JP6162086B2 - Floating offshore facility and power supply method for floating offshore facility - Google Patents

Floating offshore facility and power supply method for floating offshore facility Download PDF

Info

Publication number
JP6162086B2
JP6162086B2 JP2014177804A JP2014177804A JP6162086B2 JP 6162086 B2 JP6162086 B2 JP 6162086B2 JP 2014177804 A JP2014177804 A JP 2014177804A JP 2014177804 A JP2014177804 A JP 2014177804A JP 6162086 B2 JP6162086 B2 JP 6162086B2
Authority
JP
Japan
Prior art keywords
power
group
floating offshore
facility
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014177804A
Other languages
Japanese (ja)
Other versions
JP2016049929A (en
Inventor
繁志 柴田
繁志 柴田
祐成 寺本
祐成 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2014177804A priority Critical patent/JP6162086B2/en
Priority to KR1020150105969A priority patent/KR102345817B1/en
Priority to SG11201701153TA priority patent/SG11201701153TA/en
Priority to PCT/JP2015/074296 priority patent/WO2016035679A1/en
Priority to CN201510553860.2A priority patent/CN105383672A/en
Publication of JP2016049929A publication Critical patent/JP2016049929A/en
Application granted granted Critical
Publication of JP6162086B2 publication Critical patent/JP6162086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

本発明は、浮体式洋上設備、及び、浮体式洋上設備の電力供給方法に関し、より詳細には、上甲板の上の発電装置を配設するためのスペースを大幅に減少することができて、洋上設備としての生産や貯蔵のための設備のスペースを著しく増大することができる、浮体式洋上設備、及び、浮体式洋上設備の電力供給方法に関する。   The present invention relates to a floating offshore facility and a power supply method for a floating offshore facility, and more specifically, a space for installing a power generation device on an upper deck can be greatly reduced, The present invention relates to a floating offshore facility and a method of supplying power to the floating offshore facility, which can significantly increase the space for production and storage as an offshore facility.

石油・ガスの生産設備を備え、長期間に亘って特定の洋上設置場所に位置保持されて使用されるFPSO(浮体式生産貯蔵積出設備)、石油・ガスの生産設備を持たないFSO(浮体式貯蔵積出設備)やFSU(浮体式貯蔵設備)、LNGを扱うFLNG(液化貯蔵積出設備)等の浮体式洋上設備は、洋上で係留や自動位置保持装置等により位置保持しながら、浮かんだ状態で、生産活動及び生産物の一時的貯蔵を行っている。   FPSO (floating production storage and loading equipment) equipped with oil and gas production facilities and kept at a specific offshore installation location for a long period of time, FSO (floating bodies) without oil and gas production facilities Floating offshore facilities such as floating storage and loading facilities), FSU (floating storage facilities), and FLNG (liquefied storage and loading facilities) that handle LNG float while being held in place by mooring or automatic position holding devices, etc. In this state, production activities and products are temporarily stored.

これらの浮体式洋上設備の建造は、既存のVLCC(大型タンカー)を改造して建造することが主流であるが、最近は、新造で浮体式洋上設備を建造するケースがでてきており、この新造のケースにおいてもVLCCの設計をベースに設計され、建造されている。   The construction of these floating offshore facilities is mainly done by remodeling existing VLCCs (large tankers), but recently there have been cases where new offshore facilities have been built. Even new cases are designed and built based on the VLCC design.

この浮体式洋上設備を建造するにあたり、新造船では、自らの移送手段を持たせない場合には、生産現場まで曳航するか、重量運搬船により移送する必要が生じる。従って、長距離の移動が生じる場合には、例えば、浮体式洋上設備をアジアで建造して、ブラジルで設置する場合等では、初期移送費用が非常に高くつくことになってしまう。   In constructing this floating offshore facility, if a new ship does not have its own transportation means, it will be necessary to tow to the production site or to transport it by a heavy transport ship. Therefore, when long-distance movement occurs, for example, when a floating offshore facility is constructed in Asia and installed in Brazil, the initial transfer cost is very high.

そのため、推進システムを、VLCCと同様にする場合は、図7に示すように、機関室5Xの大半を、ディーゼルエンジンが多用される主機関40等の推進機関関連の機器と航行時に必要な電力を発生させるための2基〜3基程度のディーゼル発電装置41等が占めているが、この推進機能及び航行時用の発電装置41は、製造所又は港から油田までの移動の際しか用いられず、浮体式洋上設備1Xの稼働中は必要とされない。そのため、生産設備30の稼働中は使用されない推進機関関連の機器類や発電装置41で、機関室5Xのスペース(斜線のハッチング部分)が大きく取られるため、上甲板より下に配設される生産物の貯蔵用の貨物倉6のスペースが小さくなり、上甲板3より下の部分の有効利用がなされていないという問題がある。   Therefore, when the propulsion system is made the same as that of the VLCC, as shown in FIG. 7, most of the engine room 5X is made up of propulsion engine-related equipment such as the main engine 40 where diesel engines are frequently used and power required for navigation. 2 to 3 diesel generators 41, etc. for generating power are occupied, but this propulsion function and the power generator 41 for navigation are used only when moving from the factory or the port to the oil field. It is not required during operation of the floating offshore facility 1X. Therefore, because the space (shaded hatched portion) of the engine room 5X is large in the propulsion engine-related equipment and the power generation device 41 that are not used while the production facility 30 is in operation, the production arranged below the upper deck There is a problem that the space of the cargo hold 6 for storing goods is reduced, and the portion below the upper deck 3 is not effectively used.

また、この浮体式洋上設備1Xにおいては、上甲板3の上に生産設備30とこの生産設備30を駆動するための例えば発電装置31からなる発電装置群が配設されている。この発電装置群は設置面積がディーゼル発電機に比べて小さくて済むガスタービン発電機を2基〜8基程度(図7では3基×横2列の6基)を上甲板3に配設することで形成されている。そのため、生産設備30を配設するスペースが小さくなるという問題がある。   In the floating offshore facility 1X, a power generation device group including a production facility 30 and, for example, a power generation device 31 for driving the production facility 30 is disposed on the upper deck 3. In this power generator group, about 2 to 8 gas turbine generators (3 in FIG. 7 × 6 in 2 horizontal rows) are installed on the upper deck 3 which requires a smaller installation area than the diesel generator. It is formed by that. Therefore, there exists a problem that the space which arrange | positions the production equipment 30 becomes small.

更に、生産設備の電力発生用には、上甲板の上の発電装置が占めるスペースを小さくするために使用するスペースが比較的小さいガスタービン発電機が用いられているが、このガスタービン発電機のエネルギー効率が、背が高く使用するスペースが比較的大きいディーゼル発電機のエネルギー効率より悪く、燃費及び省エネルギーの面から改善の余地があるという問題もある。   Furthermore, a gas turbine generator that uses a relatively small space to reduce the space occupied by the power generation device on the upper deck is used for power generation in production facilities. There is also a problem that the energy efficiency is worse than that of a diesel generator that is tall and uses a relatively large space, and there is room for improvement in terms of fuel consumption and energy saving.

一方、船舶の推進システムとして、内燃機関により直接、推進器のプロペラを回転駆動する代わりに、発電機で発電した電気を電動機に供給し、この電動機で推進用プロペラを駆動する電気推進船が開発され、この電気推進船において、複数の発電機と、推進用電動機と発電機を接続する低周波数回路と、低周波数回路に周波数及び電圧変換器を介して接続した通常回路を有し、発電機で発電する交流電流の周波数が、50Hzより小さくなるように制御することで、機関室内の容積効率を向上し、且つ、航行の際の燃費効率を向上させる電気推進船が提案されている(例えば、特許文献1参照)。   On the other hand, as a ship propulsion system, instead of directly driving a propeller propeller by an internal combustion engine, an electric propulsion ship that supplies electricity generated by a generator to the motor and drives the propeller for propulsion by this motor is developed. The electric propulsion ship has a plurality of generators, a low-frequency circuit connecting the propulsion motor and the generator, and a normal circuit connected to the low-frequency circuit via a frequency and voltage converter. There has been proposed an electric propulsion ship that improves the volumetric efficiency in the engine room and improves the fuel efficiency during navigation by controlling the frequency of the alternating current generated by the engine to be smaller than 50 Hz (for example, , See Patent Document 1).

また、発電機及び推進モータを実質的に同じ動作特性を有する永久磁石型同期機で形成し、これらの同期機を固定的な電気接続によって互いに直結することにより、プロペラの回転速度を、パワーエレクトロニクスの使用なしで変化させて、ギヤなしで減じることができて、投資及び空間の要件を減らすことができる船及び可動海洋構造物の推進システムも提案されている(例えば、特許文献2参照)。   In addition, the generator and the propulsion motor are formed of permanent magnet type synchronous machines having substantially the same operating characteristics, and these synchronous machines are directly connected to each other by fixed electrical connection, so that the rotation speed of the propeller can be controlled by power electronics. There has also been proposed a propulsion system for ships and movable marine structures that can be changed without the use of gears and reduced without gears, reducing investment and space requirements (see, for example, Patent Document 2).

しかしながら、これらの電気推進船や船及び可動海洋構造物の推進システムでは、浮体式洋上設備における上甲板の上に配置される発電装置群のスペースの問題については何らの言及もなされていない。   However, in these electric propulsion vessels, ships, and propulsion systems for movable marine structures, no mention is made of the problem of the space of the power generators arranged on the upper deck in the floating offshore facility.

特開2013−43485号公報JP 2013-43485 A 特表2007−504045号公報Special table 2007-504045 gazette

本発明者らは、上記の状況を鑑みて、生産設備の稼働時に推進機能が不要となる浮体式洋上設備に対して、従来のディーゼルエンジン等主機関で推進器を駆動する推進システムよりも機関室を小さくできる電気推進システムと、生産設備の稼働用の発電装置群とを組み合わせることにより、機関室を小さくして、貨物倉の増大を図ると共に、甲板上に配設される発電装置群の一部を電気推進システムと兼用すると共に、兼用する発電装置を機関室内に配設することで、上甲板の上に配設される発電装置群のスペースを減少でき、生産設備のスペースを増加できるとの知見を得た。   In view of the above situation, the present inventors have considered an engine rather than a propulsion system that drives a propulsion unit with a main engine such as a conventional diesel engine for a floating offshore facility that does not require a propulsion function when the production facility is in operation. By combining an electric propulsion system that can reduce the size of a room with a group of power generation devices for operating production facilities, the engine room can be made smaller, the cargo hold can be increased, and the power generation device group installed on the deck A part of the power generation system can be shared with the electric propulsion system, and the power generation equipment that is also used in the engine room can reduce the space for the power generation equipment group arranged on the upper deck and increase the space for production equipment. And gained knowledge.

本発明の目的は、浮体式洋上設備において製造所や港から洋上設置場所までの航海では使用するが、洋上で稼働しているときには不要となる推進システムを配設する機関室のスペースを大幅に減少することができて、洋上設備としての生産設備や貯蔵のための貨物倉のスペースを著しく増大することができる浮体式洋上設備、及び、浮体式洋上設備の電力供給方法を提供することにある。   The purpose of the present invention is to use a floating offshore facility for a voyage from a factory or a port to a place where it is installed offshore. An object of the present invention is to provide a floating offshore facility that can be reduced and can significantly increase the space for production facilities and storage for cargo storage as an offshore facility, and a power supply method for the floating offshore facility. .

上記のような目的を達成するための本発明の浮体式洋上設備は、複数の発電装置によって電力が供給される生産設備を備えて、洋上に位置保持されて使用される浮体式洋上設備において、当該浮体式洋上設備を移動するための推進システムを電動機で推進器を駆動する電気推進システムで構成すると共に、第1グループの前記発電装置を上甲板上に、第2グループの前記発電装置を機関室内にそれぞれ配置して構成し、かつ、当該浮体式洋上設備に設けた生産設備を稼働する電力を前記第1グループと第2グループの両方の前記発電装置により供給すると共に、前記電動機を駆動する電力を前記第2グループの前記発電装置により供給するように構成される。   The floating offshore facility of the present invention for achieving the above object comprises a production facility to which power is supplied by a plurality of power generators, and the floating offshore facility is used while being held on the ocean. The propulsion system for moving the floating offshore facility is composed of an electric propulsion system that drives a propulsion device with an electric motor, and the first group of the power generation devices are arranged on the upper deck, and the second group of the power generation devices is an engine. The electric power for operating the production facility provided in the floating offshore facility is supplied by the power generators of both the first group and the second group, and the motor is driven. Power is configured to be supplied by the power generators of the second group.

この構成によれば、発電装置群の第2グループを機関室内に設けても、浮体式洋上設備を移動するための推進システムを電動機で推進器を駆動する電気推進システムで構成することにより、内燃機関による推進器を直接駆動する推進システムを採用する場合よりも機関室全体のスペースを小さくすることができ、上甲板の下に配設される貨物倉のスペースを大きくとることができるようになる。   According to this configuration, even if the second group of the power generation device group is provided in the engine room, the propulsion system for moving the floating offshore facility is configured by the electric propulsion system that drives the propulsion device with the electric motor, thereby The space of the entire engine room can be made smaller than when a propulsion system that directly drives the propulsion unit by the engine is adopted, and the space of the cargo hold disposed below the upper deck can be increased. .

また、生産設備に電力を供給する発電装置群の第2グループを機関室に設けることにより、上甲板の上の発電装置群の第1グループの発電装置の基数を減少することができるので、大幅に、上甲板の上の発電装置群が占めるスペースを小さくすることができ、生産設備用のスペースを増大することができる。   In addition, by providing the engine room with the second group of power generators that supply power to the production facility, the number of power generators of the first group of power generators on the upper deck can be reduced. In addition, the space occupied by the power generation device group on the upper deck can be reduced, and the space for production equipment can be increased.

更に、浮体式生産設備の建造場所から設置場所までの航行に一時的に必要な、電気推進装置、推進制御装置、航海設備等の初期移動装置を設けて航行するので初期移動費用を抑えることが可能になる。その上、この航行に一時的に必要な電力を、生産設備の稼働時に使用する発電装置群の第2グループの発電装置で発電するので、航行時のみに使用する発電装置を設ける必要がなくなる。特に、浮体式生産設備が、100MWクラスの大規模発電システムを備える場合には、航行時に電気推進システムで使用する電力を十分賄うことができる。   Furthermore, since initial navigation devices such as electric propulsion devices, propulsion control devices, and navigation facilities that are temporarily required for navigation from the construction site to the installation site of floating production facilities are installed, navigation costs can be reduced. It becomes possible. In addition, since the power necessary for the navigation is generated by the power generation device of the second group of the power generation device group used when the production facility is in operation, it is not necessary to provide a power generation device that is used only during the navigation. In particular, when the floating production facility includes a large-scale power generation system of 100 MW class, it is possible to sufficiently cover the electric power used by the electric propulsion system during navigation.

従って、従来技術で上甲板の上に装備されていた大規模発電システムの一部を機関室内に装備するため、生産設備を設置する上甲板の上のスペースをより広く利用できる。また、初期移動装置の投資費用を抑え、自航費用を低減できる。   Therefore, since a part of the large-scale power generation system equipped on the upper deck in the prior art is installed in the engine room, the space above the upper deck where the production equipment is installed can be used more widely. In addition, the investment cost of the initial mobile device can be suppressed, and the self-navigation cost can be reduced.

なお、電力供給の制御の面から考えると、発電装置を同一機種、同一容量にするのが好ましく、発電装置の基数の配置に関しては、第1グループを4基とし、第2グループを2基とするのが、航行時の電力消費の面から好ましい。   In terms of power supply control, it is preferable to use the same type of generator and the same capacity as the generator. Regarding the arrangement of the radix of the generator, the first group is four and the second group is two. This is preferable from the viewpoint of power consumption during navigation.

また、上甲板の上に配置される第1グループの発電装置の一部又は全部を使用して、航行時に電気推進システムで使用する電力を供給することも考えられるが、浮体式生産設備の建造工程を考えた場合に、機関室内に電気推進システムと第2グループの発電装置が配置された後に、上甲板の上の第1グループの発電装置が配置される場合があり、必ずしも、航行時に第1グループの発電装置が設置及び稼働可能になっているとは限らないので、第2グループの発電装置で電気推進システムに電力供給することが好ましい。   It is also conceivable to use part or all of the first group of power generators arranged on the upper deck to supply the electric power used by the electric propulsion system during navigation. Considering the process, after the electric propulsion system and the second group of power generators are arranged in the engine room, the first group of power generators on the upper deck may be arranged. Since it is not always possible to install and operate one group of power generators, it is preferable to supply power to the electric propulsion system with the second group of power generators.

また、本発明は、言い換えれば、上甲板上に配置される生産設備のスペース確保のために、同じく上甲板上に配設される発電装置群のスペースをできるだけ小さくすることが好ましいので、本発明者らは、熟慮の上で、発電装置群を2つのグループに分けて、一方の第2グループの発電装置を機関室内に移動すると共に、この機関室内への発電装置の移動に伴って、機関室のスペースが増大すると、今度は、上甲板の下の貨物倉のスペースが減少するので、電気推進システムとの組み合わせにより、機関室のスペースの減少を図ると共に、電気推進システムの発電装置の部分を第2グループの発電装置で代用することにより、機関室内の機器構成を簡素化すると共に、更に、機関室のスペースを減少して、貨物倉のスペースを拡大するものである。   In addition, the present invention, in other words, it is preferable to make the space of the power generation device group disposed on the upper deck as small as possible in order to secure the space for the production equipment disposed on the upper deck. With careful consideration, the power generator group is divided into two groups, one of the second group of power generators is moved into the engine room, and the engine is moved along with the movement of the power generator into the engine room. If the space in the room increases, the space in the cargo hold below the upper deck will decrease, so the combination with the electric propulsion system will reduce the space in the engine room and Is replaced with the power generator of the second group to simplify the equipment configuration in the engine room and further reduce the space in the engine room and expand the space in the cargo hold. That.

上記の浮体式洋上設備において、前記発電装置の少なくとも一部または全部をディーゼル発電機で構成すると、機関室内においては、電気推進システムを採用した場合でも、推進器軸や電動機や発電装置や推進制御装置等を配置するスペースを確保する必要があり、この電気推進システム用のスペースは、内燃機関で直接推進器を回転駆動する推進システムを採用する場合よりも小さいスペースになるため、ディーゼル発電機を配設できるスペースを容易に確保できるので、ガスタービン発電機を採用する場合よりも、燃費を向上することができる。   In the above floating offshore facility, if at least a part or all of the power generator is configured with a diesel generator, the propulsion shaft, the motor, the power generator, the propulsion control, and the like in the engine room even when the electric propulsion system is adopted. It is necessary to secure a space for arranging the devices, etc., and the space for this electric propulsion system is smaller than the case where a propulsion system that directly rotates the propulsion unit is used in an internal combustion engine. Since the space which can be arrange | positioned can be ensured easily, a fuel consumption can be improved rather than the case where a gas turbine generator is employ | adopted.

上記の浮体式洋上設備において、前記電気推進システムの推進器の回転数制御をインバータで行うと共に、該インバータを貨物ポンプの移送速度制御にも使用する構成とすると、高価なインバータを、初期移動と生産物の移送に利用できるので、効率よくインバータを使用でき、全体としての設備コストを低減できる。つまり、従来技術では貨物ポンプはボイラで発生する蒸気で駆動するように形成されているが、初期移動で使用するインバータがある場合には、このインバータを兼用またはインバータの配置換えにより、初期移動と生産設備の稼働の両方で使用することで低コストのまま貨物ポンプを電気駆動に切り替えることができる。この貨物ポンプの電動化を採用することにより、従来技術の蒸気タービン駆動の貨物ポンプに比べて、燃料費の低減に寄与することができる。   In the above floating offshore facility, when the rotational speed control of the propulsion unit of the electric propulsion system is performed by an inverter and the inverter is also used for the transfer speed control of the cargo pump, the expensive inverter is replaced with the initial movement. Since it can be used for the transfer of products, the inverter can be used efficiently, and the equipment cost as a whole can be reduced. In other words, in the prior art, the cargo pump is configured to be driven by steam generated in the boiler. However, if there is an inverter used for initial movement, this inverter can be used as an initial movement or by switching the inverter. The cargo pump can be switched to electric drive at low cost by using it for both operation of production facilities. By adopting the electrification of this cargo pump, it is possible to contribute to a reduction in fuel costs as compared to the conventional steam turbine driven cargo pump.

そして、上記の目的を達成するための浮体式洋上設備の電力供給方法は、複数の発電装置によって電力が供給される生産設備を備えて、洋上に位置保持されて使用される浮体式洋上設備の電力供給方法において、当該浮体式洋上設備に設けた生産設備を稼働する電力を上甲板上に配設した第1グループの前記発電装置と機関室内に配設した第2グループの前記発電装置により供給すると共に、当該浮体式洋上設備を移動するための電気推進システムの電動機を駆動する電力を前記第2グループの前記発電装置により供給することを特徴とする方法である。   And the electric power supply method of the floating offshore facility for achieving the above-mentioned object comprises a production facility to which electric power is supplied by a plurality of power generators, and the floating offshore facility to be used while being held on the ocean. In the power supply method, the electric power for operating the production facility provided in the floating offshore facility is supplied by the first group of power generators disposed on the upper deck and the second group of power generators disposed in the engine room. The electric power for driving the electric motor of the electric propulsion system for moving the floating offshore facility is supplied by the power generator of the second group.

この方法によれば、上甲板の上の生産設備への電力供給を上甲板上の第1グループの発電装置群と機関室内に装備された第2グループの発電装置群で行うので、上甲板の上に配設する発電装置の基数を少なくすることができ、生産設備を設置する上甲板をより広く利用できる。また、初期移動時は、第2グループの発電装置群で電気推進システムの電動機に電力供給するため、初期移動装置のための投資費用を抑え、自航費用を低減できる。   According to this method, the power supply to the production equipment on the upper deck is performed by the first group of generators on the upper deck and the second group of generators installed in the engine room. It is possible to reduce the number of power generators arranged on the top, and to use the upper deck on which production equipment is installed more widely. In addition, during the initial movement, power is supplied to the motor of the electric propulsion system by the second group of power generation devices, so that the investment cost for the initial movement device can be suppressed and the self-propulsion cost can be reduced.

本発明の浮体式洋上設備、及び、浮体式洋上設備の電力供給方法によれば、製造所や港から洋上設置場所までの航海で使用する推進システムを電気推進システムで構成することにより、推進システムを配設する機関室のスペースを大幅に減少することができ、上甲板の下に配設される貨物倉のスペースを大きくとることができるようになる。   According to the floating offshore facility and the power supply method for the floating offshore facility according to the present invention, the propulsion system used in the voyage from the manufacturing site or the port to the offshore installation location is constituted by an electric propulsion system. It is possible to greatly reduce the space of the engine room in which the vehicle is disposed, and it is possible to increase the space of the cargo hold disposed below the upper deck.

また、第2グループの発電装置を機関室に設けることにより、上甲板の上に配置される第1グループの発電装置の基数を減少できるので、上甲板の上の発電装置群が占めるスペースを大幅に減少することができ、生産設備用のスペースを増大することができる。   In addition, by providing the second group of power generators in the engine room, the number of the first group of power generators arranged on the upper deck can be reduced, greatly increasing the space occupied by the group of power generators on the upper deck. The space for production equipment can be increased.

更に、浮体式生産設備の建造場所から設置場所までの航行に一時的に必要な電力を、生産設備の稼働時に使用する発電装置群の一部である第2グループの発電装置で発電するので、航行時のみに使用する発電装置を別に設ける必要がなくなる。   Furthermore, since the electric power temporarily required for navigation from the construction site to the installation site of the floating production facility is generated by the second group of power generation devices that are part of the power generation device group used when the production facility is in operation, There is no need to provide a separate power generator for use only during navigation.

従って、従来技術で上甲板の上に装備されていた大規模発電システムの一部を機関室内に装備するため、生産設備を設置する上甲板の上のスペースをより広く利用できる。また、初期移動装置の投資費用を抑え、自航費用を低減できる。   Therefore, since a part of the large-scale power generation system equipped on the upper deck in the prior art is installed in the engine room, the space above the upper deck where the production equipment is installed can be used more widely. In addition, the investment cost of the initial mobile device can be suppressed, and the self-navigation cost can be reduced.

本発明の実施の形態の浮体式洋上設備の構成を模式的に示す側断面図である。It is a sectional side view which shows typically the structure of the floating type offshore installation of embodiment of this invention. 本発明の実施の形態の浮体式洋上設備の上甲板上の発電装置群を模式的に示す船尾部分の平面である。It is a plane of the stern part which shows typically the power generator group on the upper deck of the floating-type offshore installation of embodiment of this invention. 本発明の実施の形態の浮体式洋上設備の機関室内の構成を模式的に示す機関室の側断面図である。It is a sectional side view of an engine room which shows typically composition in an engine room of a floating type offshore facility of an embodiment of the invention. 本発明の実施の形態の浮体式洋上設備の機関室内の第2グループの発電装置の配置を模式的に示す機関室の平面図である。It is a top view of the engine room which shows typically arrangement of the power generator of the 2nd group in the engine room of the floating type offshore equipment of an embodiment of the invention. 本発明の実施の形態の浮体式洋上設備の機関室内の電気推進システムの電動機、プロペラ回転軸、プロペラ等の配置を模式的に示す機関室の平面図である。It is a top view of the engine room which shows typically arrangement of an electric motor, a propeller rotating shaft, a propeller, etc. of an electric propulsion system in an engine room of a floating offshore facility of an embodiment of the invention. 本発明の実施の形態の浮体式洋上設備の電力供給システムの電気系統図である。It is an electric system figure of the electric power supply system of the floating type offshore installation of embodiment of this invention. 従来技術における浮体式洋上設備の構成を模式的に示す側断面図である。It is a sectional side view which shows typically the structure of the floating body type offshore installation in a prior art.

以下、本発明に係る実施の形態の浮体式洋上設備、及び、浮体式洋上設備の電力供給方法について、図面を参照しながら説明する。この実施の形態の浮体式洋上設備として、FPSO(浮体式生産貯蔵積出設備)を例にして説明するが、本発明は、このFPSOに限定する必要はなく、洋上を航行するときに推進装置を必要とし、洋上で稼働中は推進装置を必要としない浮体式洋上設備であれば、適用することができる。   DESCRIPTION OF EMBODIMENTS Hereinafter, a floating offshore facility and a power supply method for a floating offshore facility according to embodiments of the present invention will be described with reference to the drawings. As the floating offshore facility of this embodiment, an FPSO (floating body production storage and loading facility) will be described as an example. However, the present invention is not limited to this FPSO, and the propulsion device is used when navigating offshore. If it is a floating offshore facility that does not require a propulsion device during operation on the ocean, it can be applied.

例えば、石油・ガスの生産設備を持たないFSO(浮体式貯蔵積出設備)やFSU(浮体式貯蔵設備)、LNGを扱うFLNG(液化貯蔵積出設備:LNG-FPSO)、LPGを扱うFLPG(LPG-FPSO)、FSRU(浮体式貯蔵再ガス化設備)等にも本発明を適用することができる。   For example, FSO (floating storage and loading equipment) or FSU (floating storage equipment) without oil / gas production facilities, FLNG (liquefied storage and loading equipment: LNG-FPSO) that handles LNG, FLPG that handles LPG ( The present invention can also be applied to LPG-FPSO), FSRU (floating body storage regasification facility), and the like.

なお、一般的に、FPSO等の浮体式洋上設備1は、VLCC等の船舶とほぼ同様の形状をしていることが多いので、ここでは、各部の名称もVLCC等の船舶に準じて「船体」「船尾」「上甲板」などの呼称を用いて説明する。   In general, the floating offshore facility 1 such as FPSO has almost the same shape as a vessel such as VLCC, so here, the names of the respective parts are the same as those of the vessel such as VLCC. ”,“ Stern ”,“ upper deck ”, etc.

図1〜図5に示すように、この実施の形態の浮体式洋上設備1は、VLCC等の船舶と略同様な形状をしており、製造所又は港から油田等のある洋上設置場所に自航で移動し、係留システムや自動位置保持システムにより、この洋上設置場所で洋上に位置保持している状態で使用される。   As shown in FIGS. 1 to 5, the floating offshore facility 1 of this embodiment has substantially the same shape as a ship such as a VLCC, and is automatically installed from a manufacturing site or port to an offshore installation site such as an oil field. It moves by voyage and is used in a state where it is held on the ocean at this offshore installation location by a mooring system or automatic position holding system.

図1に示すように、この浮体式洋上設備1は、船体2と上甲板3と船尾部4を有し、この船尾部4の前の上甲板3の下に機関室5を、この機関室5の前方に貨物倉6を、機関室5の上に居住区や航行時の船橋となる部分からなる上部構造物7を、それぞれ設けている。また、機関室5の上方部位には煙突5aが設けられている。なお、浮体式洋上設備1が一時的にせよ自航する場合には上部構造物7の船橋に航海設備を装備して、初期移動用に利用する。   As shown in FIG. 1, this floating offshore facility 1 has a hull 2, an upper deck 3, and a stern part 4, and an engine room 5 is provided under the upper deck 3 in front of the stern part 4. A cargo hold 6 is provided in front of 5, and an upper structure 7 composed of a residential area and a portion serving as a bridge during navigation is provided on the engine room 5. A chimney 5 a is provided in the upper part of the engine room 5. In addition, when the floating offshore facility 1 is to be self-propelled even temporarily, a navigation facility is installed on the bridge of the superstructure 7 and used for initial movement.

また、図2に示すように、この上部構造物7の前方の上甲板3の上に、例えば、原油または天然ガスを処理する生産設備30とこの生産設備30に電力を供給する発電装置群の第1グループの発電装置11a、11b、12a、12bが配置されている。通常、この第1グループの発電装置11a、11b、12a、12bは、生産設備30よりも上部構造物7側、即ち、後方側に配置され、横に2列に設けられる。   Further, as shown in FIG. 2, on the upper deck 3 in front of the superstructure 7, for example, a production facility 30 for processing crude oil or natural gas and a power generator group for supplying power to the production facility 30. A first group of power generators 11a, 11b, 12a, and 12b are arranged. Normally, the power generators 11a, 11b, 12a, and 12b of the first group are arranged on the upper structure 7 side, that is, the rear side with respect to the production facility 30, and are provided in two rows horizontally.

そして、図3〜図5に示すように、この浮体式洋上設備1は、船体2の船尾部4側に電気推進システム20を備えて構成され、この電気推進システム20は、機関室5の船尾部4側に突き出したプロペラ回転軸(推進軸)21aの後端に取り付けられたプロペラ(推進器)21と、機関室5内に電動機(推進モータ)22a、22bと発電装置群の第2グループの発電装置13a、13bが、それぞれ横2列に配置されて設けられている。   As shown in FIGS. 3 to 5, the floating offshore facility 1 includes an electric propulsion system 20 on the stern portion 4 side of the hull 2, and the electric propulsion system 20 includes the stern of the engine room 5. The propeller (propulsion unit) 21 attached to the rear end of the propeller rotation shaft (propulsion shaft) 21a protruding toward the section 4 side, the motors (propulsion motors) 22a and 22b in the engine room 5, and the second group of power generators The power generators 13a and 13b are arranged in two horizontal rows.

つまり、この浮体式洋上設備1は、複数(この実施の形態では6基)の発電装置11a、11b、12a、12b、13a、13bによって電力が供給される生産設備30を備えて、洋上に位置保持されて使用される浮体式洋上設備1であり、この浮体式洋上設備1を移動するための推進システムを電動機22a、22bでプロペラ21を駆動する電気推進システム20で構成する。それと共に、第1グループの発電装置11a、11b、12a、12bを上甲板3上に、第2グループの発電装置13a、13bを機関室5内にそれぞれ配置して構成する。   That is, the floating offshore facility 1 includes a production facility 30 to which power is supplied by a plurality (six in this embodiment) of power generation devices 11a, 11b, 12a, 12b, 13a, and 13b. A floating offshore facility 1 that is held and used, and a propulsion system for moving the floating offshore facility 1 includes an electric propulsion system 20 that drives a propeller 21 with electric motors 22a and 22b. At the same time, the first group of power generation devices 11a, 11b, 12a, and 12b are arranged on the upper deck 3, and the second group of power generation devices 13a and 13b are arranged in the engine room 5, respectively.

更に、この浮体式洋上設備1に設けた生産設備30を稼働する電力を第1グループと第2グループの両方の発電装置11a、11b、12a、12b、13a、13bにより供給すると共に、電動機22a、22bを駆動する電力を第2グループの発電装置13a、13bにより供給するように構成する。   Further, the electric power for operating the production facility 30 provided in the floating offshore facility 1 is supplied by the power generators 11a, 11b, 12a, 12b, 13a, 13b of both the first group and the second group, and the electric motor 22a, The power for driving 22b is supplied by the second group of power generation devices 13a and 13b.

この場合に、電力供給の制御の面から考えると、発電装置11a、11b、12a、12b、13a、13bを同一機種、同一容量にするのが好ましく、発電装置11a、11b、12a、12b、13a、13bの基数の配置に関しては、第1グループの発電装置11a、11b、12a、12bを4基とし、第2グループの発電装置13a、13bを2基とするのが、航行時の電力消費の面から好ましい。   In this case, from the viewpoint of control of power supply, it is preferable that the power generation devices 11a, 11b, 12a, 12b, 13a, and 13b have the same model and capacity, and the power generation devices 11a, 11b, 12a, 12b, and 13a. , 13b, the first group of power generation devices 11a, 11b, 12a, 12b and the second group of power generation devices 13a, 13b are two units. From the aspect, it is preferable.

また、発電装置11a、11b、12a、12b、13a、13bの少なくとも一部または全部をディーゼル発電機で構成すると、機関室5内においては、電気推進システム20を採用した場合でも、プロペラ回転軸21aや電動機22a、22bや発電装置13a、13bや推進制御装置(図示しない)等を配置するスペースを確保する必要があり、この電気推進システム20用のスペースは、内燃機関で直接推進器を回転駆動する推進システムを採用する場合よりも小さいスペースになるため、ディーゼル発電機を配設できるスペースを容易に確保できるので、ガスタービン発電機を採用する場合よりも、燃費を向上することができる。   Further, if at least a part or all of the power generators 11a, 11b, 12a, 12b, 13a, and 13b are configured by a diesel generator, the propeller rotary shaft 21a is provided in the engine room 5 even when the electric propulsion system 20 is employed. Space for electric motors 22a and 22b, power generators 13a and 13b, a propulsion control device (not shown), etc. must be secured, and the space for this electric propulsion system 20 is directly driven by the internal combustion engine to drive the propeller. Since the space becomes smaller than the case where the propulsion system is employed, the space where the diesel generator can be disposed can be easily secured, so that the fuel consumption can be improved as compared with the case where the gas turbine generator is employed.

上記の構成によれば、浮体式洋上設備1を移動するための推進システムを電動機22a、22bでプロペラ21を駆動する電気推進システム20で構成しているので、発電装置群の第2グループの発電装置13a、13bを機関室5内に設けても、図7に示す従来技術のように内燃機関で構成される主機関40によるプロペラ21を直接駆動する推進システムを採用する場合よりも機関室5全体のスペースを小さくすることができ、上甲板3の下に配設される貨物倉6のスペースを大きくとることができる。   According to the above configuration, the propulsion system for moving the floating offshore facility 1 is configured by the electric propulsion system 20 that drives the propeller 21 with the electric motors 22a and 22b. Even if the devices 13a and 13b are provided in the engine room 5, the engine room 5 is more than the case where a propulsion system that directly drives the propeller 21 by the main engine 40 constituted by an internal combustion engine as in the prior art shown in FIG. The entire space can be reduced, and the space of the cargo hold 6 disposed under the upper deck 3 can be increased.

また、生産設備30に電力を供給する発電装置群の第2グループの発電装置13a、13bを機関室5に設けることにより、上甲板3の上の発電装置群の第1グループの発電装置11a、11b、12a、12bの基数を、この実施の形態では6基から4基に減少することができるので、大幅に、上甲板3の上の発電装置群が占めるスペースを小さくすることができ、生産設備30用のスペースを増大することができる。   Further, by providing the engine room 5 with the second group of power generation devices 13a and 13b of the power generation device group that supplies power to the production facility 30, the first group of power generation devices 11a on the upper deck 3, Since the number of bases 11b, 12a and 12b can be reduced from 6 to 4 in this embodiment, the space occupied by the power generator group on the upper deck 3 can be greatly reduced, The space for the facility 30 can be increased.

更に、浮体式生産設備1の建造場所から設置場所までの航行に一時的に必要な、電気推進装置、推進制御装置、航海設備等の初期移動装置を設けて航行するので初期移動費用を抑えることが可能になる。その上、この航行に一時的に必要な電力を、生産設備30の稼働時に使用する発電装置群の第2グループの発電装置13a、13bで発電するので、航行時のみに使用する発電装置を設ける必要がなくなる。特に、浮体式生産設備1が、100MWクラスの大規模発電システムを備える場合には、航行時に電気推進システム20で使用する電力を十分賄うことができる。   In addition, since initial navigation devices such as electric propulsion devices, propulsion control devices, and navigation facilities that are temporarily required for navigation from the construction site to the installation location of the floating production facility 1 are provided, navigation costs are reduced. Is possible. In addition, since the power necessary for the navigation is generated by the power generation devices 13a and 13b of the second group of the power generation device group that is used when the production facility 30 is in operation, a power generation device that is used only during the navigation is provided. There is no need. In particular, when the floating production facility 1 includes a large-scale power generation system of 100 MW class, it is possible to sufficiently cover the power used by the electric propulsion system 20 during navigation.

また、図6に示すように、電気推進システム20のプロペラ21の回転数制御をインバータ25a、25bで行うと共に、このインバータ25a、25bを貨物ポンプ(図示しない)の移送速度制御にも使用する構成とすると、高価なインバータ25a、25bを、浮体式生産設備1の初期移動と生産物の移送に利用できるので、効率よくインバータ25a、25bを使用でき、全体としての設備コストを低減できる。つまり、従来技術では貨物ポンプは蒸気駆動で形成されているが、初期移動で使用するインバータ25a、25bがある場合には、このインバータ25a、25bを兼用またはインバータ25a、25bの配置換えにより、初期移動と生産設備30の稼働の両方で使用することで低コストのまま貨物ポンプを電気駆動に切り替えることができる。この貨物ポンプの電動化を採用することにより、従来技術の蒸気タービン駆動の貨物ポンプに比べて、燃料費の低減に寄与することができる。   Further, as shown in FIG. 6, the rotation speed control of the propeller 21 of the electric propulsion system 20 is performed by the inverters 25a and 25b, and the inverters 25a and 25b are also used for the transfer speed control of the cargo pump (not shown). Then, since the expensive inverters 25a and 25b can be used for the initial movement of the floating production facility 1 and the transfer of the product, the inverters 25a and 25b can be used efficiently, and the equipment cost as a whole can be reduced. That is, in the prior art, the cargo pump is formed by steam drive, but when there are inverters 25a and 25b used for the initial movement, the inverters 25a and 25b can be used together or by rearranging the inverters 25a and 25b. By using it for both movement and operation of the production facility 30, the freight pump can be switched to electric drive with low cost. By adopting the electrification of this cargo pump, it is possible to contribute to a reduction in fuel costs as compared to the conventional steam turbine driven cargo pump.

従って、従来技術で上甲板3の上に装備されていた大規模発電システムの一部を機関室5内に装備するため、生産設備30を設置する上甲板3の上のスペースをより広く利用できる。また、初期移動装置の投資費用を抑え、自航費用を低減できる。   Therefore, since a part of the large-scale power generation system equipped on the upper deck 3 in the prior art is installed in the engine room 5, the space above the upper deck 3 on which the production equipment 30 is installed can be used more widely. . In addition, the investment cost of the initial mobile device can be suppressed, and the self-navigation cost can be reduced.

そして、本発明の実施の形態の浮体式洋上設備の電力供給方法は、図6に示すように、複数の発電装置11a、11b、12a、12b、13a、13bによって電力が供給される生産設備30を備えて、洋上に位置保持されて使用される浮体式洋上設備1の電力供給方法であり、この浮体式洋上設備1に設けた生産設備30を稼働する電力を上甲板3の上に配設した第1グループの発電装置11a、11b、12a、12bと機関室5内に配設した第2グループの発電装置13a、13bにより供給すると共に、この浮体式洋上設備1を移動するための電気推進システム20の電動機22a、22bを駆動する電力を第2グループの発電装置13a、13bにより供給する方法である。   And the electric power supply method of the floating type offshore installation of embodiment of this invention is the production equipment 30 with which electric power is supplied by several electric power generation apparatus 11a, 11b, 12a, 12b, 13a, 13b, as shown in FIG. Is a method for supplying power to the floating offshore facility 1 that is used while being held on the ocean. The power for operating the production facility 30 provided on the floating offshore facility 1 is disposed on the upper deck 3. Electricity propulsion for moving the floating offshore facility 1 while being supplied by the first group of power generators 11a, 11b, 12a, 12b and the second group of power generators 13a, 13b disposed in the engine room 5 In this method, electric power for driving the electric motors 22a and 22b of the system 20 is supplied by the second group of power generation devices 13a and 13b.

より具体的には、図6の上の部分に示すように、浮体式洋上設備1の稼働時は、上甲板3の上の第1のグループの発電装置11a、11b、12a、12bで発電された電力は、上甲板3サイドの13.8kVまたは11kVスイッチボード23aでまとめられ、変圧器26aに入り、13.8kVまたは11kVから6.6kV/440Vに変換されて、6.6kV/440Vスイッチボード27aに供給され、この6.6kV/440Vスイッチボード27aから、生産設備30の電力消費部分に供給される。   More specifically, as shown in the upper part of FIG. 6, when the floating offshore facility 1 is in operation, power is generated by the first group of power generators 11 a, 11 b, 12 a, 12 b on the upper deck 3. The power is collected by the 13.8kV or 11kV switch board 23a on the upper deck 3 side, enters the transformer 26a, is converted from 13.8kV or 11kV to 6.6kV / 440V, and then becomes the 6.6kV / 440V switch board. 27a, and is supplied from the 6.6kV / 440V switch board 27a to the power consumption portion of the production facility 30.

また、図6の下の部分に示すように、機関室5内の第2のグループの発電装置13a、13bで発電された電力は、浮体式洋上設備1の自航時は、変圧器24a、24bで電動機22a、22bの使用電圧に変換され、インバータ25a、25bを経由して電動機22a、22bに供給され、電動機22a、22bの回転はギヤ装置28により、プロペラ回転軸21aの回転に変換されて、プロペラ21の回転となり、このプロペラ21の回転により浮体式洋上設備1は推進力を得て自航することができる。なお、プロペラ21の回転数制御は、インバータ25a、25bによって行われる。   In addition, as shown in the lower part of FIG. 6, the electric power generated by the second group of power generation devices 13 a and 13 b in the engine room 5 is converted into a transformer 24 a and a self-propulsion by the floating offshore facility 1. 24b is converted into a working voltage of the electric motors 22a and 22b, supplied to the electric motors 22a and 22b via the inverters 25a and 25b, and the rotation of the electric motors 22a and 22b is converted into the rotation of the propeller rotary shaft 21a by the gear device 28. Thus, the propeller 21 is rotated, and the floating offshore facility 1 is able to travel by obtaining propulsion by the rotation of the propeller 21. The rotation speed control of the propeller 21 is performed by the inverters 25a and 25b.

また、浮体式洋上設備1の稼働時は、機関室5内の第2のグループの発電装置13a、13bで発電された電力は、機関室5サイドの13.8kVまたは11kVスイッチボード23bでまとめられ、変圧器26bに入り、13.8kVまたは11kVから6.6kV/440Vに変換されて、6.6kV/440Vスイッチボード27bに供給され、この6.6kV/440Vスイッチボード27bから、生産設備30の電力消費部分に供給される。   When the floating offshore facility 1 is in operation, the electric power generated by the second group of power generation devices 13a and 13b in the engine room 5 is collected by the 13.8 kV or 11 kV switch board 23b on the engine room 5 side. , Enters the transformer 26b, is converted from 13.8kV or 11kV to 6.6kV / 440V, and is supplied to the 6.6kV / 440V switch board 27b, from which the 6.6kV / 440V switch board 27b Supplied to the power consumption part.

なお、この図6の実施の形態では、プロペラ21の推進力を変化させるためにプロペラ回転数制御をインバータ25a、25bで行っているが、プロペラ21を可変ピッチプロペラ(CPP)で構成し、電動機22a、22bを誘導型モータで構成した場合には、プロペラ21のピッチ(迎角)を変化させることで、プロペラ21の推進力を変化させることができる。この構成では、高価なインバータ25a、25bを使用しなくて済むが、貨物ポンプを電動化してインバータを使用する場合は、このインバータをプロペラ21の回転数制御用のインバータ25a、25bとして用いることが好ましい。   In the embodiment shown in FIG. 6, the propeller rotational speed control is performed by the inverters 25a and 25b in order to change the propulsion force of the propeller 21, but the propeller 21 is configured by a variable pitch propeller (CPP), and the electric motor When 22a and 22b are comprised with the induction type motor, the propulsive force of the propeller 21 can be changed by changing the pitch (attack angle) of the propeller 21. FIG. In this configuration, it is not necessary to use expensive inverters 25a and 25b. However, when an inverter is used by electrifying the cargo pump, this inverter may be used as the inverters 25a and 25b for controlling the rotation speed of the propeller 21. preferable.

この方法によれば、上甲板の上の生産設備への電力供給を上甲板上の第1グループの発電装置群と機関室内に装備された第2グループの発電装置群で行うので、上甲板の上に配設する発電装置の基数を少なくすることができ、生産設備を設置する上甲板をより広く利用できる。また、初期移動時は、第2グループの発電装置群で電気推進システムの電動機に電力供給するため、初期移動装置のための投資費用を抑え、自航費用を低減できる。   According to this method, the power supply to the production equipment on the upper deck is performed by the first group of generators on the upper deck and the second group of generators installed in the engine room. It is possible to reduce the number of power generators arranged on the top, and to use the upper deck on which production equipment is installed more widely. In addition, during the initial movement, power is supplied to the motor of the electric propulsion system by the second group of power generation devices, so that the investment cost for the initial movement device can be suppressed and the self-propulsion cost can be reduced.

従って、上記の構成の浮体式洋上設備1、及び、浮体式洋上設備の電力供給方法によれば、製造所や港から洋上設置場所までの航海で使用する推進システムを電気推進システム20で構成することにより、推進システムを配設する機関室のスペースを大幅に減少することができ、上甲板3の下に配設される貨物倉6のスペースを大きくとることができるようになる。例えば、図1に示すハッチング(斜線)部分を貨物倉6のスペースとして使用できるようになる。   Therefore, according to the floating offshore facility 1 configured as described above and the power supply method for the floating offshore facility, the electric propulsion system 20 constitutes the propulsion system used in the voyage from the factory or the port to the offshore installation location. As a result, the space in the engine room in which the propulsion system is disposed can be greatly reduced, and the space in the cargo hold 6 disposed under the upper deck 3 can be increased. For example, the hatched portion shown in FIG. 1 can be used as a space for the cargo hold 6.

また、第2グループの発電装置13a、13bを機関室5に設けることにより、上甲板3の上に配置される第1グループの発電装置11a、11b、12a、12bの基数を減少できるので、上甲板3の上の発電装置群が占めるスペースを大幅に減少することができ、生産設備30用のスペースを増大することができる。   Further, by providing the second group of power generation devices 13a, 13b in the engine room 5, the number of the first group of power generation devices 11a, 11b, 12a, 12b arranged on the upper deck 3 can be reduced. The space occupied by the power generation device group on the deck 3 can be greatly reduced, and the space for the production facility 30 can be increased.

更に、浮体式生産設備1の建造場所から設置場所までの航行に一時的に必要な電力を、生産設備30の稼働時に使用する発電装置群の一部である第2グループの発電装置13a、13bで発電するので、航行時のみに使用する発電装置を別に設ける必要がなくなる。   Furthermore, the second group of power generation devices 13 a and 13 b that are part of the power generation device group that uses temporarily the power necessary for navigation from the construction site to the installation location of the floating production facility 1 when the production facility 30 is in operation. Therefore, it is not necessary to provide a separate power generator for use only during navigation.

従って、従来技術で上甲板3の上に装備されていた大規模発電システムの一部を機関室5内に装備するため、生産設備30を設置する上甲板3をより広く利用できる。また、初期移動装置の投資費用を抑え、自航費用を低減できる。   Therefore, in order to equip the engine room 5 with a part of the large-scale power generation system equipped on the upper deck 3 in the prior art, the upper deck 3 on which the production equipment 30 is installed can be used more widely. In addition, the investment cost of the initial mobile device can be suppressed, and the self-navigation cost can be reduced.

本発明の浮体式洋上設備、及び、浮体式洋上設備の電力供給方法によれば、浮体式洋上設備において製造所や港から洋上設置場所までの航海では使用するが、洋上で稼働しているときには不要となる推進システムを配設する機関室のスペースを大幅に減少することができて、洋上設備としての生産設備や貯蔵のための貨物倉のスペースを著しく増大することができるので、多くの浮体式洋上設備に利用することができる。   According to the floating offshore facility and the power supply method of the floating offshore facility according to the present invention, the floating offshore facility is used in a voyage from a factory or a port to an offshore installation location. Since the space in the engine room where the unnecessary propulsion system is installed can be greatly reduced, the production facilities as offshore facilities and the cargo hold space for storage can be remarkably increased. It can be used for offshore facilities.

1、1X 浮体式洋上設備
2 船体
3 上甲板
4 船尾部
5、5X 機関室
5a 煙突
6 貨物倉
7 上部構造物
11a、11b、12a、12b 第1グループの発電装置
13a、13b 第2グループの発電装置
20 電気推進システム
21 プロペラ(推進装置)
21a プロペラの回転軸(推進軸)
22a、22b 電動機
23a、23b 13.8kVまたは11kVスイッチボード
24a、24b 変圧器
25a、25b インバータ
26a、26b 変圧器
27a、27b 6.6kV/440Vスイッチボード
30 生産設備
40 主機関
41 発電装置
DESCRIPTION OF SYMBOLS 1, 1X Floating type offshore equipment 2 Hull 3 Upper deck 4 Stern 5, 5X Engine room 5a Chimney 6 Cargo hold 7 Upper structure 11a, 11b, 12a, 12b First group power generators 13a, 13b Second group power generation Device 20 Electric propulsion system 21 Propeller (propulsion device)
21a Propeller rotating shaft (propulsion shaft)
22a, 22b Electric motor 23a, 23b 13.8kV or 11kV switch board 24a, 24b Transformer 25a, 25b Inverter 26a, 26b Transformer 27a, 27b 6.6kV / 440V switch board 30 Production equipment 40 Main engine 41 Power generation device

Claims (4)

複数の発電装置によって電力が供給される生産設備を備えて、洋上に位置保持されて使用される浮体式洋上設備において、
当該浮体式洋上設備を移動するための推進システムを電動機で推進器を駆動する電気推進システムで構成すると共に、第1グループの前記発電装置を上甲板上に、第2グループの前記発電装置を機関室内にそれぞれ配置して構成し、
かつ、当該浮体式洋上設備に設けた生産設備を稼働する電力を前記第1グループと第2グループの両方の前記発電装置により供給すると共に、前記電動機を駆動する電力を前記第2グループの前記発電装置により供給するように構成したことを特徴とする浮体式洋上設備。
In a floating offshore facility that is equipped with production facilities that are supplied with power by a plurality of power generators and that is used while being held on the ocean,
The propulsion system for moving the floating offshore facility is composed of an electric propulsion system that drives a propulsion device with an electric motor, and the first group of the power generation devices are arranged on the upper deck, and the second group of the power generation devices is an engine. Arranged and configured in the room,
And while supplying the electric power which operates the production facility provided in the said floating body type offshore installation by the said electric power generation apparatus of both the said 1st group and the 2nd group, the electric power which drives the said electric motor is the said electric power generation of the said 2nd group A floating offshore facility characterized by being supplied by a device.
前記発電装置の少なくとも一部または全部をディーゼル発電機で構成することを特徴とする請求項1に記載の浮体式洋上設備。   The floating offshore facility according to claim 1, wherein at least a part or all of the power generation device is constituted by a diesel generator. 前記電気推進システムの推進器の回転数制御をインバータで行うと共に、該インバータを貨物ポンプの移送速度制御にも使用する構成とすることを特徴とする請求項1又は2に記載の浮体式洋上設備。   The floating offshore facility according to claim 1 or 2, wherein the rotation speed control of the propulsion unit of the electric propulsion system is performed by an inverter, and the inverter is also used for a transfer speed control of a cargo pump. . 複数の発電装置によって電力が供給される生産設備を備えて、洋上に位置保持されて使用される浮体式洋上設備の電力供給方法において、
当該浮体式洋上設備に設けた生産設備を稼働する電力を上甲板上に配設した第1グループの前記発電装置と機関室内に配設した第2グループの前記発電装置により供給すると共に、
当該浮体式洋上設備を移動するための電気推進システムの電動機を駆動する電力を前記第2グループの前記発電装置により供給することを特徴とする浮体式洋上設備の電力供給方法。
In a power supply method for a floating offshore facility that includes a production facility to which power is supplied by a plurality of power generation devices and is used while being held on the ocean,
Supplying electric power for operating the production facility provided in the floating offshore facility by the first group of power generation devices disposed on the upper deck and the second group of power generation devices disposed in the engine room,
A power supply method for a floating offshore facility, wherein power for driving an electric motor of an electric propulsion system for moving the floating offshore facility is supplied by the power generator of the second group.
JP2014177804A 2014-09-02 2014-09-02 Floating offshore facility and power supply method for floating offshore facility Active JP6162086B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014177804A JP6162086B2 (en) 2014-09-02 2014-09-02 Floating offshore facility and power supply method for floating offshore facility
KR1020150105969A KR102345817B1 (en) 2014-09-02 2015-07-27 Floating Offshore Facility, and Power Supply Method for Floating Offshore Facility
SG11201701153TA SG11201701153TA (en) 2014-09-02 2015-08-27 Floating offshore facility and method for supplying electric power in floating offshore facility
PCT/JP2015/074296 WO2016035679A1 (en) 2014-09-02 2015-08-27 Floating offshore facility and method for supplying electric power in floating offshore facility
CN201510553860.2A CN105383672A (en) 2014-09-02 2015-09-02 Floating offshore facility and method for supplying electric power in floating offshore facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014177804A JP6162086B2 (en) 2014-09-02 2014-09-02 Floating offshore facility and power supply method for floating offshore facility

Publications (2)

Publication Number Publication Date
JP2016049929A JP2016049929A (en) 2016-04-11
JP6162086B2 true JP6162086B2 (en) 2017-07-12

Family

ID=55416576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014177804A Active JP6162086B2 (en) 2014-09-02 2014-09-02 Floating offshore facility and power supply method for floating offshore facility

Country Status (5)

Country Link
JP (1) JP6162086B2 (en)
KR (1) KR102345817B1 (en)
CN (1) CN105383672A (en)
SG (1) SG11201701153TA (en)
WO (1) WO2016035679A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047718A (en) * 2015-08-31 2017-03-09 三井造船株式会社 Floating type offshore facility and power supply method of floating type offshore facility
KR102477635B1 (en) * 2016-04-11 2022-12-13 삼성중공업 주식회사 Floating Production Storage Offloading Vessels
JP2018111401A (en) * 2017-01-11 2018-07-19 株式会社三井E&Sホールディングス Boat-shaped floating body structure
KR102170040B1 (en) * 2017-04-14 2020-10-26 현대중공업 주식회사 Floating Liquefied Natural Gas plant
JP2019014436A (en) * 2017-07-10 2019-01-31 三井E&S造船株式会社 Offshore floating body structure and its stern structure
JP2018068113A (en) * 2018-01-12 2018-04-26 富士海事工業株式会社 Work barge
CN111433424B (en) * 2018-06-26 2022-03-08 日挥环球株式会社 Factory module
CN112078758A (en) * 2020-08-03 2020-12-15 沪东中华造船(集团)有限公司 Method for converting LNG ship into FSRU
CN113460269A (en) * 2021-06-25 2021-10-01 沪东中华造船(集团)有限公司 Power station module structure and method for refitting LNG old ship into LNG-FSRU ship

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344992A (en) * 1993-06-04 1994-12-20 Mitsubishi Heavy Ind Ltd Cargo oil pump driving apparatus
AP2005003301A0 (en) * 2002-10-08 2005-06-30 Water Standard Co Llc Mobile desalination plants and systems, and methofds for producing desalinated water
CN1714048B (en) * 2002-10-08 2010-05-26 水质标准股份有限公司 Mobile desalination plants and systems, and methods for producing desalinated water
JP2008519210A (en) * 2004-11-05 2008-06-05 エクソンモービル アップストリーム リサーチ カンパニー LNG transport container and method for transporting hydrocarbons
KR200437039Y1 (en) * 2006-10-23 2007-10-30 삼성중공업 주식회사 Floating Production Storage and Offloading Vessel Having Main Power Generator at Safe Area
DE102008031698A1 (en) * 2007-11-02 2009-06-04 Siemens Aktiengesellschaft Floating harbor power supply
JP2010201991A (en) * 2009-03-02 2010-09-16 Mitsui Eng & Shipbuild Co Ltd Ship and processing method for combustible gas in ship
JP2010241194A (en) * 2009-04-02 2010-10-28 Tokyo Univ Of Marine Science & Technology Electric propulsion system for marine vessel
CN201907649U (en) * 2010-12-23 2011-07-27 展翔海事(大连)有限责任公司 Electric propulsion ship

Also Published As

Publication number Publication date
WO2016035679A1 (en) 2016-03-10
KR20160027899A (en) 2016-03-10
CN105383672A (en) 2016-03-09
KR102345817B1 (en) 2021-12-30
SG11201701153TA (en) 2017-04-27
JP2016049929A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
JP6162086B2 (en) Floating offshore facility and power supply method for floating offshore facility
KR101521143B1 (en) Mixed propulsion system
JP6676276B2 (en) Storage battery propulsion system and storage battery propulsion ship
Paul A history of electric ship propulsion systems [history]
CN107709153A (en) The power supply method of float type offshore set-up and float type offshore set-up
Pestana Future trends of electrical propulsion and implications to ship design
JP2008126829A (en) Marine vessel
KR20090038891A (en) Marine vessel power generation system
CN103415439A (en) Propulsion system
JP4753843B2 (en) Ship
KR20160015869A (en) Hybrid propulsion system and method of floating structure
JP6361914B2 (en) Floating offshore facility, propulsion structure, and floating offshore facility propulsion method
JP6539896B2 (en) Ship propulsion system, ship and ship propulsion method
JP2016222149A (en) Ship and power supply method for in-ship power supply system
CN102897290A (en) Offshore petroleum platform support ship propelled by electric rudder propellers
Yang et al. History and recent advancements of electric propulsion and integrated electrical power systems for commercial & naval vessels
JP7499654B2 (en) How to transfer liquefied gas and boil-off gas
Bucci et al. The design of a slow-cruising superyacht with zero emission navigation and smart berthing modes
KR20170135502A (en) Generation system of floating structure
CN202828031U (en) Offshore oil platform support vessel propelled by electric full-rotary steering oars
JP7176891B2 (en) vessel
CN212267817U (en) Gas ship using internal combustion engine power device
Roa Application of classification rules to hybrid marine electrical propulsion plants
KR20180076917A (en) Cargo loading ship and arrangement method of the ship
KR20110003277U (en) Ship having azimuth type thruster

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170220

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170614

R150 Certificate of patent or registration of utility model

Ref document number: 6162086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250