JP6150164B2 - 情報検出装置、移動体機器制御システム、移動体及び情報検出用プログラム - Google Patents

情報検出装置、移動体機器制御システム、移動体及び情報検出用プログラム Download PDF

Info

Publication number
JP6150164B2
JP6150164B2 JP2013138130A JP2013138130A JP6150164B2 JP 6150164 B2 JP6150164 B2 JP 6150164B2 JP 2013138130 A JP2013138130 A JP 2013138130A JP 2013138130 A JP2013138130 A JP 2013138130A JP 6150164 B2 JP6150164 B2 JP 6150164B2
Authority
JP
Japan
Prior art keywords
information
image
parallax
road surface
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013138130A
Other languages
English (en)
Other versions
JP2015011619A (ja
Inventor
高橋 禎郎
禎郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013138130A priority Critical patent/JP6150164B2/ja
Publication of JP2015011619A publication Critical patent/JP2015011619A/ja
Application granted granted Critical
Publication of JP6150164B2 publication Critical patent/JP6150164B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Description

本発明は、車両や鉄道などの移動体の周囲を複数の撮像手段により撮像した複数の撮像画像に基づいて当該移動体が移動する移動面やその他の物体などの移動体周囲情報を検出する情報検出装置、移動体機器制御システム、移動体及び情報検出用プログラムに関するものである。
自動車の安全性において、従来は、歩行者や他車両と衝突したときに、いかに歩行者を守れるか、乗員を保護できるかの観点から、自動車のボディー構造などの開発が行われてきた。しかしながら、近年、情報処理技術、画像処理技術の発達により、高速に歩行者や他車両を検出する技術が開発されてきている。これらの技術を応用して、衝突する前に自動的にブレーキをかけ、衝突を未然に防ぐという自動車もすでに発売されている。自動的にブレーキをかけるには、歩行者や他車両までの距離を正確に測定する必要があり、そのために、ミリ波レーダやレーザレーダによる測距、ステレオカメラによる測距などが実用化されている。
ステレオカメラにより物体の三次元的な位置や大きさを検出する装置としては、例えば、特許文献1に記載された道路形状認識装置(情報検出装置)が知られている。この道路形状認識装置は、ステレオカメラを用いて自車両(移動体)の前方領域を撮像し、一方のカメラで撮像した基準画像と他方のカメラで撮像した比較画像の各画像データに対して順次ステレオマッチング処理を施す。そして、基準画像の画素(算出処理単位領域)ごとに視差を順次算出し、この視差と画像上の画素座標とから、三角測量の原理に基づき、距離データDを算出する。この距離データDは、撮像画像上の各画素について算出した実空間上の距離Z(自車両から当該画素に映し出された対象物までの距離)と、高さY(自車両の真下の道路面に対する当該対象物の高さ)とから構成される情報である。このように算出される距離データDの中から、先行車両等の検出対象物までの距離(移動体周囲の情報)を認識することができる。また、道路面を映し出している画素についての距離データDを抽出し、その分布状態を求めることで、自車両前方における道路面の三次元形状(移動体周囲の情報)を認識することができる。
このような移動体周囲の情報を検出する従来の情報検出装置は、道路面等の移動面の情報を検出する場合も、移動面とは異なる検出対象物(例えば、他車両、歩行者、車線境界線やマンホール蓋などの路面構成物、電柱、ガードレール、縁石、中央分離帯などの路側構造物など)の情報を検出する場合も、同じ視差画像情報を用いて情報の検出を行っている。ところが、移動面の情報検出処理と、移動面とは異なる検出対象物の情報検出処理の両方に同じ視差画像情報を用いると、次の理由から、これらの情報検出処理において適切な処理の両立が困難であるという問題が判明した。
情報検出処理に用いられる視差画像情報には、上述したステレオマッチング処理によりマッチング基準を満たした基準画像の画素についての視差値は含まれるが、マッチング基準を満たさない基準画像の画素についての視差値は含まれないことになる。ステレオマッチング処理は、一般に、基準画像上で設定した画像部分(視差算出対象箇所)を基準とした所定領域内の画素分布の特徴と一致し又は所定の近似範囲内に含まれる特徴をもった所定領域についての画像部分(対応箇所)を、他の画像部分とは区別して、比較画像内から特定するという処理を行う。そのため、ステレオマッチング処理で適切な対応箇所を特定するためには、当該画像部分に特徴的な画素値分布が存在することが望まれる。このとき、特徴量の近似範囲(マッチング条件)を広く設定すれば、視差画像情報に含まれる視差値の数は増えて情報量が多くなるものの、不適切な対応箇所が特定される画素数が増える結果、誤差を含む視差値の数が多くなる。逆に、特徴量の近似範囲を狭く設定すれば、視差画像情報に含まれる視差値の数は減って情報量が少なくなるものの、不適切な対応箇所が特定される画素数が減る結果、誤差を含む視差値の数が少なくなる。
移動面の情報検出処理においては、その移動面を映し出す画像領域の撮像画像中に占める割合が比較的大きいことから、その移動面を映し出す画像領域について得られる視差値の数が比較的多い。そのため、移動面の情報検出処理に用いられる視差画像情報の情報量は十分な量であり、より高精度な情報処理検出を実現する上では、その視差画像情報の誤差を小さくすることが望まれる。よって、移動面の情報検出処理に用いる視差画像情報としては、視差値算出の際のマッチング処理におけるマッチング精度を高くして誤差を少なくした視差画像情報が好適である。
これに対し、移動面とは異なる検出対象物の情報検出処理においては、その検出対象物を映し出す画像領域の撮像画像中に占める割合が比較的小さいことから、その検出対象物を映し出す画像領域について得られる視差値の数が比較的少ない。そのため、検出対象物の情報検出処理に用いられる視差画像情報の情報量が不十分になりやすい。一般に、個々の検出対象物についての視差画像情報の情報量が不十分だと、当該検出対象物の検出ミスが増えてしまうので、視差画像情報に多少の誤差が含まれているとしても、視差画像情報の情報量を増やす方が、漏れのない情報検出処理が可能となる。よって、移動面とは異なる検出対象物の情報検出処理については、多少の誤差が含まれるとしても視差画像情報の情報量を増やす方が、より適切な情報検出処理を実現できる。したがって、移動面とは異なる検出対象物の情報検出処理に用いる視差画像情報としては、視差値算出の際のマッチング処理におけるマッチング精度を低くして、より多くの画素について視差値が得られるようにした視差画像情報が好適である。
以上より、移動面の情報検出処理と、移動面とは異なる検出対象物の情報検出処理とでは、マッチング処理に求められるマッチング精度の要求が異なる。そのため、これらの情報検出処理の両方について同じ視差画像情報を用いたのでは、それぞれの情報検出処理において適切な処理を行うことが困難となる。
本発明は、以上の問題に鑑みなされたものであり、その目的とするところは、移動面の情報検出処理と移動面とは異なる検出対象物の情報検出処理との両方について適切な情報検出処理を実現可能な情報検出装置、移動体機器制御システム、移動体及び情報検出用プログラムを提供することである。
前記目的を達成するために、本発明は、移動面上を移動する移動体に搭載された複数の撮像手段により移動体周囲を撮像して得られる複数の撮像画像から生成される視差画像情報に基づいて、該移動体周囲の情報を検出する情報検出装置において、少なくとも1つの撮像画像における各算出処理単位領域の特徴量を算出する特徴量算出手段と、前記視差画像情報のうち、前記特徴量が第1条件を満たす算出処理単位領域に対応する視差画像情報を用いて、前記移動面の情報を検出する移動面情報検出処理を行う移動面情報検出手段と、前記視差画像情報のうち、前記特徴量が前記第1条件とは異なる第2条件を満たす算出処理単位領域に対応する視差画像情報を用いて、前記移動体周囲に存在する前記移動面とは異なる検出対象物の情報を検出する対象物情報検出処理を行う対象物情報検出手段とを有することを特徴とする。
本発明によれば、移動面の情報検出処理と移動面とは異なる検出対象物の情報検出処理との両方について適切な情報検出処理が実現可能となるという優れた効果が得られる。
実施形態における車載機器制御システムの概略構成を示す模式図である。 同車載機器制御システムを構成する撮像ユニット及び画像解析ユニットの概略構成を示す模式図である。 左右のカメラで撮影したときの視差を説明する図である。 図2における処理ハードウェア部および画像解析ユニットで実現される物体検出処理を説明するための処理ブロック図である。 実施形態におけるテクスチャ量の算出処理に関する処理ブロック図である。 テクスチャ量の算出方法の一例を説明するための説明図である。 テクスチャ量の算出方法の他の例を説明するための説明図である。 テクスチャ量を算出する画素に応じて第1閾値及び第2閾値を変更する一例を示した処理ブロック図である。 図8の例において選択される第1閾値及び第2閾値の閾値セットのデータテーブルの一例を示す説明図である。 (a)は視差画像の視差値分布の一例を示す説明図である。(b)は、同(a)の視差画像の行ごとの視差値頻度分布を示す行視差分布マップ(Vマップ)を示す説明図である。 一方の撮像部で撮像される基準画像の一例を模式的に表した画像例である。 図11の画像例に対応するVマップを示す説明図である。 実施形態における抽出条件を説明するためのVマップを示す説明図である。 相対的に上り傾斜である路面のVマップ情報を示す説明図である。 自車両が加速している時の路面のVマップ情報を示す説明図である。 Vマップ生成部の一例の処理ブロック図である。 Vマップ生成部の他の例の処理ブロック図である。 処理例1に係るVマップ情報生成処理の流れを示すフローチャートである。 視差画像上に設定される路面画像候補領域を説明するための説明図である。 処理例2に係るVマップ情報生成処理の流れを示すフローチャートである。 路面形状検出部内の処理ブロック図である。 第1路面候補点検出処理の検出方法を説明するための説明図である。 路面候補点検出部で行う路面候補点検出処理の流れを示すフローチャートである。 Vマップを3つの区間(視差値区画)に区分けした一例を示す説明図である。 Vマップを3つの区間(視差値区画)に区分けした他の例を示す説明図である。 (a)は、最終の第四区間が本来の区間幅(視差値範囲)より狭い幅しか設定できない場合の説明図である。(b)は、当該最終の第四区間をひとつ前の第三区間と結合して、ひとつの区間(第三区間)として設定した例の説明図である。 区分直線近似部で行う区分直線近似処理の流れを示すフローチャートである。 (a)は、当初の区間を示す説明図であり、(b)は、当初の第一区間を延長した後の区間を示す説明図である。 (a)は、当初の区間を示す説明図であり、(b)は、当初の第二区間を延長した後の区間を示す説明図である。 (a)は、得られた各区間の近似直線が区間境界で連続にならない状態を示す説明図である。(b)は、各区間の近似直線が区間境界において連続になる修正した例を示す説明図である。 一方の撮像部で撮像される基準画像の一例を模式的に表した画像例である。 図23の画像例に対応するUマップを示す説明図である。 孤立領域検出部で行う処理の流れを示すフローチャートである。 孤立領域検出部で行うラベリング処理の説明図である。 同ラベリング処理において周囲に異なるラベルが存在するときの処理を説明するための説明図である。 孤立領域検出部で検出された孤立領域が内接する矩形領域を設定したUマップを示す説明図である。 図28に示したUマップに対応する視差画像を模式的に示した説明図である。 オブジェクトライン群の外接矩形を設定した視差画像を示す説明図である。 視差画像の対応領域検出部及びオブジェクト領域抽出部で行われる処理の流れを示すフローチャートである。 オブジェクトタイプの分類を行うためのテーブルデータの一例を示す表である。 ガードレール検出部で行われるガードレール検出処理の流れを示すフローチャートである。 ガードレール検出処理の対象範囲について直線近似処理して得られる近似直線を示したUマップを示す説明図である。 得られた近似直線からガードレール候補座標を検出する説明のための説明図である。 図23に示した画像例に対応する視差画像上に、ガードレール検出部が検出したガードレール領域を示した説明図である。 自車両の前輪の舵角から消失点の画像左右方向位置Vxを検出する原理を示す説明図である。 自車両のヨーレート及び車速から消失点の画像左右方向位置Vxを検出する原理を示す説明図である。 自車両の加速時や減速時に消失点の画像上下方向位置Vyが変化することを示す説明図である。 変形例1における主要な処理の流れを示すフローチャートである。 路面の消失点と視差画像の下端中心とを結ぶ直線を境界にして左右に二分割した視差画像の例を示す説明図である。 消失点と視差画像左下点とを結ぶ直線L3と、消失点と視差画像右下点とを結ぶ直線L4とを設定した視差画像の例を示す説明図である。 図50の視差画像に対して、ひとつの画像走査ラインL5を設定したときの説明図である。 2つの直線L3,L4と画像走査ラインとの両交点以外の画像走査ライン上の視差値を線形補間したときの説明図である。 変形例2において、路面の消失点と視差画像の左1/4の下端地点とを結ぶ直線L6と、路面の消失点と視差画像の右1/4の下端地点とを結ぶ直線L7とを境界にして左右に三分割した視差画像の例を示す説明図である。 図53の視差画像に対し、ひとつの画像走査ラインL5を設定したときの説明図である。 3つの直線L3,L4,L8と画像走査ラインとの両交点以外の画像走査ライン上の視差値を線形補間したときの説明図である。
以下、本発明に係る移動面情報検出装置である路面検出装置を、移動体機器制御システムである車載機器制御システムに用いた一実施形態について説明する。
図1は、本実施形態における車載機器制御システムの概略構成を示す模式図である。
本車載機器制御システムは、移動体である自動車などの自車両100に搭載された撮像ユニットで撮像した自車両進行方向前方領域(撮像領域)の撮像画像データから、自車両前方の路面(移動面)の相対的な高さ情報(相対的な傾斜状況を示す情報)を検知する。そして、その検知結果から、自車両前方の走行路面の3次元形状を検出することができるので、その検出結果を利用して各種車載機器の制御を行う。
本実施形態の車載機器制御システムは、走行する自車両100の進行方向前方領域を撮像領域として撮像する撮像ユニット101が設けられている。この撮像ユニット101は、例えば、自車両100のフロントガラス105のルームミラー(図示せず)付近に設置される。撮像ユニット101の撮像によって得られる撮像画像データ等の各種データは、画像処理手段としての画像解析ユニット102に入力される。画像解析ユニット102は、撮像ユニット101から送信されてくるデータを解析して、自車両100が走行している路面部分(自車両の真下に位置する路面部分)に対する自車両前方の走行路面上の各地点における相対的な高さ(位置情報)を検出し、自車両前方の走行路面の3次元形状を把握する。
画像解析ユニット102の認識結果は、車両走行制御ユニット106に送られる。車両走行制御ユニット106は、画像解析ユニット102による走行路面の相対傾斜状況の認識結果に基づいて自車両前方の他車両、歩行者、各種障害物などの認識対象物を認識し、その認識結果に基づいて、自車両100の運転者へ警告を報知したり、自車両のハンドルやブレーキを制御するなどの走行支援制御を行ったりする。
図2は、撮像ユニット101及び画像解析ユニット102の概略構成を示す模式図である。
撮像ユニット101は、撮像手段としての2つの撮像部110A,110Bを備えたステレオカメラで構成されており、2つの撮像部110A,110Bは同一のものである。各撮像部110A,110Bは、それぞれ、撮像レンズ111A,111Bと、受光素子が2次元配置された画像センサ113A,113Bを含んだセンサ基板114A,114Bと、センサ基板114A,114Bから出力されるアナログ電気信号(画像センサ113A,113B上の各受光素子が受光した受光量)をデジタル電気信号に変換した撮像画像データを生成して出力する信号処理部115A,115Bとから構成されている。本実施形態の撮像ユニット101からは、輝度画像データと視差画像データが出力される。
また、撮像ユニット101は、FPGA(Field-Programmable Gate Array)等からなる処理ハードウェア部120を備えている。この処理ハードウェア部120は、各撮像部110A,110Bから出力される輝度画像データから視差画像を得るために、各撮像部110A,110Bでそれぞれ撮像した撮像画像間の対応画像部分の視差値を演算する視差画像情報生成手段としての視差演算部121を備えている。
ここでいう視差値とは、各撮像部110A,110Bでそれぞれ撮像した撮像画像の一方を基準画像、他方を比較画像とし、撮像領域内の同一地点に対応した基準画像上の画像部分に対する比較画像上の画像部分の位置ズレ量を、当該画像部分の視差値として算出したものである。三角測量の原理を利用することで、この視差値から当該画像部分に対応した撮像領域内の当該同一地点までの距離を算出することができる。図3を参照して説明すれば、被写体301上にあるO点に対する左右画像での結像位置は、結像中心からの距離がそれぞれΔ1とΔ2となる。このときの視差値dは、Δ=Δ1+Δ2と規定することができる。
一方、画像解析ユニット102は、画像処理基板等から構成され、撮像ユニット101から出力される輝度画像データ及び視差画像データを記憶するRAMやROM等で構成される記憶手段122と、識別対象の認識処理や視差計算制御などを行うためのコンピュータプログラムを実行するCPU(Central Processing Unit)123とを備えている。
処理ハードウェア部120を構成するFPGAは、画像データに対してリアルタイム性が要求される処理、例えばガンマ補正、ゆがみ補正(左右の撮像画像の平行化)、ブロックマッチングによる視差演算を行って視差画像の情報を生成し、画像解析ユニット102のRAMに書き出す処理などを行う。このとき、後述する各画素のテクスチャ量も計算し、視差画像と同様にRAMに書き出す処理を行う。画像解析ユニット102のCPUは、各撮像部110A,110Bの画像センサコントローラの制御および画像処理基板の全体的な制御を担うとともに、路面の3次元形状の検出処理、ガードレールその他の各種オブジェクト(識別対象物)の検出処理などを実行するプログラムをROMからロードして、RAMに蓄えられた輝度画像データや視差画像データを入力として各種処理を実行し、その処理結果をデータIFやシリアルIFから外部へと出力する。このような処理の実行に際し、データIFを利用して、自車両100の車速、加速度(主に自車両前後方向に生じる加速度)、操舵角、ヨーレートなどの車両動作情報を入力し、各種処理のパラメータとして使用することもできる。外部に出力されるデータは、自車両100の各種機器の制御(ブレーキ制御、車速制御、警告制御など)を行うための入力データとして使用される。
次に、本実施形態における路面の3次元形状を検出する路面形状検出処理を含んだ物体検出処理について説明する。
図4は、図2における処理ハードウェア部120および画像解析ユニット102で実現される物体検出処理を説明するための処理ブロック図である。
ステレオカメラを構成する2つの撮像部110A,110Bからは輝度画像データが出力される。このとき、撮像部110A,110Bがカラーの場合には、そのRGB信号から輝度信号(Y)を得るカラー輝度変換を、例えば下記の式(1)を用いて行う。
Y = 0.3R + 0.59G + 0.11B ・・・(1)
輝度画像データが入力されると、まず、平行化画像生成部131で平行化画像生成処理を実行する。この平行化画像生成処理は、撮像部110A,110Bにおける光学系の歪みや左右の撮像部110A,110Bの相対的な位置関係から、各撮像部110A,110Bから出力される輝度画像データ(基準画像と比較画像)を、2つのピンホールカメラが平行に取り付けられたときに得られる理想的な平行化ステレオ画像となるように変換する。これは、各画素での歪み量を、Δx=f(x,y)、Δy=g(x,y)という多項式を用いて計算し、その計算結果を用いて、各撮像部110A,110Bから出力される輝度画像データ(基準画像と比較画像)の各画素を変換する。多項式は、例えば、x(画像の横方向位置)、y(画像の縦方向位置)に関する5次多項式に基づく。
このようにして平行化画像処理を行った後、次に、視差演算部121によって構成される視差画像生成部132において、視差画像データ(視差画像情報)を生成する視差画像生成処理を行う。視差画像生成処理では、まず、2つの撮像部110A,110Bのうちの一方の撮像部110Aの輝度画像データを基準画像データとし、他方の撮像部110Bの輝度画像データを比較画像データとし、これらを用いて両者の視差を演算して、視差画像データを生成して出力する。この視差画像データは、基準画像データ上の各画像部分について算出される視差値dに応じた画素値をそれぞれの画像部分の画素値として表した視差画像を示すものである。
具体的には、視差画像生成部132は、基準画像データのある行について、一の注目画素を中心とした複数画素(例えば16画素×1画素)からなるブロックを定義する。一方、比較画像データにおける同じ行において、定義した基準画像データのブロックと同じサイズのブロックを1画素ずつ横ライン方向(X方向)へずらし、基準画像データにおいて定義したブロックの画素値の特徴を示す特徴量と比較画像データにおける各ブロックの画素値の特徴を示す特徴量との相関を示す相関値を、それぞれ算出する。そして、算出した相関値に基づき、比較画像データにおける各ブロックの中で最も基準画像データのブロックと相関があった比較画像データのブロックを選定するマッチング処理を行う。その後、基準画像データのブロックの注目画素と、マッチング処理で選定された比較画像データのブロックの対応画素との位置ズレ量を視差値dとして算出する。このような視差値dを算出する処理を基準画像データの全域又は特定の一領域について行うことで、視差画像データを得ることができる。
マッチング処理に用いるブロックの特徴量としては、例えば、ブロック内の各画素の値(輝度値)を用いることができ、相関値としては、例えば、基準画像データのブロック内の各画素の値(輝度値)と、これらの画素にそれぞれ対応する比較画像データのブロック内の各画素の値(輝度値)との差分の絶対値の総和を用いることができる。この場合、当該総和が最も小さくなるブロックが最も相関があると言える。
視差画像生成部132でのマッチング処理をハードウェア処理によって実現する場合には、例えばSSD(Sum of Squared Difference)、ZSSD(Zero-mean Sum of Squared Difference)、SAD(Sum of Absolute Difference)、ZSAD(Zero-mean Sum of Absolute Difference)などの方法を用いることができる。なお、マッチング処理では画素単位での視差値しか算出できないので、1画素未満のサブピクセルレベルの視差値が必要な場合には推定値を用いる必要がある。その推定方法としては、例えば、等角直線方式、二次曲線方式等を利用することができる。ただし、このサブピクセルレベルの推定視差値には誤差が発生するので、この推定誤差を減少させるEEC(推定誤差補正)などを用いてもよい。
図5は、本実施形態におけるテクスチャ量の算出処理に関する処理ブロック図である。
上述した視差画像生成処理を行ったら、次に、テクスチャ量算出処理部143において、基準画像データの各画素(算出処理単位領域)の特徴量としてのテクスチャ量を算出する処理を行う。ここでいう特徴量は、当該画素(注目画素)を基準とした所定領域内の画素値分布に関する特徴を示す指標値である。本実施形態では、この特徴量として、注目画素を中心とした左右方向の濃淡度合いを示すテクスチャ量を用いる。
具体的には、図6に示すように、一の注目画素Xを中心とした5つの画素(5画素×1画素)からなるブロックを定義し、当該ブロックを構成する左2つの画素A,Bの画素値の和と、当該ブロックを構成する右2つの画素C,Dの画素値の和との差分値の絶対値を、当該注目画素Xのテクスチャ量Tとして算出する。また、図7に示すように、一の注目画素Xを中心とした15つの画素(5画素×3画素)からなるブロックを定義し、当該ブロックを構成する左2列の画素E,F,A,B,J,Kの画素値の和と、当該ブロックを構成する右2列の画素G,H,C,D,L,Mの画素値の和との差分値の絶対値に1/3を乗じた値を、当該注目画素Xのテクスチャ量Tとして算出してもよい。また、縦横のエッジ量(縦方向の輝度差分と横方向の輝度差分)の大小を比較できる傾き角(エッジの角度)を特徴量として用いることも可能である。この場合、その傾きが垂直に近いほど特徴量が大きくなるようにする。
このテクスチャ量Tは、当該注目画素についての視差値を算出する際に行われる上述したマッチング処理時のマッチング精度と高い相関関係のある指標値である。よって、テクスチャ量Tが大きな画素ほど、マッチング処理の精度が高く、算出される視差値に誤差の含まれる可能性が低いと考えることができる。本実施形態では、自車両100の前方路面の3次元形状を検出する際に使用されるVマップ生成用の視差画素データを選別したり、識別対象物(オブジェクト)を識別する際に使用されるUマップ生成用の視差画素データを選別したりする際に、このテクスチャ量Tを用いる。
詳しく説明すると、Vマップ生成用の視差画素データ、言い換えると、路面情報(路面形状等)の検出に用いる視差画素データには、前記視差画像生成部132で生成される各視差画素データのうち、対応するテクスチャ量が第1閾値以上であるという選定条件(第1条件)を満たす視差画素データを用いる。一方、Uマップ生成用の視差画素データ、言い換えると、路面以外の物体の情報(歩行者、他車両等の距離等)の検出に用いる視差画素データには、前記視差画像生成部132で生成される各視差画素データのうち、対応するテクスチャ量が第2閾値以上であるという選定条件(第2条件)を満たす視差画素データを用いる。ここで、Vマップ生成用の視差画素データの選定条件で用いる第1閾値は、Uマップ生成用の視差画素データの選定条件で用いる第2閾値よりも高い値に設定される。
したがって、Vマップ用の視差画素データは、Uマップ用の視差画素データよりも、誤差は少ないが、その視差画素データの選定率も低いのでVマップの生成に用いられる視差画素データの情報量の削減率は高いものとなる。逆に、Uマップ用の視差画素データは、Vマップ用の視差画素データよりも、誤差は多いが、その視差画素データの選定率も高いのでUマップの生成に用いられる視差画素データの情報量の削減率は低いものとなる。
本実施形態では、後述での処理を考慮し、テクスチャ量算出処理部143において、上述のようにして算出されるテクスチャ量Tを3値化した3値化テクスチャ量Tqを算出する。具体的には、図5に示すように、テクスチャ量算出処理部143のテクスチャ量算出部143Aにおいてテクスチャ量Tを算出し、閾値セット部143Bによりセットされた第1閾値と第2閾値を用いて、3値化部143Cにおいてテクスチャ量算出部143Aが算出したテクスチャ量Tを3値化する。このようにして、例えば、第2閾値未満のテクスチャ量Tは「0」、第2閾値以上第1閾値未満のテクスチャ量Tは「1」、第1閾値以上のテクスチャ量Tは「2」とした3値化テクスチャ量Tqを得る。
また、本実施形態における第1閾値及び第2閾値は、テクスチャ量を算出するいずれの画素に対しても同じ値であってもよいが、テクスチャ量を算出する画素に応じて第1閾値又は第2閾値の少なくとも一方を変更するようにしてもよい。
図8は、テクスチャ量を算出する画素に応じて第1閾値及び第2閾値を変更する一例を示した処理ブロック図である。図8の例では、基準画像における2以上の画素で構成されるブロック(平均値算出領域)を定義し、そのブロック内の平均画素値に応じて、当該ブロックに対応する画素の3値化テクスチャ量Tqを算出する際の第1閾値及び第2閾値を変更する。このときのブロックは、テクスチャ量を算出する際に用いるブロック(5画素×1画素)と同じであってもよいし、異なるものであってもよい。
本実施形態では、テクスチャ量を算出する際に用いるブロック(5画素×1画素)を用い、平均輝度算出部143Dにおいて、そのブロック内の平均画素値(平均輝度)を算出する。そして、閾値セット選択部143Eでは、平均輝度算出部143Dが算出した平均画素値(平均輝度)が大きいほど、当該ブロックに対応する画素の3値化テクスチャ量Tqを算出するための閾値セットとして、第1閾値t1及び第2閾値t2の値が高いものを、図9に示すデータテーブルから選択する。これは、平均輝度が大きいほど、画像のコントラストが高いと考えられるので高めのテクスチャ量が算出されやすく、平均輝度が小さいほど、画像のコントラストが低いと考えられるので、低めのテクスチャ量が算出されやすいことを考慮したものである。3値化部143Cでは、選択された閾値セットの第1閾値t1と第2閾値t2を用いて、テクスチャ量算出部143Aが算出したテクスチャ量Tを3値化する。
このようにしてテクスチャ量の算出処理を行った後、次に、Vマップ用視差データ選定部144において、前記視差画像生成部132で生成される各視差画素データのうち、対応するテクスチャ量が第1閾値以上であるという選定条件(第1条件)を満たす視差画素データを選定する処理を実行する。具体的には、テクスチャ量算出処理部143が算出した3値化テクスチャ量Tqが「2」である画素についての視差画素データを選定する。
このようにしてVマップ生成用の視差画素データを選定したら、次に、Vマップ生成部133において、Vマップ用視差データ選定部144が選定した視差画素データを用いてVマップを生成するVマップ生成処理を実行する。視差画像データに含まれる各視差画素データは、x方向位置とy方向位置と視差値dとの組(x,y,d)で示されるところ、これを、X軸にd、Y軸にy、Z軸に頻度fを設定した三次元座標情報(d,y,f)に変換したもの、又はこの三次元座標情報(d,y,f)から所定の頻度閾値を超える情報に限定した二次元座標情報(d,y,f)を、視差ヒストグラム情報として生成する。本実施形態の視差ヒストグラム情報は、三次元座標情報(d,y,f)からなり、この三次元ヒストグラム情報をX−Yの2次元座標系に分布させたものを、Vマップ(視差ヒストグラムマップ)と呼ぶ。
具体的に説明すると、Vマップ生成部133は、画像を上下方向に複数分割して得られる視差画像データの各行領域について、視差値頻度分布を計算する。この視差値頻度分布を示す情報が視差ヒストグラム情報である。具体例を挙げて説明すると、図10(a)に示すような視差値分布をもった視差画像データが入力されたとき、Vマップ生成部133は、行ごとの各視差値のデータの個数の分布である視差値頻度分布を計算し、これを視差ヒストグラム情報として出力する。このようにして得られる各行の視差値頻度分布の情報を、Y軸に視差画像上のy方向位置(撮像画像の上下方向位置)をとりX軸に視差値をとった二次元直交座標系上に表すことで、図10(b)に示すようなVマップを得ることができる。このVマップは、頻度fに応じた画素値をもつ画素が前記二次元直交座標系上に分布した画像として表現することもできる。
次に、本実施形態では、視差画像生成部132が生成したVマップの情報(視差ヒストグラム情報)から、路面形状検出部134において、自車両100の前方路面の3次元形状を検出する路面形状検出処理が実行される。
図11は、撮像部110Aで撮像される基準画像の一例を模式的に表した画像例である。
図12は、図11の画像例に対応するVマップである。
図11に示す画像例では、自車両100が走行している路面と、自車両100の前方に存在する先行車両と、路外に存在する電柱が映し出されている。この画像例は、自車両100の前方路面が相対的に平坦な路面、すなわち、自車両100の前方路面が自車両100の真下の路面部分と平行な面を自車両前方へ延長して得られる仮想の基準路面(仮想基準移動面)に一致している場合のものである。この場合、画像の下部に対応するVマップの下部において、高頻度の点は、画像上方へ向かうほど視差値dが小さくなるような傾きをもった略直線状に分布する。このような分布を示す画素は、視差画像上の各行においてほぼ同一距離に存在していてかつ最も占有率が高く、しかも画像上方へ向かうほど距離が連続的に遠くなる識別対象物を映し出した画素であると言える。
撮像部110Aでは自車両前方領域を撮像するため、その撮像画像の内容は、図11に示すように、画像上方へ向かうほど路面の視差値dは小さくなる。また、同じ行(横ライン)内において、路面を映し出す画素はほぼ同じ視差値dを持つことになる。したがって、Vマップ上において上述した略直線状に分布する高頻度の点は、路面(移動面)を映し出す画素が持つ特徴に対応したものである。よって、Vマップ上における高頻度の点を直線近似して得られる近似直線上又はその近傍に分布する点の画素は、高い精度で、路面を映し出している画素であると推定することができる。また、各画素に映し出されている路面部分までの距離は、当該近似直線上の対応点の視差値dから高精度に求めることができる。
ここで、Vマップ上における高頻度の点を直線近似する際、その直線近似処理に含める点をどの範囲まで含めるかは、その処理結果の精度を大きく左右する。すなわち、直線近似処理に含める範囲が広いほど、路面に対応しない点が多く含まれ、処理精度を落とすことになり、また、直線近似処理に含める範囲が狭いほど、路面に対応する点の数が少なく、やはり処理精度を落とす結果となる。そこで、本実施形態では、後述する直線近似処理の対象とする視差ヒストグラム情報部分を、以下のようにして抽出している。
図13は、本実施形態における抽出条件を説明するためのVマップを示す説明図である。
本実施形態のVマップ生成部133では、視差画像データを受け取ると、その視差画像データに含まれる各視差画素データ(x,y,d)を、三次元座標情報である視差ヒストグラム情報構成要素としてのVマップ要素(d,y,f)に変換して、視差ヒストグラム情報としてのVマップ情報を生成する。このとき、視差画像データの中から、画像上下方向位置yと視差値dとの関係が所定の抽出条件を満たす視差画素データを抽出し、その抽出した視差画素データを対象にして上述した変換を行い、Vマップ情報を生成する。
本実施形態における抽出条件は、自車両100の前方路面が自車両100の真下の路面部分と平行な面を自車両前方へ延長して得られる仮想の基準路面(仮想基準移動面)に対応する視差値dと画像上下方向位置yとの関係を基準として定まる所定の抽出範囲内に属するという条件である。この基準路面に対応する視差値dと画像上下方向位置yとの関係は、図13に示すように、Vマップ上において直線(以下「基準直線」という。)で示される。本実施形態では、この直線を中心に画像上下方向へ±δの範囲を、抽出範囲として規定している。この抽出範囲は、状況に応じて刻々と変化する実際の路面のVマップ要素(d,y,f)の変動範囲を含むように設定される。
具体的には、例えば、自車両前方の路面が相対的に上り傾斜である場合、当該路面が相対的に平坦である場合よりも、撮像画像中に映し出される路面画像部分(移動面画像領域)は画像上側へ広がる。しかも、同じ画像上下方向位置yに映し出される路面画像部分を比較すると、相対的に上り傾斜である場合には、相対的に平坦である場合よりも、視差値dが大きくなる。この場合のVマップ要素(d,y,f)は、Vマップ上において、図14に示すように、おおよそ、基準直線に対し、上側に位置し、かつ、傾き(絶対値)が大きい直線を示すものとなる。本実施形態では、前方の路面における相対的な上り傾斜が想定され得る範囲内であれば、その路面のVマップ要素(d,y,f)が抽出範囲内に収まる。
また、例えば、自車両前方の路面が相対的に下り傾斜である場合、そのVマップ要素(d,y,f)は、Vマップ上において、基準直線に対し、下側に位置し、かつ、傾き(絶対値)が小さい直線を示すものとなる。本実施形態では、前方の路面における相対的な下り傾斜が想定され得る範囲内であれば、その路面のVマップ要素(d,y,f)が抽出範囲内に収まる。
また、例えば、自車両100が速度を加速している加速時においては、自車両100の後方に加重がかかり、自車両の姿勢は、自車両前方が鉛直方向上側を向くような姿勢となる。この場合、自車両100の速度が一定である場合と比べて、撮像画像中に映し出される路面画像部分(移動面画像領域)は画像下側へシフトする。この場合のVマップ要素(d,y,f)は、Vマップ上において、図15に示すように、おおよそ、基準直線に対し、下側に位置し、かつ、基準直線とほぼ平行な直線を示すものとなる。本実施形態では、自車両100の加速が想定され得る範囲内であれば、その路面のVマップ要素(d,y,f)が抽出範囲内に収まる。
また、例えば、自車両100が速度を減速している減速時においては、自車両100の前方に加重がかかり、自車両の姿勢は、自車両前方が鉛直方向下側を向くような姿勢となる。この場合、自車両100の速度が一定である場合と比べて、撮像画像中に映し出される路面画像部分(移動面画像領域)は画像上側へシフトする。この場合のVマップ要素(d,y,f)は、Vマップ上において、おおよそ、基準直線に対し、上側に位置し、かつ、基準直線とほぼ平行な直線を示すものとなる。本実施形態では、自車両100の減速が想定され得る範囲内であれば、その路面のVマップ要素(d,y,f)が抽出範囲内に収まる。
図16は、Vマップ生成部133内の処理ブロック図である。
本実施形態のVマップ生成部133は、視差画像生成部132から出力される視差画像データを受け取ると、まず、車両動作情報入力部133Aにおいて、自車両100の加速度情報を含む車両動作情報を取得する。車両動作情報入力部133Aに入力される車両動作情報は、自車両100に搭載されている機器から取得してもよいし、撮像ユニット101に加速度センサ等の車両動作情報取得手段を搭載し、その車両動作情報取得手段から取得してもよい。
このようにして車両動作情報を取得したら、次に、視差画像路面領域設定部133Bにおいて、視差画像生成部132から取得した視差画像データに対し、撮像画像の一部である所定の路面画像候補領域(移動面画像候補領域)を設定する。この設定では、想定される状況の範囲内では路面が映し出されることがない領域を除外した画像領域を路面画像候補領域として設定する。具体的な設定方法としては、予め決められた固定の画像領域を路面画像候補領域として設定してもよいが、本実施形態においては、撮像画像内における路面の消失点を示す消失点情報に基づいて路面画像候補領域を設定する。
このようにして路面画像候補領域を設定したら、次に、処理範囲抽出部133Cにおいて、視差画像路面領域設定部133Bが設定した路面画像候補領域内の視差画像データの中から、上述した抽出条件を満たす視差画素データ(視差画像情報構成要素)を抽出する処理を行う。すなわち、Vマップ上において基準直線を中心にとした画像上下方向へ±δの範囲に属する視差値dと画像上下方向位置yとをもつ視差画素データを抽出する。このようにして抽出条件を満たす視差画素データを抽出した後、Vマップ情報生成部133Dにおいて、処理範囲抽出部133Cが抽出した視差画素データ(x,y,d)をVマップ要素(d,y,f)に変換して、Vマップ情報を生成する。
以上の説明では、Vマップ情報生成部133DでVマップ情報を生成する前段階の処理範囲抽出部133Cにおいて、路面画像部分に対応しない視差画像データ部分と区別して路面画像部分に対応する視差画像データ部分を抽出する例について説明したが、次のように、Vマップ情報を生成した後の段階で、同様の抽出処理を行ってもよい。
図17は、Vマップ情報を生成した後の段階で抽出処理を行う例におけるVマップ生成部133内の処理ブロック図である。
本例のVマップ生成部133では、視差画像路面領域設定部133Bにおいて路面画像候補領域を設定した後、まず、Vマップ情報生成部133Eにおいて、視差画像路面領域設定部133Bが設定した路面画像候補領域内の視差画素データ(x,y,d)をVマップ要素(d,y,f)に変換して、Vマップ情報を生成する。このようにしてVマップ情報を生成した後、処理範囲抽出部133Fにおいて、Vマップ情報生成部133Eが生成したVマップ情報の中から、上述した抽出条件を満たすVマップ要素を抽出する処理を行う。すなわち、Vマップ上において基準直線を中心にとした画像上下方向へ±δの範囲に属する視差値dと画像上下方向位置yとをもつVマップ要素を抽出する。そして、抽出したVマップ要素で構成されるVマップ情報を出力する。
〔処理例1〕
図18は、本実施形態におけるVマップ情報生成処理の一例(以下「処理例1」という。)の流れを示すフローチャートである。
本処理例1においては、車両動作情報(自車両前後方向の加速度情報)を用いずにVマップ情報を作成する例である。本処理例1においては、自車両100の加速度情報を用いないため、基準路面に対応する基準直線を中心にとした抽出範囲すなわち値δの大きさは、比較的大きなものを用いる。
本処理例1においては、まず、路面の消失点情報に基づいて路面画像候補領域を設定する(S1A)。路面の消失点情報を求める方法には特に制限はなく、公知の方法を広く利用することができる。本処理例1では、この路面の消失点情報(Vx,Vy)が示す消失点の画像上下方向位置Vyから所定のoffset値を引いた画像上下方向位置(Vy−offset値)から、当該視差画像データの画像上下方向位置yの最大値ysize(視差画像の最下部)までの範囲を、路面画像候補領域に設定する。また、画像上下方向位置が消失点に近い画像部分においては、その画像左右方向両端部分の画像領域に路面が映し出されることはあまり無い。そこで、この画像領域も除外して路面画像候補領域に設定してもよい。この場合、視差画像上に設定される路面画像候補領域は、図19に示すWABCDの各点で囲まれた領域となる。
このようにして路面画像候補領域を設定した後、本処理例1では、設定された路面画像候補領域内の視差画像データの中から、上述した抽出条件を満たす視差画素データ(視差画像情報構成要素)を抽出する処理を行う(S2A)。この処理では、予め設定されている固定の基準直線の情報と、その基準直線を基準とした抽出範囲を規定するための±δの情報とを用いて、当該抽出範囲に属する視差画素データを抽出する。その後、抽出した視差画素データ(x,y,d)をVマップ要素(d,y,f)に変換して、Vマップ情報を生成する(S3A)。
〔処理例2〕
図20は、本実施形態におけるVマップ情報生成処理の他の例(以下「処理例2」という。)の流れを示すフローチャートである。
本処理例2においては、車両動作情報(自車両前後方向の加速度情報)を用いてVマップ情報を作成する例である。まず、車両動作情報を入力したら(S1B)、この車両動作情報に含まれる自車両前後方向の加速度情報に基づき、消失点情報と基準直線の情報を補正する(S2B)。
消失点情報の補正は、次のようにして行う。例えば自車両100の加速時には、自車両後方部分が加重され、自車両100の姿勢は、自車両前方が鉛直方向上側を向くような姿勢となる。この姿勢変化により、路面の消失点は、画像下側へ変位することになるので、これ合わせて、路面の消失点情報の画像上下方向位置Vyを加速度情報に基づいて補正する。例えば自車両100の減速時にも、同様に、その加速度情報に基づいて路面の消失点情報の画像上下方向位置Vyを補正する。このような補正を行うことで、後述する消失点情報を用いた路面画像候補領域の設定処理において、路面を映し出している画像部分を適切に路面画像候補領域として設定することができる。
また、基準直線情報の補正は、次のようにして行う。基準直線情報は、基準直線の傾きαと、切片(画像左端と基準直線とが交わる点の画像上下方向位置)βとを含む情報である。例えば自車両100の加速時には、自車両後方部分が加重され、自車両100の姿勢は、自車両前方が鉛直方向上側を向くような姿勢となる。この姿勢変化により、路面を映し出す路面画像部分は、全体的に画像下側へ変位することになる。そこで、これに合わせて、抽出範囲を画像下側へシフトさせるために、その抽出範囲の基準となる基準直線の切片βを加速度情報に基づいて補正する。例えば自車両100の減速時にも、同様に、基準直線の切片βを加速度情報に基づいて補正する。このような補正を行うことで、抽出範囲内の視差画素データを抽出する処理において、路面を映し出している画像部分を適切に路面画像候補領域として設定することができる。このように加速度情報を用いて基準直線の情報を補正するので、抽出範囲を規定するδ値は、自車両の加速や減速を考慮しないでもよくなる。そのため、本処理例2の抽出範囲は、固定された基準直線を基準に抽出範囲を設定する上述の処理例1よりも、狭くすることができ、処理時間の短縮や路面検出精度の向上を図ることができる。
以上説明した2つの処理例1,2は、いずれも、Vマップ情報を生成する前段階で、路面画像部分に対応する視差画像データ部分を抽出する処理であるが、Vマップ情報を生成した後の段階で、路面画像部分に対応するVマップ要素を抽出する処理でも同様である。
次に、路面形状検出部134で行う処理について説明する。
路面形状検出部134では、Vマップ生成部133においてVマップ情報が生成されたら、路面に対応する視差値及びy方向位置の組(Vマップ要素)が示す特徴、すなわち、撮像画像の上方に向かうほど視差値が低くなるという特徴を示すVマップ上の高頻度の点を直線近似する処理を行う。なお、路面が平坦な場合には一本の直線で十分な精度で近似可能であるが、車両進行方向において路面の傾斜状況が変化するような路面については、一本の直線で十分な精度の近似は難しい。したがって、本実施形態においては、Vマップの情報(Vマップ情報)を視差値に応じて2以上の視差値区画に区分けし、各視差値区画についてそれぞれ個別に直線近似を行う。
図21は、路面形状検出部134内の処理ブロック図である。
本実施形態の路面形状検出部134は、Vマップ生成部133から出力されるVマップ情報(Vマップ情報)を受け取ると、まず、路面候補点検出部134Aにおいて、路面に対応するVマップ要素が示す特徴、すなわち、撮像画像の上方に向かうほど視差値が低くなるという特徴を示すVマップ上の高頻度の点を、路面候補点として検出する。
このとき、本実施形態では、路面候補点検出部134Aでの路面候補点検出処理は、Vマップの情報(Vマップ情報)を視差値に応じて2以上の視差値区画に区分けし、各視差値区画にそれぞれ対応した決定アルゴリズムに従って各視差値区画における路面候補点を決定する。具体的には、例えば、所定の基準距離に対応する視差値を境に、VマップをX軸方向(横軸方向)に2つの領域、すなわち視差値の大きい領域と小さい領域に区分けし、その領域ごとに異なる路面候補点検出アルゴリズムを用いて路面候補点を検出する。なお、視差値の大きい近距離領域については、後述する第1路面候補点検出処理を行い、視差の小さい遠距離領域については、後述する第2路面候補点検出処理を行う。
ここで、前記のように視差の大きい近距離領域と視差の小さい遠距離領域とで、路面候補点検出処理の方法を変える理由について説明する。
図11に示したように、自車両100の前方を撮像した撮像画像で、近距離の路面部分についてはその路面画像領域の占有面積が大きく、路面に対応する画素数が多いので、Vマップ上の頻度が大きい。これに対し、遠距離の路面部分については、その路面画像領域の撮像画像内における占有面積が小さく、路面に対応する画素数が少ないので、Vマップ上の頻度が小さい。すなわち、Vマップにおいて、路面に対応する点の頻度値は、遠距離では小さく、近距離では大きい。そのため、例えば同じ頻度閾値を用いるなど、両領域について同じ基準で路面候補点を検出しようとすると、近距離領域については路面候補点を適切に検出できるが、遠距離領域については路面候補点が適切に検出できないおそれがあり、遠距離領域の路面検出精度が劣化する。逆に、遠距離領域の路面候補点を十分に検出できるような基準で近距離領域の検出を行うと、近距離領域のノイズ成分が多く検出され、近距離領域の路面検出精度が劣化する。そこで、本実施形態では、Vマップを近距離領域と遠距離領域とに区分し、各領域についてそれぞれ適した基準や検出方法を用いて路面候補点を検出することにより、両領域の路面検出精度を高く維持している。
図22は、第1路面候補点検出処理及び第2路面候補点検出処理の検出方法を説明するための説明図である。
第1路面候補点検出処理では、各視差値dについて、所定の検索範囲内でy方向位置を変えながら、Vマップ情報に含まれる各Vマップ要素(d,y,f)の頻度値fが第1頻度閾値よりも大きく、かつ、最も頻度値fが大きいVマップ要素を探索し、そのVマップ要素を当該視差値dについての路面候補点として決定する。このときの第1頻度閾値は、低めに設定し、路面に対応するVマップ要素が抜け落ちないようにするのが好ましい。本実施形態においては、上述したとおり、Vマップ生成部133において路面に対応するVマップ要素を抽出していることから、第1頻度閾値を低めに設定しても、路面分に対応しないVマップ要素が路面候補点として決定される事態は軽減されるからである。
ここで、各視差値dについてy値を変化させる検索範囲は、上述したVマップ生成部133における抽出範囲、すなわち、基準直線の画像上下方向位置ypを中心にとした画像上下方向へ±δの範囲である。具体的には、「yp−δ」から「yp+δ」の範囲を探索範囲とする。これにより、探索すべきy値の範囲が限定され、高速な路面候補点検出処理を実現できる。
一方、第2路面候補点検出処理は、第1頻度閾値の変わりにこれとは別の第2頻度閾値を用いる点を除いて、前記第1路面候補点検出処理と同じである。すなわち、第2路面候補点検出処理では、各視差値dについて、所定の検索範囲内でy方向位置を変えながら、Vマップ情報に含まれる各Vマップ要素(d,y,f)の頻度値fが第2頻度閾値よりも大きく、かつ、最も頻度値fが大きいVマップ要素を探索し、そのVマップ要素を当該視差値dについての路面候補点として決定する。
図23は、路面候補点検出部134Aで行う路面候補点検出処理の流れを示すフローチャートである。
入力されるVマップの情報について、例えば視差値dの大きい順に路面候補点の検出を行い、各視差値dについての路面候補点(y,d)を検出する。視差値dが所定の基準距離に対応する基準視差値よりも大きい場合(S1のYes)、上述した第1路面候補点検出処理を行う。すなわち、当該視差値dに応じたyの探索範囲(「yp−δ」〜「yp+δ」)を設定し(S2)、この探索範囲内における頻度値fが第1頻度閾値よりも大きいVマップ要素(d,y,f)を抽出する(S3)。そして、抽出したVマップ要素のうち、最大の頻度値fを持つVマップ要素(d,y,f)を、当該視差値dの路面候補点として検出する(S4)。
そして、視差値dが基準視差値以下になるまで第1路面候補点検出処理を繰り返し行い(S5)、視差値dが基準視差値以下になったら(S1のNo)、今度は、上述した第2路面候補点検出処理で路面候補点検出を行う。すなわち、第2路面候補点検出処理でも当該視差値dに応じたyの探索範囲(「yp−δ」〜「yp+δ」)を設定し(S6)、この探索範囲内における頻度値fが第1頻度閾値よりも大きいVマップ要素(d,y,f)を抽出する(S7)。そして、抽出したVマップ要素のうち、最大の頻度値fを持つVマップ要素(d,y,f)を、当該視差値dの路面候補点として検出する(S8)。この第2路面候補点検出処理を、視差値dがなくなるまで繰り返し行う(S9)。
このようにして路面候補点検出部134Aにより各視差値dについての路面候補点(抽出処理対象)を検出したら、次に、区分直線近似部134Bにより、これらの路面候補点についてVマップ上の近似直線を求める直線近似処理を行う。このとき、路面が平坦な場合であれば、Vマップの視差値範囲全域にわたって一本の直線で十分な精度の近似が可能であるが、車両進行方向において路面の傾斜状況が変化している場合には、一本の直線で十分な精度の近似が難しい。したがって、本実施形態においては、Vマップの情報(Vマップ情報)を視差値に応じて2以上の視差値区画に区分けし、各視差値区画についてそれぞれ個別に直線近似処理を行う。
直線近似処理は、最小二乗近似を利用することができるが、より正確に行うにはRMA(Reduced Major Axis)などの他の近似を用いるのがよい。その理由は、最小二乗近似は、X軸のデータに誤差がなく、Y軸のデータに誤差が存在するという前提があるときに、正確に計算されるものである。しかしながら、Vマップ情報から検出される路面候補点の性質を考えると、Vマップ情報に含まれる各Vマップ要素のデータは、Y軸のデータyについては画像上の正確な位置を示していると言えるが、X軸のデータである視差値dについては、誤差を含んでいるものである。また、路面候補点検出処理では、Y軸方向に沿って路面候補点の探索を行い、その最大のy値をもつVマップ要素を路面候補点として検出するものであるため、路面候補点はY軸方向の誤差も含んでいる。したがって、路面候補点となっているVマップ要素は、X軸方向にもY軸方向にも誤差を含んでいることになり、最小二乗近似の前提が崩れている。したがって、二変数(dとy)に互換性のある回帰直線(RMA)が有効である。
図24は、Vマップを3つの区間(視差値区画)に区分けした例を示す説明図である。
本実施形態においては、Vマップ情報を視差値に応じて3つの視差値区画に区分けする。具体的には、視差値が大きい順に、第一区間、第二区間、第三区間に区分けする。このとき、距離を基準にして区間を等しく区分けする場合、Vマップ上では遠距離の区間ほど区間(視差値範囲)が狭くなり、直線近似の精度が悪化する。また、視差値を基準にして区間を等しく区分けする場合、今度は、Vマップ上において近距離の区間の幅が狭くなる。この場合、第一区間が非常に狭いものとなって、その第一区間はほとんど意味を成さなくなる。
そこで、本実施形態においては、第一区間については予め決められた固定距離に対応する幅をもつように設定とし、第二区間及び第三区間については、ひとつ前の区間の幅に対応する距離の定数倍(たとえば2倍)の距離に対応する幅をもつように設定するという区分けルールを採用している。このような区分けルールにより、どの区間についても、適度な幅(視差値範囲)を持たせることができる。すなわち、このような区分けルールによって各区間にそれぞれ対応する距離範囲が異なることになるが、各区間の直線近似処理に使用する路面候補点の数が各区間で均一化でき、どの区間でも適切な直線近似処理を行うことができるようになる。
なお、図24に示した例では、第一区間及び第二区間が重複(オーバーラップ)することなく連続し、第二区間及び第三区間も重複することなく連続するように各区間を区分けしているが、各区間が重複するように区分けしてもよい。例えば、図25に示すように、第二区間の始点S2Lを第一区間の3:1内分点とし(第二区間の終点E2は図24の例と同じ。)、第三区間の始点S3Lを第一区間の終点E1と第二区間の終点E2との間の3:1内分点としてもよい(第三区間の終点E3は図24の例と同じ。)。
区間に応じて距離範囲を変更したり、区間をオーバーラップさせたりすることで、各区間の直線近似処理に使用する候補点数を均一化して、各区間の直線近似処理の精度を高めることができる。また、区間をオーバーラップさせることにより、各区間の直線近似処理の相関を高めることもできる。
また、上述した区分けルールに従って視差値が大きい順に区間を設定していくと、図26(a)に示すように、例えば、最終の第四区間が本来の区間幅(視差値範囲)より狭い幅しか設定できない場合がある。このような場合には、図26(b)に示すように、最終の第四区間をひとつ前の第三区間と結合して、ひとつの区間(第三区間)として設定してもよい。
図27は、区分直線近似部134Bで行う区分直線近似処理の流れを示すフローチャートである。
区分直線近似部134Bは、路面候補点検出部134Aから出力される各視差値dの路面候補点のデータを受け取ったら、まず、最近距離の第一区間(最も視差値が大きい区間)を設定する(S11)。そして、この第一区間内の各視差値dに対応した路面候補点を抽出する(S12)。このとき、抽出された路面候補点の数が所定の値以下である場合(S13のNo)、当該第一区間を所定の視差値分だけ延長する(S14)。具体的には、図28(a)に示す当初の第一区間と第二区間とを結合して、図28(b)に示すように、新たにひとつの第一区間(延長された第一区間)とする。このとき、当初の第三区間は新たな第二区間となる。そして、延長された第一区間内の各視差値dに対応した路面候補点を再び抽出し(S12)、抽出された路面候補点の数が所定の値よりも多くなった場合には(S13のYes)、抽出した路面候補点について直線近似処理を行う(S15)。
なお、第一区間ではない区間、例えば第二区間を延長する場合には、図29(a)に示す当初の第二区間と第三区間とを結合して、図29(b)に示すように、新たにひとつの第二区間(延長された第二区間)とする。
このようにして直線近似処理を行ったら、次に、その直線近似処理により得られる近似直線の信頼性判定を行う。この信頼性判定では、最初に、得られた近似直線の傾きと切片が所定の範囲内にあるかどうかを判定する(S17)。この判定で所定の範囲内ではない場合には(S17のNo)、当該第一区間を所定の視差値分だけ延長し(S14)、延長された第一区間について再び直線近似処理を行う(S12〜15)。そして、所定の範囲内ではあると判定されたら(S17のYes)、その直線近似処理を行った区間が第一区間かどうかを判断する(S18)。
このとき、第一区間であると判断された場合には(S18のYes)、その近似直線の相関値が所定の値よりも大きいかどうかを判定する(S19)。この判定において、近似直線の相関値が所定の値よりも大きければ、その近似直線を当該第一区間の近似直線として決定する。近似直線の相関値が所定の値以下であれば、当該第一区間を所定の視差値分だけ延長し(S14)、延長された第一区間について再び直線近似処理を行い(S12〜15)、再び信頼性判定を行う(S17〜S19)。なお、第一区間でない区間については(S18のNo)、近似直線の相関値に関する判定処理(S19)は実施しない。
その後、残りの区間があるかどうかを確認し(S20)、もし残りの区間が無ければ、区分直線近似部134Bは区分直線近似処理を終了する。一方、残りの区間がある場合には(S20のYes)、前区間の幅に対応する距離を定数倍した距離に対応する幅をもった次の区間(第二区間)を設定する(S21)。そして、この設定後に残っている区間が更に次に設定される区間(第三区間)よりも小さいか否かを判断する(S22)。この判断において小さくないと判断されたなら、当該第二区間内の各視差値dに対応した路面候補点を抽出して直線近似処理を行うとともに(S12〜S15)、信頼性判定処理を行う(S17〜S19)。
このようにして順次区間を設定し、その区間の直線近似処理及び信頼性判定処理を行うという処理を繰り返していくと、いずれ、前記処理ステップS22において、設定後に残っている区間が更に次に設定される区間よりも小さいと判断される(S22のYes)。この場合、設定された区間を延長して当該残っている区間を含めるようにし、これを最後の区間として設定する(S23)。この場合、この最後の区間内の各視差値dに対応した路面候補点を抽出し(S12)、抽出した路面候補点について直線近似処理を行ったら(S15)、処理ステップS16において最後の区間であると判断されるので(S16のYes)、区分直線近似部134Bは区分直線近似処理を終了する。
このようにして区分直線近似部134Bが各区間の直線近似処理を実行して得た各区間の近似直線は、図30(a)に示すように、通常、区間境界で連続したものにはならない。そのため、本実施形態では、各区間の近似直線が区間境界において連続になるように、区分直線近似部134Bから出力される近似直線を図30(b)に示すように修正する。具体的には、例えば、区間の境界上における両区間の近似直線の端点間の中点を通るように両近似直線を修正する。
以上のようにして、路面形状検出部134においてVマップ上の近似直線の情報が得られたら、次に、路面高さテーブル算出部135において、路面高さ(自車両の真下の路面部分に対する相対的な高さ)を算出してテーブル化する路面高さテーブル算出処理を行う。路面形状検出部134により生成されたVマップ上の近似直線の情報から、撮像画像上の各行領域(画像上下方向の各位置)に映し出されている各路面部分までの距離を算出できる。一方、自車両の真下に位置する路面部分をその面に平行となるように自車両進行方向前方へ延長した仮想平面の自車両進行方向における各面部分が、撮像画像中のどの各行領域に映し出されるかは予め決まっており、この仮想平面(基準路面)はVマップ上で直線(基準直線)により表される。路面形状検出部134から出力される近似直線を基準直線と比較することで、自車両前方の各路面部分の高さを得ることができる。簡易的には、路面形状検出部134から出力される近似直線上のY軸位置から、これに対応する視差値から求められる距離だけ自車両前方に存在する路面部分の高さを算出できる。路面高さテーブル算出部135では、近似直線から得られる各路面部分の高さを、必要な視差範囲についてテーブル化する。
なお、ある視差値dにおいてY軸位置がy’である地点に対応する撮像画像部分に映し出されている物体の路面からの高さは、当該視差値dにおける近似直線上のY軸位置をy0としたとき、(y’−y0)から算出することができる。一般に、Vマップ上における座標(d,y’)に対応する物体についての路面からの高さHは、下記の式(2)より算出することができる。ただし、下記の式(2)において、「z」は、視差値dから計算される距離(z=BF/(d−offset))であり、「f」はカメラの焦点距離を(y’−y0)の単位と同じ単位に変換した値である。ここで、「BF」は、ステレオカメラの基線長と焦点距離を乗じた値であり、「offset」は無限遠の物体を撮影したときの視差値である。
H = z×(y’−y0)/f ・・・(2)
次に、Uマップの生成処理について説明する。
本実施形態では、Uマップ生成部136でUマップ生成処理を実行する前に、Uマップ用視差データ選定部145において、前記視差画像生成部132で生成される各視差画素データのうち、対応するテクスチャ量が第2閾値以上であるという選定条件(第2条件)を満たす視差画素データを選定する処理を実行する。具体的には、テクスチャ量算出処理部143が算出した3値化テクスチャ量Tqが「1」又は「2」である画素についての視差画素データを選定する。
Vマップ生成用には、最も大きい3値化テクスチャ量Tqをもつ画素についての視差画素データのみを用いたのに対し、Uマップ生成用には、最も大きい3値化テクスチャ量Tqと次に大きな3値化テクスチャ量Tqをもつ画素についての視差画素データを用いる。これは、Vマップは路面情報の検出に用いるため、できるだけノイズ(大きな誤差を有する視差画素データ)が少ないことが望まれるのに対し、Uマップは後述すりょうにオブジェクト情報の検出に用いるため、できるだけ情報量(視差画素データの数)を増やして、オブジェクトの検出漏れを防止することが望まれるからである。
このようにしてUマップ生成用の視差画素データを選定したら、次に、Uマップ生成部136において、Uマップ用視差データ選定部145が選定した視差画素データを用いてUマップを生成するUマップ生成処理を実行する。視差画像データに含まれる各視差画素データにおけるx方向位置とy方向位置と視差値dとの組(x,y,d)を、X軸にx、Y軸にd、Z軸に頻度を設定して、X−Yの2次元ヒストグラム情報を作成する。これをUマップと呼ぶ。本実施形態のUマップ生成部136では、路面高さテーブル算出部135によってテーブル化された各路面部分の高さに基づいて、路面からの高さHが所定の高さ範囲(たとえば20cmから3m)にある視差画像の点(x,y,d)についてだけUマップを作成する。この場合、路面から当該所定の高さ範囲に存在する物体を適切に抽出することができる。なお、例えば、撮像画像の下側5/6の画像領域に対応する視差画像の点(x,y,d)についてだけUマップを作成するようにしてもよい。この場合、撮像画像の上側1/6は、ほとんどの場合、空が映し出されていて認識対象とする必要のある物体が映し出されていないためである。
図31は、撮像部110Aで撮像される基準画像の一例を模式的に表した画像例である。
図32は、図31の画像例に対応するUマップである。
図31に示す画像例では、路面の左右両側にガードレールが存在し、他車両としては、先行車両と対向車両がそれぞれ1台ずつ存在する。このとき、Uマップにおいては、図32に示すように、左右のガードレールに対応する高頻度の点は、左右両端側から中央に向かって上方へ延びるような略直線状に分布する。一方、他車両に対応する高頻度の点は、左右のガードレールの間で、略X軸方向に平行に延びる線分の状態で分布する。なお、先行車両の背面部分又は対向車両の前面部分以外に、これらの車両の側面部分が映し出されているような状況にあっては、同じ他車両を映し出している画像領域内において視差が生じる。このような場合、図32に示すように、他車両に対応する高頻度の点は、略X軸方向に平行に延びる線分と略X軸方向に対して傾斜した線分とが連結した状態の分布を示す。
次に、孤立領域検出部137について説明する。
図33は、孤立領域検出部137で行う処理の流れを示すフローチャートである。
孤立領域検出部137では、Uマップ生成部136で生成されたUマップの情報から、まず、Uマップの平滑化処理を行った後(S31)、二値化処理を行う(S32)。その後、値のある座標のラベリングを行い(S33)、孤立領域を検出する。以下、それぞれの処理について説明する。
視差値には計算誤差等もあって分散があり、視差値がすべての画素について計算されているわけではないので、実際のUマップは、図32に示した模式図とは異なり、ノイズを含んでいる。そのため、ノイズを除去するためと、識別対象物(オブジェクト)を識別しやすくするため、Uマップを平滑化する処理を行う。この平滑化処理では、画像の平滑化と同様に、平滑化フィルタ(たとえば3×3画素の単純平均)を頻度値に対して適用する。これにより、ノイズと考えられるようなUマップ上の地点の頻度が減少し、識別対象物(オブジェクト)の地点では頻度が周囲よりも高いグループとなる。その結果、後段の処理において孤立領域の検出を容易になる。
次に、このように平滑化されたUマップの情報から、Uマップ上において頻度が周囲より高い孤立領域を検出する。この検出では、Uマップをまず二値化する処理を行う。この二値化処理には、例えば、特許第4018310号公報などに開示されている適応二値化方法を用いることができる。各識別対象物(オブジェクト)は、その高さ、形状、背景とのコントラスト差などに違いがあるので、各識別対象物にそれぞれ対応する孤立領域は、頻度値が大きいものもあれば小さいものもある。そのため、単一の閾値による二値化では適切に検出できない孤立領域が発生するおそれがある。これを防ぐためにも、上述した適応二値化方法を用いるのが好ましい。なお、二値化は、頻度の高い領域を「1」(黒)とし、頻度の低い領域を「0」(白)とする。
このように二値化処理で「1」の値(黒)をもつ地点(頻度値が二値化閾値より高い座標)をその連結性に基づいてラベリングし、同一ラベルが付いた領域を1つの孤立領域として検出する。ラベリングの方法は、図34に示すように、注目座標Aについてラベリングする際、この注目座標Aに対して図中符号a、a、a、aの位置の座標に既にラベル付けされた座標が存在している場合には、その画素a,a,a,aのラベルと同一のラベルを割り当てる。もし、図35に示すように、上述したa、a、a、aの位置の座標に異なるラベルが付されている場合には、注目座標Aとa、a、a、aのすべての座標について、それらの中の最も小さい値のラベルを割り当る。
このようにして得られる各孤立領域について、その幅(Uマップ上のX軸方向長さ)と、その孤立領域内の最小視差値dから計算される当該孤立領域に映し出されている識別対象物(オブジェクト)と自車両との距離zとを用い、下記の式(3)より、当該孤立領域に対応する画像領域に映し出されている物体の幅Wを計算することができる。
W = z×(xmax−xmin)/f ・・・(3)
この物体の幅Wが、予め決められた範囲内にある孤立領域を、オブジェクト候補領域として決定する。
次に、視差画像の対応領域検出部138について説明する。
前記孤立領域検出部137によりオブジェクト候補領域として決定された孤立領域について、図36に示すように、当該孤立領域が内接する矩形領域を設定したとき、この矩形領域の幅(Uマップ上のX軸方向長さ)は、当該孤立領域に対応する識別対象物(オブジェクト)の幅に対応する。また、設定した矩形領域の高さは、当該孤立領域に対応する識別対象物(オブジェクト)の奥行き(自車両進行方向長さ)に対応している。一方で、各孤立領域に対応する識別対象物(オブジェクト)の高さについては、この段階では不明である。視差画像の対応領域検出部138は、オブジェクト候補領域に係る孤立領域に対応したオブジェクトの高さを得るために、当該孤立領域に対応する視差画像上の対応領域を検出する。
図37は、図36に示したUマップに対応する視差画像を模式的に示した説明図である。
視差画像の対応領域検出部138は、孤立領域検出部137から出力される孤立領域の情報に基づき、当該孤立領域の幅すなわちX軸方向座標がxminからxmaxまでの範囲(検出幅)について、視差画像を所定のY軸方向範囲について走査し、当該孤立領域に設定されたUマップ上での矩形領域の高さすなわちUマップY軸方向座標(視差値)がdminからdmaxまでの範囲の値を視差値とする画素を候補画素として抽出する。このときの走査範囲(視差画像のY軸方向範囲)は、例えば、視差画像上端から視差画像1/6だけ下の位置から、視差画像下方に向けて、最大視差dmaxから得られる路面までの範囲とすることができる。
このようにして抽出した候補画素群の中で、前記検出幅に対して視差画像X軸方向に所定の数以上の候補画素が存在する横方向ラインを、オブジェクト候補ラインとして決定する。次に、縦方向走査して、ある注目しているオブジェクト候補ラインの周囲に他のオブジェクト候補ラインが所定の密度以上で存在している場合、その注目しているオブジェクト候補ラインをオブジェクトラインとして判定する。
オブジェクト領域抽出部139は、各孤立領域に対応する各検出幅について、このようにして判定されたオブジェクトラインを探索し、これにより検出されたオブジェクトライン群の外接矩形を、図38に示すように、視差画像上のオブジェクト領域として決定する。
図39は、視差画像の対応領域検出部138及びオブジェクト領域抽出部139で行われる処理の流れを示すフローチャートである。
まず、Uマップ上の各孤立領域(島)の幅から、視差画像のX軸方向における探索範囲を設定する(S41)。また、各孤立領域(島)の最大視差dmaxと路面高さとの関係から、視差画像のY軸方向における最大探索値ymaxを設定する。なお、最小探索値yminは所定の値(撮像画像の上端から1/6だけ下の位置)が決められている。このようにして設定した探索範囲内で視差画像を探索し、当該孤立領域(島)における最小視差値dminと最大視差値dmaxの範囲内にある画素を抽出し、これをオブジェクト候補画素とする(S44)。その後、オブジェクト候補画素が視差画像X軸方向に一定以上の数で存在する横方向ラインをオブジェクト候補ラインとして抽出する(S45)。そして、オブジェクト候補ラインの密度を計算し、その密度が所定の値より大きい場合は、その横方向ラインをオブジェクトラインと決定する(S46)。最後に、決定されたオブジェクトラインで構成されるオブジェクトライン群の外接矩形を設定し、この外接矩形を視差画像内のオブジェクト領域として検出する(S47)。
次に、オブジェクトタイプ分類部140について説明する。
前記オブジェクト領域抽出部139で抽出されるオブジェクト領域の高さ(yomax−yomin)から、下記の式(4)より、そのオブジェクト領域に対応する画像領域に映し出されている識別対象物(オブジェクト)の実際の高さHoを計算できる。ただし、「zo」は、当該オブジェクト領域内の最小視差値dから計算される当該オブジェクト領域に対応するオブジェクトと自車両との距離であり、「f」はカメラの焦点距離を(yomax−yomin)の単位と同じ単位に変換した値である。
Ho = zo×(yomax−yomin)/f ・・・(4)
同様に、オブジェクト領域抽出部139で抽出されるオブジェクト領域の幅(xomax−xomin)から、下記の式(5)より、そのオブジェクト領域に対応する画像領域に映し出されている識別対象物(オブジェクト)の実際の幅Woを計算できる。
Wo = zo×(xomax−xomin)/f ・・・(5)
また、当該オブジェクト領域に対応する画像領域に映し出されている識別対象物(オブジェクト)の奥行きDoは、当該オブジェクト領域に対応した孤立領域内の最大視差値dmaxと最小視差値dminから、下記の式(6)より計算することができる。
Do = BF×(1/(dmin−offset)−1/(dmax−offset)) ・・・(6)
オブジェクトタイプ分類部140は、このようにして計算できるオブジェクト領域に対応するオブジェクトの高さ、幅、奥行きの情報から、そのオブジェクトタイプの分類を行う。図40に示す表は、オブジェクトタイプの分類を行うためのテーブルデータの一例を示すものである。これによれば、自車両前方に存在する識別対象物(オブジェクト)が、歩行者なのか、自転車なのか、小型車なのか、トラックなどか等を区別して認識することが可能となる。
次に、3次元位置決定部141について説明する。
検出されたオブジェクト領域に対応するオブジェクトまでの距離や、視差画像の画像中心と視差画像上のオブジェクト領域の中心との画像上の距離も把握されることから、オブジェクトの3次元位置を決定することができる。視差画像上のオブジェクト領域の中心座標を(region_centerX,region_centerY)とし、視差画像の画像中心座標を(image_centerX,imgae_centerY)としたとき、識別対象物(オブジェクト)の撮像部110A,110Bに対する相対的な横方向位置および高さ方向位置は、下記の式(7)及び式(8)より計算できる。
Xo = Z×(region_centerX−image_centerX)/f ・・・(7)
Yo = Z×(region_centerY−image_centerY)/f ・・・(8)
次に、ガードレール検出部142について説明する。
図41は、ガードレール検出部142で行われるガードレール検出処理の流れを示すフローチャートである。
路面の側方などに設置される側壁やガードレールは、一般に、路面から30〜100cmの範囲内に存在するので、ガードレール検出処理の対象範囲として、この範囲に対応するUマップ内の領域を選定する。その後、この対象範囲について、Uマップの頻度に重み付けを行い、Hough変換して(S51)、図42に示すような近似直線L1,L2を検出する(S52)。この近似直線L1,L2の端点は、視差が大きい方の端点は画像の境界とし、視差が小さい方の端点は距離換算で例えば30mの距離に相当する視差値とする。なお、Hough変換により直線が見つからなかった場合は、ガードレールは検出されない。
このような近似直線が得られたら、次に、図43に示すように、近似直線上の座標位置を中心とした周囲の領域(たとえば5×5領域)について、頻度値の総和が所定の閾値を超えている座標位置を、ガードレール候補座標として検出する(S53)。このようにして検出されるガードレール候補座標の間隔が所定の距離以下である場合には、それらのガードレール候補座標をつないでガードレール線分として決定する(S54)。
その後、このようにして得られ得るガードレール線分の最小X座標xgminと最大X座標xgmaxにそれぞれ対応する視差値d1,d2を、検出した近似直線の式から算出する。このとき、上述した路面形状検出部134で算出したyとdの近似直線より、該当する視差d1,d2における路面座標(y1,y2)が決定する。ガードレールは、路面の高さから30cm以上1m以下の範囲としているので、前記式(2)を利用し、視差画像上でのガードレールの高さ(30cmと1m)として、yg1_30、yg1_100、yg2_30、yg2_100が決定される。
図44は、図39に示した画像例に対応する視差画像上に、ガードレール検出部142が検出したガードレール領域を示した説明図である。
視差画像上でのガードレール領域は、(xgmin,yg1_30)、(xgmin、yg1_100)、(xgmax、yg2_100)、(xgmax_yg2_30)の4点で囲まれる領域(図中に網掛けした領域)となる。なお、ここでは左側のガードレールについて説明したが、右側のガードレールについても同様に検出できる。
次に、Vマップ生成部133の処理に用いる消失点情報について説明する。
消失点情報は、路面の消失点に対応する画像上の位置座標を示す情報である。この消失点情報は、撮像画像上に映し出される路面上の白線や車両動作情報などから特定することが可能である。
例えば、自車両100の前輪の舵角θが車両動作情報として取得できる場合には、図45に示すように、その舵角θから消失点の画像左右方向位置Vxを検出することが可能である。すなわち、カメラレンズから距離Lだけ離れた位置におけるカメラからの水平方向への位置ズレ量は、L×tanθから求めることができる。したがって、画像センサ上の水平方向位置ズレ量をΔxは、カメラの焦点距離をfとし、画像センサの画素サイズをpixelsizeとすると、下記の式(3)から求めることができる。この式(3)を用いることにより、画像センサのX方向サイズをxsizeとすると、消失点のX座標Vxは、下記の式(4)から求めることができる。
Δx = f × tanθ / pixelsize ・・・(3)
Vx = xsize/2 + Δx ・・・(4)
また、例えば、自車両100のヨーレート(回転角速度)ωと、車速vが車両動作情報として取得できる場合には、図46に示すように、そのヨーレートωと車速vとを用いて消失点の画像左右方向位置Vxを検出することが可能である。すなわち、自車両100が距離Lだけ進んだときに想定される水平位置のズレ量は、自車両100の回転半径r(r=L/θ)と回転角とから、(1−cosθ)となる。したがって、画像センサ上の水平方向位置ズレ量Δxは、下記の式(5)から求めることができる。この式(5)を用いて得られるΔxを用いて、消失点のX座標Vxは、前記の式(4)から求めることができる。このときの距離Lは、例えば100mと設定する。
Δx = ±(1−cosθ)×f×r/L/pixelsize ・・・(5)
このようにして求まる消失点のX座標Vxが画像外を示すものとなった場合、消失点情報のX座標Vxとして、画像端部を設定する。
一方、消失点のY座標Vyについては、直前の処理によって求めた路面の近似直線の切片から求めることができる。消失点のY座標Vyは、Vマップ上において、上述した処理によって求まる路面の近似直線の切片に対応している。したがって、直前の処理によって求めた路面の近似直線の切片をそのまま消失点のY座標Vyとして決定してもよい。
ただし、自車両100が加速している時には、自車両後方部分が加重され、自車両100の姿勢は、自車両前方が鉛直方向上側を向くような姿勢となる。この姿勢変化により、加速時における路面の近似直線は、図47に示すように、等速時における路面の近似直線よりもVマップ上において下側へシフトしたものとなる。逆に、減速時における路面の近似直線は、図47に示すように、等速時における路面の近似直線よりもVマップ上において上側へシフトしたものとなる。したがって、直前の処理によって求めた路面の近似直線の切片を、車速前後方向における加速度情報(車両動作情報)によって補正したものを、消失点のY座標Vyとして決定するのが好ましい。
〔変形例1〕
次に、前記実施形態についての他の変形例(以下「変形例1」という。)について説明する。
前記実施形態においては、自車両進行方向における路面の高さ変化(自車両進行方向における路面の起伏)を把握することはできるが、路面幅方向における路面高さの違い(路面幅方向における路面の傾斜)を把握することはできない。本変形例1では、路面幅方向における路面の傾斜を把握することができる例について説明する。
図48は、本変形例1における主要な処理の流れを示すフローチャートである。
まず、前記実施形態と同様、図49に示すように、路面の消失点(Vx,Vy)が示す消失点の画像上下方向位置Vyから所定のoffset値を引いた画像上下方向位置(Vy−offset値)の地点Wと、図49中に示したABCDの各点で囲まれた領域を設定する。そして、図49に示すように、視差画像上において、路面の消失点(Vx,Vy)と視差画像の下端中心M(xsize/2,ysize)とを結ぶ直線を境界にして、WABCDの各点で囲まれた領域を、WABMの各点で囲まれた左領域と、WMCDの各点で囲まれた右領域とに左右二分割して、各領域をそれぞれ路面画像候補領域として設定する。その後、各路面画像候補領域に対し、それぞれ個別に上述した実施形態の方法でVマップを作成する(S71)。このようにして視差画像上の路面画像候補領域を複数の領域に分割して各領域について個別に作成した部分的なVマップを組み合わせたものを、多重Vマップという。
その後、それぞれの領域のVマップから、領域ごとに、上述した実施形態の方法で路面に対応する区分近似直線を得る。また、図50に示すように、消失点V(Vx,Vy)と同じy座標を持つ地点P(xsize/3,Vy)と地点B(0,ysize)とを結ぶ直線L3を作成する。また、消失点V(Vx,Vy)と同じy座標を持つ他の地点Q(xsize×2/3,Vy)と地点C(xsize,ysize)とを結ぶ直線L4を作成する。そして、それぞれの直線上における点(x,y)に対し、左右の領域についてそれぞれ得た区分近似直線上の点(y,d)を関連付け、(x,y,d)の関係を作成する。これにより、図50に示す左右の直線L3,L4上における路面の高さを決定することができる。
なお、地点P,QのX座標を消失点VのX座標と同じ位置にすると、地点Pと地点Qとの間の路面高さが異なるときに、その地点で路面高さの急激な変化が生じ、不具合が起こす。逆に、地点P,QとのX方向距離が離れすぎると、路面の実情(画像内では路面が遠くに行くほど狭くなる)と整合しない。本変形例1においては、これらを考慮して、地点P,QのX座標は、それぞれ、xsize/3、xsize×2/3としている。
次に、図50に示した左右の直線L3,L4以外の路面の高さを決定する。まず、図51に示すように、ひとつの画像走査ライン(視差画像X軸方向ライン)L5を設定する。この画像走査ラインL5と左の直線L3との交点を(xL,y,dL)とし、この画像走査ラインL5と右の直線L4との交点を(xR,y,dR)とする。画像走査ラインL5上における両交点の間の視差値は、図52に示すように線形補間するとともに、画像走査ラインL5上における両交点の左右外側の視差値は、それぞれの交点における視差値dR,dLと同じ視差値を割り当てる。これにより、路面幅方向に路面が傾斜している場合についても、その傾斜を反映させた路面形状を検出することができる(S72,S73)。なお、画像走査ラインL5の開始端は地点Bと地点Cとを通るラインであり、終端は地点Pと地点Qとを通るラインである。
〔変形例2〕
次に、前記実施形態についての他の変形例(以下「変形例2」という。)について説明する。
実際の路面の中には、路面の排水を良くするために路面の幅方向中央部分が高くなっているかまぼこ型の形状を示す路面がある。このような路面については、前記変形例1の場合には、路面幅方向における路面傾斜を適切に検出することができない。本変形例2においては、前記変形例1よりもより高精度に路面幅方向における路面傾斜を把握することができるものである。
具体的に説明すると、図53に示すように、視差画像上において、視差画像の下端を4等分したときの画像左側1/4の地点L(xsize/4,ysize)と地点Wとを結ぶ直線L6を設定するとともに、画像右側1/4の地点R(3/4×xsize,ysize)と地点Wとを結ぶ直線L7を設定する。本変形例2では、これらの直線L6,L7を境界にして、WABCDの各点で囲まれた領域を、WABLの各点で囲まれた左領域と、WLRの各点で囲まれた中央領域と、WRCDの各点で囲まれた右領域とに、三分割して、各領域をそれぞれ路面画像候補領域として設定する。その後、各路面画像候補領域に対し、それぞれ個別に上述した実施形態の方法でVマップを作成する。その後、それぞれの領域のVマップから、領域ごとに、上述した実施形態の方法で路面に対応する区分近似直線を得る。
また、図54に示すように、本変形例2においては、前記変形例1の場合と同様に、地点P(xsize/3,Vy)と地点B(0,ysize)とを結ぶ直線L3を作成するとともに、地点Q(xsize×2/3,Vy)と地点C(xsize,ysize)とを結ぶ直線L4を作成するほか、新たに、路面の消失点Vと視差画像の下端中心M(xsize/2,ysize)とを結ぶ直線L8を作成する。そして、それぞれの直線上における点(x,y)に対し、先に求めた3つの領域についてそれぞれ得た区分近似直線上の点(y,d)を関連付け、(x,y,d)の関係を作成する。これにより、図54に示す3つの直線L3,L4,L8上における路面の高さを決定することができる。
次に、図54に示した3つの直線L3,L4,L8以外の路面の高さを決定する。まず、前記変形例1と同様、図54に示すように、ひとつの画像走査ライン(視差画像X軸方向ライン)L5を設定する。この画像走査ラインL5と左の直線L3との交点を(xL,y,dL)とし、この画像走査ラインL5と右の直線L4との交点を(xR,y,dR)とし、この画像走査ラインL5と中央の直線L8との交点を(xM,y,dM)とする。画像走査ラインL5上における各交点の間の視差値は、図55に示すように線形補間するとともに、画像走査ラインL5上における左右の交点の左右外側の視差値は、それぞれの左右交点における視差値dR,dLと同じ視差値を割り当てる。これにより、路面幅方向に路面がかまぼこ形状に傾斜している場合についても、その傾斜を反映させた路面形状を検出することができる。
なお、変形例1および変形例2は、視差画像をそれぞれ二分割、三分割する例を示しているが、同様の構成で視差画像の分割数を増やすことで、より精確な路面の形状の検出が可能となる。
以上のように、本実施形態においては、路面高さ(自車両進行方向における路面の起伏や路面幅方向における路面傾斜など)を高い精度で検出することができる。路面高さの検出精度が高ければ、路面の高さを利用して検出するオブジェクトの検出精度も向上し、歩行者や他車両などのオブジェクト分類の精度も向上する結果、オブジェクトへの衝突回避の確率を向上させ、道路交通の安全に貢献することが可能である。
以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様A)
路面等の移動面上を移動する自車両100等の移動体に搭載された撮像部110A,110B等の複数の撮像手段により移動体周囲を撮像して得られる複数の撮像画像から生成される視差画像情報に基づいて、該移動体周囲の情報を検出する情報検出装置において、少なくとも1つの撮像画像(基準画像)における各算出処理単位領域(各画素)のテクスチャ量等の特徴量を算出するテクスチャ量算出処理部143等の特徴量算出手段と、前記特徴量が第1条件を満たす算出処理単位領域に対応する視差画像情報を用いて、前記移動面の情報を検出する移動面情報検出処理を行うVマップ用視差データ選定部144、Vマップ生成部133、路面形状検出部134等の移動面情報検出手段と、前記特徴量が前記第1条件とは異なる第2条件を満たす算出処理単位領域に対応する視差画像情報を用いて、前記移動体周囲に存在する前記移動面とは異なるオブジェクトやガードレール等の検出対象物の情報を検出するUマップ用視差データ選定部145、Uマップ生成部136、孤立領域検出部137、視差画像の対応領域検出部138、オブジェクト領域抽出部139、ガードレール検出部142等の対象物情報検出処理を行う対象物情報検出手段とを有することを特徴とする。
これによれば、移動面の情報を検出する移動面情報検出処理と、移動面とは異なる検出対象物の情報を検出する対象物情報検出処理との間で、その処理に用いられる視差画像情報が異なっている。具体的には、移動面情報検出処理では、特徴量が第1条件を満たす算出処理単位領域に対応する視差画像情報を用い、対象物情報検出処理では、特徴量が前記第1条件とは異なる第2条件を満たす算出処理単位領域に対応する視差画像情報を用いる。したがって、移動面情報検出処理に適した視差画像情報が得られるように第1条件を設定し、対象物情報検出処理に適した視差画像情報が得られるように第2条件を設定するということが可能となる。ここでいう特徴量は、当該画素についての視差値を算出する際に行われるマッチング処理時のマッチング精度と高い相関関係のあるパラメータが設定される。よって、特徴量が大きな画素ほど、マッチング処理の精度が高く、算出される視差値に誤差の含まれる可能性が低いという関係になる。よって、特徴量の違いを利用することで、視差画像情報の情報量が十分な移動面情報検出処理については誤差の小さな視差画像情報に限定して処理を行うとともに、視差画像情報の情報量が不十分となりやすい対象物情報検出処理については視差画像情報をあまり限定せずに処理を行うことが可能となる。その結果、移動面情報検出処理と対象物情報検出処理との両方において、それぞれ高精度な検出が可能となる視差画像情報を用いた情報検出処理を行うことができる。
(態様B)
前記態様Aにおいて、前記特徴量は、前記視差画像情報を生成する際に実行するマッチング処理のマッチング精度と相関関係のあるものであることを特徴とする。
これによれば、移動面情報検出処理と対象物情報検出処理との両方にそれぞれ適切な視差画像情報を選定することができる。
(態様C)
前記態様Bにおいて、前記特徴量は、前記少なくとも1つの撮像画像の画素値の変化が大きい算出処理単位領域ほど大きな値をとるものであることを特徴とする。
これによれば、適切な特徴量を簡易に算出することが可能となる。
(態様D)
前記態様B又はCにおいて、前記第1条件は、前記特徴量が第1閾値t1以上であるという条件であり、前記第2条件は、前記特徴量が前記第1閾値よりも小さい第2閾値t2以上であるという条件であることを特徴とする。
これによれば、移動面情報検出処理と対象物情報検出処理との両方にそれぞれ適切な視差画像情報を簡易に選定することができる。
(態様E)
前記態様Dにおいて、前記第1閾値及び前記第2閾値を用いて前記特徴量を3値化する3値化部143C等の3値化手段を有し、前記対象物情報検出手段は、前記3値化のうちの最も大きな値が割り当てられた算出処理単位領域に対応する視差画像情報を用いて、前記対象物情報検出処理を行い、前記移動面情報検出手段は、前記3値化のうち、最も大きな値と次に大きな値とが割り当てられた算出処理単位領域に対応する視差画像情報を用いて、前記対象物情報検出処理を行うことを特徴とする。
これによれば、テクスチャ量が3値化データとなり、後段の処理データ量を減らすことができる。
(態様F)
前記態様B〜Eのいずれかの態様において、前記少なくとも1つの撮像画像における2以上の画素で構成される各平均値算出領域の平均画素値を算出する平均輝度算出部143D等の平均画素値算出手段と、各算出処理単位領域に対応する平均値算出領域の平均画素値に応じて、当該算出処理単位領域についての第1条件及び第2条件の少なくとも一方の条件を変更する閾値セット選択部143E等の条件変更手段とを有することを特徴とする。
平均輝度が大きいほど、画像のコントラストが高いと考えられるので高めのテクスチャ量が算出されやすく、平均輝度が小さいほど、画像のコントラストが低いと考えられるので、低めのテクスチャ量が算出されやすい。本態様では、このことを考慮して、移動面情報検出処理と対象物情報検出処理との両方にそれぞれ適切な視差画像情報を選定することができる。
(態様G)
前記態様A〜Fのいずれかの態様において、前記対象物情報検出手段は、前記移動面情報検出手段が検出した移動面の情報も用いて、前記検出対象物の情報を検出する対象物情報検出処理を行うことを特徴とする。
これによれば、検出対象物の情報検出をより高精度に行うことが可能となる。
(態様H)
移動面上を移動する移動体の周囲の情報を検出する情報検出手段と、前記情報検出手段の検出結果に基づいて、前記移動体に搭載された所定の機器を制御する車両走行制御ユニット106等の移動体機器制御手段とを備えた移動体機器制御システムにおいて、前記情報検出手段として、前記態様A〜Gのいずれかの態様に係る情報検出装置を用いたことを特徴とする。
これによれば、移動体に搭載された所定の機器をより高精度に制御することが可能となる。
(態様I)
所定の機器を搭載して移動面上を移動する移動体において、前記所定の機器を制御する手段として、前記態様Hに係る移動体機器制御システムを用いたことを特徴とする。
これによれば、搭載された所定の機器がより高精度に制御される移動体を提供することが可能となる。
(態様J)
移動面上を移動する移動体に搭載された複数の撮像手段により移動体周囲を撮像して得られる複数の撮像画像から生成される視差画像情報に基づいて、該移動体周囲の情報を検出する情報検出装置のコンピュータに実行させるための情報検出用プログラムであって、少なくとも1つの撮像画像における各算出処理単位領域の特徴量を算出する特徴量算出手段、前記特徴量が第1条件を満たす算出処理単位領域に対応する視差画像情報を用いて、前記移動面の情報を検出する移動面情報検出処理を行う移動面情報検出手段、及び、前記特徴量が前記第1条件とは異なる第2条件を満たす算出処理単位領域に対応する視差画像情報を用いて、前記移動体周囲に存在する前記移動面とは異なる検出対象物の情報を検出する対象物情報検出処理を行う対象物情報検出手段として、前記コンピュータを機能させることを特徴とする。
これによれば、移動面情報検出処理と対象物情報検出処理との両方において、それぞれ高精度な検出が可能となる視差画像情報を用いた情報検出処理を行うことが可能となる。
なお、このプログラムは、CD−ROM等の記録媒体に記録された状態で配布したり、入手したりすることができる。また、このプログラムを乗せ、所定の送信装置により送信された信号を、公衆電話回線や専用線、その他の通信網等の伝送媒体を介して配信したり、受信したりすることでも、配布、入手が可能である。この配信の際、伝送媒体中には、コンピュータプログラムの少なくとも一部が伝送されていればよい。すなわち、コンピュータプログラムを構成するすべてのデータが、一時に伝送媒体上に存在している必要はない。このプログラムを乗せた信号とは、コンピュータプログラムを含む所定の搬送波に具現化されたコンピュータデータ信号である。また、所定の送信装置からコンピュータプログラムを送信する送信方法には、プログラムを構成するデータを連続的に送信する場合も、断続的に送信する場合も含まれる。
100 自車両
101 撮像ユニット
102 画像解析ユニット
106 車両走行制御ユニット
110A,110B 撮像部
120 処理ハードウェア部
121 視差演算部
122 記憶手段
131 平行化画像生成部
132 視差画像生成部
133 Vマップ生成部
134 路面形状検出部
135 路面高さテーブル算出部
136 Uマップ生成部
137 孤立領域検出部
138 視差画像の対応領域検出部
139 オブジェクト領域抽出部
140 オブジェクトタイプ分類部
141 3次元位置決定部
142 ガードレール検出部
143 テクスチャ量算出処理部
143A テクスチャ量算出部
143B 閾値セット部
143C 3値化部
143D 平均輝度算出部
143E 閾値セット選択部
144 Vマップ用視差データ選定部
145 Uマップ用視差データ選定部
特開2010−271964号公報

Claims (10)

  1. 移動面上を移動する移動体に搭載された複数の撮像手段により移動体周囲を撮像して得られる複数の撮像画像から生成される視差画像情報に基づいて、該移動体周囲の情報を検出する情報検出装置において、
    少なくとも1つの撮像画像における各算出処理単位領域の特徴量を算出する特徴量算出手段と、
    前記特徴量が第1条件を満たす算出処理単位領域に対応する視差画像情報を用いて、前記移動面の情報を検出する移動面情報検出処理を行う移動面情報検出手段と、
    前記特徴量が前記第1条件とは異なる第2条件を満たす算出処理単位領域に対応する視差画像情報を用いて、前記移動体周囲に存在する前記移動面とは異なる検出対象物の情報を検出する対象物情報検出処理を行う対象物情報検出手段とを有することを特徴とする情報検出装置。
  2. 請求項1の情報検出装置において、
    前記特徴量は、前記視差画像情報を生成する際に実行するマッチング処理のマッチング精度と相関関係のあるものであることを特徴とする情報検出装置。
  3. 請求項2の情報検出装置において、
    前記特徴量は、前記少なくとも1つの撮像画像の画素値の変化が大きい算出処理単位領域ほど大きな値をとるものであることを特徴とする情報検出装置。
  4. 請求項2又は3の情報検出装置において、
    前記第1条件は、前記特徴量が第1閾値以上であるという条件であり、
    前記第2条件は、前記特徴量が前記第1閾値よりも小さい第2閾値以上であるという条件であることを特徴とする情報検出装置。
  5. 請求項4の情報検出装置において、
    前記第1閾値及び前記第2閾値を用いて前記特徴量を3値化する3値化手段を有し、
    前記対象物情報検出手段は、前記3値化のうちの最も大きな値が割り当てられた算出処理単位領域に対応する視差画像情報を用いて、前記対象物情報検出処理を行い、
    前記移動面情報検出手段は、前記3値化のうち、最も大きな値と次に大きな値とが割り当てられた算出処理単位領域に対応する視差画像情報を用いて、前記対象物情報検出処理を行うことを特徴とする情報検出装置。
  6. 請求項2乃至5のいずれか1項に記載の情報検出装置において、
    前記少なくとも1つの撮像画像における2以上の画素で構成される各平均値算出領域の平均画素値を算出する平均画素値算出手段と、
    各算出処理単位領域に対応する平均値算出領域の平均画素値に応じて、当該算出処理単位領域についての第1条件及び第2条件の少なくとも一方の条件を変更する条件変更手段とを有することを特徴とする情報検出装置。
  7. 請求項1乃至6のいずれか1項に記載の情報検出装置において、
    前記対象物情報検出手段は、前記移動面情報検出手段が検出した移動面の情報も用いて、前記検出対象物の情報を検出する対象物情報検出処理を行うことを特徴とする情報検出装置。
  8. 移動面上を移動する移動体の周囲の情報を検出する情報検出手段と、
    前記情報検出手段の検出結果に基づいて、前記移動体に搭載された所定の機器を制御する移動体機器制御手段とを備えた移動体機器制御システムにおいて、
    前記情報検出手段として、請求項1乃至7のいずれか1項に記載の情報検出装置を用いたことを特徴とする移動体機器制御システム。
  9. 所定の機器を搭載して移動面上を移動する移動体において、
    前記所定の機器を制御する手段として、請求項8の移動体機器制御システムを用いたことを特徴とする移動体。
  10. 移動面上を移動する移動体に搭載された複数の撮像手段により移動体周囲を撮像して得られる複数の撮像画像から生成される視差画像情報に基づいて、該移動体周囲の情報を検出する情報検出装置のコンピュータに実行させるための情報検出用プログラムであって、
    少なくとも1つの撮像画像における各算出処理単位領域の特徴量を算出する特徴量算出手段、
    前記特徴量が第1条件を満たす算出処理単位領域に対応する視差画像情報を用いて、前記移動面の情報を検出する移動面情報検出処理を行う移動面情報検出手段、及び、
    前記特徴量が前記第1条件とは異なる第2条件を満たす算出処理単位領域に対応する視差画像情報を用いて、前記移動体周囲に存在する前記移動面とは異なる検出対象物の情報を検出する対象物情報検出処理を行う対象物情報検出手段として、前記コンピュータを機能させることを特徴とする情報検出用プログラム。
JP2013138130A 2013-07-01 2013-07-01 情報検出装置、移動体機器制御システム、移動体及び情報検出用プログラム Active JP6150164B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013138130A JP6150164B2 (ja) 2013-07-01 2013-07-01 情報検出装置、移動体機器制御システム、移動体及び情報検出用プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138130A JP6150164B2 (ja) 2013-07-01 2013-07-01 情報検出装置、移動体機器制御システム、移動体及び情報検出用プログラム

Publications (2)

Publication Number Publication Date
JP2015011619A JP2015011619A (ja) 2015-01-19
JP6150164B2 true JP6150164B2 (ja) 2017-06-21

Family

ID=52304697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138130A Active JP6150164B2 (ja) 2013-07-01 2013-07-01 情報検出装置、移動体機器制御システム、移動体及び情報検出用プログラム

Country Status (1)

Country Link
JP (1) JP6150164B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704607B2 (ja) * 2015-03-11 2020-06-03 株式会社リコー 撮像システム、画像処理システム、移動体制御システム、移動体装置、投光装置、物体検出方法、物体検出プログラム
JP6805534B2 (ja) * 2015-07-02 2020-12-23 株式会社リコー 視差画像生成装置、視差画像生成方法及び視差画像生成プログラム、物体認識装置、機器制御システム
WO2017002367A1 (en) * 2015-07-02 2017-01-05 Ricoh Company, Ltd. Disparity image generation device, disparity image generation method, disparity image generation program, object recognition device, and equipment control system
JP6592991B2 (ja) * 2015-07-06 2019-10-23 株式会社リコー 物体検出装置、物体検出方法及びプログラム
JP6569416B2 (ja) * 2015-09-15 2019-09-04 株式会社リコー 画像処理装置、物体認識装置、機器制御システム、画像処理方法及び画像処理プログラム
EP3432265A4 (en) * 2016-03-14 2019-03-20 Ricoh Company, Ltd. IMAGE PROCESSING DEVICE, DEVICE CONTROL SYSTEM, IMAGE CAPTURE DEVICE, IMAGE PROCESSING METHOD, AND PROGRAM
US10832061B2 (en) 2016-07-22 2020-11-10 Hitachi Automotive Systems, Ltd. Traveling road boundary estimation apparatus and traveling assistance system using same
JP6811244B2 (ja) * 2016-08-23 2021-01-13 株式会社日立製作所 画像処理装置、ステレオカメラ装置及び画像処理方法
JP7206583B2 (ja) * 2016-11-25 2023-01-18 株式会社リコー 情報処理装置、撮像装置、機器制御システム、移動体、情報処理方法およびプログラム
WO2018098789A1 (en) * 2016-12-01 2018-06-07 SZ DJI Technology Co., Ltd. Method and system for detecting and tracking objects using characteristic points
JP6939198B2 (ja) * 2017-07-28 2021-09-22 日産自動車株式会社 物体検出方法及び物体検出装置
JP7322576B2 (ja) * 2019-07-31 2023-08-08 株式会社リコー 情報処理装置、撮像装置および移動体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265547A (ja) * 1992-03-23 1993-10-15 Fuji Heavy Ind Ltd 車輌用車外監視装置
JP2006309650A (ja) * 2005-05-02 2006-11-09 Calsonic Kansei Corp ナンバー認識装置及方法
JP4872769B2 (ja) * 2007-04-11 2012-02-08 日産自動車株式会社 路面判別装置および路面判別方法
EP2757541B1 (en) * 2011-09-12 2020-09-09 Nissan Motor Co., Ltd Three-dimensional object detection device

Also Published As

Publication number Publication date
JP2015011619A (ja) 2015-01-19

Similar Documents

Publication Publication Date Title
JP6274557B2 (ja) 移動面情報検出装置、及びこれを用いた移動体機器制御システム並びに移動面情報検出用プログラム
JP6150164B2 (ja) 情報検出装置、移動体機器制御システム、移動体及び情報検出用プログラム
JP6519262B2 (ja) 立体物検出装置、立体物検出方法、立体物検出プログラム、及び移動体機器制御システム
JP6550881B2 (ja) 立体物検出装置、立体物検出方法、立体物検出プログラム、及び移動体機器制御システム
JP6662388B2 (ja) 画像処理装置、撮像装置、機器制御システム、分布データ生成方法、及びプログラム
JP6344638B2 (ja) 物体検出装置、移動体機器制御システム及び物体検出用プログラム
JP6657789B2 (ja) 画像処理装置、撮像装置、機器制御システム、頻度分布画像生成方法、及びプログラム
JP6340850B2 (ja) 立体物検出装置、立体物検出方法、立体物検出プログラム、及び移動体機器制御システム
WO2017130639A1 (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及びプログラム
JP5145585B2 (ja) 物標検出装置
JP6733225B2 (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及びプログラム
JP6705496B2 (ja) 画像処理装置、撮像装置、移動体機器制御システム、移動体、画像処理方法、及びプログラム
JP6702340B2 (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及びプログラム
JP6583527B2 (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及びプログラム
JP6687039B2 (ja) 物体検出装置、機器制御システム、撮像装置、物体検出方法、及びプログラム
JP6743882B2 (ja) 画像処理装置、機器制御システム、撮像装置、画像処理方法及びプログラム
JP6705497B2 (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、プログラム、及び移動体
JP6753134B2 (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及び画像処理プログラム
JP2014006885A (ja) 段差認識装置、段差認識方法及び段差認識用プログラム
JP2016206801A (ja) 物体検出装置、移動体機器制御システム及び物体検出用プログラム
JP2015148887A (ja) 画像処理装置、物体認識装置、移動体機器制御システム及び物体認識用プログラム
JP6340849B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム、及び移動体機器制御システム
JP2023184572A (ja) 電子機器、移動体、撮像装置、および電子機器の制御方法、プログラム、記憶媒体
JP2020126304A (ja) 車外物体検出装置
JP2016173248A (ja) 視差値演算装置、物体認識装置、移動体機器制御システム及び視差演算用プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170511

R151 Written notification of patent or utility model registration

Ref document number: 6150164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151