JP2015183217A - separation method - Google Patents

separation method Download PDF

Info

Publication number
JP2015183217A
JP2015183217A JP2014059497A JP2014059497A JP2015183217A JP 2015183217 A JP2015183217 A JP 2015183217A JP 2014059497 A JP2014059497 A JP 2014059497A JP 2014059497 A JP2014059497 A JP 2014059497A JP 2015183217 A JP2015183217 A JP 2015183217A
Authority
JP
Japan
Prior art keywords
concentrate
flotation
copper
separation method
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014059497A
Other languages
Japanese (ja)
Inventor
健吾 關村
Kengo Sekimura
健吾 關村
齋藤 淳
Atsushi Saito
淳 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014059497A priority Critical patent/JP2015183217A/en
Publication of JP2015183217A publication Critical patent/JP2015183217A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separation method capable of separating mineral concentrate into mineral concentrate having a high copper content concentration and mineral concentrate having a high molybdenum concentration.SOLUTION: A separation method includes a heating step and a separation step. In the heating step, rough concentrate obtained by pulverizing and selecting yellow pyrite crude ore containing molybdenum is mixed with an elemental sulfur and then heated to 350°C-450°C. In the separation step, the rough concentrate obtained in the heating step is crushed to perform floatation method so as to be separated into first flotation concentrate recovered at a preceding stage of a process of the floatation method, and second floatation concentrate recovered at a subsequent stage of the process.

Description

本発明は分離方法に関する。   The present invention relates to a separation method.

モリブデンの製錬原料である輝水鉛鉱(MoS)は、単一で産出することは稀であり、方鉛鉱(PbS)や硫化銅鉱の随伴物として採取されることが多い。随伴物としてのモリブデン品位は粗鉱として50〜500重量ppm程度である。 The source of molybdenite (MoS 2 ), which is a raw material for smelting molybdenum, is rarely produced alone, and is often collected as an accompaniment of galena (PbS) or copper sulfide ore. The quality of molybdenum as an accompanying material is about 50 to 500 ppm by weight as crude ore.

硫化銅鉱と輝水鉛鉱とを含む鉱石は、細かく破砕された後に浮遊選鉱法により輝水鉛鉱を含む銅精鉱として回収される。輝水鉛鉱は浮上しやすい鉱物の一つとして知られており、硫化銅鉱と共に浮鉱する。輝水鉛鉱を含む銅精鉱は、さらに輝水鉛鉱の優先浮選等に供される。それにより、輝水鉛鉱を回収することができる。輝水鉛鉱の優先浮選において硫化銅鉱の抑制剤等を使用し、繰り返し浮遊選鉱を行うことで、輝水鉛鉱を濃縮することができる。輝水鉛鉱と硫化銅鉱との分離、特に最も一般的な鉱物である黄銅鉱(CuFeS)との分離は難しく、輝水鉛鉱精鉱としても最終的に0.1〜3重量%程度の銅が含まれる。 An ore containing copper sulfide ore and hydropyrite ore is finely crushed and then recovered as copper concentrate containing pyroxenite by a flotation process. Bright lead ore is known as one of the minerals that are likely to surface, and floats together with copper sulfide ore. The copper concentrate containing the molybdenite is further used for preferential flotation of molybdenite. As a result, the molybdenite can be recovered. In the preferential flotation of molybdenite, it is possible to concentrate the molybdenite ore by repeatedly performing flotation using a copper sulfide ore inhibitor and the like. Separation of molybdenite and copper sulfide ore, especially separation of chalcopyrite (CuFeS 2 ), which is the most common mineral, is difficult. Is included.

輝水鉛鉱精鉱は、硫化モリブデンとして潤滑剤原料に利用され、もしくは焙焼されて酸化モリブデンとなり冶金原料として利用される。しかしながら、上述のように、硫化銅鉱と輝水鉛鉱との分離は困難である。また、輝水鉛鉱精鉱中の銅量増加により銅精鉱における収益の悪化や輝水鉛鉱の商業価値を著しく低下する。さらには輝水鉛鉱精鉱の脱銅工程も必要になる。   The bright lead ore concentrate is used as a lubricant raw material as molybdenum sulfide, or roasted into molybdenum oxide and used as a metallurgical raw material. However, as described above, it is difficult to separate the copper sulfide ore from the hydropyrite. In addition, the increase in the amount of copper in the hydrous ore concentrate will deteriorate the profits in the copper concentrate and significantly reduce the commercial value of the hydrous ore. In addition, a copper removal process for the bright lead ore concentrate is also required.

最も輝水鉛鉱を随伴物とする硫化銅鉱は、黄銅鉱である。当該黄銅鉱を浮遊選鉱に供しても、分離効率は低い。しかも、黄銅鉱は、化学的に非常に安定な鉱物であり選択的に黄銅鉱のみを浸出して除く方法は極めて限定される。そこで、特許文献1は、高濃度の塩化鉄(III)やオゾン等の酸化剤で加温浸出する方法を開示している。   The copper sulfide ore that is most accompanied by hydropyrite is chalcopyrite. Even if the chalcopyrite is subjected to flotation, the separation efficiency is low. Moreover, chalcopyrite is a chemically very stable mineral, and the method of selectively leaching and removing only chalcopyrite is extremely limited. Therefore, Patent Document 1 discloses a method of warm leaching with an oxidizing agent such as high concentration iron (III) chloride or ozone.

特開平5−195106号公報JP-A-5-195106

しかしながら、特許文献1の技術では、コストが高くなる。   However, the technique of Patent Document 1 increases the cost.

本発明は上記の課題に鑑み、コストを抑制しつつ、精鉱を、銅濃度の高い精鉱とモリブデン濃度の高い精鉱とに分離することができる分離方法を提供すること目的とする。   In view of the above problems, an object of the present invention is to provide a separation method capable of separating a concentrate into a concentrate having a high copper concentration and a concentrate having a high molybdenum concentration while suppressing cost.

本発明に係る分離方法は、モリブデンを含有する黄銅鉱粗鉱を粉砕・選別して得た粗選鉱を単体硫黄と混合して350℃〜450℃に加熱する加熱工程と、前記加熱工程で得られた粗精鉱を破砕して浮遊選鉱を行い、前記浮遊選鉱の過程の前段で回収された第1浮選精鉱と、前記過程の後段で回収された第2浮選精鉱とを分離する分離工程と、を含むことを特徴とする。   The separation method according to the present invention is obtained by a heating process in which a coarse ore obtained by pulverizing and selecting a chalcopyrite ore containing molybdenum is mixed with elemental sulfur and heated to 350 ° C. to 450 ° C., and obtained in the heating process. The coarse concentrate is crushed and subjected to flotation, and the first flotation concentrate recovered in the previous stage of the flotation process and the second flotation concentrate recovered in the latter stage of the process are separated. And a separating step.

前記第1浮選精鉱を銅製錬工程に供し、前記第2浮選精鉱をモリブデン製錬工程に供してもよい。前記黄銅鉱粗鉱は、輝水鉛鉱を含んでいてもよい。前記黄銅鉱粗鉱は、黄鉄鉱、輝銅鉱、および銅藍のうち少なくとも1種を含んでいてもよい。前記粗選鉱は、銅品位3〜15重量%で80%通過粒子径が100〜300μmとしてもよい。前記加熱工程において、前記粗選鉱中の銅分に対して1.0重量倍〜2.0重量倍の単体硫黄を添加してもよい。前記分離工程において、前記粗精鉱を、80%通過粒子径が30〜100μmになるまで破砕してから前記浮遊選鉱を行ってもよい。前記分離工程において、前記第1浮遊精鉱を回収した後に、浮遊選鉱槽に捕収材を100g/t以上添加し、槽液のpHを10.0〜12.5に調整した後に、フロスを前記第2浮選精鉱として回収してもよい。   The first flotation concentrate may be subjected to a copper smelting process, and the second flotation concentrate may be subjected to a molybdenum smelting process. The chalcopyrite coarse ore may contain molybdenite. The chalcopyrite coarse ore may contain at least one of pyrite, chalcocite, and copper indigo. The coarse beneficiation may have a copper grade of 3 to 15% by weight and an 80% passing particle size of 100 to 300 μm. In the heating step, 1.0 to 2.0 times by weight of simple sulfur may be added to the copper content in the coarse beneficiation. In the separation step, the coarse concentrate may be crushed until the 80% passing particle size becomes 30 to 100 μm, and then the flotation may be performed. In the separation step, after recovering the first floating concentrate, the collection material is added to the floating beneficiation tank in an amount of 100 g / t or more, and the pH of the tank liquid is adjusted to 10.0 to 12.5. You may collect | recover as said 2nd flotation concentrate.

本発明によれば、精鉱を、銅分濃度の高い精鉱とモリブデン濃度の高い精鉱とに分離することができる。   According to the present invention, the concentrate can be separated into a concentrate having a high copper concentration and a concentrate having a high molybdenum concentration.

処理フローである。It is a processing flow. 粗選鉱のXRD解析結果である。It is an XRD analysis result of coarse beneficiation. 加熱処理後の粗選鉱のXRD解析結果である。It is a XRD analysis result of the coarse beneficiation after heat processing. 実施例における浮選時間に対するCu採収率およびMo採収率を示す図である。It is a figure which shows Cu yield and Mo yield with respect to the flotation time in an Example. 比較例における浮選時間に対するCu採収率およびMo採収率を示す図である。It is a figure which shows Cu yield and Mo yield with respect to the flotation time in a comparative example.

以下、本発明を実施するための実施形態について説明する。   Hereinafter, an embodiment for carrying out the present invention will be described.

(実施形態)
本実施形態は、モリブデンを含有する黄銅鉱粗鉱を粉砕・選別して得た粗選鉱を単体硫黄と混合して350℃〜450℃に加熱する加熱工程と、前記加熱工程で得られた粗精鉱を破砕して浮遊選鉱を行い、前記浮遊選鉱の過程の前段で回収された第1浮選精鉱と、前記過程の後段で回収された第2浮選精鉱とを分離する分離工程と、を含む方法を開示する。図1は、処理フローである。
(Embodiment)
The present embodiment includes a heating step of mixing crude sulfur obtained by pulverizing and sorting a chalcopyrite coarse ore containing molybdenum with simple sulfur and heating to 350 ° C. to 450 ° C., and the coarse obtained in the heating step. A separation step of crushing the concentrate and performing flotation, and separating the first flotation concentrate recovered in the previous stage of the flotation process and the second flotation concentrate recovered in the latter stage of the process And a method comprising: FIG. 1 is a processing flow.

(破砕・選別工程)
まず、モリブデンを含有するとともに銅品位が0.3〜3重量%の黄銅鉱粗鉱を破砕して銅分を選別することによって、銅品位3〜15重量%で80%通過粒子径100〜300μmの粗選鉱を得る。この時の選別法は篩別、比重選別、テーブル選別、浮遊選鉱等が採用される。一般的に、粗選鉱には黄銅鉱および輝水鉛鉱の他に、石英などのシリケート鉱物、黄鉄鉱(FeS)、硫化銅鉱等が含まれている。
(Crushing / sorting process)
First, 80% passing particle diameter of 100 to 300 μm is obtained at a copper grade of 3 to 15% by weight by crushing a chalcopyrite coarse ore containing molybdenum and having a copper grade of 0.3 to 3% by weight. Get the rough beneficiation. As the sorting method at this time, sieving, specific gravity sorting, table sorting, flotation or the like is adopted. In general, the coarse beneficiation includes silicate minerals such as quartz, pyrite (FeS 2 ), copper sulfide ore, in addition to chalcopyrite and pyroxenite.

(加熱工程)
この粗選鉱の全部もしくは一部に対して単体硫黄を添加し、不活性ガス雰囲気下で350℃〜450℃に加熱することによって硫化変換を生じさせ、粗精鉱を得る。この硫化変換によって、黄銅鉱を銅藍(CuS)と黄鉄鉱とに変換することができる。なお、単体硫黄は、添加対象の粗選鉱の銅分の1.0〜2.0倍重量添加することが好ましい。硫化変換時の硫黄の添加量が過剰な場合は再度破砕もしくは磨鉱した際に未反応の硫黄が粉塵爆発を起こす可能性があり、添加量が不足する場合は黄銅鉱の変換が不十分となり輝水鉛鉱中の銅濃度が低くならないからである。黄銅鉱に硫黄を添加し加熱処理することで黄銅鉱は黄鉄鉱と銅藍に変換されるが、輝水鉛鉱は不活性雰囲気下で熱処理されることで鉱物表面組成、形状が変化し、輝水鉛鉱の浮遊性が変わり、浮遊選鉱工程における採収率、純度が改善される。
(Heating process)
Single sulfur is added to all or part of the coarse beneficiation and heated to 350 ° C. to 450 ° C. in an inert gas atmosphere to cause sulfidation, thereby obtaining a crude concentrate. By this sulfide conversion, chalcopyrite can be converted into copper indigo (CuS) and pyrite. The elemental sulfur is preferably added in an amount of 1.0 to 2.0 times the copper content of the coarse beneficiation target. If the amount of sulfur added during sulfidation is excessive, unreacted sulfur may cause a dust explosion when it is crushed or ground again. If the amount added is insufficient, the conversion of chalcopyrite will be insufficient. This is because the copper concentration in the molybdenite does not become low. By adding sulfur to chalcopyrite and heat treatment, chalcopyrite is converted to pyrite and copper indigo, but hydropyrite is heat-treated in an inert atmosphere and the mineral surface composition and shape change, leading to pyroxene lead. The floatability of the ore will change, and the yield and purity in the flotation process will be improved.

(摩鉱工程)
加熱工程で得られた粗精鉱を破砕もしくは磨鉱に供することによって、80%通過粒子径を30〜100μm程度に調製する。粗精鉱の粒度範囲をこのようにすることで、浮遊選鉱の際に銅濃度の高い精鉱とモリブデン濃度の高い精鉱との分離性を高めることができる。
(Milling process)
By subjecting the coarse concentrate obtained in the heating step to crushing or grinding, the 80% passing particle diameter is adjusted to about 30 to 100 μm. By setting the particle size range of the coarse concentrate in this way, it is possible to improve the separation between the concentrate having a high copper concentration and the concentrate having a high molybdenum concentration during the flotation.

(Cu濃縮工程)
次に、摩鉱工程で得られた粗精鉱を浮遊選鉱に供する。この浮遊選鉱では通常の銅鉱山で採用されている工程が適用される。すなわち捕集剤を100〜200g/t添加し、pH10.0〜12.5で槽液に空気を吹き込む。浮遊選鉱においては、銅濃度の高い精鉱が優先して浮遊し、その後にモリブデン濃度の高い精鉱が浮遊する。そこで、浮遊選鉱の過程の前段のフロス(第1浮選精鉱)を回収することによって、銅濃度の高い精鉱(銅精鉱)を回収することができる。銅精鉱は、銅製錬工程に供される。
(Cu concentration process)
Next, the crude concentrate obtained in the milling process is subjected to flotation. In this flotation process, a process adopted in a normal copper mine is applied. That is, 100 to 200 g / t of a collecting agent is added, and air is blown into the bath liquid at pH 10.0 to 12.5. In flotation, the concentrate with high copper concentration floats preferentially, and then the concentrate with high molybdenum concentration floats. Then, the concentrate (copper concentrate) with high copper concentration can be collect | recovered by collect | recovering the floss (1st flotation concentrate) of the front | former stage of the process of flotation. Copper concentrate is subjected to a copper smelting process.

(Mo濃縮工程)
浮遊選鉱の過程の後段のフロス(第2浮選精鉱)を回収することによって、モリブデン濃度の高い精鉱(モリブデン精鉱)を回収することができる。それにより、粗精鉱を、銅精鉱とモリブデン精鉱とに分離することができる。なお、第1浮選精鉱を回収した後の槽液(尾鉱スラリー)に捕収剤を100g/t以上再添加し、槽液のpHを10.0〜12.5として浮遊選鉱を継続することによって、モリブデン精鉱を効率よく回収することができる。このモリブデン精鉱を繰り返し浮遊選鉱に供することによって、銅などの不純物をさらに除去することができる。得られたモリブデン精鉱の銅品位が1重量%を超える場合には、さらに塩化鉄による加熱浸出等により銅分を選択的に浸出することもできる。得られたモリブデン精鉱は、脱水・乾燥に供され、モリブデン製錬工程に供される。
(Mo concentration process)
By recovering the floss (second flotation concentrate) in the latter stage of the flotation process, it is possible to recover the concentrate (molybdenum concentrate) having a high molybdenum concentration. Thereby, the crude concentrate can be separated into copper concentrate and molybdenum concentrate. In addition, 100 g / t or more of the collection agent is added again to the tank liquid (tailing slurry) after collecting the first flotation concentrate, and the flotation is continued with the tank liquid having a pH of 10.0 to 12.5. By doing so, the molybdenum concentrate can be efficiently recovered. By repeatedly subjecting this molybdenum concentrate to flotation, impurities such as copper can be further removed. When the copper grade of the obtained molybdenum concentrate exceeds 1% by weight, the copper content can be selectively leached by heat leaching with iron chloride or the like. The obtained molybdenum concentrate is subjected to dehydration and drying, and then subjected to a molybdenum smelting process.

本実施形態によれば、浮遊選鉱の過程の前段で回収された第1浮選精鉱と、浮遊選鉱の過程の後段で回収された第2浮選精鉱とを分離することによって、粗精鉱を、銅濃度の高い精鉱とモリブデン濃度の高い精鉱とに分離することができる。なお、前段のフロスを銅製錬に供し、後段のフロスをモリブデン製錬に供し、中間のフロスを再度、浮選に供することで、繰り返し処理されるスラリー量を減じることが可能となる。   According to the present embodiment, by separating the first flotation concentrate collected in the first stage of the flotation process and the second flotation concentrate collected in the second stage of the flotation process, The ore can be separated into a concentrate with a high copper concentration and a concentrate with a high molybdenum concentration. In addition, it becomes possible to reduce the amount of slurry repeatedly processed by using the first-stage floss for copper smelting, the second-stage floss for molybdenum smelting, and the intermediate floss again for flotation.

以下、実施例によりさらに具体的な説明を行う。本発明はこれら実施例に限定されるものではない。   Hereinafter, a more specific description will be given with reference to examples. The present invention is not limited to these examples.

(実施例)
輝水鉛鉱を随伴する黄銅鉱の粗選鉱(Cu品位:11.8重量%、Mo品位:0.26%、Fe品位:21.4重量%、硫黄品位:24.4重量%、80%通過粒子径:178μm)に対し、単体硫黄を粗選鉱銅量の1.0倍重量添加し、Nガス雰囲気中において400℃で60分間加熱工程を施した。加熱工程後の粗精鉱(Cu品位:10.9重量%、Mo品位:0.22%、Fe品位:20.5重量%、硫黄品位:28.7重量%、80%通過粒子径:187μm)は、図2、図3のXRD(理学電機製Rint−2200)による解析結果のように、黄銅鉱が銅藍と黄鉄鉱とに鉱物変換していることがわかる。なお、図2は、粗選鉱のXRD解析結果を表し、図3は、粗選鉱の加熱処理後の解析結果を表す。
(Example)
Rough beading of chalcopyrite accompanied by molybdenite (Cu grade: 11.8 wt%, Mo grade: 0.26%, Fe grade: 21.4 wt%, sulfur grade: 24.4 wt%, passing 80% With respect to the particle diameter: 178 μm), simple sulfur was added by 1.0 times the weight of the coarsely processed copper, and a heating process was performed at 400 ° C. for 60 minutes in an N 2 gas atmosphere. Crude concentrate after heating process (Cu grade: 10.9 wt%, Mo grade: 0.22%, Fe grade: 20.5 wt%, sulfur grade: 28.7 wt%, 80% passing particle size: 187 μm ) Shows that the pyrite has been converted into copper indigo and pyrite as shown in the analysis results by XRD (Rint-2200, manufactured by Rigaku Corporation) in FIGS. 2 represents the XRD analysis result of the coarse beneficiation, and FIG. 3 represents the analysis result after the heat treatment of the coarse beneficiation.

次に、加熱工程で得られた粗精鉱に対して湿式ボールミルで摩鉱することによって80%通過粒子径を53μmとした後に、浮遊選鉱処理を実施した。浮選機としてファーレンワルド浮選機を用いた。また、浮選試薬は、捕収剤としてイソプロピルザンセート(IPX)、起泡剤としてメチルイソブチルカルビノール(MIBC)、及びpH調整剤として消石灰を用いた。   Next, the coarse concentrate obtained in the heating step was milled with a wet ball mill so that the 80% passing particle diameter was 53 μm, and then a flotation process was performed. A Fahrenwald flotation machine was used as the flotation machine. The flotation reagent used was isopropyl xanthate (IPX) as a collection agent, methyl isobutyl carbinol (MIBC) as a foaming agent, and slaked lime as a pH adjuster.

上記浮遊選鉱処理の手順を以下に記す。消石灰を用いて、摩鉱したスラリーのpHを12.0に調整し、IPXを粗精鉱に対し100g/t添加後、3minコンディショニングを行った。コンディショニング後、MIBCを50g/t添加し、スラリー内にエアを導入した。スラリー上部にフロス層が形成され、これを回収した。フロスは回収時間ごとに分割して10min間回収した。回収後、IPXを50g/t、MIBCを20g/t再添加し、10min間フロスを回収した。回収後、IPXを100g/t、MIBC20g/t再添加し、10min間フロスを回収した。回収したフロス、浮選セル内に残ったスラリーを濾過・乾燥し、秤量及び元素分析を行った。元素分析では、過酸化ナトリウムと炭酸ナトリウムと共に溶融処理した後に溶出し、適当に希釈してICP−AES(セイコーインストゥルメンタル社製HVR1700)により濃度を測定して含有量を決定した。   The procedure of the above flotation process is described below. Using slaked lime, the pH of the milled slurry was adjusted to 12.0, and 100 g / t of IPX was added to the crude concentrate, followed by conditioning for 3 min. After conditioning, 50 g / t of MIBC was added and air was introduced into the slurry. A froth layer was formed on the top of the slurry, and this was recovered. Floss was divided for every collection time and collected for 10 minutes. After recovery, IPX was added again at 50 g / t, and MIBC was added again at 20 g / t, and floss was recovered for 10 minutes. After recovery, IPX was added again at 100 g / t and MIBC at 20 g / t, and the floss was recovered for 10 minutes. The recovered floss and the slurry remaining in the flotation cell were filtered and dried, and weighed and subjected to elemental analysis. In elemental analysis, it was eluted after being melted together with sodium peroxide and sodium carbonate, diluted appropriately, and the concentration was measured with ICP-AES (Seiko Instrumental HVR1700) to determine the content.

(比較例)
比較例では、輝水鉛鉱を随伴する黄銅鉱の粗選鉱(Cu品位:10.1重量%、Mo品位:0.24%、Fe品位:18.9重量%、硫黄品位:20.9重量%、80%通過粒子径:173μm)を湿式ボールミルで摩鉱し、80%通過粒子径を50μmとした後に、浮遊選鉱処理を実施した。浮選機としてファーレンワルド浮選機を用いた。また、浮選試薬は起泡剤としてメチルイソブチルカルビノール(MIBC)、pH調整剤として消石灰を用いた。
(Comparative example)
In the comparative example, the coarse ore of chalcopyrite accompanied by hydropyrite (Cu grade: 10.1 wt%, Mo grade: 0.24%, Fe grade: 18.9 wt%, sulfur grade: 20.9 wt%) , 80% passing particle diameter: 173 μm) was milled with a wet ball mill to adjust the 80% passing particle diameter to 50 μm, and then the flotation process was carried out. A Fahrenwald flotation machine was used as the flotation machine. The flotation reagent used was methyl isobutyl carbinol (MIBC) as a foaming agent and slaked lime as a pH adjuster.

上記浮遊選鉱処理の手順を以下に記す。消石灰を用いて、摩鉱したスラリーのpHを11.0に調整し、MIBCを粗精鉱に対し12g/t添加後、1minコンディショニングを行った。コンディショニング後、スラリー内にエアを導入した。スラリー上部にフロス層が形成され、これを回収した。フロスは回収時間ごとに分割して30min間回収した。回収したフロス、浮選セル内に残ったスラリーを濾過・乾燥し、秤量及び元素分析を行った。元素分析では、過酸化ナトリウムと炭酸ナトリウムと共に溶融処理した後に溶出し、適当に希釈してICP−AES(セイコーインストゥルメンタル社製HVR1700)により濃度を測定して含有量を決定した。   The procedure of the above flotation process is described below. Using slaked lime, the pH of the milled slurry was adjusted to 11.0, and 12 g / t of MIBC was added to the crude concentrate, followed by conditioning for 1 min. After conditioning, air was introduced into the slurry. A froth layer was formed on the top of the slurry, and this was recovered. Floss was divided for every collection time and collected for 30 minutes. The recovered floss and the slurry remaining in the flotation cell were filtered and dried, and weighed and subjected to elemental analysis. In elemental analysis, it was eluted after being melted together with sodium peroxide and sodium carbonate, diluted appropriately, and the concentration was measured with ICP-AES (Seiko Instrumental HVR1700) to determine the content.

図4は、実施例における浮選時間に対するCu採収率およびMo採収率を示す。図5は、比較例における浮選時間に対するCu採収率およびMo採収率を示す。また、表1に、実施例における浮選時間0〜10,10〜20,20〜30minの精鉱、最終尾鉱のCu品位、Mo品位、Cu採収率、およびMo採収率を示す。表2に、比較例における浮選時間0〜10,10〜20,20〜30minの精鉱、最終尾鉱のCu品位、Mo品位、Cu採収率、およびMo採収率を示す。

Figure 2015183217
Figure 2015183217
FIG. 4 shows Cu yield and Mo yield relative to flotation time in the examples. FIG. 5 shows the Cu yield and the Mo yield with respect to the flotation time in the comparative example. Table 1 shows concentrates of flotation times of 0 to 10, 10 to 20, and 20 to 30 minutes, Cu grades, Mo grades, Cu yields, and Mo yields of final tailings in Examples. Table 2 shows concentrates of flotation times 0 to 10, 10 to 20, and 20 to 30 min in comparative examples, Cu quality, Mo quality, Cu yield, and Mo yield of the final tailings.
Figure 2015183217
Figure 2015183217

比較例では、図5からも分かるように、浮選時間に対してCu採収率およびMo採収率は同程度であり。したがって、粗精鉱を、銅濃度の高い精鉱とモリブデン濃度の高い精鉱とに分離することができなかった。表2からもMo品位の高い精鉱(比較例0〜10min)はCu品位も高かった。   In the comparative example, as can be seen from FIG. 5, the Cu yield and the Mo yield are similar to the flotation time. Therefore, the crude concentrate could not be separated into a concentrate having a high copper concentration and a concentrate having a high molybdenum concentration. Also from Table 2, concentrates with high Mo grade (Comparative Examples 0 to 10 min) also had high Cu grade.

一方、実施例では、図4からも分かるように浮選時間0〜20min(捕収剤添加量100〜150g/t)においてはCu採収率が高くなったが、Mo採収率は低く、浮選時間20min〜30min(捕収剤100g/t再添加)においてMo採収率が高くなった。表1から浮選時間0〜20min(捕収剤添加量100〜150g/t)の精鉱ではMo品位の低い銅精鉱を回収できた。また、浮選時間20〜30min(捕収剤100g/t再添加)の精鉱ではMo品位が最も高くなり、かつ、Cu品位は5.8%と低かった。したがって、Cu品位の低いモリブデン精鉱を回収できた。黄銅鉱に硫黄を添加し加熱処理することで黄銅鉱は黄鉄鉱と銅藍に変換されるが、輝水鉛鉱は不活性雰囲気下で熱処理されることで鉱物表面組成、形状が変化し、輝水鉛鉱の浮遊性が変わり、浮遊選鉱工程における採収率、純度が改善されたものと考えられる。このモリブデン精鉱を再度浮遊選鉱し、銅など不純物を除去や輝水鉛鉱の濃縮をしてもよい。または、塩化鉄による加熱浸出等により銅分を選択的に浸出することもできる。   On the other hand, in the examples, as can be seen from FIG. 4, the Cu yield was high in the flotation time 0 to 20 min (collecting agent addition amount 100 to 150 g / t), but the Mo yield was low. The Mo yield was increased in the flotation time of 20 min to 30 min (re-addition of collection agent 100 g / t). From Table 1, copper concentrates with low Mo quality could be recovered in concentrates with a flotation time of 0 to 20 min (collecting agent addition amount of 100 to 150 g / t). Further, the concentrate with the flotation time of 20 to 30 min (re-addition of the collection agent 100 g / t) had the highest Mo grade and the Cu grade was as low as 5.8%. Therefore, molybdenum concentrate with low Cu quality could be recovered. By adding sulfur to chalcopyrite and heat treatment, chalcopyrite is converted to pyrite and copper indigo, but hydropyrite is heat-treated in an inert atmosphere and the mineral surface composition and shape change, leading to pyroxene lead. It is thought that the floating property of the ore changed and the yield and purity in the flotation process were improved. The molybdenum concentrate may be subjected to flotation again to remove impurities such as copper and concentrate the hydropyrite. Alternatively, copper can be selectively leached by heat leaching with iron chloride or the like.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (8)

モリブデンを含有する黄銅鉱粗鉱を粉砕・選別して得た粗選鉱を単体硫黄と混合して350℃〜450℃に加熱する加熱工程と、
前記加熱工程で得られた粗精鉱を破砕して浮遊選鉱を行い、前記浮遊選鉱の過程の前段で回収された第1浮選精鉱と、前記過程の後段で回収された第2浮選精鉱とを分離する分離工程と、を含むことを特徴とする分離方法。
A heating step in which a coarse bead obtained by pulverizing and selecting a chalcopyrite coarse ore containing molybdenum is mixed with simple sulfur and heated to 350 ° C. to 450 ° C .;
The coarse concentrate obtained in the heating step is crushed and subjected to flotation, and the first flotation concentrate recovered in the previous stage of the flotation process and the second flotation recovered in the latter stage of the process. And a separation step of separating the concentrate.
前記第1浮選精鉱を銅製錬工程に供し、
前記第2浮選精鉱をモリブデン製錬工程に供することを特徴とする請求項1記載の分離方法。
Subjecting the first flotation concentrate to a copper smelting process;
The separation method according to claim 1, wherein the second flotation concentrate is subjected to a molybdenum smelting step.
前記黄銅鉱粗鉱は、輝水鉛鉱を含むことを特徴とする請求項1または2記載の分離方法。   The separation method according to claim 1 or 2, wherein the chalcopyrite coarse ore contains pyrite. 前記黄銅鉱粗鉱は、黄鉄鉱、輝銅鉱、および銅藍のうち少なくとも1種を含んでいることを特徴とする請求項1〜3のいずれか一項に記載の分離方法。   The said chalcopyrite coarse ore contains at least 1 sort (s) among pyrite, a chalcopyrite, and copper indigo, The separation method as described in any one of Claims 1-3 characterized by the above-mentioned. 前記粗選鉱は、銅品位3〜15重量%で80%通過粒子径が100〜300μmであることを特徴とする請求項1〜4のいずれか一項に記載の分離方法。   The separation method according to any one of claims 1 to 4, wherein the coarse beneficiation has a copper grade of 3 to 15% by weight and an 80% passing particle size of 100 to 300 µm. 前記加熱工程において、前記粗選鉱中の銅分に対して1.0重量倍〜2.0重量倍の単体硫黄を添加することを特徴とする請求項1〜5のいずれか一項に記載の分離方法。   The said heating process WHEREIN: 1.0 weight times-2.0 weight times single-piece | unit sulfur are added with respect to the copper content in the said rough beneficiation, The 1 item | term as described in any one of Claims 1-5 characterized by the above-mentioned. Separation method. 前記分離工程において、前記粗精鉱を、80%通過粒子径が30〜100μmになるまで破砕してから前記浮遊選鉱を行うことを特徴とする請求項1〜6のいずれか一項に記載の分離方法。   The said separation process WHEREIN: After crushing the said rough concentrate until an 80% passage particle diameter becomes 30-100 micrometers, the said flotation is performed, It is characterized by the above-mentioned. Separation method. 前記分離工程において、前記第1浮遊精鉱を回収した後に、浮遊選鉱槽に捕収材を100g/t以上添加し、槽液のpHを10.0〜12.5に調整した後に、フロスを前記第2浮選精鉱として回収することを特徴とする請求項1〜7のいずれか一項に記載の分離方法。   In the separation step, after recovering the first floating concentrate, the collection material is added to the floating beneficiation tank in an amount of 100 g / t or more, and the pH of the tank liquid is adjusted to 10.0 to 12.5. It collect | recovers as said 2nd flotation concentrate, The separation method as described in any one of Claims 1-7 characterized by the above-mentioned.
JP2014059497A 2014-03-24 2014-03-24 separation method Pending JP2015183217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014059497A JP2015183217A (en) 2014-03-24 2014-03-24 separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059497A JP2015183217A (en) 2014-03-24 2014-03-24 separation method

Publications (1)

Publication Number Publication Date
JP2015183217A true JP2015183217A (en) 2015-10-22

Family

ID=54350117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059497A Pending JP2015183217A (en) 2014-03-24 2014-03-24 separation method

Country Status (1)

Country Link
JP (1) JP2015183217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162509A (en) * 2017-03-27 2018-10-18 Jx金属株式会社 Molybdenum concentrate separation method
JP2020070460A (en) * 2018-10-30 2020-05-07 住友金属鉱山株式会社 Copper concentrate processing method
CN114392588A (en) * 2021-12-17 2022-04-26 金堆城钼业汝阳有限责任公司 Method for improving concentration of concentrated tailings by using inclined plate thickener

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162509A (en) * 2017-03-27 2018-10-18 Jx金属株式会社 Molybdenum concentrate separation method
JP2020070460A (en) * 2018-10-30 2020-05-07 住友金属鉱山株式会社 Copper concentrate processing method
JP7183506B2 (en) 2018-10-30 2022-12-06 住友金属鉱山株式会社 Copper concentrate processing method
CN114392588A (en) * 2021-12-17 2022-04-26 金堆城钼业汝阳有限责任公司 Method for improving concentration of concentrated tailings by using inclined plate thickener
CN114392588B (en) * 2021-12-17 2024-01-19 金堆城钼业汝阳有限责任公司 Method for improving concentration of tailings by using inclined plate thickener

Similar Documents

Publication Publication Date Title
Rashchi et al. Anglesite flotation: a study for lead recovery from zinc leach residue
Gül et al. Beneficiation of the gold bearing ore by gravity and flotation
JP4572703B2 (en) Separation of arsenic minerals from copper concentrate
Badri et al. Sulphidic refractory gold ore pre-treatment by selective and bulk flotation methods
JPS5952546A (en) Beneficiation of sulfide ore
CN104888940B (en) A kind of method for handling low-grade Cu-Pb zinc-iron multi-metal sulfide extraction valuable metal
JP5502006B2 (en) Copper concentrate processing method
JP2015183217A (en) separation method
JP5811010B2 (en) Method of beneficiation of ores containing fine minerals
JP5385235B2 (en) Copper concentrate processing method
JP2012201920A (en) Method for treating copper concentrate
CN111778406B (en) Comprehensive utilization method of zinc roasting oxidation waste residue
JP4112401B2 (en) Recovery method of sulfur from leaching residue by atmospheric pressure method
JP2013155426A (en) Method for treating copper concentrate
JP5497723B2 (en) Copper concentrate processing method
CA2648951A1 (en) Process for recovery of antimony and metal values from antimony- and metal value-bearing materials
US8931642B2 (en) Activated flotation circuit for processing combined oxide and sulfide ores
CA3161961C (en) Recovering metal from metal-bearing material
Rabatho et al. Investigation of a flotation process with de-sliming and attrition to upgrade and recover Cu and Mo from a Cu-Mo flotation tailing
JP2012201922A (en) Method for treating copper concentrate
JP5888780B2 (en) Copper concentrate processing method
JP6157870B2 (en) How to get copper concentrate
JP5991232B2 (en) How to recover molybdenite
CN104772223A (en) Lindgrenite flotation agent and usage thereof
Mohanty et al. High intensity magnetic separation of iron ore slime and its limitations