JP5497723B2 - Copper concentrate processing method - Google Patents

Copper concentrate processing method Download PDF

Info

Publication number
JP5497723B2
JP5497723B2 JP2011232172A JP2011232172A JP5497723B2 JP 5497723 B2 JP5497723 B2 JP 5497723B2 JP 2011232172 A JP2011232172 A JP 2011232172A JP 2011232172 A JP2011232172 A JP 2011232172A JP 5497723 B2 JP5497723 B2 JP 5497723B2
Authority
JP
Japan
Prior art keywords
concentrate
copper
flotation
copper concentrate
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011232172A
Other languages
Japanese (ja)
Other versions
JP2013087358A (en
Inventor
健吾 關村
竜也 本村
裕史 千田
和浩 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011232172A priority Critical patent/JP5497723B2/en
Publication of JP2013087358A publication Critical patent/JP2013087358A/en
Application granted granted Critical
Publication of JP5497723B2 publication Critical patent/JP5497723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、銅精鉱の処理方法に関する。   The present invention relates to a method for treating copper concentrate.

銅鉱山で産出される銅鉱石は、主に硫化鉱である。硫化鉱を大別すると、輝銅鉱(CuS)、銅藍(CuS)などの鉱物を主体とした比較的高銅品位の二次硫化鉱と、黄銅鉱(CuFeS)を主体とする初生硫化鉱とに分けられる。近年、銅鉱山で採取される銅鉱石は、後者主体となっている。その結果、鉄などの不純物が増加し、銅品位は低下傾向にある。このことは、鉱山で銅製錬向けに生産する銅精鉱の銅品位の低下、鉄分の増加などの要因となる。 Copper ore produced in copper mines is mainly sulfide ore. Roughly categorizing sulfide ores, relatively high copper grade secondary sulfide ores, mainly composed of minerals such as chalcocite (Cu 2 S) and copper indigo (CuS), and the first generation mainly composed of chalcopyrite (CuFeS 2 ) Divided into sulfide ores. In recent years, copper ores collected at copper mines are mainly the latter. As a result, impurities such as iron increase and the copper quality tends to decrease. This causes factors such as a decrease in copper quality and an increase in iron content of copper concentrates produced for copper smelting in the mine.

一般に、銅精鉱の製錬を経て、銅分は製品電気銅として、鉄分はスラグとして回収される。近年の銅精鉱の低品位化は、銅製錬プロセスにおける製造コストの上昇を招く。さらに国内の銅製錬業においては、銅製錬で生じるスラグの需給悪化に見舞われ、採算の合わない輸出に向けられており、事業収益を圧迫している。今後さらに銅精鉱の銅品位低下が進めば、銅精鉱に含まれる鉄分が増加し、スラグによる事業収益の悪化が考えられる。   In general, through the smelting of copper concentrate, the copper content is recovered as product copper and the iron content is recovered as slag. The recent reduction in the quality of copper concentrate causes an increase in production costs in the copper smelting process. Furthermore, in the domestic copper smelting industry, the supply and demand of slag caused by copper smelting has suffered, and exports are unprofitable, putting pressure on business profits. If the copper grade of copper concentrate further declines in the future, the iron content in copper concentrate will increase and business profits may be deteriorated due to slag.

これらの問題を解決する一手段として、銅精鉱の予備処理法の応用がある。予備処理法とは、黄銅鉱(CuFeS)を主体とする銅精鉱粒子を硫黄(S)とともに所定の温度で反応させ、銅藍(CuS)と黄鉄鉱(FeS)とで構成される精鉱粒子に硫化変換する処理のことである。この硫化変換反応は、浸出が困難な黄銅鉱(CuFeS)を比較的浸出が容易な形態にするという意味で湿式製錬の前処理法として知られているが、予備処理から湿式製錬までのトータルコストの観点から現状普及していないプロセスである。 One means for solving these problems is the application of a copper concentrate pretreatment method. In the pretreatment method, copper concentrate particles mainly composed of chalcopyrite (CuFeS 2 ) are reacted with sulfur (S) at a predetermined temperature, and refined composed of copper indigo (CuS) and pyrite (FeS 2 ). It is a process of sulfidizing into mineral particles. This sulfidation conversion reaction is known as a pretreatment method for wet smelting in the sense that it forms chalcopyrite (CuFeS 2 ), which is difficult to be leached, in a relatively easy leaching form, but from pretreatment to hydrometallurgy. This is a process that is not widely used from the viewpoint of total cost.

上記問題を解決する他の手段として、硫黄による硫化変換反応後の銅藍(CuS)と黄鉄鉱(FeS)とを物理選別し、銅藍(CuS)主体の高銅品位精鉱として乾式製錬に供する方法がある(例えば、特許文献1参照)。特許文献1では、銅藍(CuS)と黄鉄鉱(FeS)との選別において、静電的方法、重力的方法、磁気的方法、風力的方法、粒径的方法、ハイドロサイクロン法、浮遊選鉱あるいはこれらの組み合わせにより行うことが開示されている。 As another means for solving the above-mentioned problems, the physical separation of copper indigo (CuS) and pyrite (FeS 2 ) after sulfur conversion reaction with sulfur, and dry smelting as a high copper grade concentrate mainly composed of copper indigo (CuS) (For example, refer to Patent Document 1). In Patent Document 1, in the selection of copper indigo (CuS) and pyrite (FeS 2 ), an electrostatic method, a gravitational method, a magnetic method, a wind method, a particle size method, a hydrocyclone method, a flotation process or It is disclosed to perform by these combinations.

国際公開第2008/074805号International Publication No. 2008/074805

しかしながら、特許文献1では、銅藍(CuS)と黄鉄鉱(FeS)とを選別する具体的な方法については記述されていない。また、選別後に除去される鉄分を濃縮した尾鉱へのCuロスについても言及されていない。 However, Patent Document 1 does not describe a specific method for selecting copper indigo (CuS) and pyrite (FeS 2 ). Further, there is no mention of Cu loss to tailings enriched with iron removed after sorting.

銅製錬所から発生する鉄分を濃縮したスラグのCu品位はおよそ0.6mass%〜0.8mass%であり、銅精鉱からスラグへのCuロスは1.5mass%程度である。銅精鉱からのCuロスは銅製錬所の収益を悪化するため、上記物理選別後に乾式製錬を行う方法において、物理選別におけるCuロスを上記のスラグへのCuロス以下に低減できることが好ましい。つまり、上記物理選別後に回収される鉄分を濃縮した尾鉱のCu品位およびCu回収率がスラグ以下であることが好ましい。   The Cu grade of slag enriched with iron generated from a copper smelter is about 0.6 mass% to 0.8 mass%, and the Cu loss from copper concentrate to slag is about 1.5 mass%. Since Cu loss from the copper concentrate deteriorates the profit of the copper smelter, in the method of performing dry smelting after the physical sorting, it is preferable that the Cu loss in the physical sorting can be reduced below the Cu loss to the slag. That is, it is preferable that the Cu grade and the Cu recovery rate of the tailings obtained by concentrating iron recovered after the physical sorting are not more than slag.

本発明は上記の課題に鑑み、Cuロスを抑制しつつ銅精鉱からFe濃縮尾鉱を効率良くかつ経済的に除去することができる銅精鉱の処理方法を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a copper concentrate treatment method that can efficiently and economically remove Fe-rich tailings from copper concentrate while suppressing Cu loss.

本発明に係る銅精鉱の処理方法は、黄銅鉱(CuFeS)を含む銅精鉱に対し、硫黄を、前記銅精鉱中の銅に対して1.0から1.2のモル比で添加し、前記銅精鉱を硫化する硫化変換工程と、前記硫化変換工程によって得られる硫化変換粒子を、50%粒子径が15μm〜50μmになるように摩鉱する摩鉱工程と、前記摩鉱工程によって得られる摩鉱粒子に対して浮遊選鉱処理することによって、Cu品位の高い浮選精鉱とCu品位の低い浮選尾鉱とに分離する分離工程と、を含むことを特徴とする。本発明に係る銅精鉱の処理方法によれば、Cuロスを抑制しつつ銅精鉱からFe濃縮尾鉱を効率良くかつ経済的に除去することができる。 Method of processing copper concentrate according to the present invention, to copper concentrate containing chalcopyrite (CuFeS 2), sulfur, in a molar ratio of 1.0 to 1.2 relative to the copper of the copper concentrate in It was added, and the sulfide conversion process for sulfurizing the copper concentrates, sulphide conversion particles obtained by the sulfurization conversion step, and McCaw step of the 50% particle diameter is McCaw to be 15Myuemu~50myuemu, the milling ore It is characterized by including a separation step of separating the fine particles obtained by the process into a flotation concentrate having a high Cu grade and a flotation tailing having a low Cu grade by performing a flotation process. According to the copper concentrate processing method of the present invention, it is possible to efficiently and economically remove the Fe-concentrated tailings from the copper concentrate while suppressing Cu loss.

前記硫化変換工程は、300℃〜450℃で行ってもよい。前記摩鉱工程において、湿式粉砕装置または乾式粉砕装置を用いてもよい。前記浮遊選鉱処理において、捕収剤としてザンセート系捕収剤を用いてもよい。前記浮遊選鉱処理において、浮遊選鉱処理の対象とする精鉱に対し、捕収剤添加量を100〜2000ppmの範囲としてもよい。   The sulfidation conversion step may be performed at 300 ° C to 450 ° C. In the grinding process, a wet pulverizer or a dry pulverizer may be used. In the flotation process, a xanthate collection agent may be used as a collection agent. In the flotation process, the collection agent addition amount may be in the range of 100 to 2000 ppm with respect to the concentrate to be subjected to the flotation process.

前記浮遊選鉱処理において、浮遊選鉱処理に供する精鉱を含む溶液のpHを9〜13の範囲に維持してもよい。前記浮遊選鉱処理において、起泡剤としてメチルイソブチルカルビノールまたはパイン油を用いてもよい。前記浮遊選鉱処理において、空気供給式浮選機、空気吸込式浮選機、機械攪拌式浮選機、あるいはこれらを組み合わせて用いてもよい。前記分離工程において得られた前記Cu品位の高い浮遊精鉱に対して、再度浮遊選鉱処理を施してもよい。   In the said flotation process, you may maintain the pH of the solution containing the concentrate used for a flotation process in the range of 9-13. In the flotation process, methyl isobutyl carbinol or pine oil may be used as a foaming agent. In the flotation process, an air supply type flotation machine, an air suction type flotation machine, a mechanical stirring type flotation machine, or a combination thereof may be used. Flotation treatment may be performed again on the high-quality floating concentrate obtained in the separation step.

本発明によれば、Cuロスを抑制しつつ銅精鉱からFe濃縮尾鉱を効率良くかつ経済的に除去することができる銅精鉱の処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the processing method of the copper concentrate which can remove an Fe concentration tailing from copper concentrate efficiently and economically can be provided, suppressing Cu loss.

本実施形態に係る銅精鉱の処理方法の一例を示す工程図である。It is process drawing which shows an example of the processing method of the copper concentrate which concerns on this embodiment. EPMAで同定した銅藍(CuS)および黄鉄鉱(FeS)のマッピングにより得られた硫化変換粒子である。It is a sulfide conversion particle obtained by mapping of copper indigo (CuS) and pyrite (FeS 2 ) identified by EPMA. 硫化変換工程前の銅精鉱のXRD解析結果である。It is an XRD analysis result of the copper concentrate before a sulfidation conversion process. 硫化変換工程後の変換粒子のXRD解析結果である。It is a XRD analysis result of the conversion particle | grains after a sulfidation conversion process. 摩鉱工程ボールミル5min後の摩鉱粒子の粒度分布測定結果である。It is a particle size distribution measurement result of the grinding particle after grinding process ball mill 5min. 摩鉱工程ボールミル15min後の摩鉱粒子の粒度分布測定結果である。It is a particle size distribution measurement result of the grinding particle after grinding process ball mill 15min. 摩鉱工程ボールミル30min後の摩鉱粒子の粒度分布測定結果である。It is a particle size distribution measurement result of the grinding particle after grinding process ball mill 30min. 摩鉱工程ボールミル60min後の摩鉱粒子の粒度分布測定結果である。It is a particle size distribution measurement result of the grinding particle after the grinding process ball mill 60min. 摩鉱工程ボールミル90min後の摩鉱粒子の粒度分布測定結果である。It is a particle size distribution measurement result of the grinding particle after the grinding process ball mill 90min. 浮遊選鉱工程における浮選精鉱Cu品位とCu回収率の結果である。It is a result of the flotation concentrate Cu quality and Cu recovery rate in a flotation process.

以下、本発明を実施するための実施形態について説明する。   Hereinafter, an embodiment for carrying out the present invention will be described.

(実施形態)
本実施形態は、硫化変換した銅精鉱粒子を摩鉱し浮遊選鉱処理を施すことにより、Cuロスを抑制しつつFe濃縮尾鉱を除去することによって、銅精鉱に含まれる鉄量を低減し、スラグの発生量減少による事業採算の改善などを可能とするプロセスを供するものである。
(Embodiment)
This embodiment reduces the amount of iron contained in the copper concentrate by removing the Fe-concentrated tailings while suppressing Cu loss by milling the copper concentrate particles that have undergone sulfidation conversion and subjecting them to a flotation process. In addition, it provides a process that can improve the profitability of the business by reducing the amount of slag generated.

本実施形態に係る対象処理物は、一般に乾式銅製錬に供する銅精鉱であり、黄銅鉱(CuFeS)を含む銅精鉱であり、銅精鉱にわずかでも黄銅鉱(CuFeS)が存在すればよい。黄銅鉱(CuFeS)の存在を確認するには、銅精鉱をサンプリングした後、XRDにより分析して確認してもよい。また、黄銅鉱(CuFeS)を含む銅精鉱の品位の一例として、銅を20mass%から34mass%、鉄を20mass%から35mass%含有する。このような銅精鉱は、鉄を多く含むため、製錬工程において、多量のスラグ発生をもたらす。 The target processed product according to the present embodiment is a copper concentrate generally used for dry copper smelting, and is a copper concentrate containing chalcopyrite (CuFeS 2 ), and even a slight amount of chalcopyrite (CuFeS 2 ) is present in the copper concentrate. do it. In order to confirm the presence of chalcopyrite (CuFeS 2 ), the copper concentrate may be sampled and then analyzed by XRD. Moreover, as an example of the quality of the copper concentrate containing chalcopyrite (CuFeS 2 ), copper is contained in an amount of 20 mass% to 34 mass%, and iron is contained in an amount of 20 mass% to 35 mass%. Since such a copper concentrate contains a lot of iron, a large amount of slag is generated in the smelting process.

図1は、本実施形態に係る銅精鉱の処理方法の一例を示す工程図である。図1を参照して、まず、銅精鉱に対して、硫化変換工程を実施する。例えば、銅精鉱中の銅(Cu)に対して、硫黄(S)を1.0から1.2のモル比で添加する。硫黄は、一例として、単体硫黄の状態で添加し、よく混合する。混合した処理物に対して、不活性雰囲気において、所定の温度および所定の時間で熱処理を施す。この熱処理は、例えば、ロータリキルンなどを用いて行うことができる。例えば、不活性雰囲気として、窒素ガスを用いることができる。また、熱処理時間を30分〜60分とすることが好ましい。未反応黄銅鉱(CuFeS)の残存量を低下させることができるからである。 FIG. 1 is a process diagram showing an example of a copper concentrate processing method according to this embodiment. With reference to FIG. 1, first, a sulfidation conversion step is performed on copper concentrate. For example, sulfur (S) is added at a molar ratio of 1.0 to 1.2 with respect to copper (Cu) in the copper concentrate. As an example, sulfur is added in the form of elemental sulfur and mixed well. The mixed processed material is subjected to heat treatment at a predetermined temperature and a predetermined time in an inert atmosphere. This heat treatment can be performed using, for example, a rotary kiln. For example, nitrogen gas can be used as the inert atmosphere. Moreover, it is preferable that heat processing time shall be 30 minutes-60 minutes. This is because the remaining amount of unreacted chalcopyrite (CuFeS 2 ) can be reduced.

硫化変換工程における熱処理温度は、300℃〜450℃であることが好ましい。例えば300℃未満の275℃で硫化変換工程を実施した場合、硫化変換工程前の銅精鉱に含まれる化合物である黄銅鉱(CuFeS)の残存量が多くなるため、銅藍(CuS)と黄鉄鉱(FeS)としてCuとFeとを分離する本プロセスにそぐわない。また、450℃を上回る温度で処理した場合、銅藍(CuS)の状態が不安定となり、ハン銅鉱(CuFeS)などが生成することによって、CuとFeとの分離が困難となるおそれがある。したがって、熱処理温度は、300℃〜450℃であることが好ましい。また、銅藍(CuS)と黄鉄鉱(FeS)との分離の観点からすれば、当該熱処理温度は、400℃〜450℃であることがより好ましい。 It is preferable that the heat processing temperature in a sulfidation conversion process is 300 to 450 degreeC. For example, when the sulfide conversion step is performed at 275 ° C. below 300 ° C., the remaining amount of chalcopyrite (CuFeS 2 ), which is a compound contained in the copper concentrate before the sulfide conversion step, increases, so It is not suitable for this process of separating Cu and Fe as pyrite (FeS 2 ). Also, when treated at temperatures above 450 ° C., unstable state of covellite (CuS), a possibility that by including Han ore (Cu 5 FeS 4) is produced, it is difficult to separate the Cu and Fe There is. Therefore, the heat treatment temperature is preferably 300 ° C to 450 ° C. Moreover, from the viewpoint of separation of copper indigo (CuS) and pyrite (FeS 2 ), the heat treatment temperature is more preferably 400 ° C. to 450 ° C.

上記熱処理の結果、銅藍(CuS)と黄鉄鉱(FeS)とで構成される硫化変換粒子が得られる。この硫化変換粒子は、内殻として黄鉄鉱(FeS)が存在し、黄鉄鉱(FeS)を銅藍(CuS)が外殻として覆って構成されている。図2は、電子線マイクロアナライザ(EPMA)で同定した銅藍(CuS)および黄鉄鉱(FeS)のマッピングにより得られた硫化変換粒子である。図2を参照して、淡灰色の黄鉄鉱(FeS)を濃灰色の銅藍(CuS)が覆っている。 As a result of the heat treatment, sulfide conversion particles composed of copper indigo (CuS) and pyrite (FeS 2 ) are obtained. The sulfide conversion particles, pyrite (FeS 2) is present as an inner shell, pyrite and (FeS 2) covellite (CuS) is configured to cover a shell. FIG. 2 shows sulfide conversion particles obtained by mapping copper indigo (CuS) and pyrite (FeS 2 ) identified by an electron beam microanalyzer (EPMA). Referring to FIG. 2, light gray pyrite (FeS 2 ) is covered with dark gray copper indigo (CuS).

そこで、再度図1を参照して、硫化変換工程を経た硫化変換粒子に対して摩鉱工程を施す。摩鉱工程において、湿式粉砕装置または乾式粉砕装置を用いることができる。粉砕装置として、例えば、ボールミル、ジェットミル、アトリッションミル、チューブミルなどを用いることができ、種類は問わない。摩鉱工程の実施によって、硫化変化粒子を銅藍(CuS)と黄鉄鉱(FeS)とに分離することができる。 Therefore, referring to FIG. 1 again, a grinding process is performed on the sulfide conversion particles that have undergone the sulfide conversion process. In the milling process, a wet pulverizer or a dry pulverizer can be used. As a pulverizer, for example, a ball mill, a jet mill, an attrition mill, a tube mill, or the like can be used, and any kind can be used. By carrying out the milling process, the sulfide-change particles can be separated into copper indigo (CuS) and pyrite (FeS 2 ).

次に、摩鉱工程により得られた摩鉱粒子に対して浮遊選鉱処理を実施する(分離工程)。浮遊選鉱処理においては、空気供給式浮選機、空気吸込式浮選機、機械攪拌式浮選機、あるいはこれらの組み合わせを用いることができる。浮遊選鉱処理の実施によって、摩鉱粒子は、浮遊する浮選精鉱と沈降する浮選尾鉱とに分離する。捕収剤として銅藍(CuS)を優先的に捕収するブチルザンセート(BX)を用い、pH調整剤としてCa(OH)を用いることで、捕収剤によって銅藍(CuS)が優先的に捕収され、浮選精鉱には銅藍(CuS)が比較的多く含まれる。また、溶液のpHをアルカリ側にすることで黄鉄鉱(FeS)の浮遊を抑制し、浮選尾鉱には黄鉄鉱(FeS)が比較的多く含まれる。すなわち、浮選精鉱にはCu品位の高い鉱物が比較的多く含まれ、浮選尾鉱にはFe品位の高い鉱物が比較的多く含まれる。したがって、浮遊選鉱処理によってCu品位の高い浮選精鉱とCu品位の低い浮選尾鉱とを回収できる。 Next, the flotation process is performed on the milling particles obtained by the milling process (separation process). In the flotation process, an air supply type flotation machine, an air suction type flotation machine, a mechanical stirring type flotation machine, or a combination thereof can be used. By carrying out the flotation process, the grinding particles are separated into a flotation concentrate that floats and a flotation tailing that sinks. By using butyl xanthate (BX) that preferentially collects copper indigo (CuS) as a collector and Ca (OH) 2 as a pH adjuster, copper indigo (CuS) is given priority by the collector. The flotation concentrate contains a relatively large amount of copper indigo (CuS). Moreover, the floatation of pyrite (FeS 2 ) is suppressed by setting the pH of the solution to the alkali side, and the flotation tailings contain a relatively large amount of pyrite (FeS 2 ). That is, the flotation concentrate contains a relatively high amount of high-quality Cu minerals, and the flotation tailing contains a relatively high amount of high-quality Fe minerals. Therefore, the flotation concentrate with high Cu quality and the flotation tailing with low Cu quality can be recovered by the flotation process.

なお、浮遊選鉱処理におけるpH調整剤および捕収剤はこれに限られる訳ではない。捕収剤には、例えば、イソプロピルザンセート(IPX)やエチルザンセート(EX)などのザンセート系捕収剤を用いることもできる。ブチルザンセートの添加量は、特に限定されるものではないが、浮遊選鉱処理の対象となる精鉱1tに対して100g〜2000gであることが好ましい。pH調整剤は、例えば、NaOHを用いることもできる。また、浮遊選鉱処理の対象となる精鉱を含む溶液のpHは、特に限定されるものではないが、9〜13であることが好ましい。したがって、pH調整剤の添加量は、浮遊選鉱処理に供する溶液のpHを9〜13に維持するように決定されることが好ましい。また、浮遊選鉱処理における起泡剤は、特に限定されるものではない。起泡剤の一例として、メチルイソブチルカルビノール(MIBC)、パイン油などを用いることができる。   In addition, the pH adjuster and the collection agent in the flotation process are not limited to this. As the collection agent, for example, a xanthate collection agent such as isopropyl xanthate (IPX) or ethyl xanthate (EX) can be used. The amount of butyl xanthate added is not particularly limited, but is preferably 100 g to 2000 g with respect to 1 t of concentrate to be subjected to the flotation process. For example, NaOH may be used as the pH adjuster. Moreover, although the pH of the solution containing the concentrate used as the object of a flotation process is not specifically limited, It is preferable that it is 9-13. Therefore, it is preferable that the addition amount of the pH adjusting agent is determined so as to maintain the pH of the solution to be subjected to the flotation process at 9 to 13. Moreover, the foaming agent in the flotation process is not particularly limited. As an example of the foaming agent, methyl isobutyl carbinol (MIBC), pine oil, or the like can be used.

上記摩鉱と浮遊選鉱において硫化変換粒子中の銅藍(CuS)と黄鉄鉱(FeS)を選別する際には硫化変換粒子を摩鉱することによる両鉱物の単体分離が必要である。本発明者らが鋭意試験・調査した結果、銅藍(CuS)と黄鉄鉱(FeS)とが単体に分離する粒径は、摩鉱粒子の50%粒子径が10μm以下であることがわかった。しかし、浮遊選鉱処理において一般的に10μm以下の粒子は浮上性が悪化し、浮選精鉱のCu回収率が低下する。また、これに伴い浮選尾鉱へのCuロスは増大する。このことから浮選尾鉱へのCuロスを低減するために、単体分離が不十分であるが、硫化変換粒子を50%粒子径が15μm〜50μmになるように摩鉱することにより、浮遊選鉱処理における粒子の浮上性の悪化を防止し、Cu品位の低いFe濃縮浮選尾鉱を回収することでCuロスを低減できる。得られた浮選精鉱を銅製錬精鉱として用いることによって、銅精鉱からのCuロスが低く、スラグ発生量の少ない銅製錬を行うことができる。 When selecting copper indigo (CuS) and pyrite (FeS 2 ) in the sulfide conversion particles in the above-mentioned milling and flotation, it is necessary to separate both minerals by grinding the sulfide conversion particles. As a result of diligent tests and investigations by the present inventors, it was found that the particle size at which copper indigo blue (CuS) and pyrite (FeS 2 ) are separated into simple substances is 50% of the grinding particles is 10 μm or less. . However, in the flotation process, particles having a particle size of 10 μm or less generally have poor buoyancy, and the Cu recovery rate of the flotation concentrate is reduced. Moreover, Cu loss to a flotation tailing increases with this. From this, in order to reduce Cu loss to the flotation tailings, simple substance separation is inadequate, but by grinding the sulfide conversion particles so that the 50% particle diameter is 15 μm to 50 μm, Cu loss can be reduced by preventing the deterioration of the floatability of particles in the treatment and recovering the Fe enriched flotation tailings with low Cu quality. By using the obtained flotation concentrate as a copper smelting concentrate, the copper smelting with a low Cu loss from the copper concentrate and a small amount of slag generation can be performed.

浮遊選鉱処理の条件は、選別精鉱のCu品位、浮遊選鉱処理におけるCu回収率、処理コストなどに応じて、任意に変更可能である。また、浮選精鉱のCu品位のさらなる向上を狙う場合は、浮遊選鉱処理を多段にわたって実施すればよい。または一旦浮選精鉱と浮選尾鉱とに分けた後、浮選精鉱を必要な粒度まで再摩鉱して浮遊選鉱処理を再度実施すればよい。   The conditions of the flotation process can be arbitrarily changed according to the Cu quality of the selected concentrate, the Cu recovery rate in the flotation process, the processing cost, and the like. Moreover, what is necessary is just to implement a flotation process in multiple steps, when aiming at the further improvement of Cu quality of a flotation concentrate. Or after dividing into a flotation concentrate and a flotation tailing, the flotation concentrate may be re-milled to the required particle size and the flotation process may be performed again.

以下、上記実施形態に基づく実施例について説明する。   Examples based on the above embodiment will be described below.

硫化変換工程において、黄銅鉱(CuFeS)を含む銅精鉱(Cu品位=33mass%、Fe品位=24mass%、50%粒子径=58μm)と単体硫黄とをモル比で銅精鉱中Cu:S=1.0:1.2で混合し、窒素雰囲気中において425℃で60分間熱処理することで黄銅鉱(CuFeS)を銅藍(CuS)と黄鉄鉱(FeS)とに変換した。なお、図3のXRDによる分析結果により銅精鉱中に黄銅鉱(CuFeS)が存在することを確認した。図4のXRDによる分析結果の通り、硫化変換工程後によって得られた硫化変化粒子に銅藍(CuS)と黄鉄鉱(FeS)とが生成していることがわかる。図3の縦軸は強度(Counts)である。 In the sulfide conversion step, copper concentrate containing chalcopyrite (CuFeS 2 ) (Cu grade = 33 mass%, Fe grade = 24 mass%, 50% particle size = 58 μm) and elemental sulfur in a molar ratio Cu: The mixture was mixed at S = 1.0: 1.2 and heat-treated at 425 ° C. for 60 minutes in a nitrogen atmosphere to convert chalcopyrite (CuFeS 2 ) into copper indigo (CuS) and pyrite (FeS 2 ). In addition, the analysis result by XRD of FIG. 3 confirmed that chalcopyrite (CuFeS 2 ) was present in the copper concentrate. As can be seen from the analysis result by XRD in FIG. 4, copper indigo (CuS) and pyrite (FeS 2 ) are generated in the sulfide-changed particles obtained after the sulfide conversion step. The vertical axis in FIG. 3 represents intensity (Counts).

次に、硫化変換粒子(Cu品位=31mass%、Fe品位=21mass%)に対して、湿式ボールミルにより摩鉱時間を変化させて摩鉱し、浮遊選鉱処理を実施した。得られた浮選精鉱と浮選尾鉱の重量割合、Cu回収率、Cu品位、Fe回収率、およびFe品位を調査した。このときのボールミルの摩鉱時間は5,15,30,60,90minであり、図5,6,7,8,9にそれぞれの摩鉱粒子の粒度分布を示す。50%粒子径は、摩鉱時間5minから順に42、19、16,8,6μmである。50%粒子径42μmを実施例1とし、50%粒子径19μmを実施例2とし、50%粒子径16μmを実施例3とする。また、50%粒子径8μmを比較例1とし、50%粒子径6μmを比較例2とし、摩鉱しなかった場合を比較例3とする。   Next, the sulfide conversion particles (Cu quality = 31 mass%, Fe quality = 21 mass%) were milled by changing the grinding time with a wet ball mill, and the flotation process was carried out. The weight ratio, Cu recovery rate, Cu quality, Fe recovery rate, and Fe quality of the obtained flotation concentrate and flotation tailing were investigated. The grinding time of the ball mill at this time is 5, 15, 30, 60, and 90 min, and FIGS. 5, 6, 7, 8, and 9 show the particle size distribution of each grinding particle. The 50% particle size is 42, 19, 16, 8, 6 μm in order from the mining time of 5 min. A 50% particle diameter of 42 μm is taken as Example 1, a 50% particle diameter of 19 μm is taken as Example 2, and a 50% particle diameter of 16 μm is taken as Example 3. Further, the 50% particle size of 8 μm is set as Comparative Example 1, the 50% particle size of 6 μm is set as Comparative Example 2, and the case where grinding is not performed is set as Comparative Example 3.

上記浮遊選鉱処理は、pH調整剤としてCa(OH)を用いてpH12.5に調整した溶液に150gの摩鉱精鉱と500ppmに相当する捕収剤ブチルザンセートとを添加し、30分間のコンディショニングをした後、上記溶液に起泡剤としてMIBCを20μl(マイクロリットル)添加し、アジテア型浮選機において気泡を発生させることによって実施した。処理開始後、気泡に付着して上昇する粒子を回収し浮選精鉱とした。その後、BXを100ppmずつ添加して、その都度浮選精鉱を回収し、最終的にBXを1000ppmまで添加した。表1は、BXを1000ppmまで添加した各摩鉱時間の浮選尾鉱の結果である。図10は、BXを500ppmから1000ppmまで添加した各BX添加量までの浮選精鉱のCu品位とCu回収率の結果である。

Figure 0005497723
In the above flotation process, 150 g of ore concentrate and a collector butyl xanthate corresponding to 500 ppm are added to a solution adjusted to pH 12.5 using Ca (OH) 2 as a pH adjuster, for 30 minutes. After conditioning, 20 μl (microliter) of MIBC as a foaming agent was added to the above solution, and air bubbles were generated in an agitaire type flotation machine. After the start of the treatment, the particles adhering to the bubbles and rising were collected and used as a flotation concentrate. Then, 100 ppm of BX was added, the flotation concentrate was collected each time, and finally BX was added to 1000 ppm. Table 1 shows the results of the flotation tailings at each grinding time when BX was added up to 1000 ppm. FIG. 10 shows the results of the Cu quality and the Cu recovery rate of the flotation concentrate up to each BX addition amount with BX added from 500 ppm to 1000 ppm.
Figure 0005497723

図10に示すように、どの摩鉱粒径でも、硫化変換粒子よりCu品位の高い浮選精鉱が回収された。また、摩鉱粒径を小さくすることで浮選精鉱のCu品位が向上する。これは摩鉱粒径が小さくなることで、単体分離している銅藍(CuS)が増加するためである。しかしながら、表1に示すように、摩鉱粒子の50%粒子径が15μm未満の条件では浮選尾鉱のCu品位が高く、銅製錬で発生するスラグより高くなった。また、摩鉱粒子の50%粒子径が15〜50μmの条件に比べ、浮選尾鉱のCu回収率も高くなった。摩鉱粒子の50%粒子径が15μm未満である場合、浮選尾鉱へのCuロスが大きくなることがわかる。一方、摩鉱粒子の50%粒子径が15〜50μmの浮選尾鉱はCu品位、Cu回収率ともに低く、Cu回収率は1%未満である。以上のことから、Cuロスを抑制しつつ銅精鉱からFe濃縮尾鉱を効率良くかつ経済的に除去することができることがわかる。   As shown in FIG. 10, the flotation concentrate with higher Cu quality than the sulfide conversion particles was recovered at any grinding particle size. In addition, the Cu grade of the flotation concentrate is improved by reducing the grinding particle size. This is because the copper particle (CuS) that is separated as a single substance increases as the grain size of the ore is reduced. However, as shown in Table 1, when the 50% particle size of the milling particles was less than 15 μm, the Cu grade of the flotation tailing was high and higher than the slag generated by copper smelting. In addition, the Cu recovery rate of the flotation tailings was higher than that in the condition where the 50% particle size of the milling particles was 15 to 50 μm. It can be seen that when the 50% particle size of the milling particles is less than 15 μm, the Cu loss to the flotation tailings increases. On the other hand, flotation tailings with 50% particle size of 15-50 μm of milling particles have low Cu quality and Cu recovery rate, and the Cu recovery rate is less than 1%. From the above, it can be seen that the Fe concentrated tailings can be efficiently and economically removed from the copper concentrate while suppressing Cu loss.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (9)

黄銅鉱(CuFeS)を含む銅精鉱に対し、硫黄を、前記銅精鉱中の銅に対して1.0から1.2のモル比で添加し、前記銅精鉱を硫化する硫化変換工程と、
前記硫化変換工程によって得られる硫化変換粒子を、50%粒子径が15μm〜50μmになるように摩鉱する摩鉱工程と、
前記摩鉱工程によって得られる摩鉱粒子に対して浮遊選鉱処理することによって、Cu品位の高い浮選精鉱とCu品位が低い浮選尾鉱とに分離する分離工程と、を含むことを特徴とする銅精鉱の処理方法。
Sulfur conversion in which sulfur is added to a copper concentrate containing chalcopyrite (CuFeS 2 ) in a molar ratio of 1.0 to 1.2 with respect to the copper in the copper concentrate, and the copper concentrate is sulfided. Process,
A grinding step of grinding the sulfide-converted particles obtained by the sulfide conversion step so that the 50% particle diameter is 15 μm to 50 μm;
A separation step of separating the fine particles obtained by the grinding step into a flotation concentrate having a high Cu grade and a flotation tailing having a low Cu grade by performing a flotation process. A processing method for copper concentrate.
前記硫化変換工程は、300℃〜450℃で行うことを特徴とする請求項1に記載の銅精鉱の処理方法。   The method for treating copper concentrate according to claim 1, wherein the sulfidation conversion step is performed at 300 ° C. to 450 ° C. 前記摩鉱工程において、湿式粉砕装置または乾式粉砕装置を用いることを特徴とする請求項1記載の銅精鉱の処理方法。   2. The copper concentrate processing method according to claim 1, wherein a wet pulverizer or a dry pulverizer is used in the grinding step. 前記浮遊選鉱処理において、捕収剤としてザンセート系捕収剤を用いることを特徴とする請求項1〜3のいずれかに記載の銅精鉱の処理方法。   The processing method of the copper concentrate in any one of Claims 1-3 using a xanthate type | system | group collection agent as a collection agent in the said floatation process. 前記浮遊選鉱処理において、浮遊選鉱処理の対象とする精鉱に対し、捕収剤添加量を100〜2000ppmの範囲とすることを特徴とする請求項1〜4のいずれかに記載の銅精鉱の処理方法。   The copper concentrate according to any one of claims 1 to 4, wherein in the flotation process, the amount of the collection agent added is in a range of 100 to 2000 ppm with respect to the concentrate to be subjected to the flotation process. Processing method. 前記浮遊選鉱処理において、浮遊選鉱処理に供する精鉱を含む溶液のpHを9〜13の範囲に維持することを特徴とする請求項1〜5のいずれかに記載の銅精鉱の処理方法。   In the said flotation process, the pH of the solution containing the concentrate used for a flotation process is maintained in the range of 9-13, The processing method of the copper concentrate in any one of Claims 1-5 characterized by the above-mentioned. 前記浮遊選鉱処理において、起泡剤としてメチルイソブチルカルビノールまたはパイン油を用いることを特徴とする請求項1〜6のいずれかに記載の銅精鉱の処理方法。   In the said flotation process, methyl isobutyl carbinol or a pine oil is used as a foaming agent, The processing method of the copper concentrate in any one of Claims 1-6 characterized by the above-mentioned. 前記浮遊選鉱処理において、空気供給式浮選機、空気吸込式浮選機、機械攪拌式浮選機、あるいはこれらを組み合わせて用いることを特徴とする請求項1〜7のいずれかに記載の銅精鉱の処理方法。   The copper according to any one of claims 1 to 7, wherein in the flotation process, an air supply type flotation machine, an air suction type flotation machine, a mechanical stirring type flotation machine, or a combination thereof is used. Concentrate processing method. 前記分離工程において得られた前記Cu品位の高い浮遊精鉱に対して、再度浮遊選鉱処理を施すことを特徴とする請求項1〜8のいずれかに記載の銅精鉱の処理方法。   The method for processing a copper concentrate according to any one of claims 1 to 8, wherein the floating concentrate having a high Cu quality obtained in the separation step is subjected to a flotation process again.
JP2011232172A 2011-10-21 2011-10-21 Copper concentrate processing method Active JP5497723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232172A JP5497723B2 (en) 2011-10-21 2011-10-21 Copper concentrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011232172A JP5497723B2 (en) 2011-10-21 2011-10-21 Copper concentrate processing method

Publications (2)

Publication Number Publication Date
JP2013087358A JP2013087358A (en) 2013-05-13
JP5497723B2 true JP5497723B2 (en) 2014-05-21

Family

ID=48531583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232172A Active JP5497723B2 (en) 2011-10-21 2011-10-21 Copper concentrate processing method

Country Status (1)

Country Link
JP (1) JP5497723B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391716B1 (en) 2013-11-20 2014-05-07 한국지질자원연구원 Method for producing copper concentrates from complex copper ore using leaching and cementation
KR101572861B1 (en) 2014-08-21 2015-12-01 한국세라믹기술원 A method of flotation for copper oxide ore using multi-collector
CN106000620B (en) * 2016-05-10 2018-06-01 中钢集团马鞍山矿山研究院有限公司 From sulfur-bearing, iron copper tailing in recycle high-ferrum sulfur ore concentrates beneficiation method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1121156A (en) * 1966-02-02 1968-07-24 Sherritt Gordon Mines Ltd Treatment of copper bearing complex sulphides
JPS4955501A (en) * 1972-10-03 1974-05-29
JPS5418204B2 (en) * 1973-09-06 1979-07-05
JPS6391158A (en) * 1986-10-03 1988-04-21 Sumitomo Metal Mining Co Ltd Flotation process for ore containing chalcocite and pyrite
JP3328950B2 (en) * 1992-03-11 2002-09-30 住友金属鉱山株式会社 Beneficiation method of complex sulfide ore
JP3178252B2 (en) * 1994-07-19 2001-06-18 三菱マテリアル株式会社 Metal recovery from fly ash
JP4112401B2 (en) * 2003-02-27 2008-07-02 日鉱金属株式会社 Recovery method of sulfur from leaching residue by atmospheric pressure method
WO2008074805A1 (en) * 2006-12-18 2008-06-26 Alexander Beckmann Method for obtaining copper and precious metals from copper-iron sulphide ores or ore concentrates
JP2010229542A (en) * 2009-03-04 2010-10-14 Sumitomo Metal Mining Co Ltd Method of separating pyrite from copper-containing material

Also Published As

Publication number Publication date
JP2013087358A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
Schlesinger et al. Extractive metallurgy of copper
JP5502006B2 (en) Copper concentrate processing method
Rashchi et al. Anglesite flotation: a study for lead recovery from zinc leach residue
EP2806975B1 (en) Enrichment of metal sulfide ores by oxidant assisted froth flotation
JP2013209719A (en) Method for treating copper concentrate
Ivanik Flotation extraction of elemental sulfur from gold-bearing cakes
JP2017202481A (en) Beneficiation method
JP5497723B2 (en) Copper concentrate processing method
CN104888940B (en) A kind of method for handling low-grade Cu-Pb zinc-iron multi-metal sulfide extraction valuable metal
JP7299592B2 (en) beneficiation method
JP2013155426A (en) Method for treating copper concentrate
JP2012201920A (en) Method for treating copper concentrate
JP5385235B2 (en) Copper concentrate processing method
JP5888780B2 (en) Copper concentrate processing method
JP2012201922A (en) Method for treating copper concentrate
WO2017110462A1 (en) Mineral dressing method
JP5641952B2 (en) Copper concentrate processing method
AU2004200260B2 (en) Method of Recovering Sulfur from Leaching Residue under Atmospheric Pressure
WO2007115377A1 (en) Process for recovery of antimony and metal values from antimony- and metal value-bearing materials
Aleksandrova et al. Some approaches to gold extraction from rebellious ores on the south of Russia’s Far East
JP6442636B1 (en) Beneficiation method
FI127045B (en) Foam control system and method during atmospheric leaching of metal sulphides using silicate
JP6157870B2 (en) How to get copper concentrate
JP5991232B2 (en) How to recover molybdenite
JP7438155B2 (en) Method for producing low arsenic copper concentrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140306

R150 Certificate of patent or registration of utility model

Ref document number: 5497723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250