JP6157870B2 - How to get copper concentrate - Google Patents

How to get copper concentrate Download PDF

Info

Publication number
JP6157870B2
JP6157870B2 JP2013027205A JP2013027205A JP6157870B2 JP 6157870 B2 JP6157870 B2 JP 6157870B2 JP 2013027205 A JP2013027205 A JP 2013027205A JP 2013027205 A JP2013027205 A JP 2013027205A JP 6157870 B2 JP6157870 B2 JP 6157870B2
Authority
JP
Japan
Prior art keywords
copper
concentrate
ore
content
grade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013027205A
Other languages
Japanese (ja)
Other versions
JP2014156624A (en
Inventor
健吾 關村
健吾 關村
齋藤 淳
淳 齋藤
和浩 波多野
和浩 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013027205A priority Critical patent/JP6157870B2/en
Priority to CL2014000351A priority patent/CL2014000351A1/en
Publication of JP2014156624A publication Critical patent/JP2014156624A/en
Application granted granted Critical
Publication of JP6157870B2 publication Critical patent/JP6157870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は銅精鉱を得る方法に関する。   The present invention relates to a method for obtaining copper concentrate.

銅の乾式製錬では銅品位0.3〜3重量%の粗鉱を銅分15〜50重量%まで濃縮した銅精鉱を銅原料として使用する。この銅精鉱は、黄銅鉱(CuFeS)、輝銅鉱(CuS)、銅藍(CuS)、斑銅鉱(CuFeS)、黄鉄鉱(FeS)等からなる混合物であることが多い。 In the dry smelting of copper, copper concentrate obtained by concentrating a crude ore having a copper grade of 0.3 to 3 wt% to a copper content of 15 to 50 wt% is used as a copper raw material. This copper concentrate is often a mixture of chalcopyrite (CuFeS 2 ), chalcocite (Cu 2 S), copper indigo (CuS), chalcopyrite (Cu 5 FeS 4 ), pyrite (FeS 2 ), and the like. .

黄銅鉱、黄鉄鉱、及び斑銅鉱は、その組成のなかに鉄を含む。銅の乾式製錬法においては、熔錬工程及び錬銅工程でスラグ相にこの鉄を分配させることで銅分と分離する。近年採掘される銅鉱石中に黄銅鉱の占める割合は高くなりつつある。それに伴い、精鉱に含まれる鉄の量は増加しつつある。   Chalcopyrite, pyrite, and chalcopyrite contain iron in their composition. In the dry smelting method of copper, it is separated from the copper content by distributing this iron to the slag phase in the smelting process and the wrought copper process. The proportion of chalcopyrite in copper ore mined in recent years is increasing. Along with this, the amount of iron contained in concentrate is increasing.

精鉱中の鉄含有量が上昇するとこれを除くためのスラグ量が必然的に増加するが、銅製錬から排出されるスラグの商業的価値は高くない。そのためスラグの処理が製錬のコストを増大させることになる。また、精鉱の輸送コストを考慮したとき、不純物含有量がなるべく低い精鉱が有利であることは自明である。したがって、荷積み前に精鉱に含まれる鉄分の除去が望まれる。   Increasing the iron content in the concentrate inevitably increases the amount of slag to remove it, but the commercial value of slag discharged from copper smelting is not high. Therefore, the treatment of slag increases the cost of smelting. Moreover, when considering the transport cost of concentrate, it is obvious that concentrate with as low an impurity content as possible is advantageous. Therefore, it is desired to remove iron contained in the concentrate before loading.

精鉱に含まれる鉱種のうち黄銅鉱に関しては、黄銅鉱精鉱を単体硫黄と混合し350〜450℃に加熱することで黄鉄鉱と銅藍に変換した後に、この2つの鉱種を分離して銅藍をおもに回収することで精鉱中の鉄含有量を下げる技術が知られる(例えば、特許文献1参照)。   Of the ore species included in the concentrate, the chalcopyrite is separated from the two ore species after the chalcopyrite concentrate is mixed with elemental sulfur and heated to 350-450 ° C to convert it to pyrite and copper indigo. A technique for reducing the iron content in the concentrate by mainly collecting copper indigo is known (for example, see Patent Document 1).

特開2012−057248号公報JP 2012-057248 A

しかしながら、そもそも精鉱の80%通過粒子径は比較的小さく、特許文献1で示されるような方法で鉱種を硫化変換しても、さらに磨鉱して効率よく鉄分の少ない部分を選別することは非常に困難である。特許文献1で示される硫化変換では精鉱粒子表面に銅が濃縮される傾向があり元の精鉱粒子を砕くこと無しには鉄分の多い部分と分離できないためである。   However, the 80% passing particle size of concentrate is relatively small in the first place, and even if the ore species is sulfide-converted by the method shown in Patent Document 1, it is further refined to efficiently select the portion with less iron content. Is very difficult. This is because the sulfur conversion shown in Patent Document 1 tends to concentrate copper on the concentrate particle surface, and cannot be separated from the iron-rich portion without crushing the original concentrate particle.

硫化変換後に磨鉱することにより銅含有量の高い部分と鉄含有量の高い部分とに分かれるものの、元の精鉱粒子よりさらに細かい粒子となる。この場合、通常の浮遊選鉱法での分離は困難を極める。しかしながら、この黄鉄鉱と銅藍とをそれぞれ分離できなければ、鉄含有量を下げるという目的は達成できない。   Although it is divided into a high copper content portion and a high iron content portion by grinding after sulfidation conversion, it becomes finer than the original concentrate particles. In this case, separation by the usual flotation method is extremely difficult. However, unless this pyrite and copper indigo can be separated from each other, the purpose of reducing the iron content cannot be achieved.

この問題を解決するため鉱種を硫化変換する時に黄鉄鉱や高品位銅精鉱を添加しておく方法も提案されている。しかしながら、既に商品価値の高い高品位銅精鉱を添加することは好ましくなく、この場合においても硫化変換処理後の銅分の高い部分と鉄分の高い部分を分離するのは容易ではない。一般的な手法である磨鉱と浮遊選鉱法とを採用した場合では数%の銅分の逸損が見られ、回収された精鉱中の鉄分は2割程度下がるものの効率的であるとは言えない。   In order to solve this problem, a method in which pyrite or high-grade copper concentrate is added at the time of sulfidation conversion of ore species has also been proposed. However, it is not preferable to add a high-grade copper concentrate that already has a high commercial value. Even in this case, it is not easy to separate the high-copper portion and the high-iron portion after the sulfidation treatment. In the case of adopting the general methods of grinding and flotation, a loss of several percent of copper is observed, and the iron content in the recovered concentrate is about 20% lower, but it is efficient. I can not say.

本発明は上記の課題に鑑み、銅鉱石から銅分を濃縮して精鉱にする際に、銅採取率を維持しつつ鉄含有量の低い銅精鉱を得る方法を提供すること目的とする。   In view of the above problems, the present invention aims to provide a method for obtaining a copper concentrate having a low iron content while maintaining a copper collection rate when concentrating copper from copper ore to concentrate. .

本発明に係る銅精鉱を得る方法は、黄銅鉱を含む銅鉱石を破砕、選別することで、銅品位が3重量%〜10重量%かつ80%通過粒子径が70μm〜200μmとなるまで濃縮する第1濃縮工程と、前記第1濃縮工程によって得られた銅鉱石を単体硫黄と混合して350℃〜450℃に加熱する加熱工程と、前記加熱工程で得られた銅鉱石を破砕、選別することによって銅分をさらに濃縮する第2濃縮工程と、を含むものである。本発明に係る銅精鉱を得る方法によれば、銅鉱石から銅分を濃縮して精鉱にする際に、銅採取率を維持しつつ鉄含有量の低い銅精鉱を得ることができる。 The method for obtaining the copper concentrate according to the present invention is to concentrate the copper ore containing chalcopyrite by crushing and sorting, until the copper grade is 3 wt% to 10 wt% and the 80% passing particle size is 70 µm to 200 µm. A first concentration step, a heating step in which the copper ore obtained in the first concentration step is mixed with elemental sulfur and heated to 350 ° C. to 450 ° C., and the copper ore obtained in the heating step is crushed and sorted And a second concentration step of further concentrating the copper content. According to the method for obtaining a copper concentrate according to the present invention, a copper concentrate having a low iron content can be obtained while maintaining a copper collection rate when concentrating copper from copper ore to make a concentrate. .

前記第2濃縮工程は、前記加熱工程で得られた銅鉱石を10〜70μmの80%通過粒子径まで破砕し、浮遊選鉱法により銅分を濃縮する工程としてもよい。前記加熱工程において、前記単体硫黄を、銅鉱石の銅含有量に対して重量比で0.5〜1倍添加してもよい。前記第1濃縮工程に供される前記銅鉱石は、黄鉄鉱、輝銅鉱、及び銅藍のうち少なくとも1種を含んでいてもよい。 The second concentration step may be a step of crushing the copper ore obtained in the heating step to an 80% passing particle diameter of 10 to 70 μm and concentrating the copper content by a flotation method. In the heating step, the elemental sulfur may be added 0.5 to 1 times by weight with respect to the copper content of the copper ore. The copper ore used for the first concentration step may include at least one of pyrite, chalcocite, and copper indigo.

本発明によれば、銅鉱石から銅分を濃縮して精鉱にする際に、銅採取率を維持しつつ鉄含有量の低い銅精鉱を得ることができる。   According to the present invention, a copper concentrate having a low iron content can be obtained while maintaining the copper collection rate when concentrating copper from copper ore to concentrate.

銅精鉱を得る方法のフロー図である。It is a flowchart of the method of obtaining a copper concentrate. 粗精鉱のXRD解析結果を示す図である。It is a figure which shows the XRD analysis result of a rough concentrate. 粗選鉱の熱処理後のXRD解析結果を示す図である。It is a figure which shows the XRD analysis result after the heat processing of coarse beneficiation. 最終精鉱の銅回収率及び鉄回収率を示す図である。It is a figure which shows the copper recovery rate and iron recovery rate of a final concentrate.

以下、本発明を実施するための実施形態について説明する。   Hereinafter, an embodiment for carrying out the present invention will be described.

(実施形態)
本実施形態は、黄銅鉱を含む銅鉱石を破砕、選別して銅品位を3重量%〜10重量%まで濃縮する第1濃縮工程と、前記第1濃縮工程によって得られた銅鉱石を単体硫黄と混合して350℃〜450℃に加熱する加熱工程と、前記加熱工程で得られた銅鉱石を破砕、選別することによって銅分をさらに濃縮する第2濃縮工程と、を含む方法を開示する。図1にフロー図を示す。本実施形態に係る方法が対象とする銅鉱石は、黄銅鉱を含み、さらに、輝銅鉱、銅藍、斑銅鉱、黄鉄鉱などを含んでいてもよい。
(Embodiment)
In this embodiment, the copper ore containing chalcopyrite is crushed and sorted to concentrate the copper grade to 3 wt% to 10 wt%, and the copper ore obtained by the first concentration step is converted to single sulfur. And a second concentration step in which the copper content is further concentrated by crushing and sorting the copper ore obtained in the heating step. . FIG. 1 shows a flowchart. The copper ore targeted by the method according to the present embodiment includes chalcopyrite, and may further include chalcocite, copper indigo, chalcopyrite, pyrite, and the like.

本実施形態によれば、上記銅鉱石を破砕、選別して銅品位を3重量%〜10重量%まで濃縮することによって、比較的大きい粒子径の粗選鉱が得られる。この粗選鉱に対して上記加熱工程による硫化変換処理を施すことによって、黄銅鉱を銅藍と黄鉄鉱とに変換することができる。上記粗選鉱が比較的大きい粒子径を有することから、硫化変換処理後の粗精鉱に対して破砕、選別する際に、銅含有量の多い部分および鉄含有量の多い部分も比較的大きい粒子径を有する。この場合、当該銅含有量の多い部分と鉄含有量の多い部分との分離性が向上する。その結果、銅採取率を維持しつつ鉄含有量の低い銅精鉱を得ることができる。   According to the present embodiment, a coarse ore with a relatively large particle size can be obtained by crushing and selecting the copper ore and concentrating the copper grade to 3 wt% to 10 wt%. By applying the sulfide conversion treatment by the heating process to the coarse beneficiation, the chalcopyrite can be converted into copper indigo and pyrite. Since the coarse beneficiation has a relatively large particle size, when crushing and sorting the rough concentrate after the sulfidation conversion treatment, the part having a large copper content and the part having a large iron content are also relatively large. Have a diameter. In this case, the separability between the portion having a high copper content and the portion having a high iron content is improved. As a result, it is possible to obtain a copper concentrate having a low iron content while maintaining the copper collection rate.

上記第1濃縮工程で得られる破砕・選別後の粗選鉱の80%通過粒子径は、70〜200μmであることが好ましい。選別には、篩別、風力選別、テーブル選別、浮遊選鉱等を採用してもよい。   It is preferable that the 80% passage particle diameter of the coarse ore after crushing and sorting obtained in the first concentration step is 70 to 200 μm. For sorting, screening, wind sorting, table sorting, flotation or the like may be employed.

上記加熱工程において、単体硫黄を、銅鉱石の銅含有量に対して重量比で0.5〜1倍添加することが好ましい。硫化変換時の硫黄の添加量が過剰な場合は再度破砕もしくは磨鉱した際に未反応の硫黄が粉塵爆発を起こす可能性があり、添加量が不足する場合は黄銅鉱の変換が不十分となり最終的な鉄含有量が低くならないからである。なお、上記重量比は、粗選鉱中の銅量の1mol〜2mol当量に相当する。また、上記加熱工程では、雰囲気を不活性ガス雰囲気とすることが好ましい。また、温度範囲は400℃〜450℃であることが好ましい。   In the heating step, it is preferable to add elemental sulfur in a weight ratio of 0.5 to 1 times the copper content of the copper ore. If the amount of sulfur added during sulfidation is excessive, unreacted sulfur may cause a dust explosion when it is crushed or ground again. If the amount added is insufficient, the conversion of chalcopyrite will be insufficient. This is because the final iron content does not decrease. In addition, the said weight ratio is corresponded to 1 mol-2 mol equivalent of the amount of copper in roughing. In the heating step, the atmosphere is preferably an inert gas atmosphere. The temperature range is preferably 400 ° C to 450 ° C.

第2濃縮工程においては、磨鉱などの破砕後の粗精鉱の80%通過粒子径は10〜70μmであることが好ましい。通常の浮遊選鉱法での分離が容易となるからである。第2濃縮工程における選別には、浮遊選鉱法などを採用することができる。この浮遊選鉱法には、通常の銅鉱山で採用されている工程などを適用することができる。浮遊選鉱法では、鉄分は尾鉱に分離除去される。   In the second concentration step, the 80% passing particle diameter of the coarse concentrate after crushing such as grinding ore is preferably 10 to 70 μm. This is because separation by the usual flotation method becomes easy. For the selection in the second concentration step, a flotation method or the like can be employed. For this flotation method, a process employed in a normal copper mine can be applied. In the flotation process, iron is separated and removed by tailings.

以下、実施例により本発明をさらに具体的に説明する。本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.

(実施例)
黄銅鉱を含む粗選鉱(銅品位5.8重量%、鉄品位8.9重量%、硫黄品位11重量%、80%通過粒子径100μm)と単体硫黄とを粗選鉱銅量の1倍重量添加し、Nガス雰囲気中において350℃で60分間加熱工程を施した。加熱工程後の粗精鉱(銅品位5.6重量%、鉄品位8.7重量%、硫黄品位13重量%、80%通過粒子径106μm)は、図2,3のXRDによる分析結果のように、黄銅鉱が銅藍と黄鉄鉱とに鉱物変換していることがわかる。
(Example)
Coarse beneficiation including chalcopyrite (copper grade 5.8 wt%, iron grade 8.9 wt%, sulfur grade 11 wt%, 80% passing particle diameter 100 μm) and single sulfur added to the weight of the coarse beneficiary copper Then, a heating process was performed at 350 ° C. for 60 minutes in an N 2 gas atmosphere. The crude concentrate after the heating process (copper grade 5.6 wt%, iron grade 8.7 wt%, sulfur grade 13 wt%, 80% passing particle size 106 µm) is as shown in the analysis results by XRD in Figs. In addition, it can be seen that chalcopyrite has been converted into copper indigo and pyrite.

次に、加熱工程で得られた粗精鉱に対して湿式ボールミルで摩鉱することによって80%通過粒子径を47μmとした後に、浮選選鉱処理を実施した。浮選機としてファーレンワルド浮選機を用いた。また、浮選試薬としてイソプロピルザンセート(IPX)、メチルイソブチルカルビノール(MIBC)、及び消石灰を用いた。   Next, the coarse concentrate obtained in the heating step was ground with a wet ball mill to make the 80% passing particle diameter 47 μm, and then the flotation process was carried out. A Fahrenwald flotation machine was used as the flotation machine. Further, isopropyl xanthate (IPX), methyl isobutyl carbinol (MIBC), and slaked lime were used as flotation reagents.

上記浮遊選鉱処理の手順を以下に記す。消石灰を用いて、摩鉱したスラリーのPHを11に調整し、IPXを粗精鉱に対し50g/t添加後、3minコンディショニングを行った。コンディショニング後、MIBCを42g/t添加し、スラリー内にエアを導入した。スラリー上部にフロス層が形成され、これを回収した。フロスは回収時間ごとに分割して2min間回収した。回収後、MIBCを21g/t再添加し、3min間フロスを回収した。回収後、IPXを10g/t再添加し、5min間フロスを回収した。回収後、IPXを10g/t再添加し、3min間フロスを回収した。回収したフロス、浮選セル内に残ったスラリーを濾過・乾燥し、秤量及び元素分析を行った。元素分析では、過酸化ナトリウムと炭酸ナトリウムと共に溶融処理した後に溶出し、適当に希釈してICP−AES(セイコーインストゥルメンタル社製HVR1700)により濃度を測定して含有量を決定した。   The procedure of the above flotation process is described below. Using slaked lime, the pH of the milled slurry was adjusted to 11, and 50 g / t of IPX was added to the crude concentrate, followed by conditioning for 3 min. After conditioning, 42 g / t of MIBC was added and air was introduced into the slurry. A froth layer was formed on the top of the slurry, and this was recovered. Floss was divided for every collection time and collected for 2 minutes. After the recovery, 21 g / t of MIBC was added again, and the floss was recovered for 3 minutes. After recovery, 10 g / t of IPX was added again, and floss was recovered for 5 minutes. After recovery, 10 g / t of IPX was added again, and the floss was recovered for 3 minutes. The recovered floss and the slurry remaining in the flotation cell were filtered and dried, and weighed and subjected to elemental analysis. In elemental analysis, it was eluted after being melted together with sodium peroxide and sodium carbonate, diluted appropriately, and the concentration was measured with ICP-AES (Seiko Instrumental HVR1700) to determine the content.

(比較例)
比較例では、黄銅鉱を含む粗選鉱(銅品位6.2重量%、鉄品位9.4重量%、硫黄品位11.1重量%、80%通過粒子径100μm)を湿式ボールミルで摩鉱し80%通過粒子径を41μmとした後に、浮選選鉱処理を実施した。浮選機としてファーレンワルド浮選機を用いた。また、浮選試薬としてイソプロピルザンセート(IPX)、メチルイソブチルカルビノール(MIBC)、及び消石灰を用いた。
(Comparative example)
In the comparative example, a coarse beneficiation containing chalcopyrite (copper grade 6.2% by weight, iron grade 9.4% by weight, sulfur grade 11.1% by weight, 80% passing particle size 100 μm) was ground with a wet ball mill. After the% passing particle diameter was set to 41 μm, the flotation process was carried out. A Fahrenwald flotation machine was used as the flotation machine. Further, isopropyl xanthate (IPX), methyl isobutyl carbinol (MIBC), and slaked lime were used as flotation reagents.

上記浮遊選鉱処理の手順を以下に記す。消石灰を用いて、摩鉱したスラリーのPHを11に調整し、IPXを粗精鉱に対し10g/t添加後、3minコンディショニングを行った。コンディショニング後、MIBCを20g/t添加し、スラリー内にエアを導入した。スラリー上部にフロス層が形成され、これを回収した。フロスは回収時間ごとに分割して5in間回収した。回収後、MIBCを20g/t再添加し、5min間フロスを回収した。回収後、IPXを10g/t再添加し、3min間フロスを回収した。回収したフロス、浮選セル内に残ったスラリーを濾過・乾燥し、秤量及び元素分析を行った。元素分析では、過酸化ナトリウムと炭酸ナトリウムと共に溶融処理した後に溶出し、適当に希釈してICP−AES(セイコーインストゥルメンタル社製HVR1700)により濃度を測定して含有量を決定した。   The procedure of the above flotation process is described below. The pH of the milled slurry was adjusted to 11 using slaked lime, and 10 g / t of IPX was added to the crude concentrate, followed by conditioning for 3 min. After conditioning, 20 g / t of MIBC was added and air was introduced into the slurry. A froth layer was formed on the top of the slurry, and this was recovered. Floss was divided for every collection time and collected for 5 inches. After collection, MIBC was added again at 20 g / t, and floss was collected for 5 minutes. After recovery, 10 g / t of IPX was added again, and the floss was recovered for 3 minutes. The recovered floss and the slurry remaining in the flotation cell were filtered and dried, and weighed and subjected to elemental analysis. In elemental analysis, it was eluted after being melted together with sodium peroxide and sodium carbonate, diluted appropriately, and the concentration was measured with ICP-AES (Seiko Instrumental HVR1700) to determine the content.

図4は、実施例及び比較例で回収したフロスの重量、元素分析から算出した最終精鉱の銅分配率及び鉄分配率を示す。表1は、実施例における粗精鉱品位、変換後品位、最終精鉱の銅分配率が80%程度の最終精鉱、最終尾鉱の品位、分配率を示す。表2は、比較例における粗選鉱品位、最終精鉱の銅分配率80%程度の最終精鉱、最終尾鉱の品位、分配率を示す。

Figure 0006157870
Figure 0006157870
FIG. 4 shows the weight of floss collected in Examples and Comparative Examples, and the copper distribution ratio and iron distribution ratio of the final concentrate calculated from elemental analysis. Table 1 shows the crude concentrate grade, post-conversion grade, final concentrate with final copper concentrate distribution of about 80%, final tailing grade, and distribution ratio in the examples. Table 2 shows the grade of coarsely ore-sorted in the comparative example, the final concentrate having a copper distribution ratio of about 80% in the final concentrate, and the quality and distribution ratio of the final tailing.
Figure 0006157870
Figure 0006157870

図4に示すように、実施例及び比較例の最終精鉱の銅分配率が同程度の場合、最終精鉱の鉄分配率は比較例に比べ実施例が低く、同程度の銅分を回収した時に鉄の混入が少ないことが判る。また、表1と表2とを比較すると、最終精鉱の銅分配率は同程度であるものの、鉄回収率は実施例において30%程度低い。このことから実施例では、銅の分配率を維持したまま、精鉱中の鉄含有量を低く抑えることが出来ることが明らかである。   As shown in FIG. 4, when the copper distribution rate of the final concentrate of the example and the comparative example is similar, the iron distribution rate of the final concentrate is lower in the example than in the comparative example, and the same level of copper content is recovered. When it is done, it turns out that there is little mixing of iron. Moreover, when Table 1 and Table 2 are compared, although the copper distribution rate of the final concentrate is about the same, the iron recovery rate is about 30% lower in the examples. From this, it is clear that in the examples, the iron content in the concentrate can be kept low while maintaining the copper distribution rate.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (4)

黄銅鉱を含む銅鉱石を破砕、選別することで、銅品位が3重量%〜10重量%かつ80%通過粒子径が70μm〜200μmとなるまで濃縮する第1濃縮工程と、
前記第1濃縮工程によって得られた銅鉱石を単体硫黄と混合して350℃〜450℃に加熱する加熱工程と、
前記加熱工程で得られた銅鉱石を破砕、選別することによって銅分をさらに濃縮する第2濃縮工程と、を含むことを特徴とする銅精鉱を得る方法。
A first concentration step of concentrating the copper ore containing chalcopyrite until the copper grade is 3 wt% to 10 wt% and the 80% passing particle diameter is 70 µm to 200 µm by crushing and sorting the copper ore;
A heating step of mixing the copper ore obtained by the first concentration step with elemental sulfur and heating to 350 ° C. to 450 ° C .;
A second concentrating step of further concentrating the copper content by crushing and selecting the copper ore obtained in the heating step, and obtaining a copper concentrate.
前記第2濃縮工程は、前記加熱工程で得られた銅鉱石を10〜70μmの80%通過粒子径まで破砕し、浮遊選鉱法により銅分を濃縮する工程であることを特徴とする請求項1記載の銅精鉱を得る方法。 The second concentration step, claim wherein said copper ore obtained in the heating step was crushed to 80% passing particle size of 10 to 70 [mu] m, a step of concentrating the copper content by flotation 1 A method for obtaining the described copper concentrate. 前記加熱工程において、前記単体硫黄を、銅鉱石の銅含有量に対して重量比で0.5〜1倍添加することを特徴とする請求項1または2に記載の銅精鉱を得る方法。 The method for obtaining a copper concentrate according to claim 1 or 2, wherein in the heating step, the elemental sulfur is added in a weight ratio of 0.5 to 1 times the copper content of the copper ore. 前記第1濃縮工程に供される前記銅鉱石は、黄鉄鉱、輝銅鉱、及び銅藍のうち少なくとも1種を含んでいることを特徴とする請求項1〜3のいずれか一項に記載の銅精鉱を得る方法。 Wherein said copper ore first be subjected to concentration step, pyrite, copper according to any one of claims 1 to 3, characterized in that it contains at least one of chalcocite and covellite How to get concentrate.
JP2013027205A 2013-02-15 2013-02-15 How to get copper concentrate Active JP6157870B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013027205A JP6157870B2 (en) 2013-02-15 2013-02-15 How to get copper concentrate
CL2014000351A CL2014000351A1 (en) 2013-02-15 2014-02-12 Method for obtaining copper concentrate comprising concentrating a copper ore grade of copper ore that includes chalcopyrite 3-10% by weight by grinding and selection, heating to mix the copper ore and a simple sulfur between 350-450 ° C, and concentrate a copper content by crushing and selecting.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013027205A JP6157870B2 (en) 2013-02-15 2013-02-15 How to get copper concentrate

Publications (2)

Publication Number Publication Date
JP2014156624A JP2014156624A (en) 2014-08-28
JP6157870B2 true JP6157870B2 (en) 2017-07-05

Family

ID=51577686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027205A Active JP6157870B2 (en) 2013-02-15 2013-02-15 How to get copper concentrate

Country Status (2)

Country Link
JP (1) JP6157870B2 (en)
CL (1) CL2014000351A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2469359A1 (en) * 2001-12-12 2003-06-19 Vladimir Rajic Selective flotation agent and flotation method
US20100024601A1 (en) * 2006-12-18 2010-02-04 Alexander Beckmann Method for obtaining copper and precious metals from copper-iron sulphide ores or ore concentrates
JP5385235B2 (en) * 2010-09-07 2014-01-08 Jx日鉱日石金属株式会社 Copper concentrate processing method
JP5641952B2 (en) * 2011-01-20 2014-12-17 Jx日鉱日石金属株式会社 Copper concentrate processing method
JP2012201920A (en) * 2011-03-24 2012-10-22 Jx Nippon Mining & Metals Corp Method for treating copper concentrate
JP2013209719A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Method for treating copper concentrate

Also Published As

Publication number Publication date
JP2014156624A (en) 2014-08-28
CL2014000351A1 (en) 2014-07-04

Similar Documents

Publication Publication Date Title
AU2013334500C1 (en) Iron ore concentration process with grinding circuit, dry desliming and dry or mixed (dry and wet) concentration
Haga et al. Investigation of flotation parameters for copper recovery from enargite and chalcopyrite mixed ore
JP2013209719A (en) Method for treating copper concentrate
JP4572703B2 (en) Separation of arsenic minerals from copper concentrate
AU650355B2 (en) Processing complex mineral ores
CN104888940B (en) A kind of method for handling low-grade Cu-Pb zinc-iron multi-metal sulfide extraction valuable metal
AU2008201799B2 (en) Differential flotation of mixed copper sulphide minerals
JP5502006B2 (en) Copper concentrate processing method
CN110328044A (en) A kind of method of blast furnace dust resource utilization
JP5385235B2 (en) Copper concentrate processing method
JP2015183217A (en) separation method
JP2012201920A (en) Method for treating copper concentrate
CN107115961B (en) Gravity separation method for low-grade and fine-grain embedded minerals
JP5641952B2 (en) Copper concentrate processing method
JP5497723B2 (en) Copper concentrate processing method
JP2013155426A (en) Method for treating copper concentrate
JP6157870B2 (en) How to get copper concentrate
JP7273254B2 (en) Metal recovery from metal-bearing materials
JP2012201922A (en) Method for treating copper concentrate
CN102327801B (en) Selective milling method for low-grade lead zinc ores
JP2013209718A (en) Method for treating copper concentrate
JP5991232B2 (en) How to recover molybdenite
CA2442523C (en) Method for recovering components from a feed slurry
CN103350032A (en) Strontium ore beneficiation method
CN107876214A (en) Copper-containing magnetite ore sorting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170607

R150 Certificate of patent or registration of utility model

Ref document number: 6157870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250