JPS5952546A - Beneficiation of sulfide ore - Google Patents

Beneficiation of sulfide ore

Info

Publication number
JPS5952546A
JPS5952546A JP57162644A JP16264482A JPS5952546A JP S5952546 A JPS5952546 A JP S5952546A JP 57162644 A JP57162644 A JP 57162644A JP 16264482 A JP16264482 A JP 16264482A JP S5952546 A JPS5952546 A JP S5952546A
Authority
JP
Japan
Prior art keywords
flotation
magnetic
bornite
ore
concentrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57162644A
Other languages
Japanese (ja)
Other versions
JPS6154461B2 (en
Inventor
Chiaki Izumikawa
泉川 千秋
Yoshikatsu Matsuda
松田 義勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP57162644A priority Critical patent/JPS5952546A/en
Publication of JPS5952546A publication Critical patent/JPS5952546A/en
Publication of JPS6154461B2 publication Critical patent/JPS6154461B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To separate and collect bornite certainly in high yield, by inserting a magnetic separation process into the benecification process of a sulfide ore. CONSTITUTION:A complicated sulfide ore is subjected to Cu/Pb flotation to transfer Cu and Pb to a flotation side while Zn and pyrite to a precipitation side. The Cu/Pb floated ore is further subjected to Cu-Pb separation flotation and Cu is separated to a flotation side while Pb to a precipitation side to obtain a copper concentrate and a lead concentrate. The Zn/pyrite precipitation ore is subjected to Zn flotation to obtain a zinc concentrate. In this process, magnetic separation is inserted into either one of stages, that is, a stage A prior to Cu/Pb flotation, a stage B prior to Cu-Pb separation flotation and a stage C during obtaining the lead concentrate, especially, the stage C. In the magnetic separation process, when pulp containing bornite is supplied to a wet high magnetic force magnetic separator under magnetic field intensity of 10,000-20,000 Gauss, bornite is adhered to a matrix and, therefore, the matrix is taken out of a magnetic field after treatment to be washed by water and a bornite ore particle can be separated and recovered in high purity.

Description

【発明の詳細な説明】 本発明は、硫化鉱物の選鉱法に係り、より詳しくは、従
来の浮選法による選鉱法では銅精鉱側に安定して高収率
で移行させることが困難であった斑銅鉱全確実かつ高収
率で分離採取できるようにシ、り硫化鉱物の選鉱法に関
する。
[Detailed Description of the Invention] The present invention relates to a beneficiation method for sulfide minerals, and more specifically, in the conventional beneficiation method using flotation, it is difficult to transfer them stably to the copper concentrate side at a high yield. This paper relates to a beneficiation method for sulfide minerals so that bornite can be isolated and extracted with complete reliability and high yield.

複雑硫化鉱物から銅精鉱、鉛精鉱、亜鉛精鉱、硫化鉄精
鉱等を得るVCは、その摩鉱を数段階η・の浮選り供し
て分別採取する選鉱法が採用されているが、従来の浮選
法では硫化鉱物中に存在する斑銅鉱(Bor’n1te
 Cu6FeS4 ) k銅精鉱n+++ E安定シテ
移行させること汀困難であった。すなわち、従来工り斑
銅鉱の粒子表面の性質を利用1.で、粒子表面に捕収剤
全吸着させて疎水性とじ1てあと浮選に供して他の鉱物
粒子力)ら分離回収する処決が採られていたが、斑銅鉱
に表面が非常に酸化されやすい性質があるので、摩鉱工
程および浮選工程を経るうちに酸化反応が進行して表面
性質が大きく変化し、その結果、浮選性も変動をきたし
、その実収率が低下すると共に品位にもバラノキを生ず
るのが通常であった。
VC, which obtains copper concentrate, lead concentrate, zinc concentrate, iron sulfide concentrate, etc. from complex sulfide minerals, uses a beneficiation method in which the milled ore is subjected to several stages of flotation and separated extraction. , the conventional flotation method removes bornite (bornite) present in sulfide minerals.
It was difficult to transfer Cu6FeS4)k copper concentrate n+++E stable material. That is, by utilizing the properties of the particle surface of conventionally produced bornite, 1. The solution used was to completely adsorb the scavenger on the particle surface, apply hydrophobic binding, and then subject it to flotation to separate and collect it from other mineral particles. During the grinding and flotation processes, the oxidation reaction progresses and the surface properties change significantly. As a result, the flotation properties change, resulting in a decrease in the actual yield and a decrease in quality. It was also common for rose trees to occur.

本発明はこの斑銅鉱に基づく硫化鉱物選鉱の問題の解決
を目的としてなされ72:ものである。この目的におい
て本発明者らに種々の試験を重ねた結果、一般的VCは
斑銅鉱は非磁性鉱物に分類されるものであるが、硫化鉱
物の浮選工程の前またげ後に適切な磁力選鉱工程を行な
うならば、斑銅鉱を十分に高純度で効率よく回収できる
ことがわかった。
The present invention was made with the aim of solving the problem of sulfide mineral beneficiation based on bornite. As a result of various tests carried out by the present inventors for this purpose, general VC shows that bornite is classified as a non-magnetic mineral, but suitable magnetic beneficiation is required before and after flotation of sulfide minerals. It was found that bornite can be efficiently recovered with sufficiently high purity if the process is carried out.

第1図は複雑硫化鉱物の代表的なフローシートを示すが
、硫化鉱物の摩鉱は、Cu、Pb浮選1/nよってOu
、Pb’z浮鉱側、Zn、パイライトラ沈鉱側に移行さ
せ、C!u、 Pb浮鉱[gらvc、cu−Pb分離浮
選Vc−よって(、uf浮鉱、Pb’z沈鉱側に分離し
て銅精鉱と鉛精鉱を得る。一方、C!u、Pb浮選のZ
n、パイライト沈鉱1dZn浮選vcよって亜鉛精鉱を
得る。このような従来の浮選Vcよると先述のようF斑
銅鉱に、Cu、 Pb浮選のさいに浮鉱側に浮ききれな
い部分が生じ沈鉱側に残る部分が生じ、またCu −P
b分離浮選でも浮鉱側に浮ききれない部分が生じる。従
って銅精鉱の回収率が低下すると共に、鉛精鉱やその他
の産物中に斑銅鉱が分布してその品位を悪くしてい罠。
Figure 1 shows a typical flow sheet for complex sulfide minerals.
, Pb'z is transferred to the floating ore side, Zn, Pyrite is transferred to the sinking ore side, and C! u, Pb floating ore [g et vc, cu-Pb separation flotation Vc-Thus (, uf floating ore, Pb'z separated into settled ore side to obtain copper concentrate and lead concentrate. On the other hand, C!u , Z of Pb flotation
n, pyrite precipitate 1d Zn flotation vc to obtain zinc concentrate. According to such conventional flotation Vc, as mentioned earlier, in F bornite, during Cu and Pb flotation, there are parts that cannot be floated on the floating ore side and parts that remain on the sinking ore side, and Cu-P
b Even with separate flotation, there will be a portion on the floating ore side that cannot be fully floated. Therefore, the recovery rate of copper concentrate decreases, and bornite is distributed in lead concentrate and other products, impairing their quality.

本発明はこのような硫化鉱物の浮選によって銅精鉱、鉛
精鉱、亜鉛精鉱を分離採取する選鉱法において、第1図
の(A)、(B)、(0)などの箇所、好1しくけ(C
)の箇所、て磁力選鉱を挿入し、斑銅鉱ケ分離回収する
こと全特徴とするものである。Cu、Pb浮選の前(第
1図のA)やCu −Pb分離浮選の前(第1図のB)
で本発明の磁選を実施する方が斑銅鉱の沈鉱側への移行
を初期の工程で防止する意味では有利であるが、処理量
が多くなる乞とから、実際vc Iri (0)の段階
で本発明に従う磁選を適用することが好ましく、この(
0)の段階での実施によっても実操業上11極めて大き
な効果が得られる。
The present invention provides a mineral beneficiation method in which copper concentrate, lead concentrate, and zinc concentrate are separated and collected by flotation of such sulfide minerals, and in which parts such as (A), (B), and (0) in FIG. Good first step (C
), magnetic ore beneficiation is inserted to separate and recover bornite ore. Before Cu, Pb flotation (A in Figure 1) or before Cu-Pb separation flotation (B in Figure 1)
Although it is more advantageous to carry out the magnetic separation of the present invention at the stage of vc Iri (0) in terms of preventing the transition of bornite to the sedimentation side in the initial process, the amount of processing increases. It is preferable to apply the magnetic selection according to the invention in this (
Implementation at stage 0) can also have extremely large effects in actual operation11.

この場合、Cu −Pb分離浮選の沈鉱f−7tん分級
(2(例えはサイクロン分級)、粗粒部と細粗部F分別
したあと粗粒部について実施するとよい。
In this case, it is preferable to carry out Cu-Pb separation flotation f-7t classification (2 (for example, cyclone classification), coarse grain part and fine coarse part F classification, and then carry out on the coarse grain part.

磁選の実施にあたっては、乾式またげ湿式いやれでもよ
いが、乾式の場合は粒度が細いと斑銅鉱と共に他の物質
も一諸に呼び込む事態も生ずるので、湿式法の方か有利
な面を有している。斑銅鉱を含有するバルブ全磁場強度
が10,000〜20.(JOOガウスのもとで湿式高
磁力磁選機に給鉱すると、斑銅鉱粒子にマトリツクスに
付着するが、万鉛鉱、閃亜鉛鉱、黄鉄鉱等の鉱物類に水
とともVC流れ落ちる現象がみられ、この処理後のマド
、リソクスを磁界外に出してこれを水洗すると斑銅鉱粒
子を高純度で効率よく分離回収することができる。この
場合、磁場強度の適切な調整を行なうことが重要で、本
発明者らの試験[、J:ると、i o、 o、o、、o
ガウス。
When carrying out magnetic separation, it is possible to use either a dry method or a wet method, but if the particle size is fine in the case of the dry method, there may be a situation where other substances are brought in along with bornite, so the wet method has an advantage. are doing. Bulbs containing bornite have a total magnetic field strength of 10,000 to 20. (When ore is fed to a wet high-magnetic magnetic separator under JOO Gauss, bornite particles adhere to the matrix, but minerals such as sphalerite, sphalerite, and pyrite have a phenomenon in which VC flows down with water. After this treatment, by taking the mud and litox out of the magnetic field and washing it with water, bornite particles can be efficiently separated and recovered with high purity.In this case, it is important to appropriately adjust the magnetic field strength. Our test [, J: and i o, o, o,, o
Gauss.

より低い磁場では斑銅鉱の分離効率1j10〜15係程
度と低いが、io、oooガウス以上とすると85係以
上の効率で斑銅鉱が回収されることがわかった。
At a lower magnetic field, the separation efficiency of bornite is as low as about 1j10 to 15 factors, but when it is set to io, ooo Gauss or higher, bornite is recovered with an efficiency of 85 factors or more.

捷1こ、この磁選工程げ一段で行なってもよいが二段壕
1ζは三段で行なってもよい。この多段で磁選する場合
に後段の方は前段よりも低い磁場で行なえばよい。
This magnetic selection process may be performed in one stage, but the two-stage trench 1ζ may be performed in three stages. In the case of this multi-stage magnetic selection, the latter stage may be performed with a lower magnetic field than the earlier stage.

この磁選工程によって得られた磁着物は斑銅鉱の品位が
高いのでこれはそのまま銅精鉱に使用でき、一方弁磁着
物は方鉛鉱、閃亜鉛鉱、黄鉄鉱その他の硫化鉱物など刀
・らなるので、第1図の(A)の場合ijC!u、Pb
浮選、(B)の場合i 0u−、Pb分離浮選に供し、
(C)の場合は鉛精鉱として回収される。
The magnetic material obtained by this magnetic separation process has a high quality bornite, so it can be used as it is for copper concentrate, while the magnetic material is made of galena, sphalerite, pyrite, and other sulfide minerals. Therefore, in the case of (A) in Figure 1, ijC! u, Pb
Flotation, in the case of (B) i 0u-, subjected to Pb separation flotation,
In case (C), it is recovered as lead concentrate.

このようにして本発明によると、斑銅鉱の表面酸化の状
態が変化しても、また元鉱品位に変動力Iあっても硫化
鉱物中の斑銅鉱を選鉱過程1cおいて方鉛鉱、閃亜鉛鉱
、黄鉄鉱等から選択的に採取でき、浮選法による複雑硫
化鉱物からの銅精鉱、鉛精鉱、亜鉛精鉱の採取にさいし
て、それぞれの品位を確実かつ簡易にして高めることが
できる。
In this way, according to the present invention, even if the surface oxidation state of bornite changes, or even if there is fluctuation I in the grade of the original ore, bornite in sulfide minerals is processed in the beneficiation process 1c to produce galena and sphalerite. It can be selectively extracted from zinc ore, pyrite, etc., and when extracting copper concentrate, lead concentrate, and zinc concentrate from complex sulfide minerals using the flotation method, it is possible to reliably and easily improve the quality of each. can.

実施例 1 第1表に示す品位のA鉱山選鉱場のCu −Pb分離浮
選沈鉱(Feed )をサイクロ/分級し、その粗粒部
1Cついて粒度をオールマイナス325メソ/ユに調整
したあとこれヲノ<ルプ濃度55係のノ々ルブとし、こ
れ全連続式磁選機である1リ一ズ電磁石E H1,、、
W型温式高磁力選鉱機(CF、10型)2台に磁場強度
20,000ガウスのもとて処理鉱量1.Ot/hrで
連続的に供給した。第1合口の磁選機で粗選精鉱(RC
りと粗選尾鉱(RT )を得、j[2合口の磁選機vc
げ粗選精鉱(RC)を供給して精選精鉱(CIC)と精
選尾鉱(OIT )を得罠。
Example 1 After cyclo/classifying the Cu-Pb separated flotation ore (Feed) from mine A ore processing plant with the grade shown in Table 1, and adjusting the particle size of the coarse grain part 1C to all minus 325 meso/yu. This is a nonorube with a concentration of 55, and this is a fully continuous magnetic separator with a single pulse electromagnet E H1,...
The amount of ore processed is 1.2 cm using two W-type hot-type high magnetic force separators (CF, 10 type) with a magnetic field strength of 20,000 Gauss. It was continuously supplied at Ot/hr. Roughly separated concentrate (RC
The coarse tailings (RT) were obtained, and the
By supplying coarse concentrate (RC), we can obtain refined concentrate (CIC) and refined tailings (OIT).

これらのRe1RT、 CIC,CITの品位と分布率
を第1表に総括して示した。第1表の結果から明らかな
ように、CIC中の銅品位に極めて高く、斑銅鉱の実質
止金てにこの精選精鉱として回収できたことがわかる。
The quality and distribution rate of these Re1RT, CIC, and CIT are summarized in Table 1. As is clear from the results in Table 1, the copper grade in the CIC was extremely high, and it was found that bornite could be recovered as a refined concentrate due to the fact that it was a substantial stopper.

一方、RT、  CITげPb、Zn品位が高く、脱亜
鉛浮選に供すれf’f鉛精鉄精鉱鉛精鉱、硫化鉄精鉱等
が、斑銅鉱が除去されている分だけ高品位で採取できる
ことになる。
On the other hand, RT, CIT, Pb, and Zn grades are high, and when subjected to dezincification flotation, lead concentrate, iron sulfide concentrate, etc. are of high grade due to the removal of bornite. It will be possible to collect it.

流側 2 2表に、示す品位のA鉱山選鉱場の銅−鉛分離沈鉱(マ
イ、ナス325メツンユ)全パルプ(a度秀で、−1’
lJニズ型電磁石式HIW型湿式高磁力機(L4型)v
c磁場強度20,000 カラス(7) %供給したと
、ころ、第1表に並記し1ζ品位の磁と非磁着物が得ら
れた。
Stream side 2 Table 2 shows the total pulp of copper-lead separated precipitate (mai, eggplant 325 metsuyu) from A mine processing plant with the grade shown (a degree, -1'
lJ Niz type electromagnetic type HIW type wet type high magnetic force machine (L4 type)v
When a magnetic field strength of 20,000 and 7% was supplied, magnetic and non-magnetized materials of 1ζ grade as listed in Table 1 were obtained.

実施例 3 第3表に示す品位のB鉱山選鉱物の銅−鉛分離浮選の沈
鉱(マイナス625メツシユ)を実施例2と同様の条件
で処理したところ、第3表に並記した品位の磁着物と非
磁着物が得られた。
Example 3 Copper-lead separation and flotation sedimentation (minus 625 mesh) of mine B concentrate having the grade shown in Table 3 was treated under the same conditions as Example 2, resulting in the grade shown in Table 3. Magnetic and non-magnetic materials were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硫化鉱物の浮選法による選鉱工程の代表例を示
すフローシートである。
FIG. 1 is a flow sheet showing a typical example of a mineral beneficiation process using a sulfide mineral flotation method.

Claims (3)

【特許請求の範囲】[Claims] (1)銅精鉱、鉛精鉱さらには亜鉛精鉱等を硫化鉱物の
浮選によって分離採取する選鉱過程において、浮選の前
筒たは後に磁選工程を挿入して斑銅鉱を磁着物として分
離採取することを特徴とする硫化鉱物の選鉱法。
(1) In the beneficiation process in which copper concentrate, lead concentrate, zinc concentrate, etc. are separated and extracted by flotation of sulfide minerals, a magnetic separation process is inserted before or after flotation to convert bornite into a magnetic substance. A beneficiation method for sulfide minerals characterized by separate collection.
(2)磁選工程に、Cu −Pb分離浮選後の沈鉱に対
して実施する特許請求の範囲第1項記載の選鉱法。
(2) The ore beneficiation method according to claim 1, wherein the magnetic separation step is performed on the settled ore after Cu-Pb separation and flotation.
(3)磁選工程に、磁場強度が10,000ガウス以上
の湿式高磁力磁選機によって行なう特許請求の範囲第1
項または第2項記載の選鉱法。
(3) The magnetic separation process is carried out using a wet high magnetic force magnetic separator with a magnetic field strength of 10,000 Gauss or more.
or the ore beneficiation method described in paragraph 2.
JP57162644A 1982-09-18 1982-09-18 Beneficiation of sulfide ore Granted JPS5952546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57162644A JPS5952546A (en) 1982-09-18 1982-09-18 Beneficiation of sulfide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57162644A JPS5952546A (en) 1982-09-18 1982-09-18 Beneficiation of sulfide ore

Publications (2)

Publication Number Publication Date
JPS5952546A true JPS5952546A (en) 1984-03-27
JPS6154461B2 JPS6154461B2 (en) 1986-11-22

Family

ID=15758533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57162644A Granted JPS5952546A (en) 1982-09-18 1982-09-18 Beneficiation of sulfide ore

Country Status (1)

Country Link
JP (1) JPS5952546A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074856A1 (en) * 1999-06-07 2000-12-14 Valtion Teknillinen Tutkimuskeskus Method for the preparation of nickel concentrate
CN101850295A (en) * 2010-05-06 2010-10-06 中钢集团马鞍山矿山研究院有限公司 Beneficiation method for producing high-quality iron ore concentrate by low-grade magnetic iron ore
CN101985111A (en) * 2010-11-10 2011-03-16 云南铜业(集团)有限公司 Copper-sulfur ore separation method
CN102744143A (en) * 2011-04-22 2012-10-24 北京华夏建龙矿业科技有限公司 Mineral processing technology combined with high-gradient high-intensity magnetic separation, re-grinding, re-separation and flotation
US20130068628A1 (en) * 2010-04-27 2013-03-21 China Shenhua Energy Company Limited Method for extracting gallium from fly ash
CN103100481A (en) * 2013-01-21 2013-05-15 湖南华洋铜业股份有限公司 Separation method for natural copper ore with high mud content
CN103433120A (en) * 2013-08-28 2013-12-11 武汉科技大学 Heavy-floating joint separation method for producing high-grade sulfur concentrate
CN104689913A (en) * 2015-02-27 2015-06-10 铜陵化工集团新桥矿业有限公司 Pyrite mixed recycling method for polycrystal system
JP2016502599A (en) * 2012-11-06 2016-01-28 ヴァーレ、ソシエダージ、アノニマVale S.A. Removal of uranium from copper concentrate by magnetic separation
CN105689147A (en) * 2016-03-07 2016-06-22 紫金矿业集团股份有限公司 Pollution-free flotation separation method for copper-lead-zinc polymetallic ore
CN106622675A (en) * 2016-10-29 2017-05-10 广西佛子矿业有限公司 Preparing method of novel copper and lead flotation separation inhibitor FY09
CN107398346A (en) * 2017-07-27 2017-11-28 四川会东大梁矿业有限公司 A kind of method that ore dressing is carried out from oxide ore or low-grade lead zinc ore crude
CN107520065A (en) * 2017-08-30 2017-12-29 厦门紫金矿冶技术有限公司 A kind of high sulfur type Cu-Pb seperation copper-lead Part-bulk flotation medicament and its method
CN107876214A (en) * 2017-11-13 2018-04-06 中国地质科学院郑州矿产综合利用研究所 Copper-containing magnetite ore sorting method
CN108176515A (en) * 2017-12-21 2018-06-19 南京银茂铅锌矿业有限公司 A kind of Pb-Zn deposits ore-dressing technique method for saving clean water
CN108745625A (en) * 2018-05-31 2018-11-06 铜陵有色金属集团股份有限公司 The method of substep recycling magnetic iron ore, monocline pyrrhotine, hexa-pyrrhotite and pyrite
CN109499749A (en) * 2019-01-11 2019-03-22 长春黄金研究院有限公司 One kind is containing flotation of gold and copper process in golden Copper Magnet mine
CN109628743A (en) * 2018-12-06 2019-04-16 贵州省新材料研究开发基地 A kind of zinc leaching residue leaches lead, silver-colored waste residue recycles copper method
CN110180673A (en) * 2019-07-03 2019-08-30 北京矿冶科技集团有限公司 A kind of complicated sulfuration mine beneficiation method containing marmatite
CN111495577A (en) * 2020-04-03 2020-08-07 北京矿冶科技集团有限公司 Lead-zinc sulfide ore dressing method for reducing backwater influence

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074856A1 (en) * 1999-06-07 2000-12-14 Valtion Teknillinen Tutkimuskeskus Method for the preparation of nickel concentrate
US20130068628A1 (en) * 2010-04-27 2013-03-21 China Shenhua Energy Company Limited Method for extracting gallium from fly ash
CN101850295A (en) * 2010-05-06 2010-10-06 中钢集团马鞍山矿山研究院有限公司 Beneficiation method for producing high-quality iron ore concentrate by low-grade magnetic iron ore
CN101985111A (en) * 2010-11-10 2011-03-16 云南铜业(集团)有限公司 Copper-sulfur ore separation method
CN102744143A (en) * 2011-04-22 2012-10-24 北京华夏建龙矿业科技有限公司 Mineral processing technology combined with high-gradient high-intensity magnetic separation, re-grinding, re-separation and flotation
JP2016502599A (en) * 2012-11-06 2016-01-28 ヴァーレ、ソシエダージ、アノニマVale S.A. Removal of uranium from copper concentrate by magnetic separation
CN103100481A (en) * 2013-01-21 2013-05-15 湖南华洋铜业股份有限公司 Separation method for natural copper ore with high mud content
CN103433120A (en) * 2013-08-28 2013-12-11 武汉科技大学 Heavy-floating joint separation method for producing high-grade sulfur concentrate
CN104689913A (en) * 2015-02-27 2015-06-10 铜陵化工集团新桥矿业有限公司 Pyrite mixed recycling method for polycrystal system
CN105689147A (en) * 2016-03-07 2016-06-22 紫金矿业集团股份有限公司 Pollution-free flotation separation method for copper-lead-zinc polymetallic ore
CN106622675A (en) * 2016-10-29 2017-05-10 广西佛子矿业有限公司 Preparing method of novel copper and lead flotation separation inhibitor FY09
CN107398346A (en) * 2017-07-27 2017-11-28 四川会东大梁矿业有限公司 A kind of method that ore dressing is carried out from oxide ore or low-grade lead zinc ore crude
CN107398346B (en) * 2017-07-27 2020-05-12 四川会东大梁矿业有限公司 Method for separating ore from oxidized ore or low-grade lead-zinc raw ore
CN107520065A (en) * 2017-08-30 2017-12-29 厦门紫金矿冶技术有限公司 A kind of high sulfur type Cu-Pb seperation copper-lead Part-bulk flotation medicament and its method
CN107520065B (en) * 2017-08-30 2019-08-16 厦门紫金矿冶技术有限公司 A kind of high sulfur type Cu-Pb seperation copper-lead Part-bulk flotation method
CN107876214A (en) * 2017-11-13 2018-04-06 中国地质科学院郑州矿产综合利用研究所 Copper-containing magnetite ore sorting method
CN107876214B (en) * 2017-11-13 2022-06-17 中国地质科学院郑州矿产综合利用研究所 Copper-containing magnetite ore sorting method
CN108176515A (en) * 2017-12-21 2018-06-19 南京银茂铅锌矿业有限公司 A kind of Pb-Zn deposits ore-dressing technique method for saving clean water
CN108745625A (en) * 2018-05-31 2018-11-06 铜陵有色金属集团股份有限公司 The method of substep recycling magnetic iron ore, monocline pyrrhotine, hexa-pyrrhotite and pyrite
CN109628743A (en) * 2018-12-06 2019-04-16 贵州省新材料研究开发基地 A kind of zinc leaching residue leaches lead, silver-colored waste residue recycles copper method
CN109499749A (en) * 2019-01-11 2019-03-22 长春黄金研究院有限公司 One kind is containing flotation of gold and copper process in golden Copper Magnet mine
CN110180673A (en) * 2019-07-03 2019-08-30 北京矿冶科技集团有限公司 A kind of complicated sulfuration mine beneficiation method containing marmatite
CN111495577A (en) * 2020-04-03 2020-08-07 北京矿冶科技集团有限公司 Lead-zinc sulfide ore dressing method for reducing backwater influence
CN111495577B (en) * 2020-04-03 2022-07-05 北京矿冶科技集团有限公司 Lead-zinc sulfide ore dressing method for reducing backwater influence

Also Published As

Publication number Publication date
JPS6154461B2 (en) 1986-11-22

Similar Documents

Publication Publication Date Title
JPS5952546A (en) Beneficiation of sulfide ore
US4192738A (en) Process for scavenging iron from tailings produced by flotation beneficiation and for increasing iron ore recovery
RU2403296C1 (en) Complex processing method of aged tails of benefication of tungsten-containing ores
CN108514949B (en) Recovery method of fine-grain ilmenite
US5285972A (en) Ore processing
CN110575904A (en) Spodumene grading-grade dual medium-flotation beneficiation method
CN104888940B (en) A kind of method for handling low-grade Cu-Pb zinc-iron multi-metal sulfide extraction valuable metal
US2668667A (en) Separation of coarse light minerals in multiple cyclone-separator stages
RU2310512C2 (en) Sulfide concentration process
CN114072235A (en) Method for concentrating an iron ore stream
US3098818A (en) Concentration apparatus and method
CN113953080B (en) Mineral separation method of mixed iron ore
US2558635A (en) Process for treating a magnetic iron ore
CN112871438B (en) Method for recovering ilmenite from iron ore dressing tailings
JP2015183217A (en) separation method
RU2100090C1 (en) Transfer line of concentration of rebellious gold-containing ores
RU2604279C1 (en) Method of processing sulphide oxidised copper ores with copper and silver extraction
RU2074031C1 (en) Method for processing of pyrite-containing tailings of wet magnetic separation of sulfide-black iron ores
CN113369019B (en) Method for improving recovery rate of valuable metal
RU2185451C2 (en) Line for reprocessing of metal-bearing raw material of gold-containing ores and sands
US4510049A (en) Process for recovery of colemanite and probertite from mixed low grade ore
US7389881B2 (en) Flotation
RU2268094C2 (en) Method of concentrating precious and rare-earth metals
RU2104797C1 (en) Method of separating brass slags
RU2067887C1 (en) Method of gold extraction from placer deposits