JP5385235B2 - Copper concentrate processing method - Google Patents

Copper concentrate processing method Download PDF

Info

Publication number
JP5385235B2
JP5385235B2 JP2010214441A JP2010214441A JP5385235B2 JP 5385235 B2 JP5385235 B2 JP 5385235B2 JP 2010214441 A JP2010214441 A JP 2010214441A JP 2010214441 A JP2010214441 A JP 2010214441A JP 5385235 B2 JP5385235 B2 JP 5385235B2
Authority
JP
Japan
Prior art keywords
copper
concentrate
particles
pyrite
indigo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010214441A
Other languages
Japanese (ja)
Other versions
JP2012057248A (en
Inventor
健吾 關村
裕史 千田
竜也 本村
和浩 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010214441A priority Critical patent/JP5385235B2/en
Publication of JP2012057248A publication Critical patent/JP2012057248A/en
Application granted granted Critical
Publication of JP5385235B2 publication Critical patent/JP5385235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は銅精鉱の処理方法に関する。更に詳しくは、黄銅鉱を主体とする銅精鉱粒子を硫黄添加し、銅藍と黄鉄鉱で構成される粒子に変換し、Fe品位の低い銅精鉱を回収する方法を供するものある。  The present invention relates to a method for treating copper concentrate. More specifically, there is a method for adding copper concentrate particles mainly composed of chalcopyrite to sulfur and converting it into particles composed of copper indigo and pyrite and recovering copper concentrate with low Fe quality.

銅鉱山で産出される銅鉱石は、主に硫化鉱であり、硫化鉱も大別すると、輝銅鉱(CuS)、や銅藍(CuS)といった鉱物を主体とした比較的高銅品位の二次硫化銅鉱と、黄銅鉱(CuFeS)の初生硫化鉱がある。
近年銅鉱山で採取される銅鉱石は、後者主体となり、鉄・硫黄その他の不純物が増加し、銅品位は低下傾向にある。このことは鉱山で銅製錬向けに生産する銅精鉱の銅品位の低下、鉄、硫黄分の増加となる。
一般に銅精鉱を製錬した際には、銅は製品電気銅として、鉄はスラグ、硫黄分は硫酸として回収される。近年の銅精鉱の低品位化は、銅製錬プロセスにおける製造コストの上昇を招く。
さらに国内の銅製錬業においては、銅製錬スラグ・硫酸の需給悪化に見舞われ、多くが採算の合わない輸出に向けられており、事業収益を圧迫している。今後さらに銅精鉱の銅品位低下が進めば、これらスラグ・硫酸の問題が顕著となり、事業存続にも影響を及ぼすと考えられる。
Copper ores produced at copper mines are mainly sulfide ores. If sulfide ores are roughly classified, copper ores with relatively high copper grades mainly composed of minerals such as chalcocite (Cu 2 S) and copper indigo (CuS). There are secondary copper sulfide ores and primary sulfide ores of chalcopyrite (CuFeS 2 ).
In recent years, copper ore collected at copper mines has become the latter mainly, and iron, sulfur and other impurities have increased, and the copper quality has been on the decline. This is a decrease in the copper quality of copper concentrate produced for copper smelting in the mine, and an increase in iron and sulfur content.
Generally, when copper concentrate is smelted, copper is recovered as product electrolytic copper, iron is recovered as slag, and sulfur is recovered as sulfuric acid. The recent reduction in the quality of copper concentrate causes an increase in production costs in the copper smelting process.
Furthermore, in the domestic copper smelting industry, the supply-demand balance for copper smelting slag and sulfuric acid has deteriorated, and many are directed to unprofitable exports, putting pressure on business profits. If the copper grade of copper concentrate further declines in the future, these slag / sulfuric acid problems will become prominent, and it will affect the business continuity.

これらの問題を解決する一手段として、銅精鉱の予備処理法の応用がある。予備処理法とは、黄銅鉱(CuFeS)を主体とする銅精鉱粒子を硫黄とともに所定の温度で反応させ、銅藍(CuS)と黄鉄鉱(FeS)で構成される精鉱粒子に変換する処理のことである。
本変換反応は、浸出が困難な黄銅鉱を比較的浸出が容易な形態にするという意味で、湿式製錬の前処理法として知られているが、予備処理から湿式製錬までのトータルコストに問題があり、現状普及していないプロセスである。
一方、0002段落で述べた問題点を解決するためには、本変換反応後の銅藍と黄鉄鉱を選別し、銅藍主体の高銅品位精鉱として乾式製錬に供する方法がある。
One means for solving these problems is the application of a copper concentrate pretreatment method. The pre-treatment method is to convert copper concentrate particles mainly composed of chalcopyrite (CuFeS 2 ) together with sulfur at a predetermined temperature to convert them into concentrate particles composed of copper indigo (CuS) and pyrite (FeS 2 ). It is a process to do.
This conversion reaction is known as a pretreatment method for hydrometallurgy in the sense that chalcopyrite, which is difficult to leach out, is in a form that is relatively easy to leach, but the total cost from pretreatment to hydrometallurgy is reduced. This is a process that has problems and is not widely used.
On the other hand, in order to solve the problems described in paragraph 0002, there is a method in which copper indigo and pyrite after this conversion reaction are selected and subjected to dry smelting as a high copper grade concentrate mainly composed of copper indigo.

本変換反応とその応用について述べているものに、特許文献1(WO2008/074805)がある。特許文献1によると、本変換プロセスは、変換後の銅藍と黄鉄鉱から銅藍を選別回収し、乾式製錬または湿式製錬処理に供するためのものとしているが、銅藍と黄鉄鉱の選別には、静電的方法、重力的方法、磁気的方法、風力的方法、粒径的方法、ハイドロサイクロン法、浮遊選鉱あるいはこれらの組み合わせにより行うとしており、本変換銅精鉱から銅藍と黄鉄鉱を選別する具体的な方法については記述されていない。
WO2008074805 METHOD FOR OBTAINING COPPER AND PRECIOUS METALS FROM COPPER−IRON SULPHIDE ORES OR ORE CONCENTRATES
Patent Document 1 (WO2008 / 074805) describes this conversion reaction and its application. According to Patent Document 1, the present conversion process is for collecting and collecting copper indigo from the converted copper indigo and pyrite and subjecting them to dry smelting or hydrometallurgy treatment. Is performed by electrostatic method, gravitational method, magnetic method, wind method, particle size method, hydrocyclone method, flotation, or a combination of these. The specific method of sorting is not described.
WO200807405 METHOD FOR OBTAINING COPPER AND PRECIOUS METALS FROM COPPER-IRON SULPHIDE ORES OR ORE CONCENTRATES

発明が解決しようとしている課題Problems to be solved by the invention

本発明は上記の問題点を解決するもので、黄銅鉱主体の銅精鉱を銅藍と黄鉄鉱に変換したものを、摩鉱・分級分離・浮遊選鉱分離により、Fe品位の低い銅精鉱を効率良くかつ経済的に回収する方法を提供することを目的とする。  The present invention solves the above-mentioned problems, and converts copper concentrate mainly composed of chalcopyrite into copper indigo and pyrite, and provides copper concentrate with low Fe quality by grinding, classification and flotation separation. The object is to provide an efficient and economical recovery method.

発明が解決するための手段Means for Solving the Invention

(1)黄銅鉱(CuFeS)を主体とする銅精鉱粒子を硫黄(S)と伴に不活性ガス雰囲気において350℃〜400℃で反応させ、
変換反応後の銅藍(CuS)と黄鉄鉱(FeS)で構成される精鉱粒子を摩鉱処理後、
銅藍と黄鉄鉱粒子に単体分離した前記精鉱粒子を2〜10μmの分級点で分級処理し、前記鉄品位の低い2〜10μmの細粒を回収し、
粗粒を更に、浮遊選鉱処理してFe品位の低い銅精鉱を回収する銅精鉱の処理方法。
(1) A copper concentrate particle mainly composed of chalcopyrite (CuFeS 2 ) is reacted at 350 ° C. to 400 ° C. in an inert gas atmosphere together with sulfur (S),
After milling the concentrate particles composed of copper indigo (CuS) and pyrite (FeS 2 ) after the conversion reaction,
The concentrate particles separated into copper indigo and pyrite particles are classified at a classification point of 2 to 10 μm, and the fine particles of 2 to 10 μm having a low iron quality are collected,
A method for treating a copper concentrate in which coarse grains are further subjected to a flotation process to recover a copper concentrate having a low Fe grade.

(2)上記(1)に記載の摩鉱処理をボールミル、ジェットミル、アトリッションミル、チューブミルなど、粉砕後の粒子径を10μm以下とすることができる湿式または乾式粉砕装置により行う銅精鉱の処理方法。(2) Copper refinement in which the grinding treatment described in the above (1) is performed by a wet or dry pulverizer such as a ball mill, a jet mill, an attrition mill, or a tube mill that can reduce the particle diameter after pulverization to 10 μm or less. Mining treatment method.

(3)上記(1)から(2)の何れかに記載の分級処理を遠心式分級機、慣性式分級機、重力式分級機あるいはそれらの組合せにより行う銅精鉱の処理方法。(3) A copper concentrate treatment method in which the classification process according to any one of (1) to (2) is performed by a centrifugal classifier, an inertia classifier, a gravity classifier, or a combination thereof.

(4)上記(1)から(3)の何れかに記載の摩鉱・分級処理により得られた粗粒を、浮遊選鉱において銅藍と黄鉄鉱を選別して、Fe品位の低い精鉱を回収する銅精鉱の処理方法。(4) The coarse particles obtained by the milling / classification process according to any one of (1) to (3) above are used to select copper indigo and pyrite in a flotation process to recover concentrate with low Fe quality. To process copper concentrate.

発明の効果Effect of the invention

本発明によれば以下の効果を有する。
(1)変換後銅精鉱を摩鉱・分級分離することにより、実用上浮遊選鉱法の適用が困難な微細粒を分離回収することで、残りの粗粒に対する浮遊選鉱の選別成績を向上できる。
(2)分級分離処理により得られた微細粒はCu品位が高く、Fe品位の低い銅精鉱として、複雑な処理をすることなく容易に回収できる。
(3)浮遊選鉱においては、主として単体黄鉄鉱粒子を尾鉱として除去する粗選と、未粉砕粒子、即ち銅藍と黄鉄鉱が単体分離していない粒子を湿式摩鉱後、一段もしくは複数段の精選を行うことにより、得られる銅精鉱のCu品位と回収率を向上することができる。
The present invention has the following effects.
(1) By separating and recovering the copper concentrate after conversion, it is possible to improve the sorting results of the flotation with respect to the remaining coarse particles by separating and recovering the fine grains that are difficult to apply the flotation method in practice. .
(2) The fine particles obtained by the classification and separation treatment can be easily recovered as a copper concentrate having a high Cu quality and a low Fe quality without any complicated treatment.
(3) In flotation, mainly one or more stages of fine selection after rough grinding to remove single pyrite particles as tailings and wet grinding of unmilled particles, that is, particles from which copper indigo and pyrite are not separated. By performing this, it is possible to improve the Cu quality and the recovery rate of the obtained copper concentrate.

本発明の一態様である処理フローを示す。The processing flow which is 1 aspect of this invention is shown. 本発明における一態様である変換後の銅精鉱粒子のSEM・EPMA像を示す。The SEM * EPMA image of the copper concentrate particle | grains after conversion which is one aspect | mode in this invention is shown. 本発明における一態様である変換後精鉱摩鉱・分級後の10μm以下粒子のEPMA像を示す。The EPMA image of 10 micrometers or less particle | grains after the concentrate ore after conversion and classification which is one aspect | mode in this invention is shown. 本発明における一態様である変換後精鉱摩鉱・分級後の10〜30μm粒子のEPMA像を示す。The EPMA image of the 10-30 micrometers particle | grains after the refinement | concentration ore after the conversion and classification which is one aspect | mode in this invention is shown. 本発明における一態様である変換後精鉱摩鉱・分級後の30μm以上粒子のEPMA像を示す。The EPMA image of 30 micrometers or more particle | grains after the refined concentrate or classification after conversion which is one aspect | mode in this invention is shown. 本発明における一態様である変換前精鉱のXRD分析結果を示す。The XRD analysis result of the concentrate before conversion which is 1 aspect in this invention is shown. 本発明における一態様である変換後精鉱のXRD分析結果を示す。The XRD analysis result of the concentrate after the conversion which is one mode in the present invention is shown. 本発明における一態様である変換後精鉱ジェットミル摩鉱後の粒度分布測定結果を示す。The particle size distribution measurement result after the post-concentration concentrate jet mill grinding which is one aspect | mode in this invention is shown. 本発明における分級点の概念図を示す。The conceptual diagram of the classification point in this invention is shown.

以下、実施例により本研究をさらに詳しく説明する。
本発明は、変換銅精鉱粒子を摩鉱することにより、銅藍と黄鉄鉱を分離し、鉄品位の低い銅藍主体の銅精鉱を回収することで、銅精鉱に含まれる鉄量・硫黄量を低減し、銅製錬プロセスのコスト低減、スラグ・硫酸の発生量を減少による事業採算の改善が可能となるプロセスを供するものである。
Hereinafter, this example will be described in more detail by way of examples.
The present invention separates copper indigo and pyrite by grinding the converted copper concentrate particles, and recovers the copper concentrate mainly composed of copper indigo with low iron quality, It provides a process that can reduce the amount of sulfur, reduce the cost of the copper smelting process, and improve the profitability of the business by reducing the generation of slag and sulfuric acid.

本発明の対象処理物は、銅精鉱である。特には、黄銅鉱を主体とする銅精鉱である。
黄銅鉱(CuFeS)の品位は、銅が、25から33mass%、鉄は、28から33mass%含有する。 前記の如く、鉄分が多く、結局製錬工程において、多量のスラグ発生をもたらす。
本発明では、前記銅精鉱中の銅に対して、硫黄を1.0から1.2の比率で添加する。硫黄は、単体硫黄の状態で添加し、良く混合する。
The target processed product of the present invention is copper concentrate. In particular, it is a copper concentrate mainly composed of chalcopyrite.
As for the grade of chalcopyrite (CuFeS 2 ), copper contains 25 to 33 mass% and iron contains 28 to 33 mass%. As described above, the amount of iron is large, and eventually a large amount of slag is generated in the smelting process.
In the present invention, sulfur is added at a ratio of 1.0 to 1.2 with respect to copper in the copper concentrate. Sulfur is added in the form of elemental sulfur and mixed well.

混合した処理物は、不活性雰囲気中で、350から400℃において、45から60分間加熱する。不活性ガスとしては、主に窒素ガスが用いられる。
このらの温度、雰囲気は、黄銅鉱を銅藍と黄鉄鉱に変換に必要な条件であり、反応時間は、未反応黄銅鉱を残さないために、必要な時間である。
The mixed treatment is heated at 350 to 400 ° C. for 45 to 60 minutes in an inert atmosphere. Nitrogen gas is mainly used as the inert gas.
These temperatures and atmospheres are conditions necessary for converting chalcopyrite into copper indigo and pyrite, and the reaction time is necessary in order not to leave unreacted chalcopyrite.

上記加熱処理は、ロータリキルン等を用いて、行われる。
上記反応処理の結果、本変換プロセスで生産した銅藍と黄鉄鉱で構成される粒子は、精鉱粒子の内部に黄鉄鉱、それを覆うように銅藍が粒子の外殻を構成した一体の粒子になっている。
図2は電子線マイクロアナライザ(EPMA)で同定した銅藍と黄鉄鉱のマッピングにより変換粒子の状態である。
The heat treatment is performed using a rotary kiln or the like.
As a result of the above reaction treatment, the particles composed of copper indigo and pyrite produced in this conversion process become pyrite in the concentrate particles, and the unitary particles in which copper indigo constitutes the outer shell of the particles to cover it. It has become.
FIG. 2 shows the state of converted particles by mapping between copper indigo and pyrite identified by an electron beam microanalyzer (EPMA).

このような変換銅精鉱粒子から銅藍を主体に回収するためには、まず一つひとつの粒子を銅藍・黄鉄鉱に単体分離することが必要である。
発明者が鋭意試験・調査した結果、両鉱物が単体分離される粒径はおおよそ10μm以下であることがわかった。
In order to mainly recover copper indigo from such converted copper concentrate particles, it is necessary to first separate each individual particle into copper indigo and pyrite.
As a result of intensive studies and investigations by the inventors, it was found that the particle size at which both minerals were separated from each other was approximately 10 μm or less.

前記処理により、変換した銅精鉱(Cu品位=25mass%、Fe品位=26mass%)は、摩鉱処理する。
摩鉱処理に用いる粉砕機は、例えば、ボールミル、ジェットミル、アトリッションミル、チューブミル等がある。粒子径10μm以下に、粉砕できるものであれば、種類は問わないが、特に、乾式ジェットミルが好ましい。変換後の精鉱を濡らすことなく、短時間で望ましい粒度になるためである。
The copper concentrate (Cu quality = 25 mass%, Fe quality = 26 mass%) converted by the above treatment is subjected to a grinding treatment.
Examples of the pulverizer used for the grinding treatment include a ball mill, a jet mill, an attrition mill, and a tube mill. The type is not particularly limited as long as it can be pulverized to a particle size of 10 μm or less, but a dry jet mill is particularly preferable. This is because the desired particle size can be obtained in a short time without wetting the concentrate after conversion.

図3は、変換銅精鉱を粉砕・分級処理して得た≦10μmの粒子のEPMA画像で、粒子が粉砕され、銅藍と黄鉄鉱が単体分離していることがわかる。  FIG. 3 is an EPMA image of particles of ≦ 10 μm obtained by pulverizing and classifying the converted copper concentrate. It can be seen that the particles are pulverized and copper indigo and pyrite are separated as a single substance.

図4は、10〜30μm粒子のEPMA画像で、外殻の銅藍が剥離した比較的粗粒の単体の黄鉄鉱と、未粉砕粒子との混合状態にある。  FIG. 4 is an EPMA image of 10 to 30 μm particles, which is in a mixed state of relatively coarse-grained single pyrite from which the outer shell copper indigo peeled and unmilled particles.

また、図5は≧30μm粒子のEPMA画像で、ほぼ全て未粉砕の状態にある。  FIG. 5 is an EPMA image of ≧ 30 μm particles, almost all of which are unground.

このことから、摩鉱処理後、分級する。 分級は、遠心分離機、慣性式分級機、
重力式分級機或は、その組み合わせに行われることが好ましい。 特に好ましいのは、慣性式分級と遠心式分級を組み合わせた空気分級機である。 変換銅精鉱を6μm、10μm、30μmなどの分級点の調整が容易で、細粒と粗粒に、より明確に分級できるからである。
Therefore, classification is performed after milling. Classification is performed by centrifuge, inertia classifier,
It is preferable to use a gravity classifier or a combination thereof. Particularly preferred is an air classifier combining inertial classification and centrifugal classification. This is because it is easy to adjust the classification point of the converted copper concentrate such as 6 μm, 10 μm, and 30 μm, and the finer and coarse particles can be classified more clearly.

2から10μmの細粒のものを回収し、銅製錬原料とすることにより、スラグ発生量が少ない銅製錬を行うことが可能となる。
更に、10μmより粗い粗粒は、浮遊選鉱処理を行うことにより、より鉄分の低い銅精鉱とすることが可能である。
By collecting fine particles of 2 to 10 μm and using them as a copper smelting raw material, it becomes possible to perform copper smelting with a small amount of slag generation.
Further, coarse grains coarser than 10 μm can be made into a copper concentrate having a lower iron content by performing a flotation process.

図1に黄銅鉱主体の銅精鉱の処理フローを示す。
黄銅鉱主体の銅精鉱(Cu品位=29mass%、Fe品位=30mass%)と単体硫黄をモル比で銅精鉱中Cu:硫黄=1:1で混合し、窒素雰囲気中において350℃で45〜60分処理することで黄銅鉱を銅藍と黄鉄鉱に変換する。
FIG. 1 shows a processing flow of copper concentrate mainly composed of chalcopyrite.
Copper concentrate mainly composed of chalcopyrite (Cu grade = 29 mass%, Fe grade = 30 mass%) and elemental sulfur were mixed at a molar ratio of Cu: sulfur = 1: 1 in copper concentrate, and 45 ° C at 350 ° C in a nitrogen atmosphere. Converts chalcopyrite to copper indigo and pyrite by treating for ~ 60 minutes.

図6、図7のXRDによる分析結果の通り、変換前後で黄銅鉱が銅藍と黄鉄鉱に変化していることがわかる。
変換後の銅精鉱粒子の典型例は、前述の通り図2のような鉱物分布となる。
As shown in the analysis results by XRD in FIGS. 6 and 7, it can be seen that the chalcopyrite has changed to copper indigo and pyrite before and after conversion.
A typical example of the copper concentrate particles after conversion has a mineral distribution as shown in FIG.

銅藍と黄鉄鉱に変換した銅精鉱(Cu品位=25mass%、Fe品位=26mass%)を乾式ジェットミル(日清エンジニアリング(株)製SJ−100)を用いて摩鉱した。図8に摩鉱精鉱の粒度分布を示す。このときの摩鉱空気圧力は0.45MPaGであり、50%粒子径は7.1μmであった。
この摩鉱後精鉱を、慣性式分級と遠心式分級を組み合わせた空気分級機(日清エンジニアリング製TC−15)を用いて10μm、30μmの分級点で細粒と粗粒に分級した。
ここでいう分級点とは図9に示すように、横軸に粒径、縦軸に頻度をとった場合の細粒側と粗粒側の粒度分布が重複する粒径である。
Copper concentrate (Cu quality = 25 mass%, Fe quality = 26 mass%) converted to copper indigo and pyrite was milled using a dry jet mill (Nisshin Engineering Co., Ltd. SJ-100). FIG. 8 shows the particle size distribution of the ore concentrate. The grinding air pressure at this time was 0.45 MPaG, and the 50% particle size was 7.1 μm.
This post-milling concentrate was classified into fine and coarse grains at a classification point of 10 μm and 30 μm using an air classifier (TC-15 manufactured by Nissin Engineering Co., Ltd.) that combines inertia classification and centrifugal classification.
As shown in FIG. 9, the classification point here is a particle size in which the particle size distribution on the fine particle side and the coarse particle side overlaps when the particle size is plotted on the horizontal axis and the frequency is plotted on the vertical axis.

図3は、変換後精鉱を摩鉱し、分級点10μmで分級分離した細粒の粒子の状態を表す。ほぼ全ての粒子が銅藍と黄鉄鉱に単体分離していることがわかる。これは変換後精鉱粒子の外殻にある銅藍が細かく剥離したものと、その銅藍の内側にあった黄鉄鉱の一部が細かく粉砕されたものである。  FIG. 3 shows the state of fine particles obtained by grinding the concentrate after conversion and classifying and separating at a classification point of 10 μm. It can be seen that almost all particles are separated into copper indigo and pyrite. This is the one in which the copper indigo in the outer shell of the concentrate particle after conversion is finely separated and the part of the pyrite in the inside of the copper indigo is finely crushed.

図4は、分級点10μmで分級分離し得られた粗粒を、さらに30μmの分級点で分級分離し得られた細粒、即ち大部分が10より荒く30μm以下の粒度範囲に入る粒子の状態である。
この範囲の粒子は、外殻の銅藍が剥離した比較的大粒な単体黄鉄鉱粒子と、粉砕過程の途中にあたる変換精鉱粒子、即ち黄鉄鉱の外殻に銅藍が残存している粒子との混合状態にある。 10より粗く30μmまでの黄鉄鉱は、浮遊選鉱により、容易に、銅藍または外殻に銅藍が残っている黄鉄鉱(片刃粒子)と分離可能であり、鉄品位の低い銅精鉱を得ることが出来る。
FIG. 4 shows the state of fine particles obtained by classifying and separating coarse particles obtained by classification at a classification point of 10 μm, that is, fine particles obtained by classification and separation at a classification point of 30 μm, that is, particles that are mostly coarser than 10 and within a particle size range of 30 μm or less It is.
This range of particles is a mixture of relatively large single pyrite particles from which the outer shell copper indigo flakes are separated from converted concentrate particles in the middle of the grinding process, that is, particles in which the copper indigo remains in the outer shell of pyrite. Is in a state. Pyrite that is coarser than 10 and up to 30μm can be easily separated from pyrite (single-edged particles) with copper indigo or copper indigo remaining in the outer shell by flotation, and a copper concentrate with low iron quality can be obtained. I can do it.

図5は、30μmの分級点で分離した粗粒の粒子状態である。ほぼ未粉砕で変換後の精鉱粒子のままの状態のものがほとんどである。 これは、0019段落で述べた通り、単体黄鉄鉱を除去後、湿式摩鉱し、再度浮遊選鉱することにより、鉄の少ない精鉱を得ることができる。  FIG. 5 shows a coarse particle state separated at a classification point of 30 μm. Most of them are almost unground and remain in the state of concentrate particles after conversion. As described in paragraph 0019, the concentrate with less iron can be obtained by removing the simple pyrite, performing wet grinding, and flotation again.

次に実施例1記載の0016段落及び0017段落と同様に黄銅鉱を銅藍と黄鉄鉱に変換し、ジェットミルで摩鉱後、空気分級機を用いて、分級点2μm、6μm、10μm及び30μmで分級分離した細粒と粗粒を回収し、それぞれの分級点での細粒と粗粒の重量割合、Cu回収率、Cu品位、Fe品位を調査した。
結果は表1の通りである。
Next, the chalcopyrite is converted into copper indigo and pyrite in the same manner as in paragraphs 0016 and 0017 described in Example 1, and after grinding with a jet mill, using an air classifier, the classification points are 2 μm, 6 μm, 10 μm, and 30 μm. The finely divided and coarse particles classified and separated were collected, and the weight ratio of fine and coarse particles, Cu recovery rate, Cu quality, and Fe quality at each classification point were investigated.
The results are shown in Table 1.

全ての分級点において、細粒は変換後の元精鉱(Cu品位=25mass%、Fe品位=26mass%)と比較し、Cu品位が高くFe品位が低い精鉱が得られた。また、変換前の元精鉱(Cu品位=29mass%、Fe品位=30mass%)に対しては、Fe品位が6〜8mass%低下している。分級点6μmでの細粒は、Cu品位が30%で最も高く、Fe品位は22%で最も低い。  At all classification points, the fine grains had a high Cu quality and a low Fe quality compared to the original concentrate after conversion (Cu quality = 25 mass%, Fe quality = 26 mass%). In addition, the Fe grade is reduced by 6 to 8 mass% with respect to the original concentrate (Cu grade = 29 mass%, Fe grade = 30 mass%) before conversion. Fine grains with a classification point of 6 μm have the highest Cu quality at 30% and the lowest Fe quality at 22%.

一方、分級点30μmでの細粒は、分級点10μmでの細粒と比較し、Cu回収率はほとんど変わらないにもかかわらず、Cu品位が低下し、Fe品位が高くなる。
これは、実施例1記載の0018段落〜0020段落で述べた通り、変換後精鉱の摩鉱の過程で、銅藍から先に粉砕されて微細粒となり、内部の黄鉄鉱の一部は、おおよそ10より粗く30μm以下の粒径範囲に多く残留するためである。
On the other hand, fine grains with a classification point of 30 μm have lower Cu quality and higher Fe quality, compared with fine grains with a classification point of 10 μm, although the Cu recovery rate hardly changes.
As described in paragraphs 0018 to 0020 of Example 1, this is the process of grinding the concentrate after conversion, and then the copper indigo is first crushed into fine particles, and some of the internal pyrite is roughly This is because a large amount remains in the particle size range of less than 10 and 30 μm or less.

よって、分級分離の分級点は10μmまでの粒径範囲で設定することが望ましい。
また、分級で得られた10μmより粗い粗粒は、浮遊選鉱法を適用できる粒度範囲であるため、0018段落で述べたような方法により処理し、黄鉄鉱を除外しCu分を濃縮する。
分級分離の分級点は、浮遊選鉱の選別成績、即ちCu回収率と精鉱Cu品位、あるいは処理コストにより、任意に変更可能である。
Therefore, it is desirable to set the classification point for classification and separation within a particle size range of up to 10 μm.
In addition, coarse particles coarser than 10 μm obtained by classification are in the particle size range to which the flotation method can be applied, and thus are treated by the method described in paragraph 0018 to exclude pyrite and concentrate the Cu content.
The classification point of classification separation can be arbitrarily changed according to the selection result of the flotation, that is, the Cu recovery rate and the concentrate Cu quality, or the processing cost.

Claims (4)

黄銅鉱(CuFeS)を主体とする銅精鉱粒子を硫黄(S)と伴に不活性ガス雰囲気において350℃〜400℃で反応させ、
変換反応後の銅藍(CuS)と黄鉄鉱(FeS)で構成される精鉱粒子を摩鉱処理後、
銅藍と黄鉄鉱粒子に単体分離した前記精鉱粒子を2〜10μmの分級点で分級処理し、前記鉄品位の低い2〜10μmの細粒を回収し、
粗粒を更に、浮遊選鉱処理してFe品位の低い銅精鉱を回収することを特徴とする銅精鉱の処理方法。
Copper concentrate particles mainly composed of chalcopyrite (CuFeS 2 ) are reacted at 350 ° C. to 400 ° C. in an inert gas atmosphere together with sulfur (S),
After milling the concentrate particles composed of copper indigo (CuS) and pyrite (FeS 2 ) after the conversion reaction,
The concentrate particles separated into copper indigo and pyrite particles are classified at a classification point of 2 to 10 μm, and the fine particles of 2 to 10 μm having a low iron quality are collected,
A method for treating a copper concentrate, which further comprises subjecting the coarse particles to a flotation process to recover a copper concentrate having a low Fe quality.
請求項1に記載の摩鉱処理をボールミル、ジェットミル、アトリッションミル、チューブミルなど、粉砕後の粒子径を10μm以下とすることができる湿式または乾式粉砕装置により行うことを特徴とする銅精鉱の処理方法。  The copper according to claim 1, wherein the grinding treatment according to claim 1 is performed by a wet or dry pulverization apparatus such as a ball mill, a jet mill, an attrition mill, or a tube mill that can reduce the particle diameter after pulverization to 10 μm or less. Concentrate processing method. 請求項1から2の何れかに記載の分級処理を遠心式分級機、慣性式分級機、重力式分級機あるいはそれらの組合せにより行うことを特徴とする銅精鉱の処理方法。  A method for treating copper concentrate, wherein the classification process according to claim 1 is performed by a centrifugal classifier, an inertia classifier, a gravity classifier, or a combination thereof. 請求項1から3の何れかに記載の摩鉱・分級処理により得られた粗粒を、浮遊選鉱において銅藍と黄鉄鉱を選別して、Fe品位の低い精鉱を回収することを特徴とする銅精鉱の処理方法。  The coarse particles obtained by the milling / classifying treatment according to any one of claims 1 to 3 are selected from copper indigo and pyrite in a flotation process, and the concentrate with low Fe quality is recovered. Processing method for copper concentrate.
JP2010214441A 2010-09-07 2010-09-07 Copper concentrate processing method Active JP5385235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010214441A JP5385235B2 (en) 2010-09-07 2010-09-07 Copper concentrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214441A JP5385235B2 (en) 2010-09-07 2010-09-07 Copper concentrate processing method

Publications (2)

Publication Number Publication Date
JP2012057248A JP2012057248A (en) 2012-03-22
JP5385235B2 true JP5385235B2 (en) 2014-01-08

Family

ID=46054691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214441A Active JP5385235B2 (en) 2010-09-07 2010-09-07 Copper concentrate processing method

Country Status (1)

Country Link
JP (1) JP5385235B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888780B2 (en) * 2012-03-30 2016-03-22 Jx金属株式会社 Copper concentrate processing method
JP6157870B2 (en) * 2013-02-15 2017-07-05 Jx金属株式会社 How to get copper concentrate
CN109590114B (en) * 2018-11-08 2021-03-05 西安西北有色地质研究院有限公司 Method for separating copper and sulfur in copper-sulfur ore
CN113318855B (en) * 2021-06-02 2022-02-11 中国矿业大学 Flotation system and process for improving quality and reducing impurities of high-clay-content low-grade chalcopyrite

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4352823B2 (en) * 2002-11-18 2009-10-28 住友金属鉱山株式会社 Method for refining copper raw materials containing copper sulfide minerals
WO2008074805A1 (en) * 2006-12-18 2008-06-26 Alexander Beckmann Method for obtaining copper and precious metals from copper-iron sulphide ores or ore concentrates

Also Published As

Publication number Publication date
JP2012057248A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
Schlesinger et al. Extractive metallurgy of copper
PH12019502827A1 (en) Beneficiation of values from ores with a heap leach process
Gül et al. Beneficiation of the gold bearing ore by gravity and flotation
WO2012167519A1 (en) Comprehensive process for reclaiming metallic copper from high-grade furnace slag containing copper
JP2013209719A (en) Method for treating copper concentrate
JP5385235B2 (en) Copper concentrate processing method
CN103146911A (en) Beneficiation method for treating combined copper oxide ore and recovering associated valuable metals
CN105233977B (en) Magnetic separation recovery mine tailing technique is regrinded in magnetic separation circulation roasting
JP5502006B2 (en) Copper concentrate processing method
Klein et al. A hybrid flotation–gravity circuit for improved metal recovery
CN104888940A (en) Method for treating low-grade copper-lead-zinc-iron multi-metal sulfide ores to extract valuable metals
JP2019065341A (en) Hydrometallurgical process for nickel oxide ore
CN110328044A (en) A kind of method of blast furnace dust resource utilization
JP2012201920A (en) Method for treating copper concentrate
JP5641952B2 (en) Copper concentrate processing method
JP2013155426A (en) Method for treating copper concentrate
US10273558B2 (en) Ore slurry pre-treatment method and ore slurry manufacturing method
CA2648951A1 (en) Process for recovery of antimony and metal values from antimony- and metal value-bearing materials
JP5497723B2 (en) Copper concentrate processing method
JP2015183217A (en) separation method
Altun et al. The use of continuous centrifugal gravity concentration in grinding circuit. Modified approach for improved metallurgical performance and reduced grinding requirements
JP7273254B2 (en) Metal recovery from metal-bearing materials
JP2012201922A (en) Method for treating copper concentrate
JP5888780B2 (en) Copper concentrate processing method
Yusupov et al. Mineralogical and technological assessment of tin–sulfide mining waste dressability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Ref document number: 5385235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250