JP6155864B2 - Positive electrode structure of lithium air battery and positive electrode manufacturing method - Google Patents

Positive electrode structure of lithium air battery and positive electrode manufacturing method Download PDF

Info

Publication number
JP6155864B2
JP6155864B2 JP2013121211A JP2013121211A JP6155864B2 JP 6155864 B2 JP6155864 B2 JP 6155864B2 JP 2013121211 A JP2013121211 A JP 2013121211A JP 2013121211 A JP2013121211 A JP 2013121211A JP 6155864 B2 JP6155864 B2 JP 6155864B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
air
electrode current
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013121211A
Other languages
Japanese (ja)
Other versions
JP2014238985A (en
Inventor
泉 博章
博章 泉
カリール ラーマン
カリール ラーマン
良 小松
良 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2013121211A priority Critical patent/JP6155864B2/en
Priority to IN1342DE2014 priority patent/IN2014DE01342A/en
Priority to DE102014209784.3A priority patent/DE102014209784B4/en
Priority to CN201410250651.6A priority patent/CN104241731B/en
Publication of JP2014238985A publication Critical patent/JP2014238985A/en
Application granted granted Critical
Publication of JP6155864B2 publication Critical patent/JP6155864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、正極端子と、カーボンファイバを含有するシート状の空気極集電体とを有するリチウム空気電池の正極構造及び正極製造方法に関する。   The present invention relates to a positive electrode structure and a positive electrode manufacturing method of a lithium air battery having a positive electrode terminal and a sheet-like air electrode current collector containing a carbon fiber.

負極活物質にリチウム金属を、空気極(正極)活物質に空気中の酸素をそれぞれ用いるリチウム空気電池は、理論的にエネルギー密度が高く、例えば電気自動車の本格的な普及に必要とされるリチウムイオン電池を数倍上回るエネルギー密度が得られる電池として期待されている。   Lithium-air batteries that use lithium metal as the negative electrode active material and oxygen in the air as the air electrode (positive electrode) active material have a theoretically high energy density. For example, lithium required for full-scale popularization of electric vehicles It is expected as a battery that can obtain an energy density several times higher than that of an ion battery.

このリチウム空気電池は、水溶液系電解液を用いたリチウム空気電池と、非水系電解液を用いたリチウム空気電池とに大別される。研究開発の主流は、電池の構造が単純な非水系電解液のリチウム空気電池であるが、水溶液系電解液のリチウム空気電池が次の理由から検討されている。つまり、水溶液系電解液を用いたリチウム空気電池は、非水系電解液のリチウム空気電池に対して、より高い理論エネルギー密度をもつこと、電解液が安価で不燃性であること等の長所があるからである。特に、エネルギー密度が高い長所をより効果的に生かす電池セル構造として、ラミネート型セル構造のリチウム空気電池が提案されている。   This lithium-air battery is roughly classified into a lithium-air battery using an aqueous electrolyte and a lithium-air battery using a non-aqueous electrolyte. The mainstream of research and development is a non-aqueous electrolyte lithium-air battery with a simple battery structure, but an aqueous electrolyte-type lithium-air battery is being studied for the following reasons. In other words, lithium-air batteries using aqueous electrolytes have advantages such as higher theoretical energy density and non-flammable electrolytes than non-aqueous electrolyte lithium-air batteries. Because. In particular, a lithium-cell battery having a laminated cell structure has been proposed as a battery cell structure that takes advantage of the high energy density more effectively.

水溶液系電解液を用いたラミネート型セル構造のリチウム空気電池は、例えば非特許文献1及び特許文献1に開示されている。図8は、非特許文献1に記載のリチウム空気電池100であり、正極101、複合負極102及び電解液103を有して構成される。   Non-patent Document 1 and Patent Document 1 disclose, for example, a lithium-air battery having a laminated cell structure using an aqueous electrolyte. FIG. 8 shows a lithium-air battery 100 described in Non-Patent Document 1, which includes a positive electrode 101, a composite negative electrode 102, and an electrolytic solution 103.

複合負極102は、例えばリチウム金属製の負極104と、例えば銅製の負極端子105と、負極保護層106と、例えばガラスセラミックス製のLTAP板107とを有して構成される。また、正極101は、カーボンファイバを含有するシート状の例えばカーボンクロス製の空気極集電体108上に、白金、アルミニウムまたはニッケル製の金属メッシュ109が載置され、この金属メッシュ109に例えばアルミニウム製の正極端子110が接続されて構成される。   The composite negative electrode 102 includes a negative electrode 104 made of, for example, lithium metal, a negative electrode terminal 105 made of, for example, copper, a negative electrode protective layer 106, and an LTAP plate 107 made of, for example, glass ceramics. The positive electrode 101 has a metal mesh 109 made of platinum, aluminum, or nickel placed on a sheet-like air electrode current collector 108 made of carbon cloth, for example, made of carbon cloth. A positive electrode terminal 110 made of metal is connected.

上述の正極101と複合負極102間に電解液103が介在され、これらの正極101、複合負極102及び電解液103が、例えばアルミラミネートフィルムであるガスバリアフィルム111及び112により両側から袋状に包み込まれてリチウム空気電池100が構成される。ガスバリアフィルム111には、空気導入口となる開口113が形成されている。   The electrolyte solution 103 is interposed between the positive electrode 101 and the composite negative electrode 102, and the positive electrode 101, the composite negative electrode 102, and the electrolyte solution 103 are wrapped in a bag shape from both sides by gas barrier films 111 and 112, which are aluminum laminate films, for example. Thus, the lithium air battery 100 is configured. The gas barrier film 111 has an opening 113 serving as an air inlet.

また、特許文献1に記載のリチウム空気電池は、箱状容器内に負極、緩衝層、耐水層(ガラスセラミックス)、電解液、空気極(正極)、酸素透過体が順次配置されたものである。尚、この特許文献1には、正極の構造について何ら開示されていない。   The lithium-air battery described in Patent Document 1 has a negative electrode, a buffer layer, a water-resistant layer (glass ceramics), an electrolyte, an air electrode (positive electrode), and an oxygen permeable body sequentially arranged in a box-shaped container. . Note that Patent Document 1 does not disclose the structure of the positive electrode.

特開2010−192313号公報JP 2010-192313 A 株式会社ジーエス・ユアサ・コーポレーションのレポート「水溶液系リチウム/空気電池の現状と課題」(2010年6月)GS Yuasa Corporation Report “Current Status and Challenges of Aqueous Lithium / Air Battery” (June 2010)

非特許文献1に記載のリチウム空気電池100の正極101は、正極端子110が接続された金属メッシュ109が空気極集電体108に載置されて構成されるので、空気極集電体108と金属メッシュ109との密着性が不十分になって、リチウム空気電池100の電気伝導性が低下してしまう。   Since the positive electrode 101 of the lithium-air battery 100 described in Non-Patent Document 1 is configured by placing the metal mesh 109 connected to the positive electrode terminal 110 on the air electrode current collector 108, Adhesiveness with the metal mesh 109 becomes insufficient, and the electrical conductivity of the lithium-air battery 100 is lowered.

また、図9に示すように、空気極集電体108の周端部108Aとガスバリアフィルム111の開口113周縁との間に隙間114が形成されてしまうので、電解液103が上記隙間114から漏洩する恐れがある。   Further, as shown in FIG. 9, since a gap 114 is formed between the peripheral end portion 108 </ b> A of the air electrode current collector 108 and the periphery of the opening 113 of the gas barrier film 111, the electrolytic solution 103 leaks from the gap 114. There is a fear.

更に、水溶液系の電解液103は、電池反応により生成される水酸化リチウム等によって強アルカリ性になる。金属メッシュ109がアルミニウムやニッケルなどにより構成されると、強アルカリ性の電解液103によって腐食し、腐食生成物が空気極集電体108に付着することで、この空気極集電体108の電気抵抗が増大してしまう。このため、金属メッシュ109は、耐食性が高いが高価な白金が用いられることになり、この結果、リチウム空気電池100のコストが上昇してしまう。   Further, the aqueous electrolyte 103 becomes strongly alkaline due to lithium hydroxide or the like produced by the battery reaction. When the metal mesh 109 is made of aluminum, nickel, or the like, it is corroded by the strong alkaline electrolyte 103, and the corrosion product adheres to the air electrode current collector 108, so that the electric resistance of the air electrode current collector 108 is increased. Will increase. For this reason, the metal mesh 109 has high corrosion resistance, but expensive platinum is used. As a result, the cost of the lithium-air battery 100 increases.

また、図8に示すように、空気極集電体108を構成する例えばカーボンクロスなどが繊維状であることから、この空気極集電体108は剛性が低く、このため、複合負極102などの他部材との位置合せが容易でない。従って、空気極集電体108の位置決め精度が低くなり、リチウム空気電池100の組付性が低下してしまう。   Further, as shown in FIG. 8, for example, the carbon cloth or the like constituting the air electrode current collector 108 is in the form of a fiber, so that the air electrode current collector 108 has low rigidity. Alignment with other members is not easy. Therefore, the positioning accuracy of the air electrode current collector 108 is lowered, and the assembling property of the lithium air battery 100 is lowered.

本発明の目的は、上述の事情を考慮してなされたものであり、空気極集電体と正極端子との密着性を高めて電池の電気伝導性を向上できると共に、空気極集電体の周端部からの電解液の漏洩を防止できるリチウム空気電池の正極構造及び正極製造方法を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and can improve the electrical conductivity of the battery by improving the adhesion between the air electrode current collector and the positive electrode terminal. An object of the present invention is to provide a positive electrode structure for a lithium-air battery and a positive electrode manufacturing method capable of preventing leakage of an electrolyte from a peripheral end portion.

本発明に係るリチウム空気電池の正極構造は、リチウム空気電池が正極と複合負極と電解液とを有して構成され、前記正極が正極端子と、カーボンファイバを含有するシート状の空気極集電体と、を有するリチウム空気電池の正極構造であって、前記空気極集電体に前記正極端子が接触した状態で前記空気極集電体と前記正極端子とが熱可塑性樹脂により熱溶着されると共に、前記空気極集電体の周端部に前記熱可塑性樹脂が含浸されて構成されたことを特徴とするものである。 The positive electrode structure of the lithium air battery according to the present invention is configured such that the lithium air battery includes a positive electrode, a composite negative electrode, and an electrolyte solution, and the positive electrode is a positive electrode terminal and a sheet-like air electrode current collector containing carbon fiber. A positive electrode structure of a lithium air battery, wherein the air electrode current collector and the positive electrode terminal are thermally welded by a thermoplastic resin in a state where the positive electrode terminal is in contact with the air electrode current collector. In addition, the peripheral end portion of the air electrode current collector is impregnated with the thermoplastic resin.

また、本発明に係るリチウム空気電池の正極製造方法は、リチウム空気電池が正極と複合負極と電解液とを有して構成され、前記正極が正極端子と、カーボンファイバを含有するシート状の空気極集電体と、を有するリチウム空気電池の正極製造方法であって、前記空気極集電体に前記正極端子を接触させる接触工程と、前記空気極集電体の周端部と前記正極端子とを、熱可塑性樹脂からなり且つ開口を備えた枠形状の複数の樹脂フィルムによって挟み込む挟み込み工程と、前記空気極集電体と前記正極端子とを前記樹脂フィルムにより熱溶着すると共に、前記空気極集電体の前記周端部に前記熱可塑性樹脂を含浸させる熱溶着・含浸工程と、を有することを特徴とするものである。 The positive electrode manufacturing method for a lithium-air battery according to the present invention includes a lithium-air battery having a positive electrode, a composite negative electrode, and an electrolyte, wherein the positive electrode is a positive electrode terminal and a sheet-like air containing a carbon fiber. and electrode current collector, a positive electrode manufacturing method of the lithium-air battery having a contact step of contacting the positive terminal to the air electrode current collector, wherein a peripheral end portion of the air electrode current collector a positive terminal Are sandwiched between a plurality of frame-shaped resin films made of a thermoplastic resin and provided with openings, and the air electrode current collector and the positive electrode terminal are thermally welded by the resin film, and the air electrode And a thermal welding / impregnation step of impregnating the thermoplastic resin into the peripheral end portion of the current collector.

本発明によれば、空気極集電体と正極端子とが熱溶着により一体に構成され、または一体成形されたので、空気極集電体と正極端子との密着性が高まり、電池の電気伝導性を向上させることができる。また、空気極集電体の周端部に熱可塑性樹脂が含浸されたので、この空気極集電体の周端部が液密構造になって、この周端部からの電解液の漏洩を防止できる。   According to the present invention, since the air electrode current collector and the positive electrode terminal are integrally formed or integrally formed by heat welding, the adhesion between the air electrode current collector and the positive electrode terminal is increased, and the electric conductivity of the battery is increased. Can be improved. In addition, since the peripheral end portion of the air electrode current collector is impregnated with the thermoplastic resin, the peripheral end portion of the air electrode current collector has a liquid-tight structure, and the electrolyte solution leaks from the peripheral end portion. Can be prevented.

本発明に係るリチウム空気電池の正極構造における第1実施形態が適用されたリチウム空気電池の構成を示す分解斜視図。1 is an exploded perspective view showing a configuration of a lithium air battery to which a first embodiment of a positive electrode structure of a lithium air battery according to the present invention is applied. 図1の正極を示す斜視図。The perspective view which shows the positive electrode of FIG. 図1のリチウム空気電池を示す断面図。Sectional drawing which shows the lithium air battery of FIG. 本発明に係るリチウム空気電池の正極構造における第2実施形態が適用された正極を示し図2に対応する斜視図。The perspective view corresponding to FIG. 2 which shows the positive electrode to which 2nd Embodiment in the positive electrode structure of the lithium air battery which concerns on this invention was applied. 図4の正極を示し、(A)が正面図、(B)が裏面図。The positive electrode of FIG. 4 is shown, (A) is a front view, (B) is a back view. 本発明に係るリチウム空気電池の正極構造における第3実施形態が適用されたリチウム空気電池を示す断面図。Sectional drawing which shows the lithium air battery with which 3rd Embodiment in the positive electrode structure of the lithium air battery which concerns on this invention was applied. 本発明に係るリチウム空気電池の正極構造における第3実施形態の変形形態が適用されたリチウム空気電池を示す断面図。Sectional drawing which shows the lithium air battery with which the modification of 3rd Embodiment in the positive electrode structure of the lithium air battery which concerns on this invention was applied. 従来のリチウム空気電池を示す分解斜視図。The disassembled perspective view which shows the conventional lithium air battery. 図8のリチウム空気電池を示す部分断面図。The fragmentary sectional view which shows the lithium air battery of FIG.

以下、本発明を実施するための実施形態を図面に基づき説明する。
[A]第1実施形態(図1〜図3)
図1は、本発明に係るリチウム空気電池の正極構造における第1実施形態が適用されたリチウム空気電池の構成を示す分解斜視図である。この図1に示すリチウム空気電池10は、ラミネート型セル構造であり、正極11と複合負極12と電解液13とを有して構成される。電解液13は、本実施形態では水溶液系の例えば塩化リチウム水溶液などであり、反応生成物を貯蔵する機能も果たす。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First embodiment (FIGS. 1 to 3)
FIG. 1 is an exploded perspective view showing a configuration of a lithium air battery to which the first embodiment of the positive electrode structure of a lithium air battery according to the present invention is applied. A lithium-air battery 10 shown in FIG. 1 has a laminate type cell structure, and includes a positive electrode 11, a composite negative electrode 12, and an electrolytic solution 13. In the present embodiment, the electrolytic solution 13 is an aqueous solution system such as an aqueous lithium chloride solution, and also serves to store a reaction product.

複合負極12は、負極14と負極端子15と有機電解液16とLTAP板17とが樹脂フィルムとしての例えばアルミラミネートフィルム18及び19により袋状に包み込まれて構成され、アルミラミネートフィルム18とLTAP板17との間にTBF接着シート20が介在される。   The composite negative electrode 12 is configured by a negative electrode 14, a negative electrode terminal 15, an organic electrolyte solution 16, and an LTAP plate 17 wrapped in a bag shape with, for example, aluminum laminate films 18 and 19 as resin films, and the aluminum laminate film 18 and the LTAP plate TBF adhesive sheet 20 is interposed between

負極14は、アルカリ金属元素のリチウムまたはナトリウムなどの単体若しくは化合物からなる。なかでもリチウムは、エネルギー密度の高い電池を得るのに適している。本実施形態の負極14は、リチウムの単体から構成されている。また、この負極14に接合される負極端子15は、電気伝導性の高い金属、例えば銅にて構成される。   The negative electrode 14 is made of a simple substance or a compound such as lithium or sodium as an alkali metal element. Among these, lithium is suitable for obtaining a battery having a high energy density. The negative electrode 14 of this embodiment is composed of a simple substance of lithium. The negative electrode terminal 15 joined to the negative electrode 14 is made of a metal having high electrical conductivity, for example, copper.

LTAP板17は、空気極集電体22(後述)と負極14とのセパレータであり、リチウムイオンの導電性が高いガラスセラミックスが用いられる。このLTAP板17は、負極14への水分などの浸入防止の機能も果たす。また、TBF接着シート20は、LTAP板17をアルミラミネートフィルム18に接着させる。   The LTAP plate 17 is a separator between the air electrode current collector 22 (described later) and the negative electrode 14, and glass ceramics having high lithium ion conductivity is used. The LTAP plate 17 also functions to prevent moisture and the like from entering the negative electrode 14. Further, the TBF adhesive sheet 20 adheres the LTAP plate 17 to the aluminum laminate film 18.

アルミラミネートフィルム18及び19は、熱可塑性樹脂からなる耐熱性の基材層(例えばPET(ポリエチレンテレフタレート))と、接着層(例えばPP(ポリプロピレン)、PE(ポリエチレン)、EVA(エチレンビニルアセテート))との間に、アルミニウム箔が介在されて構成される。アルミラミネートフィルム18は、上面側が基材層であり、下面側が接着層である。また、アルミラミネートフィルム19は、上面側が接着層であり、下面側が基材層である。これらのアルミラミネートフィルム18と19は、接着層同士が接着することで、負極14、有機電解液16及びLTAP板17を袋状に包み込んで複合負極12を構成する。   Aluminum laminate films 18 and 19 are made of a heat-resistant base layer made of a thermoplastic resin (for example, PET (polyethylene terephthalate)) and an adhesive layer (for example, PP (polypropylene), PE (polyethylene), EVA (ethylene vinyl acetate)). An aluminum foil is interposed between the two. The aluminum laminate film 18 has a base layer on the upper surface side and an adhesive layer on the lower surface side. The aluminum laminate film 19 has an adhesive layer on the upper surface side and a base material layer on the lower surface side. These aluminum laminate films 18 and 19 form a composite negative electrode 12 by wrapping the negative electrode 14, the organic electrolyte solution 16 and the LTAP plate 17 in a bag shape by bonding the adhesive layers together.

正極11は、図1〜図3に示すように、正極端子21と、カーボンファイバを含有するシート状の空気極集電体22とを有してなる。そして、正極11は、空気極集電体22の表面または裏面に正極端子21の先端部21Aが接触した状態で、空気極集電体22と正極端子21とが熱可塑性樹脂により熱溶着されると共に、空気極集電体22の全周端部22Aに熱可塑性樹脂が含浸されて構成される。   As shown in FIGS. 1 to 3, the positive electrode 11 includes a positive electrode terminal 21 and a sheet-like air electrode current collector 22 containing a carbon fiber. In the positive electrode 11, the air electrode current collector 22 and the positive electrode terminal 21 are thermally welded with a thermoplastic resin in a state where the front end portion 21 </ b> A of the positive electrode terminal 21 is in contact with the front surface or the back surface of the air electrode current collector 22. At the same time, the entire peripheral end 22A of the air electrode current collector 22 is impregnated with a thermoplastic resin.

図2及び図3中の符号23は、空気極集電体22の周端部22Aに熱可塑性樹脂が含浸された含浸部位である。また、符号25は、正極端子21の先端部21Aが空気極集電体22に熱溶着して固着された溶着部位である。   Reference numeral 23 in FIGS. 2 and 3 is an impregnation portion in which the peripheral end portion 22A of the air electrode current collector 22 is impregnated with a thermoplastic resin. Reference numeral 25 denotes a welding portion where the tip end portion 21 </ b> A of the positive electrode terminal 21 is thermally welded to the air electrode current collector 22.

正極端子21は、アルミニウムまたはニッケルの単体若しくは化合物から構成される。また、空気極集電体22は、電気伝導性及びガス拡散性を備えたカーボンクロス、カーボンペーパー、カーボン不織布、多孔質ニッケルまたは多孔質アルミニウムなどから構成され、必要に応じて、反応を促進させるための触媒(例えば白金など)や結着剤を含有する。   The positive electrode terminal 21 is made of a simple substance or a compound of aluminum or nickel. The air electrode current collector 22 is made of carbon cloth, carbon paper, carbon nonwoven fabric, porous nickel, porous aluminum, or the like having electrical conductivity and gas diffusibility, and promotes the reaction as necessary. Contains a catalyst (for example, platinum) and a binder.

ここで、カーボンクロスは、一般にカーボンファイバを規則正しく編み込んだシート状のものである。また、カーボン不織布は、カーボンファイバをランダムに絡み合せたシート状のものである。カーボンファイバは、電子が繊維を通じて伝導するため電気伝導性が高く、金属と比較してエネルギー密度が高くなるので、正極11の空気極集電体22に適している。本実施形態の空気極集電体22は、カーボンクロスに白金などの触媒が担持されたものである。   Here, the carbon cloth is generally in the form of a sheet in which carbon fibers are knitted regularly. The carbon non-woven fabric is a sheet-like material in which carbon fibers are randomly entangled. The carbon fiber is suitable for the air electrode current collector 22 of the positive electrode 11 because the electron is conducted through the fiber and has high electric conductivity and the energy density is higher than that of the metal. The air electrode current collector 22 of the present embodiment is one in which a catalyst such as platinum is supported on a carbon cloth.

正極端子21の先端部21Aを空気極集電体22に熱溶着させ、且つ空気極集電体22の全周端部22Aに含浸される熱可塑性樹脂は、熱可塑性樹脂からなり且つ中央部に開口24を備えて窓枠形状に形成された樹脂フィルムとしてのラミネートフィルム26及び27を構成する上記熱可塑性樹脂である。このラミネートフィルム26の開口24により、正極11の空気導入口28が形成される。   The thermoplastic resin in which the front end portion 21A of the positive electrode terminal 21 is thermally welded to the air electrode current collector 22 and impregnated in the entire peripheral end portion 22A of the air electrode current collector 22 is made of a thermoplastic resin and has a central portion. It is the said thermoplastic resin which comprises the laminated films 26 and 27 as a resin film provided with the opening 24 and formed in the window frame shape. An air introduction port 28 of the positive electrode 11 is formed by the opening 24 of the laminate film 26.

ここで、アルミラミネートフィルム26及び27は、熱可塑性樹脂としての例えばPET(ポリエチレンテレフタレート)等からなる耐熱性の基材層と、熱可塑性樹脂としての例えばPP(ポリプロピレン)、PE(ポリエチレン)、EVA(エチレンビニルアセテート)等からなる接着層とを有して構成される。ラミネートフィルム26は、上面側が基材層であり、下面側が接着層である。また、ラミネートフィルム27は、上面側が接着層であり、下面側が基材層である。   Here, the aluminum laminate films 26 and 27 include a heat-resistant base material layer made of, for example, PET (polyethylene terephthalate) as a thermoplastic resin, and PP (polypropylene), PE (polyethylene), EVA as thermoplastic resins. And an adhesive layer made of (ethylene vinyl acetate) or the like. The laminate film 26 has a base layer on the upper surface side and an adhesive layer on the lower surface side. The laminate film 27 has an adhesive layer on the upper surface side and a base material layer on the lower surface side.

正極11は、ラミネートフィルム26及び27を用いて次のように製造される。まず、正極端子21の先端部21Aを空気極集電体22の例えば表面に接触させる接触工程を行う。次に、空気極集電体22の周端部22Aと正極端子21の先端部21Aとを、ラミネートフィルム26及び27によって上下方向から挟み込む挟み込み工程を行う。その後、例えば熱プレスなどを用いて、空気極集電体22と正極端子21の先端部21Aとをラミネートフィルム26及び27により熱溶着して一体に構成すると共に、空気極集電体22の全周端部22Aにラミネートフィルム26及び27の熱可塑性樹脂を含浸させて含浸部位23を形成する熱溶着・含浸工程を行う。   The positive electrode 11 is manufactured using the laminate films 26 and 27 as follows. First, a contact process is performed in which the tip 21 </ b> A of the positive electrode terminal 21 is brought into contact with, for example, the surface of the air electrode current collector 22. Next, a sandwiching step is performed in which the peripheral end portion 22A of the air electrode current collector 22 and the tip end portion 21A of the positive electrode terminal 21 are sandwiched from above and below by the laminate films 26 and 27. Thereafter, the air electrode current collector 22 and the tip end portion 21A of the positive electrode terminal 21 are heat-welded with the laminate films 26 and 27, for example, using a heat press or the like. A thermal welding / impregnation step is performed in which the peripheral end portion 22A is impregnated with the thermoplastic resin of the laminate films 26 and 27 to form the impregnation portion 23.

熱溶着・含浸工程における熱プレスの条件は、ラミネートフィルム26及び27の接着層がPPの場合には、加熱温度が160〜180℃で、加圧力が20kgf/cm(30秒間)であり、また、ラミネートフィルム26及び27の接着層がEVAの場合には、加熱温度が140〜160℃で、加圧力が20kgf/cm(30秒間)である。 When the adhesive layer of the laminate films 26 and 27 is PP, the heating conditions in the heat welding / impregnation step are a heating temperature of 160 to 180 ° C. and a pressing force of 20 kgf / cm 2 (30 seconds), When the adhesive layers of the laminate films 26 and 27 are EVA, the heating temperature is 140 to 160 ° C., and the applied pressure is 20 kgf / cm 2 (30 seconds).

図1に示すように、上述のように構成された正極11と、前述のように構成された複合負極12との間に電解液13が介在され、正極11のラミネートフィルム26と複合負極12のアルミラミネートフィルム19との接着層同士が接着されることで、正極11、複合負極12及び電解液13がユニット化されたラミネート型セル構造のリチウム空気電池10が製造される。   As shown in FIG. 1, an electrolyte solution 13 is interposed between the positive electrode 11 configured as described above and the composite negative electrode 12 configured as described above, and the laminate film 26 of the positive electrode 11 and the composite negative electrode 12 are By bonding the adhesive layers to the aluminum laminate film 19, the lithium-air battery 10 having a laminated cell structure in which the positive electrode 11, the composite negative electrode 12, and the electrolytic solution 13 are unitized is manufactured.

従って、本第1実施形態におけるリチウム空気電池10の特に正極11によれば、次の効果(1)〜(5)を奏する。
(1)図2に示すように、空気極集電体22と正極端子21の先端部21Aとが熱溶着により一体に構成されたので、空気極集電体22と正極端子21との密着性が高まり、リチウム空気電池10の電気伝導性を向上させることができる。従って、空気極集電体22上に金属メッシュ109(図8)を載置する必要がなくなるので、リチウム空気電池10を軽量化できると共に薄肉化できる。
Therefore, according to especially the positive electrode 11 of the lithium air battery 10 in the first embodiment, the following effects (1) to (5) are obtained.
(1) As shown in FIG. 2, the air electrode current collector 22 and the tip end portion 21 </ b> A of the positive electrode terminal 21 are integrally formed by heat welding, and thus the adhesion between the air electrode current collector 22 and the positive electrode terminal 21. The electrical conductivity of the lithium air battery 10 can be improved. Therefore, since it is not necessary to place the metal mesh 109 (FIG. 8) on the air electrode current collector 22, the lithium air battery 10 can be reduced in weight and thinned.

(2)図3に示すように、空気極集電体22の全周端部22Aに、ラミネートフィルム26及び27を構成する熱可塑性樹脂が含浸されて、空気極集電体22の全周端部22Aに含浸部位23が設けられたので、空気極集電体22の周端部22Aが液密構造になって、この周端部22A及びその付近からの電解液13の漏洩を防止できる。このため、正極11をラミネート型のリチウム空気電池セルの上部構造にできると共に、この正極11を用いた複数のリチウム空気電池10を積層化できる。   (2) As shown in FIG. 3, the entire circumferential end 22 </ b> A of the air electrode current collector 22 is impregnated with the thermoplastic resin that constitutes the laminate films 26 and 27, so that the entire circumferential edge of the air electrode current collector 22 is obtained. Since the impregnation portion 23 is provided in the portion 22A, the peripheral end portion 22A of the air electrode current collector 22 has a liquid-tight structure, and leakage of the electrolytic solution 13 from the peripheral end portion 22A and its vicinity can be prevented. For this reason, while being able to make the positive electrode 11 into the upper structure of a laminate-type lithium air battery cell, the several lithium air battery 10 using this positive electrode 11 can be laminated | stacked.

(3)図3に示すように、熱可塑性樹脂による正極端子21と空気極集電体22との熱溶着により、正極端子21の先端部21Aが熱可塑性樹脂で被覆されるので、正極端子21と電解液13との接触を防止できる。このため、電池反応により水酸化リチウムが生成されて強アルカリ性となる電解液13により正極端子21が腐食することを抑制できる。この結果、正極端子21を構成するアルミニウム、ニッケルが腐食することで生成される腐食生成物が空気極集電体22に付着して、この空気極集電体22の電気抵抗が増大することを防止できる。従って、リチウム空気電池10内で反応に必要な有効面積が減少して電池容量が低下したり、出力及び寿命が低下するなどのリチウム空気電池10の特性劣化を抑制できる。   (3) As shown in FIG. 3, the tip portion 21A of the positive electrode terminal 21 is covered with the thermoplastic resin by the thermal welding of the positive electrode terminal 21 and the air electrode current collector 22 with the thermoplastic resin. Can be prevented from contacting the electrolyte solution 13. For this reason, it can suppress that the positive electrode terminal 21 corrodes with the electrolyte solution 13 which lithium hydroxide is produced | generated by battery reaction and becomes strong alkalinity. As a result, corrosion products generated by corrosion of aluminum and nickel constituting the positive electrode terminal 21 adhere to the air electrode current collector 22, and the electrical resistance of the air electrode current collector 22 increases. Can be prevented. Therefore, the characteristic area of the lithium air battery 10 such as the effective area required for the reaction in the lithium air battery 10 can be reduced, the battery capacity can be reduced, and the output and life can be reduced.

(4)上述の如く電解液13による正極端子21の腐食が抑制されるので、正極端子21の材質として高価な白金を用いる必要がなく、アルミニウムまたはニッケルなどで足りるので、正極端子21のコストを低減できる。   (4) Since the corrosion of the positive electrode terminal 21 by the electrolytic solution 13 is suppressed as described above, it is not necessary to use expensive platinum as the material of the positive electrode terminal 21, and aluminum or nickel is sufficient, so the cost of the positive electrode terminal 21 is reduced. Can be reduced.

(5)図2に示すように、空気極集電体22の全周端部22Aには、ラミネートフィルム26及び27を構成する熱可塑性樹脂が含浸されて含浸部位23が形成され、これにより、空気極集電体22の周端部22Aが補強されてその剛性が向上する。従って、この空気極集電体22を備える正極11は、複合負極12などの他部材に容易に位置合せできるので、正極11の位置決め精度及び組付性が良好になる。この結果、リチウム空気電池10の製造作業性を向上できると共に、リチウム空気電池10の歩留まりの低下を抑制でき、このリチウム空気電池10を複数用いて製造されるリチウム空気電池10の積層化を容易に実現できる。   (5) As shown in FIG. 2, the entire circumferential end 22A of the air electrode current collector 22 is impregnated with the thermoplastic resin constituting the laminate films 26 and 27 to form the impregnation portion 23. The circumferential end portion 22A of the air electrode current collector 22 is reinforced to improve its rigidity. Therefore, since the positive electrode 11 including the air electrode current collector 22 can be easily aligned with other members such as the composite negative electrode 12, the positioning accuracy and assembling property of the positive electrode 11 are improved. As a result, the manufacturing workability of the lithium air battery 10 can be improved, and the decrease in the yield of the lithium air battery 10 can be suppressed, and the stacking of the lithium air battery 10 manufactured using a plurality of the lithium air batteries 10 can be facilitated. realizable.

[B]第2実施形態(図4、図5)
図4は、本発明に係るリチウム空気電池の正極構造における第2実施形態が適用された正極を示し図2に対応する斜視図である。この第2実施形態において、第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIGS. 4 and 5)
FIG. 4 is a perspective view corresponding to FIG. 2, showing a positive electrode to which the second embodiment of the positive electrode structure of a lithium-air battery according to the present invention is applied. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本第2実施形態のリチウム空気電池10における正極30が第1実施形態の正極11と異なる点は、正極端子31が空気極集電体22と同一材料でこの空気極集電体22と一体に成形され、正極端子31の少なくとも片面(本実施形態では図5(B)に示すように正極端子31の裏面)に熱可塑性樹脂が溶着された点である。図5(B)の符号32は、正極端子31の裏面における熱可塑性樹脂の溶着部位である。   The positive electrode 30 in the lithium air battery 10 of the second embodiment is different from the positive electrode 11 of the first embodiment in that the positive electrode terminal 31 is made of the same material as the air electrode current collector 22 and is integrated with the air electrode current collector 22. The point is that the thermoplastic resin is welded to at least one surface of the positive electrode terminal 31 (in this embodiment, the back surface of the positive electrode terminal 31 as shown in FIG. 5B). Reference numeral 32 in FIG. 5B denotes a welded portion of the thermoplastic resin on the back surface of the positive electrode terminal 31.

更に、正極端子31では、図5(A)に示すように、溶着部位32が設けられていない他の片面(本実施形態では正極端子31の表面)の空気極集電体22側が、電解液13による短絡防止のために熱可塑性樹脂で被覆されている。図5(A)中の符号33は、正極端子31の表面における熱可塑性樹脂による被覆部位である。   Furthermore, in the positive electrode terminal 31, as shown in FIG. 5A, the air electrode current collector 22 side on the other side (in this embodiment, the surface of the positive electrode terminal 31) where the welding site 32 is not provided is the electrolyte solution. In order to prevent short circuit due to 13, it is coated with a thermoplastic resin. Reference numeral 33 in FIG. 5A denotes a portion covered with the thermoplastic resin on the surface of the positive electrode terminal 31.

また、正極30における空気極集電体22は、その全周端部22Aが、第1実施形態と同様に熱可塑性樹脂により含浸されて構成される。図5(A)及び(B)の符号34は、空気極集電体22の全周端部22Aにおける熱可塑性樹脂の含浸部位を示す。尚、図5(A)及び(B)中の破線35は、熱可塑性樹脂が熱溶着及び含浸される前の、一体成形された正極端子31及び空気極集電体22の形状を示す。   Further, the air electrode current collector 22 in the positive electrode 30 is configured such that the entire peripheral end 22A is impregnated with a thermoplastic resin as in the first embodiment. Reference numerals 34 in FIGS. 5A and 5B indicate thermoplastic resin impregnation sites in the entire peripheral end 22 </ b> A of the air electrode current collector 22. 5A and 5B indicate the shapes of the integrally formed positive electrode terminal 31 and air electrode current collector 22 before the thermoplastic resin is thermally welded and impregnated.

空気極集電体22の周端部22Aに含浸部位34を形成する熱可塑性樹脂は、図4に示すように、樹脂フィルムとしてのラミネートフィルム36、37の窓枠形状部38である。また、正極端子31の表面に被覆部位33を形成する熱可塑性樹脂は、ラミネートフィルム36の第1舌片部39である。更に、正極端子31の裏面に溶着部位32を形成する熱可塑性樹脂は、ラミネートフィルム37の第2舌片部40である。   As shown in FIG. 4, the thermoplastic resin that forms the impregnation portion 34 in the peripheral end portion 22 </ b> A of the air electrode current collector 22 is a window frame shape portion 38 of laminate films 36 and 37 as resin films. The thermoplastic resin that forms the covering portion 33 on the surface of the positive electrode terminal 31 is the first tongue piece portion 39 of the laminate film 36. Further, the thermoplastic resin that forms the welding portion 32 on the back surface of the positive electrode terminal 31 is the second tongue piece portion 40 of the laminate film 37.

ラミネートフィルム36の窓枠形状部38は第1実施形態のラミネートフィルム26と、また、ラミネートフィルム37の窓枠形状部38は第1実施形態のラミネートフィルム27と、それぞれ同一形状である。また、窓枠形状部38及び第1舌片部39を備えたラミネートフィルム36は第1実施形態のラミネートフィルム26と、また、窓枠形状部38及び第2舌片部40を備えたラミネートフィルム37は第1実施形態のラミネートフィルム27と、それぞれ同一材質にて構成される。   The window frame shape portion 38 of the laminate film 36 has the same shape as the laminate film 26 of the first embodiment, and the window frame shape portion 38 of the laminate film 37 has the same shape as the laminate film 27 of the first embodiment. The laminate film 36 having the window frame shape portion 38 and the first tongue piece portion 39 is the laminate film 26 of the first embodiment, and the laminate film having the window frame shape portion 38 and the second tongue piece portion 40. 37 is composed of the same material as the laminate film 27 of the first embodiment.

本第2実施形態のリチウム空気電池10における正極30は、次のようにして製造される。まず、カーボンファイバを含有するシート状の例えばカーボンクロスからなる空気極集電体22と、この空気極集電体22に一体成形された正極端子31とを用意、つまり一体成形された空気極集電体22及び正極端子31を用意する準備工程を行う。次に、空気極集電体22の周端部22Aを、ラミネートフィルム36の窓枠形状部38とラミネートフィルム37の窓枠形状部38とによって上下方向から挟み込む挟み込み工程を行う。この挟み込み工程では、ラミネートフィルム36の第1舌片部39が正極端子31の表面の空気極集電体22側部分に接触し、またラミネートフィルム37の第2舌片部40が正極端子31の裏面全体に接触する。   The positive electrode 30 in the lithium air battery 10 of the second embodiment is manufactured as follows. First, an air electrode current collector 22 made of, for example, carbon cloth containing a carbon fiber and a positive electrode terminal 31 integrally formed with the air electrode current collector 22 are prepared, that is, an air electrode current collector formed integrally. A preparation process for preparing the electric body 22 and the positive electrode terminal 31 is performed. Next, a sandwiching step is performed in which the peripheral end portion 22A of the air electrode current collector 22 is sandwiched between the window frame shape portion 38 of the laminate film 36 and the window frame shape portion 38 of the laminate film 37 from above and below. In this sandwiching step, the first tongue piece portion 39 of the laminate film 36 is in contact with the air electrode current collector 22 side portion of the surface of the positive electrode terminal 31, and the second tongue piece portion 40 of the laminate film 37 is the positive electrode terminal 31. Touch the entire back surface.

その後、例えば熱プレス等を用いて、空気集電体22の全周端部22Aにラミネートフィルム36及び37の両窓枠形状部38における熱可塑性樹脂を含浸させて含浸部位34を形成する含浸工程を行う。この含浸工程では、空気極集電体22の周端部22Aへの熱可塑性樹脂の含浸と同時に、正極端子31の表面の空気極集電体22側部分にラミネートフィルム36の第1舌片部39における熱可塑性樹脂を溶着して被覆部位33を形成し、更に、正極端子31の裏面全体にラミネートフィルム37の第2舌片部40における熱可塑性樹脂を溶着して溶着部位32を形成する。この含浸工程における熱プレスの条件は、第1実施形態の熱溶着・含浸工程と略同一である。   Thereafter, the impregnation step of forming the impregnation portion 34 by impregnating the thermoplastic resin in the window frame shape portions 38 of the laminate films 36 and 37 into the entire peripheral end portion 22A of the air current collector 22 using, for example, a heat press or the like. I do. In this impregnation step, the first tongue piece portion of the laminate film 36 is formed on the air electrode current collector 22 side portion of the surface of the positive electrode terminal 31 simultaneously with the impregnation of the thermoplastic resin into the peripheral end portion 22A of the air electrode current collector 22. The thermoplastic resin in 39 is welded to form the covering portion 33, and the thermoplastic resin in the second tongue piece portion 40 of the laminate film 37 is welded to the entire back surface of the positive electrode terminal 31 to form the welding portion 32. The hot press conditions in this impregnation step are substantially the same as those in the thermal welding / impregnation step of the first embodiment.

従って、本第2実施形態におけるリチウム空気電池10の正極30によれば、第1実施形態の効果(1)〜(5)と同様な効果を奏するほか、次の効果(6)〜(8)を奏する。   Therefore, according to the positive electrode 30 of the lithium-air battery 10 in the second embodiment, the same effects as the effects (1) to (5) of the first embodiment are obtained, and the following effects (6) to (8). Play.

(6)正極30は、正極端子31が、カーボンファイバを含有するシート状の例えばカーボンクロス製の空気極集電体22と一体成形されたので、正極端子31と空気極集電体22との密着性を考慮する必要がなく、リチウム空気電池10の導電性をより一層向上させることができる。   (6) Since the positive electrode terminal 31 is integrally formed with the sheet-like air electrode current collector 22 made of, for example, carbon cloth containing the carbon fiber, the positive electrode 30 is formed between the positive electrode terminal 31 and the air electrode current collector 22. There is no need to consider the adhesion, and the conductivity of the lithium-air battery 10 can be further improved.

(7)更に、カーボンファイバを含有する正極端子31は、電池反応により生成される水酸化リチウム等によって強アルカリ性となる電解液13に対し高い耐食性を有するので、正極端子31の腐食をより一層防止できる。   (7) Furthermore, since the positive electrode terminal 31 containing carbon fiber has high corrosion resistance with respect to the electrolyte solution 13 which becomes strong alkalinity by lithium hydroxide etc. produced | generated by a battery reaction, corrosion of the positive electrode terminal 31 is prevented further. it can.

(8)カーボンファイバを含有する正極端子31は、その裏面に熱可塑性樹脂が溶着されて溶着部位32が形成されたので、この溶着部位32によって正極端子31の強度を十分に確保できる。   (8) The positive electrode terminal 31 containing carbon fiber has a welded portion 32 formed by welding a thermoplastic resin on the back surface thereof, and thus the strength of the positive electrode terminal 31 can be sufficiently secured by the welded portion 32.

[C]第3実施形態(図6、図7)
図6は、本発明に係るリチウム空気電池の正極構造における第3実施形態が適用されたリチウム空気電池を示す断面図である。この第3実施形態において、第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIGS. 6 and 7)
FIG. 6 is a cross-sectional view showing a lithium air battery to which the third embodiment of the positive electrode structure of the lithium air battery according to the present invention is applied. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is simplified or omitted.

本第3実施形態におけるリチウム空気電池10の正極50が第1実施形態と異なる点は、ラミネートフィルム26の開口24から形成される空気導入口28によって外部に露出する空気極集電体22の外側に、防水性及び通気性を備えた多孔質樹脂51が配置された点である。   The positive electrode 50 of the lithium-air battery 10 in the third embodiment is different from that of the first embodiment in that the outside of the air electrode current collector 22 exposed to the outside by the air inlet 28 formed from the opening 24 of the laminate film 26. In addition, a porous resin 51 having waterproofness and air permeability is disposed.

上記多孔質樹脂51は、多孔質PE(ポリエチレン)樹脂または多孔質フッ素系樹脂等である。また、多孔質樹脂51は、図6に示すように、その周端部51Aがラミネートフィルム26の外表面に固着される場合と、図7に示すように、空気極集電体22とラミネートフィルム26との間に介在される場合とのいずれか一方または両方である。   The porous resin 51 is a porous PE (polyethylene) resin or a porous fluororesin. Further, as shown in FIG. 6, the porous resin 51 has a case where the peripheral end 51 </ b> A is fixed to the outer surface of the laminate film 26, and as shown in FIG. 7, the air electrode current collector 22 and the laminate film. 26 or any one or both of them.

図6の場合、多孔質樹脂51が多孔質PE樹脂であれば、空気極集電体22の周端部22Aに正極端子21を熱溶着し且つ熱可塑性樹脂を含浸させる熱溶着・含浸工程の後に、多孔質樹脂51の周端部51Aをラミネートフィルム26の外表面に熱溶着して多孔質樹脂配置工程を行うことが好ましい。また、図6の場合、多孔質樹脂51が多孔質フッ素系樹脂であれば、前記熱溶着・含浸工程の後に、ラミネートフィルム26の外表面に例えばポリオレフィン系のプライマを塗布し、その後に、例えばシアノアクリレート系接着剤を用いて多孔質樹脂51の周端部51Aをラミネートフィルム26の外表面に接着して多孔質樹脂配置工程を行うことが好ましい。   In the case of FIG. 6, if the porous resin 51 is a porous PE resin, a thermal welding / impregnation step of thermally welding the positive electrode terminal 21 to the peripheral end portion 22 </ b> A of the air electrode current collector 22 and impregnating the thermoplastic resin is performed. Later, it is preferable to perform the porous resin arrangement step by thermally welding the peripheral end portion 51 </ b> A of the porous resin 51 to the outer surface of the laminate film 26. In the case of FIG. 6, if the porous resin 51 is a porous fluororesin, for example, a polyolefin-based primer is applied to the outer surface of the laminate film 26 after the thermal welding / impregnation step, and then, for example, It is preferable to perform the porous resin arrangement step by adhering the peripheral end portion 51A of the porous resin 51 to the outer surface of the laminate film 26 using a cyanoacrylate adhesive.

図7の場合、多孔質樹脂51が多孔質PE樹脂であれば、熱プレスなどによる前記熱溶着・含浸工程と同時に、上記熱プレスなどによって多孔質樹脂51の周端部51Aをラミネートフィルム26、空気極集電体22間に固着して多孔質樹脂配置工程を行うことが好ましい。また、図7の場合、多孔質樹脂51が多孔質フッ素系樹脂であれば、その周端部51Aに多数の細孔を開け、熱プレスなどによる前記熱溶着・含浸工程と同時に、上記熱プレスなどによって多孔質樹脂51の周端部51Aをラミネートフィルム26、空気極集電体22間に固着して多孔質樹脂配置工程を行うことが好ましい。   In the case of FIG. 7, if the porous resin 51 is a porous PE resin, the peripheral end portion 51 </ b> A of the porous resin 51 is bonded to the laminate film 26 by the above-described hot pressing or the like simultaneously with the thermal welding / impregnation step by hot pressing. It is preferable that the porous resin placement step is performed while being fixed between the air electrode current collectors 22. In the case of FIG. 7, if the porous resin 51 is a porous fluororesin, a large number of pores are opened in the peripheral end portion 51A, and at the same time as the thermal welding / impregnation step by hot pressing or the like, It is preferable to perform the porous resin arrangement step by fixing the peripheral end portion 51 </ b> A of the porous resin 51 between the laminate film 26 and the air electrode current collector 22 by, for example.

従って、本第3実施形態におけるリチウム空気電池10の正極50によれば、第1実施形態の効果(1)〜(5)と同様な効果を奏するほか、次の効果(9)を奏する。   Therefore, according to the positive electrode 50 of the lithium-air battery 10 in the third embodiment, the same effects (1) to (5) as in the first embodiment are exhibited, and the following effect (9) is achieved.

(9)空気導入口28によって外部に露出する空気極集電体22の外側に、防水性及び通気性を備えた多孔質樹脂51が配置されたので、保水性の高い電池構造を実現でき、従って電解液13の揮発による減少を確実に防止できる。   (9) Since the porous resin 51 having waterproofness and air permeability is disposed outside the air electrode current collector 22 exposed to the outside by the air inlet 28, a battery structure with high water retention can be realized, Therefore, a decrease due to volatilization of the electrolytic solution 13 can be reliably prevented.

以上、本発明の実施形態を説明したが、これらの各実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。   As mentioned above, although embodiment of this invention was described, these each embodiment was shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention.

例えば、本実施形態では電解液13が水溶液系の場合を述べたが、電解液13が非水溶液であっても、リチウム空気電池10の正極11、30、50の構造を適用することができる。また、第2実施形態のリチウム空気電池10の正極30における空気極集電体22の外側に、第3実施形態の多孔質樹脂51を、含浸工程と同時または含浸工程の後に配置してもよい。   For example, although the case where the electrolytic solution 13 is an aqueous solution system has been described in the present embodiment, the structure of the positive electrodes 11, 30, and 50 of the lithium air battery 10 can be applied even when the electrolytic solution 13 is a non-aqueous solution. Further, the porous resin 51 of the third embodiment may be disposed outside the air electrode current collector 22 in the positive electrode 30 of the lithium air battery 10 of the second embodiment at the same time as the impregnation step or after the impregnation step. .

10 リチウム空気電池
11 正極
21 正極端子
22 空気極集電体
22A 周端部
23 含浸部位
24 開口
25 溶着部位
26、27 ラミネートフィルム(樹脂フィルム)
28 空気導入口
30 正極
31 正極端子
32 溶着部位
34 含浸部位
36、37 ラミネートフィルム(樹脂フィルム)
50 正極
51 多孔質樹脂
DESCRIPTION OF SYMBOLS 10 Lithium air battery 11 Positive electrode 21 Positive electrode terminal 22 Air electrode current collector 22A Peripheral end 23 Impregnation part 24 Opening 25 Welding part 26, 27 Laminate film (resin film)
28 Air inlet 30 Positive electrode 31 Positive electrode terminal 32 Welding part 34 Impregnating part 36, 37 Laminate film (resin film)
50 Positive electrode 51 Porous resin

Claims (8)

リチウム空気電池が正極と複合負極と電解液とを有して構成され、前記正極が正極端子と、カーボンファイバを含有するシート状の空気極集電体と、を有するリチウム空気電池の正極構造であって、
前記空気極集電体に前記正極端子が接触した状態で前記空気極集電体と前記正極端子とが熱可塑性樹脂により熱溶着されると共に、前記空気極集電体の周端部に前記熱可塑性樹脂が含浸されて構成されたことを特徴とするリチウム空気電池の正極構造。
A lithium air battery includes a positive electrode, a composite negative electrode, and an electrolyte, and the positive electrode has a positive electrode terminal and a sheet-like air electrode current collector containing carbon fiber. There,
The air electrode current collector and the positive electrode terminal are thermally welded by a thermoplastic resin in a state where the positive electrode terminal is in contact with the air electrode current collector, and the heat is applied to a peripheral end portion of the air electrode current collector. A positive electrode structure of a lithium-air battery, characterized by being impregnated with a plastic resin.
リチウム空気電池が正極と複合負極と電解液とを有して構成され、前記正極が正極端子と、カーボンファイバを含有するシート状の空気極集電体と、を有するリチウム空気電池の正極構造であって、
前記正極端子が前記空気極集電体と一体に成形され、
前記空気極集電体の周端部に熱可塑性樹脂が含浸されて構成されたことを特徴とするリチウム空気電池の正極構造。
A lithium air battery includes a positive electrode, a composite negative electrode, and an electrolyte, and the positive electrode has a positive electrode terminal and a sheet-like air electrode current collector containing carbon fiber. There,
The positive electrode terminal is molded integrally with the air electrode current collector,
A positive electrode structure of a lithium air battery, wherein a peripheral end portion of the air electrode current collector is impregnated with a thermoplastic resin.
前記正極端子が、アルミニウムまたはニッケルの単体若しくは合金から構成されたことを特徴とする請求項1に記載のリチウム空気電池の正極構造。 2. The positive electrode structure of a lithium air battery according to claim 1, wherein the positive electrode terminal is made of a simple substance or an alloy of aluminum or nickel. 前記正極端子は、少なくとも片面に熱可塑性樹脂が溶着されて構成されたことを特徴とする請求項2に記載のリチウム空気電池の正極構造。 3. The positive electrode structure of a lithium air battery according to claim 2, wherein the positive electrode terminal is configured by welding a thermoplastic resin on at least one surface. 4. 前記空気極集電体の周端部は、熱可塑性樹脂からなり且つ開口を備えた枠形状の樹脂フィルムにおける前記熱可塑性樹脂により含浸され、前記樹脂フィルムの前記開口によって外部に露出する前記空気極集電体の外側に、防水性及び通気性を備えた多孔質樹脂が配置されたことを特徴とする請求項1乃至4のいずれか1項に記載のリチウム空気電池の正極構造。 The air electrode current collector is impregnated with the thermoplastic resin in a frame-shaped resin film made of a thermoplastic resin and having an opening, and is exposed to the outside through the opening of the resin film. The positive electrode structure of a lithium air battery according to any one of claims 1 to 4, wherein a porous resin having waterproofness and air permeability is disposed outside the current collector. リチウム空気電池が正極と複合負極と電解液とを有して構成され、前記正極が正極端子と、カーボンファイバを含有するシート状の空気極集電体と、を有するリチウム空気電池の正極製造方法であって、
前記空気極集電体に前記正極端子を接触させる接触工程と、
前記空気極集電体の周端部と前記正極端子とを、熱可塑性樹脂からなり且つ開口を備えた枠形状の複数の樹脂フィルムによって挟み込む挟み込み工程と、
前記空気極集電体と前記正極端子とを前記樹脂フィルムにより熱溶着すると共に、前記空気極集電体の前記周端部に前記熱可塑性樹脂を含浸させる熱溶着・含浸工程と、を有することを特徴とするリチウム空気電池の正極製造方法。
Lithium air battery has a positive electrode, a composite negative electrode, and an electrolyte solution, and the positive electrode has a positive electrode terminal and a sheet-like air electrode current collector containing carbon fiber. Because
A contacting step of contacting the positive terminal to the air electrode current collector,
A sandwiching step of sandwiching the peripheral end portion of the air electrode current collector and the positive electrode terminal with a plurality of frame-shaped resin films made of a thermoplastic resin and having openings;
A thermal welding / impregnation step of thermally welding the air electrode current collector and the positive electrode terminal with the resin film, and impregnating the thermoplastic resin into the peripheral end portion of the air electrode current collector. A method for producing a positive electrode for a lithium-air battery.
リチウム空気電池が正極と複合負極と電解液とを有して構成され、前記正極が正極端子と、カーボンファイバを含有するシート状の空気極集電体と、を有するリチウム空気電池の正極製造方法であって、
前記空気極集電体と、この空気極集電体に一体成形された前記正極端子とを用意する準備工程と、
前記空気極集電体の周端部を、熱可塑性樹脂からなり且つ開口を備えた枠形状の複数の樹脂フィルムによって挟み込む挟み込み工程と、
前記空気極集電体の前記周端部に前記熱可塑性樹脂を含浸させる含浸工程と、を有することを特徴とするリチウム空気電池の正極製造方法。
Lithium air battery has a positive electrode, a composite negative electrode, and an electrolyte solution, and the positive electrode has a positive electrode terminal and a sheet-like air electrode current collector containing carbon fiber. Because
And said air electrode current collector, a preparation step of preparing the integrally molded the positive terminal to the air electrode current collector,
A sandwiching step of sandwiching the peripheral end portion of the air electrode current collector with a plurality of frame-shaped resin films made of a thermoplastic resin and having openings,
And a impregnation step of impregnating the thermoplastic resin into the peripheral end portion of the air electrode current collector.
前記樹脂フィルムの開口から露出する空気極集電体の外側に、防水性及び通気性を備えた多孔質樹脂を、熱溶着・含浸工程若しくは含浸工程と同時または後に配置する多孔質樹脂配置工程を有することを特徴とする請求項6または7に記載のリチウム空気電池の正極製造方法。 A porous resin disposing step in which a porous resin having waterproofness and air permeability is disposed at the same time as or after the heat welding / impregnation step or the impregnation step on the outside of the air electrode current collector exposed from the opening of the resin film. The positive electrode manufacturing method of a lithium air battery according to claim 6 or 7, wherein
JP2013121211A 2013-06-07 2013-06-07 Positive electrode structure of lithium air battery and positive electrode manufacturing method Active JP6155864B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013121211A JP6155864B2 (en) 2013-06-07 2013-06-07 Positive electrode structure of lithium air battery and positive electrode manufacturing method
IN1342DE2014 IN2014DE01342A (en) 2013-06-07 2014-05-21
DE102014209784.3A DE102014209784B4 (en) 2013-06-07 2014-05-22 CATHODE STRUCTURE OF A LITHIUM-AIR BATTERY BATTERY AND PROCESS FOR ITS MANUFACTURE
CN201410250651.6A CN104241731B (en) 2013-06-07 2014-06-06 The method of the negative electrode of the cathode construction of lithium-air battery and manufacture lithium-air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121211A JP6155864B2 (en) 2013-06-07 2013-06-07 Positive electrode structure of lithium air battery and positive electrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2014238985A JP2014238985A (en) 2014-12-18
JP6155864B2 true JP6155864B2 (en) 2017-07-05

Family

ID=52009218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121211A Active JP6155864B2 (en) 2013-06-07 2013-06-07 Positive electrode structure of lithium air battery and positive electrode manufacturing method

Country Status (4)

Country Link
JP (1) JP6155864B2 (en)
CN (1) CN104241731B (en)
DE (1) DE102014209784B4 (en)
IN (1) IN2014DE01342A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601342B2 (en) * 2016-08-05 2019-11-06 スズキ株式会社 Lithium air battery
CN111937227A (en) * 2018-04-18 2020-11-13 夏普株式会社 Metal-air battery and method for manufacturing metal-air battery
WO2019234744A1 (en) * 2018-06-06 2019-12-12 Oxynergy Ltd. Electrode assembly and method for its preparation
JP7212774B2 (en) * 2019-05-21 2023-01-25 シャープ株式会社 metal air battery
KR20210156608A (en) * 2020-06-18 2021-12-27 삼성에스디아이 주식회사 Secondary battery
US20230344039A1 (en) * 2020-07-10 2023-10-26 Sharp Kabushiki Kaisha Method of manufacturing metal-air battery

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949457B1 (en) * 1970-07-06 1974-12-27
JPS51138838A (en) * 1975-05-27 1976-11-30 Kogyo Gijutsuin Method of manufacturing battery containing gas diffusion electrode
JPS5850614Y2 (en) * 1977-03-29 1983-11-17 三洋電機株式会社 Battery case with gas diffusion electrode
JPH06275267A (en) * 1993-03-22 1994-09-30 Toray Ind Inc Electrode, battery using the same, and its manufacture
JPH06333611A (en) * 1993-05-21 1994-12-02 Meidensha Corp Current collecting electrode taking-out structure for zinc-bromine battery
US6127061A (en) * 1999-01-26 2000-10-03 High-Density Energy, Inc. Catalytic air cathode for air-metal batteries
JP4015827B2 (en) * 2001-06-29 2007-11-28 株式会社東芝 Non-aqueous electrolyte battery
EP1573846A2 (en) * 2002-09-23 2005-09-14 Protonex Technology Corporation Liquid electrochemical cell stacks and manufacturing methods for same
JP2005026144A (en) * 2003-07-04 2005-01-27 Toshiba Battery Co Ltd Air cell
US10566669B2 (en) * 2004-02-20 2020-02-18 Johnson Ip Holding, Llc Lithium oxygen batteries having a carbon cloth current collector and method of producing same
US7291186B2 (en) * 2004-11-01 2007-11-06 Teck Cominco Metals Ltd. Solid porous zinc electrodes and methods of making same
WO2009111744A2 (en) * 2008-03-07 2009-09-11 Mobius Power, Inc. Electrochemical cells with tabs
JP2010108904A (en) * 2008-10-02 2010-05-13 Toyota Motor Corp Metal-air battery
JP5104942B2 (en) * 2008-11-27 2012-12-19 トヨタ自動車株式会社 Air secondary battery
JP5382573B2 (en) 2009-02-19 2014-01-08 国立大学法人三重大学 Lithium air battery
US9281539B2 (en) * 2009-07-14 2016-03-08 Kawasakai Jukogyo Kabushiki Kaisha Electrical storage device including fiber electrode, and method of fabricating the same
CN101752627B (en) * 2010-01-20 2012-06-06 中国科学院上海微系统与信息技术研究所 High-energy-density metal lithium-air battery and production method thereof
JP5449522B2 (en) * 2010-06-25 2014-03-19 株式会社東芝 Air battery
JP5594247B2 (en) * 2011-07-25 2014-09-24 トヨタ自動車株式会社 Non-aqueous electrolyte lithium-air secondary battery positive electrode and method for producing the same
JP2013089339A (en) * 2011-10-14 2013-05-13 Toyota Industries Corp Nonaqueous electrolyte secondary battery
JP5747237B2 (en) * 2011-12-28 2015-07-08 国立研究開発法人産業技術総合研究所 Liquid and polymer-free lithium-air batteries using inorganic solid electrolytes
JP5942549B2 (en) * 2012-04-02 2016-06-29 ソニー株式会社 Air battery, method of using air battery, and electronic device

Also Published As

Publication number Publication date
CN104241731B (en) 2016-08-17
JP2014238985A (en) 2014-12-18
DE102014209784A1 (en) 2014-12-11
DE102014209784B4 (en) 2022-02-17
CN104241731A (en) 2014-12-24
IN2014DE01342A (en) 2015-06-12

Similar Documents

Publication Publication Date Title
JP6155864B2 (en) Positive electrode structure of lithium air battery and positive electrode manufacturing method
JP5945990B2 (en) Air battery and air battery stack using the same
CN105914037B (en) Electrical storage device and its manufacturing method
EP3331083B1 (en) Method for manufacturing secondary battery and method for manufacturing electrode assembly
KR101424377B1 (en) Thin battery
WO2014134783A1 (en) Bipolar battery, manufacturing method thereof and vehicle
JP6780345B2 (en) Power storage device and manufacturing method of power storage device
JP2008117626A (en) Bipolar type secondary battery
MX2012011032A (en) Cell module.
JP2019530176A (en) Method for manufacturing electrode unit for battery cell and electrode unit
KR101797338B1 (en) Secondary battery
KR100644529B1 (en) Separator sheet and method for manufacturing electric double layer capacitor using the same
JP2013097931A (en) Manufacturing method of electrochemical element of thin film type
KR20130103202A (en) Electrode assembly and rechargeable battery with the same
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP4704669B2 (en) Flat plate electrochemical cell and manufacturing method thereof
KR101305242B1 (en) Secondary Battery of Novel Structure
JP2016039094A (en) Laminated battery and battery module
US20180053975A1 (en) Battery module having improved cooling structure
JP6560876B2 (en) Laminated battery and method of manufacturing the same
KR101546002B1 (en) electrochemical energy storage device
CN216251005U (en) Lithium battery
JP2019057473A (en) Electrochemical cell
JP6665729B2 (en) Lithium-air battery cathode structure
CN214848938U (en) Battery cell structure and lithium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6155864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151