous ceramics as the dielectric ceramic material.

以上のように、第3〜第6の構造例について、図3の第1の構造例に対して適用する場合をベースとして説明したが、第3〜第6の構造例を図4の第2の構造例に対して適用することも可能である。ただし、第3及び第4(図5及び図6)の構造例に関しては、図4の巻線コイル34のサイズと支持部材33の円筒の高さを適合させることにより、主に巻線コイル34の電界発生部に対向する領域のみに支持部材33が配置される形状を容易に実現することができる。   As described above, the third to sixth structure examples have been described based on the case where the third to sixth structure examples are applied to the first structure example in FIG. 3. However, the third to sixth structure examples are illustrated in FIG. It is also possible to apply to the example of the structure. However, with regard to the third and fourth (FIGS. 5 and 6) structural examples, the winding coil 34 is mainly adjusted by adapting the size of the winding coil 34 in FIG. 4 and the height of the cylinder of the support member 33. It is possible to easily realize a shape in which the support member 33 is disposed only in a region facing the electric field generating portion.

次に、本実施形態の無線給電システムにおいて、1対の共振器30を用いて電力を伝送する場合の具体的な特性及び効果について説明する。以下では、1対の共振器30を所定の距離で対向配置して所定の共振周波数の電力を伝送する状態をモデル化した上で、電磁界シミュレーションを実施して伝送特性を検証した結果を示す。図9は、1対の共振器30に対するシミュレーションの条件を示している。図9に示すように、1対の共振器30としては、図4のヘリカル型の巻線コイル34を用いる構造を想定し、支持部材33については図示を省略している。1対の共振器30は、それぞれの中心軸を一致させた状態で距離Lだけ離して配置した状態で伝送特性の検証を行った。なお、1対の共振器30のうち、一方が送電側共振器13であり、他方が受電側共振器20である。各々の共振器30の巻線コイル34は、直径Dと各巻線の間隔Sとを有し、例えば、D=600mm、S=38mmに設定し、距離Lを変化させることを想定する。   Next, specific characteristics and effects in the case where power is transmitted using a pair of resonators 30 in the wireless power feeding system of the present embodiment will be described. In the following, a state in which a pair of resonators 30 are arranged to face each other at a predetermined distance and power of a predetermined resonance frequency is transmitted is modeled, and then a transmission characteristic is verified by performing an electromagnetic field simulation. . FIG. 9 shows the simulation conditions for the pair of resonators 30. As shown in FIG. 9, the pair of resonators 30 is assumed to have a structure using the helical winding coil 34 of FIG. 4, and the support member 33 is not shown. The pair of resonators 30 were tested for transmission characteristics in a state where the center axes of the pair of resonators 30 are aligned with each other by a distance L. Note that one of the pair of resonators 30 is the power transmission side resonator 13, and the other is the power reception side resonator 20. The winding coil 34 of each resonator 30 has a diameter D and an interval S between the windings. For example, it is assumed that D = 600 mm and S = 38 mm and the distance L is changed.

下記の表1には、各々の共振器30の支持部材33として想定される4通りの材料に関し、それぞれの誘電率ε及び誘電正接tanδを示すとともに、上記シミュレーションにおける巻線コイル34の巻数nを比較して示す。   Table 1 below shows the dielectric constant ε and the dielectric loss tangent tan δ for the four materials assumed as the support member 33 of each resonator 30, and the number n of turns of the winding coil 34 in the above simulation. Shown in comparison.

表1において、樹脂材料としては、一般樹脂(樹脂A)に加えて、これに比べて誘電率が低いテフロン(樹脂B;「テフロン」は登録商標)を挙げるとともに、セラミック材料としては、アルミナ(セラミックA)と、より誘電率が高いε34材(セラミックB)を挙げる。よって、樹脂B、A、セラミックA、Bの順に、比誘電率εrが増加し、樹脂A、B、セラミックA、Bの順に、誘電正接tanδが減少していく。また、樹脂材料に比べてセラミック材料の巻線コイル34の巻数nが減少している。なお、支持部材33を設けずに、巻線コイル34のみの場合の巻数nは、n=5.25であった。また、一般樹脂として、具体的には、例えば、ポリアセタールやガラスエポキシ基板を用いた。   In Table 1, as a resin material, in addition to a general resin (resin A), Teflon (resin B; “Teflon” is a registered trademark) whose dielectric constant is lower than this is listed, and as a ceramic material, alumina ( Ceramic A) and ε34 material (ceramic B) having a higher dielectric constant. Therefore, the relative dielectric constant εr increases in the order of the resins B, A, and ceramics A and B, and the dielectric loss tangent tan δ decreases in the order of the resins A, B, and ceramics A and B. Further, the number of turns n of the winding coil 34 made of a ceramic material is reduced as compared with the resin material. In addition, the number of turns n in the case of only the winding coil 34 without providing the support member 33 was n = 5.25. Further, specifically, for example, polyacetal or glass epoxy substrate was used as the general resin.

表1において、比誘電率εrが高くなるほど巻線コイル34の巻数nが減少するのは、図2を用いて説明したように、比誘電率εの増加に伴い巻線コイル34の容量Cが増加するためである。すなわち、巻線コイル34の設計時に、直径D及び各巻線の間隔Sを共通にすることを前提とすると、相対的に少ない巻数nで巻線コイル34を所定の共振周波数に共振させることができるためである。この場合、巻線コイル34の巻数nが少なくなるほど、支持部材33のサイズを相対的に縮小することができる。   In Table 1, as the relative dielectric constant εr increases, the number of turns n of the winding coil 34 decreases, as described with reference to FIG. 2, as the relative dielectric constant ε increases, the capacitance C of the winding coil 34 increases. This is because it increases. That is, when the winding coil 34 is designed, assuming that the diameter D and the spacing S between the windings are common, the winding coil 34 can resonate at a predetermined resonance frequency with a relatively small number of turns n. Because. In this case, the size of the support member 33 can be relatively reduced as the number of turns n of the winding coil 34 decreases.

図10は、図9の条件下で実施したシミュレーションに基づき、支持部材33の材料に応じた伝送効率ηの特性をグラフにして示す。図10において、表1に示す4種の材料を用いた支持部材33に加えて、支持部材33を設けない場合のそれぞれに対し、図9の距離Lと伝送効率ηの特性S1〜S5を比較している。一般には、上述の(1)式を用いて説明したように、1対の共振器30間の距離Lが増加すると、結合係数kの低下によって伝送効率ηも低下していく。図10に示されるように、支持部材33に一般樹脂を用いた場合の特性S3は、支持部材33を設けない場合の特性S1を含めても、伝送効率ηの劣化が最も大きくなることがわかる。これは、一般樹脂は、主に誘電正接tanδが大きいので、共振器30の誘電体損の増加による影響であると推測される。   FIG. 10 is a graph showing the characteristics of the transmission efficiency η according to the material of the support member 33 based on the simulation performed under the conditions of FIG. In FIG. 10, in addition to the support member 33 using the four types of materials shown in Table 1, the characteristics L1 to S5 of the distance L and the transmission efficiency η in FIG. 9 are compared with the case where the support member 33 is not provided. doing. In general, as described using the above equation (1), when the distance L between the pair of resonators 30 increases, the transmission efficiency η also decreases as the coupling coefficient k decreases. As shown in FIG. 10, it can be seen that the characteristic S3 when the general resin is used for the support member 33 has the greatest deterioration in the transmission efficiency η even if the characteristic S1 when the support member 33 is not provided is included. . This is presumed to be due to an increase in the dielectric loss of the resonator 30 because the general resin mainly has a large dielectric loss tangent tan δ.

また、支持部材33にテフロンを用いた場合の特性S5は、支持部材33を設けない場合の特性S1と同程度であることがわかる。これに対し、支持部材33にアルミナを用いた場合の特性S2と、支持部材33にε34材を用いた場合の特性S4は、いずれも高い伝送効率ηを確保でできることがわかる。実際の無線給電システムの利用形態を考慮すると、例えば、距離L=400mmのときに、伝送効率η=90%程度を確保できる程度の特性が望ましい。図10において、この条件を満たしているのは、支持部材33の材料がアルミナ及びε34材の場合のみである。なお、支持部材33に用いる誘電体セラミック材料としては、比誘電率εrが8以上、誘電正接tanδを10−4以下が望ましいことは既に述べたが、これは図10の結果からも裏付けられる。 It can also be seen that the characteristic S5 when Teflon is used for the support member 33 is similar to the characteristic S1 when the support member 33 is not provided. On the other hand, it can be seen that both the characteristic S2 when alumina is used for the support member 33 and the characteristic S4 when ε34 material is used for the support member 33 can ensure high transmission efficiency η. Considering the actual use form of the wireless power feeding system, for example, when the distance L = 400 mm, the characteristics that can ensure the transmission efficiency η = 90% are desirable. In FIG. 10, this condition is satisfied only when the support member 33 is made of alumina or ε34. Although it has already been described that the dielectric ceramic material used for the support member 33 is preferably a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −4 or less, this is also supported by the results of FIG.

次に、図9の条件において、1対の共振コイル30の位置ずれが生じた際の伝送効率ηへの影響について説明する。図11は、図9と同様の1対の共振器30が、図9に示す位置から、それぞれの中心軸に直交する方向に位置ずれ(位置ずれ量P)を生じた状態を示している。図11に示すような位置ずれは、無線給電システムの使用形態を考慮すると、ある程度許容できることが望ましい。一方、図12は、図11の状態で実施したシミュレーションに基づき、支持部材33を設けない場合及び支持部材33にテフロン、アルミナをそれぞれ用いた場合において、位置ずれ量Pと伝送効率ηの関係をグラフにして示している。   Next, the influence on the transmission efficiency η when the positional deviation of the pair of resonance coils 30 occurs under the conditions of FIG. FIG. 11 shows a state in which a pair of resonators 30 similar to FIG. 9 are displaced from each other in the direction orthogonal to the central axis from the position shown in FIG. 9 (position displacement amount P). It is desirable that the positional deviation as shown in FIG. 11 can be tolerated to some extent in consideration of the usage pattern of the wireless power feeding system. On the other hand, FIG. 12 shows the relationship between the displacement P and the transmission efficiency η when the support member 33 is not provided and when Teflon and alumina are used for the support member 33 based on the simulation performed in the state of FIG. It is shown as a graph.

図12に示されるように、支持部材33を設けない場合及び支持部材33にテフロンを用いた場合は、いずれも位置ずれ量Pの増加時に伝送効率ηが同程度に劣化している。これに対し、支持部材33にアルミナを用いた場合は、位置ずれ量Pの増加時に伝送効率ηの劣化が小さくなることがわかる。例えば、図12において、伝送効率η=94%を基準として考えると、支持部材33を設けない場合及び支持部材33にテフロンを用いた場合は、P=120mm程度で基準を下回るのに対し、支持部材33にアルミナを用いた場合は、P=350mmに達したときに基準を下回ることがわかる。すなわち、支持部材33にアルミナを用いることにより、他の条件に比べて、1対の共振器30に許容される位置ずれ量Pを約3倍近くまで増やすこと可能である。そして、支持部材33にアルミナ等の高誘電率のセラミック材料を用いることは、1対の共振器30の伝送効率ηが全体的に向上することから、横方向の位置ずれに強くなる効果に加え、1対の共振器30の距離Lが大きくなっても高効率を維持できるという効果がある。   As shown in FIG. 12, when the support member 33 is not provided and when Teflon is used for the support member 33, the transmission efficiency η deteriorates to the same extent when the positional deviation amount P increases. On the other hand, when alumina is used for the support member 33, it is understood that the deterioration of the transmission efficiency η is reduced when the positional deviation amount P is increased. For example, in FIG. 12, when the transmission efficiency η = 94% is considered as a reference, when the support member 33 is not provided and when Teflon is used for the support member 33, P = 120 mm, which is lower than the reference. It can be seen that when alumina is used for the member 33, it is below the reference when P = 350 mm is reached. That is, by using alumina for the support member 33, it is possible to increase the positional deviation amount P allowed for the pair of resonators 30 to nearly three times as compared with other conditions. The use of a ceramic material having a high dielectric constant, such as alumina, for the support member 33 improves the overall transmission efficiency η of the pair of resonators 30, and in addition to the effect of strengthening lateral displacement. Even if the distance L between the pair of resonators 30 is increased, there is an effect that high efficiency can be maintained.

以上、本実施形態に基づき本発明の内容を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で多様な変更を施すことができる。例えば、本実施形態の無線給電システムとして、図1の構成例を示したが、これに限られることなく、本発明の構造上の特徴を具備する共振器を用いる限り、多様な構成の無線給電システムに対して本発明を適用することができる。また、共振器の支持部材に含まれる誘電体セラミック材料としては、本実施形態で説明したアルミナやε34材以外にも、良好な伝送効率ηを確保可能な範囲で多様な材料を用いることができる。さらに、本発明を適用可能な無線給電システムの用途として、車両への電源供給や情報端末への電源供給に言及したが、例えば、TV、家電機器、照明機器、ゲーム機器、医療機器、産業機器など多様な用途の無線給電システムに対して本発明の適用が可能である。   The contents of the present invention have been specifically described above based on the present embodiment, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, the configuration example of FIG. 1 is shown as the wireless power supply system of the present embodiment, but the present invention is not limited to this, and as long as the resonator having the structural features of the present invention is used, wireless power supply having various configurations is possible. The present invention can be applied to a system. In addition to the alumina and ε34 materials described in this embodiment, various materials can be used as the dielectric ceramic material included in the resonator support member as long as good transmission efficiency η can be secured. . Further, as the application of the wireless power supply system to which the present invention can be applied, the power supply to the vehicle and the power supply to the information terminal have been mentioned. For example, TV, home appliances, lighting equipment, game equipment, medical equipment, industrial equipment The present invention can be applied to wireless power feeding systems for various uses.

1…送電装置
2…受電装置
10…AC/DCコンバータ
11…高周波電源
12…整合回路
13…送電側共振器
14…無線通信部
15…制御部
20…受電側共振器
21…整合回路
22…整流器
23…バッテリ
24…負荷回路
25…無線通信部
26…制御部
30…共振器
31、35、36、37、38…支持台
32、34…巻線コイル
33…支持部材
DESCRIPTION OF SYMBOLS 1 ... Power transmission apparatus 2 ... Power reception apparatus 10 ... AC / DC converter 11 ... High frequency power supply 12 ... Matching circuit 13 ... Power transmission side resonator 14 ... Wireless communication part 15 ... Control part 20 ... Power reception side resonator 21 ... Matching circuit 22 ... Rectifier DESCRIPTION OF SYMBOLS 23 ... Battery 24 ... Load circuit 25 ... Wireless communication part 26 ... Control part 30 ... Resonator 31, 35, 36, 37, 38 ... Support stand 32, 34 ... Winding coil 33 ... Support member

Claims (10)

主に磁場の共鳴を利用して送電側共振器から受電側共振器に電力を伝送する無線給電システムにおける共振器であって、
所定の共振周波数の交流電力と電磁界エネルギーとを相互に変換する共振コイルと、
誘電体セラミック材料を主成分として含み、前記共振コイルを支持する支持部材と、
を備えることを特徴とする共振器。
A resonator in a wireless power feeding system that mainly uses magnetic field resonance to transmit power from a power transmitting resonator to a power receiving resonator,
A resonant coil that mutually converts AC power and electromagnetic energy of a predetermined resonant frequency;
A support member that includes a dielectric ceramic material as a main component and supports the resonant coil;
A resonator comprising:
前記誘電体セラミック材料は、比誘電率εrが8以上であり、誘電正接tanδが10−4以下であることを特徴とする請求項1に記載の共振器。 The resonator according to claim 1, wherein the dielectric ceramic material has a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −4 or less. 前記支持部材は、前記共振コイルの巻線間の電界発生部に前記誘電体セラミック材料が配置された構造を有することを特徴とする請求項1又は2に記載の共振器。   3. The resonator according to claim 1, wherein the support member has a structure in which the dielectric ceramic material is disposed in an electric field generating portion between windings of the resonance coil. 前記電界発生部に粉末状の前記誘電体セラミック材料を充填した構造を有することを特徴とする請求項3に記載の共振器。   The resonator according to claim 3, wherein the electric field generator has a structure in which the dielectric ceramic material in powder form is filled. 前記支持部材は、樹脂材料に前記誘電体セラミック材料を添加して形成されることを特徴とする請求項1から3のいずれかに記載の共振器。   The resonator according to any one of claims 1 to 3, wherein the support member is formed by adding the dielectric ceramic material to a resin material. 前記支持部材は、ポーラスを有する前記誘電体セラミック材料により形成されることを特徴とする請求項1から3のいずれかに記載の共振器。   The resonator according to any one of claims 1 to 3, wherein the support member is made of the dielectric ceramic material having a porous structure. 主に磁場の共鳴を利用して送電装置から受電装置に電力を伝送する無線給電システムであって、
前記送電装置は、
所定の周波数の交流電力を供給する電源と、
前記電源から供給された前記交流電力に共振し、前記交流電力を電磁界エネルギーとして送電する送電側共振器と、
を備え、
前記受電装置は、
前記送電側共振コイルと前記主に磁場の共鳴により結合し、前記電磁界エネルギーを交流電力として受電する受電側共振器と、
前記受電側共振器により受電された前記交流電力により動作する回路部と、
を備え、
前記送電側共振器及び前記受電側共振器の各々は、
前記交流電力と前記電磁界エネルギーとを相互に変換する共振コイルと、
誘電体セラミック材料を主成分として含み、前記共振コイルを支持する支持部材と、
を備えることを特徴とする無線給電システム。
A wireless power feeding system that mainly uses magnetic field resonance to transmit power from a power transmitting device to a power receiving device,
The power transmission device is:
A power supply for supplying AC power of a predetermined frequency;
A power transmission-side resonator that resonates with the AC power supplied from the power source and transmits the AC power as electromagnetic energy;
With
The power receiving device is:
A power receiving side resonator coupled with the power transmitting side resonance coil mainly by resonance of a magnetic field and receiving the electromagnetic field energy as AC power;
A circuit unit that operates by the AC power received by the power-receiving-side resonator;
With
Each of the power transmission side resonator and the power reception side resonator is:
A resonant coil that mutually converts the AC power and the electromagnetic field energy;
A support member that includes a dielectric ceramic material as a main component and supports the resonant coil;
A wireless power feeding system comprising:
前記誘電体セラミック材料は、比誘電率εrが8以上であり、誘電正接tanδが10−4以下であることを特徴とする請求項7に記載の無線給電システム。 The wireless power feeding system according to claim 7, wherein the dielectric ceramic material has a relative dielectric constant εr of 8 or more and a dielectric loss tangent tan δ of 10 −4 or less. 前記電源と前記送電側共振器との間に接続された送電側整合回路と、
前記受電側共振器と前記回路部との間に接続された受電側整合回路と、
を更に備えることを特徴とする請求項7又は8に記載の無線給電システム。
A power transmission side matching circuit connected between the power source and the power transmission side resonator;
A power receiving side matching circuit connected between the power receiving side resonator and the circuit unit;
The wireless power feeding system according to claim 7 or 8, further comprising:
前記回路部は、
前記受電側整合回路から出力された前記交流電力を整流して直流電力に変換する整流器と、
前記整流器から出力された前記直流電力を蓄電する蓄電器と、
前記蓄電器に蓄電された前記直流電力が供給される負荷と、
を含むことを特徴とする請求項9に記載の無線給電システム。
The circuit section is
A rectifier that rectifies the AC power output from the power receiving side matching circuit and converts the AC power into DC power;
A battery for storing the DC power output from the rectifier;
A load to which the DC power stored in the capacitor is supplied;
The wireless power feeding system according to claim 9, comprising:
JP2013006635A 2013-01-17 2013-01-17 Resonator, and radio power feeding system Pending JP2014138509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013006635A JP2014138509A (en) 2013-01-17 2013-01-17 Resonator, and radio power feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013006635A JP2014138509A (en) 2013-01-17 2013-01-17 Resonator, and radio power feeding system

Publications (1)

Publication Number Publication Date
JP2014138509A true JP2014138509A (en) 2014-07-28

Family

ID=51415728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013006635A Pending JP2014138509A (en) 2013-01-17 2013-01-17 Resonator, and radio power feeding system

Country Status (1)

Country Link
JP (1) JP2014138509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075575A (en) * 2016-11-15 2018-05-25 天津中德应用技术大学 It is wirelessly transferred electric power supply system for subway and its charging method
JP2019532612A (en) * 2016-11-02 2019-11-07 テーデーカー エレクトロニクス アーゲー Wireless power transmitter, wireless power transmission system, and wireless power transmission system driving method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330833A (en) * 1998-05-21 1999-11-30 Kyocera Corp Antenna
JP2003198231A (en) * 2001-12-28 2003-07-11 Ntn Corp Dielectric resin film antenna and information recording tag
JP2004356674A (en) * 2003-05-27 2004-12-16 Kobe Steel Ltd Method of manufacturing high-frequency circuit device and high-frequency circuit device manufactured by this method
JP2005530389A (en) * 2002-06-15 2005-10-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Metallized multiband antenna
JP2009106136A (en) * 2007-10-25 2009-05-14 Toyota Motor Corp Electric vehicle and power feeding device for vehicle
JP2011142724A (en) * 2010-01-06 2011-07-21 Hitachi Ltd Noncontact power transmission device and near field antenna for same
JP2012205379A (en) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd Charging system, power supply device, mobile body, wireless power transmission and reception system, and power reception device
US20120306280A1 (en) * 2011-05-31 2012-12-06 General Electric Company Resonator structures and method of making
JP2012244763A (en) * 2011-05-19 2012-12-10 Sony Corp Power supply device, power supply system and electronic device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330833A (en) * 1998-05-21 1999-11-30 Kyocera Corp Antenna
JP2003198231A (en) * 2001-12-28 2003-07-11 Ntn Corp Dielectric resin film antenna and information recording tag
JP2005530389A (en) * 2002-06-15 2005-10-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Metallized multiband antenna
JP2004356674A (en) * 2003-05-27 2004-12-16 Kobe Steel Ltd Method of manufacturing high-frequency circuit device and high-frequency circuit device manufactured by this method
JP2009106136A (en) * 2007-10-25 2009-05-14 Toyota Motor Corp Electric vehicle and power feeding device for vehicle
JP2011142724A (en) * 2010-01-06 2011-07-21 Hitachi Ltd Noncontact power transmission device and near field antenna for same
JP2012205379A (en) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd Charging system, power supply device, mobile body, wireless power transmission and reception system, and power reception device
JP2012244763A (en) * 2011-05-19 2012-12-10 Sony Corp Power supply device, power supply system and electronic device
US20120306280A1 (en) * 2011-05-31 2012-12-06 General Electric Company Resonator structures and method of making

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532612A (en) * 2016-11-02 2019-11-07 テーデーカー エレクトロニクス アーゲー Wireless power transmitter, wireless power transmission system, and wireless power transmission system driving method
JP7186698B2 (en) 2016-11-02 2022-12-09 テーデーカー エレクトロニクス アーゲー WIRELESS POWER TRANSMITTER, WIRELESS POWER TRANSMISSION SYSTEM AND WIRELESS POWER TRANSMISSION SYSTEM DRIVING METHOD
CN108075575A (en) * 2016-11-15 2018-05-25 天津中德应用技术大学 It is wirelessly transferred electric power supply system for subway and its charging method
CN108075575B (en) * 2016-11-15 2023-12-19 天津中德应用技术大学 Wireless transmission subway power supply system and charging method thereof

Similar Documents

Publication Publication Date Title
JP5934934B2 (en) Wireless power transmission system
US10546685B2 (en) Wireless power transmitting apparatus
JP6124085B2 (en) Wireless power transmission device, wireless power transmission device and power reception device
Chatterjee et al. Design optimisation for an efficient wireless power transfer system for electric vehicles
KR102148847B1 (en) Receiving antennas and wireless power receiving apparatus comprising the same
JP2015534422A (en) Non-contact power transmission system
KR20130139890A (en) Non-contact charging module and non-contact charging instrument
JP6168500B2 (en) Wireless power transmission device, power transmission device, and power reception device
CN102386684A (en) Electronic component, power feeding apparatus, power receiving apparatus, and wireless power feeding system
CN111527666B (en) wireless power transmission device
JP2014132658A (en) Soft magnetic layer, and receiver antenna and radio power receiver having the same
US20120161540A1 (en) Apparatus for transmitting/receiving energy in energy system
KR101174400B1 (en) Space-adaptive self-resonator for wireless power transfer based on resonance
JP2014138509A (en) Resonator, and radio power feeding system
JP2016004990A (en) Resonator
JP2016010168A (en) Resonator and wireless power supply system
JP2015220891A (en) Resonator and wireless power supply system
CN105375649A (en) Integrated circuit with radio energy receiving structure and integrating method thereof
KR102503650B1 (en) wireless power transmission module
JP2022513161A (en) Electromagnetic induction device
JP2019179904A (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system
Kim et al. Modified helical coils structure for uniform magnetic flux density
CN115967193A (en) Capacitor-free self-resonant bidirectional wireless energy transmission array device
KR20220028434A (en) Resonator for converting electric field energy into magnetic field energy in wireless power transmission system
Cho et al. Miniature magnetic resonance coils for wide wireless power transfer applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170214