JP6140772B2 - 配列式近接場光高散乱材料の検出方法 - Google Patents

配列式近接場光高散乱材料の検出方法 Download PDF

Info

Publication number
JP6140772B2
JP6140772B2 JP2015123795A JP2015123795A JP6140772B2 JP 6140772 B2 JP6140772 B2 JP 6140772B2 JP 2015123795 A JP2015123795 A JP 2015123795A JP 2015123795 A JP2015123795 A JP 2015123795A JP 6140772 B2 JP6140772 B2 JP 6140772B2
Authority
JP
Japan
Prior art keywords
scattering material
light
optical
high scattering
optical energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015123795A
Other languages
English (en)
Other versions
JP2017009373A (ja
Inventor
黄鴻基
黄吉宏
曾盛豪
周世傑
翁睿謙
曾士育
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Applied Research Laboratories
Original Assignee
National Applied Research Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Applied Research Laboratories filed Critical National Applied Research Laboratories
Priority to JP2015123795A priority Critical patent/JP6140772B2/ja
Publication of JP2017009373A publication Critical patent/JP2017009373A/ja
Application granted granted Critical
Publication of JP6140772B2 publication Critical patent/JP6140772B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、配列式近接場光高散乱材料の検出方法に関し、より詳しくは、光学高散乱材料の内部構成構造の変化を検出することで実行する配列式近接場光高散乱材料の検出方法に関する。
現在世界的に人間の平均寿命が伸び続けているが、高齢化の影響で医療資源が不足してきており、このため医療器材の新技術の開発が世界的に待ったなしの課題となっており、発展を続けている。医療用器材の使用において、現在多くの場合、光学情報を入力して出力される光学情報との差異を比較する検出メカニズムが用いられ、さらには目視による検査で証明する方法もあり、これらは疾病の検査としては相当な実効性がある。
また、現在の身体の可視映像技術としてはMRI/NMR、X線映像、超音波映像、ポジトロン断層法、光学映像等があり、これらを診断材料として利用する。MRI/NMR、X線、超音波、及びポジトロン断層法等の技術では人体を透過して人体の深層の内部の臓器の映像の分析を行えるようにするが、光学映像は光の透過可能な深度に制限があり、皮膚及び内視鏡等の映像化技術に広く応用される。映像化によって特定の病原の位置を明確にさせ、使用法並びに特殊な光学の操作方法は、暗視野散乱光映像化、異なる光波長の使用、偏光選択の応用、共焦点走査映像化、或いは高スペクトル走査映像化技術等を含む。生物化学技術、蛍光分子、或いは顆粒染色や金属ないしは非金属顆粒染色等の技術に組み合わされて使用され、ターゲットである病理構造の位置の確認に利用される。光学映像化技術は即時に識別可能であるという長所を有し、且つ映像で確認しながら討論を行えるため、病理組織の明確化及び診療にとって重要な意義がある。
なお、光学映像化技術では、操作に使用される光線の照射深度が往々にして制限されるため、多くは皮膚や内視鏡による臓器の表面の検出に使用される。皮膚は大量の細胞が堆積して組成される組織であり、その構造は大きく表皮層と真皮層とに分かれ、且つ異なる機能を各々有する。
真皮層の体積は皮膚の総体積の90%以上を占め、また、皮膚に弾性及び支持機能を与える多くのコラーゲンを含有し、真皮層内の血管網が皮膚に必須栄養素を運び且つ皮膚の温度を維持させる。皮膚は毛嚢及び汗腺を備える各種の構造を有する。皮膚の真皮層の細胞組織内のコラーゲン濃度、ヘモグロビン濃度、血中酸素濃度、及び含水量等の各種の物質の含有量は皮膚の機能及び外見に影響を与える。皮膚が老化したり痣が発生すると、細胞組織を組成するコラーゲン含有量も変化する。また、皮膚の腫瘍や炎症が発生すると、血管分布密度及びヘモグロビン濃度が変化し、関連して水分含有量及び血中酸素濃度も変化する。
臨床においては、肉眼で直接観察するか、補助設備を利用して直接的または間接的に観察するが、細胞組織の堆積状況及び相関する物質の濃度との関係を完全に数値化する場合、医師は侵入式で組織サンプルを採取して精確に評価を下す必要がある。医師や病院内で使用される医療機密データに対しては、従来の多くの特許ではスペクトル法を用いて、非侵入式で数値化されたコラーゲン濃度及び他の各種生理データが即時に提供される。相関する研究としては特許文献1及び特許文献2等の技術があり、ここでは、1次元の等間隔で配列される光ファイバーを入力光源として運用し、入射光が受光光ファイバーまで伝達される異なる伝達距離での伝達の損耗が測定される。伝達の損耗及び皮膚内の物質の吸収と光の散乱には関連性があり、このため個別の皮膚内の物質の濃度を提供し、医師及び患者がより客観的により早く皮膚の患部の変化を知ることを可能にする。
皮膚の病理或いは腫瘍の病理は早期発見こそが最良の治療効果を得るために重要であり、よって皮膚の映像測定では全身の皮膚を走査して映像化して検査を行うか、複数のカメラを使用して立体映像化して検査を行う。識別能力を増強するため、異なる照射光を使用して映像の識別度を向上させたり、偏光選択方式により識別度を向上させる。小さな領域の細部の映像化では、共焦点顕微走査による映像化、蛍光走査による映像化、偏光選択による映像化、或いは高スペクトル走査による映像化等の方式等は共に高解析度のスペクトル分解能を獲得できる。これらの多くは可視光ないしは赤外線を入力光源として運用し、前述の方法による映像化の深度は、組織構造の複雑さが深層組織の映像化の解析度に影響を及ぼす。
さらに、光干渉断層撮影(Optical Coherence Tomography;OCT)ではソフトウェアにより計算を行い、皮膚の深層組織の血管分布及び組織サンプルの映像を即時に提供する。皮膚の病理の測定にとっては大きな利益があるが、但し解析範囲が狭く、設備も高価であるため、一般的な皮膚科の診療所には適していない。また、精密な光学システムが必要なため、身体の陥没した部位や内臓の部位の皮膚では映像を撮影できない。
しかしながら、前述したように、現在病院で皮膚の検出に使用される製品には、なお多くの改善の余地がある。
1.大型の医療機器では占有する空間が大きく、病院にとっては高額な設置費用が掛かる。
2.即時映像検出では、特定の生理状況での皮膚の表層と深層との差異の変化を顕示させるが、検出に時間が掛かる。
3.スペクトル計測法では、臨床診断及び評価に関して、年齢別、性別別、部位別等の皮膚の大量のスペクトルデータ、及び臨床参照値を有する皮膚のスペクトルデータベースを収集し、さらに分析を行って皮膚内部のコラーゲン濃度等の統計データベースを取得し、各数値の計測の際の基準とする必要がある。
4.現代医療の現場では、シリカゲル、セラミック、或いはプラスチック等の人工物を人体に填入することがあり、填入物が深層の皮膚や筋肉等の深層構造の組織の病原となる場合がある。このほか、填入物自体が損壊したり構造が変異すると、機器を使用してさらに検査する必要が出てくる。
このほか、生物の体内の臓器は細胞組織が堆積したものであり、基本組織を構成する細胞の堆積構造、血管網、神経網等を有し、且つこれが被覆する皮層の炎症及び病理の部分の組織の変異状況も生物の体外を覆う皮膚に現れるものと類似する。このため、内部の臓器の表皮の診療も皮膚科の診療と同様の概念で計測できる。
そして、現在多くのいわゆる皮膚の非侵入式の生体医学光学検出技術が発展し、例えば色彩色差計(Chroma Meter)、散乱反射分光法(Diffuse Reflectance Spectroscopy;DRS)、共焦点レーザー顕微鏡(Laser Confocal Microscopy)、光干渉断層撮影(Optical Coherence Tomography;OCT)、多重光子顕微鏡(Multi−Photon Microscopy;MPM)等がある。
色彩色差計は検出部位の反射光信号をRGBの三原色に分けて組み合わせ、赤色及び黒色の比率をさらに分析し、黒色色素濃度及びヘモグロビン濃度の変化を推測する。但し、その演算法及び計測技術は簡略化されており、精確で安定的な結果が得られない。共焦点レーザー顕微鏡及び光干渉断層撮影では皮膚の映像及び構造を獲得できるが、但し皮膚の機能性に関するデータが直接取得できない。
多重光子顕微鏡技術には多重光子励起蛍光(multi−photon excited fluorescence;TPEF)及び第2次高調波発生(second harmonic generation;SHG)の信号を利用し、コラーゲン及びエラスチンを主にする3次元生体組織構造映像を取得する。然しながら、現在この機器のコストは頗る高く、また、走査時間も長く、設置に大きな空間が必要であり、臨床での皮膚の検出に使用するには敷居が高かった。
組織中で伝達される散乱反射光の散乱及び吸収による損耗の特性を利用して特定の皮膚の物質の含有量の計測を行う従来の技術では、異なる位置に対して光を照射し、皮膚の各箇所での吸収及び散乱係数を取得して各生理パラメータの濃度を獲得する。
例えば、特許文献3に記載されている技術では、ケロイド(Keloid)のコラーゲン分布及びヘモグロビン濃度を計算し、初期の成果は2012年に生体医学光学ジャーナル(Journal of Biomedical Optics,JBO)において発表された。また、2013年には対応する特許がアメリカで出願されている(出願番号:13/944、697)。前記技術で使用される特殊な光ファイバー検出器は、光源の光ファイバーの前端に高散乱特性を有する材料を設置させて光源を発散させ、光散乱理論に照らし合わせて測定物の光学性質を計算する。光散乱理論(photon diffusion theory)では計測された反射スペクトル転換を組織の光学パラメータとして、吸収係数(absorption coefficient(μa))、散乱係数(scattering coefficient(μs’))、且つこれら吸収及び散乱されたスペクトルから各生理パラメータを更に推定し、組織成分の数値化の目的を達成させる。現在この技術は多くの臨床研究に用いられており、乳房、脳、筋肉等の深層組織の光学性質の測定に利用され、疾病での診断に応用されている。
台湾特許出願公開第M263862号明細書 アメリカ特許出願公開第M318347号明細書 台湾特許出願公開第102101950号明細書
そこで、本発明者は上記の欠点が改善可能と考え、鋭意検討を重ねた結果、合理的設計で上記の課題を効果的に改善する本発明の提案に到った。
本発明は、以上の実情に鑑みなされたものであって、上記課題解決のため、本発明は、配列式近接場光高散乱材料の検出方法及びその設備を提供することを主目的とする。即ち、前記設備によれば、大型設備では時間が掛かり不便であるといった問題を回避させる
上述した課題を解決し、上記目的を達成するための本発明に係る配列式近接場光高散乱材料の検出方法は、入力光が高散乱材料に照射され、前記照射光が前記高散乱材料で散乱反射、散乱、及び伝達される工程と、前記高散乱材料の異なる位置の光学エネルギーが読み取られる工程と、これら前記光学エネルギーに基づいて2次元光強度分布データ映像が形成される工程と、前記2次元光強度分布データ映像に基づいて前記高散乱材料の内部構成構造の変化を分析し、これにより前記高散乱材料の内部構成構造のデータを獲得する工程とを含むことを特徴とする。
上述の技術手段により、本発明は光学高散乱材料により内部材料の構造組成を検出する技術効果を達成させ、且つ化学工程及び環境工程等の緑化技術等での検出技術に応用可能である。
本発明の第1実施形態による配列式近接場光高散乱材料の検出方法に使用される設備及び材料内の断面状態図である。 本発明の光学高散乱材料の内部に、異なる散乱材料をさらに埋め込む際の断面状態図である。 本発明の光学高散乱材料の内部に、差異が大きい散乱材料をさらに埋め込む際の断面状態図である。 本発明の光学高散乱材料の内部に、蛍光散乱材料をさらに埋め込む際の断面状態図である。 本発明の光学高散乱材料が異なる角度からの入力光を照射する際の材料内部の断面状態図である。 本発明の配列式光学エネルギー読取装置の分離式検出モジュール及び入力光源の分離式検出モジュールがそれぞれに異なる平面に設置される断面状態の概念図である。 本発明の順応性のある外形の配列式光学エネルギー読取装置の分離式検出モジュール及び入力光源の分離式検出モジュールがそれぞれに異なる平面に設置される断面状態の概念図である。 本発明の複数の配列式光学エネルギー読取装置の分離式検出モジュール及び入力光源の分離式検出モジュールがそれぞれに異なる平面に設置される断面状態の概念図である。 本発明の配列式近接場光高散乱材料の検出方法のフローチャート図である。
本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。
本発明の主要な目的は配列式近接場光高散乱材料の検出方法の運用により、入射光が高散乱材料中を進行する際に高散乱材料の内部組成の変化から受けた影響の計測及び分析を行うことである。
ラスチック、セラミック、金属粒堆積、ガラス或いは砂利堆積等の材料ないしは予め染料で染色するか金属顆粒が付着した材料に、追加の照射光がそれを組成する堆積材料に複数回散乱されて、その中を伝達して散乱されて反射されて進行する光に転換される
他の堆積材料は異なる堆積方式及び光散乱反射方式を有する。進行する光が高散乱光材料中の構成構造或いは副構造により複数回の散乱、吸収、長距離散乱反射が行われて伝達された後、進行する光の光学形態が高散乱材料中の副材料構造の組成との高い相関関係を有する。進行する光の光学形態を分析することで高散乱材料内の材料と副構造の組成状態の反転分析が可能になる。
列式近接場光高散乱材料の検出方法の運用により、サンプルと検出器との間には少なくとも操作で用いる光の波長よりも小さい近接場の光学範囲内で直接操作を行え、配列式光学エネルギー読取装置により異なる位置で進行する光の光エネルギーを読み取れる。
即ち、ターゲットの材料の光学透過及び反射映像が不鮮明でも、分析が十分可能な映像データを取得でき、サンプルの表面或いは内部構造の状況を数値化して分析及び研究が可能である。
また、光学的に近接場の範囲で操作する場合、本来高散乱材料内に限定されて進行する多くの光を取得でき、サンプルの表面或いは内部構造の状況を数値化しての分析及び研究を強化できる。
さらには、映像データを取得してさらにフーリエ光学変換もしくは他の映像演算を使用し、分析及び研究を行うことで反転モデルを確立させ、高散乱材料内部の副構造の組成を説明する数値化されたパラメータを獲得し、高散乱材料の物理変換、化学変換、生物化学変換に対してパラメータを数値化し、高散乱材料の異なる運用状況下での物理変換、化学変換、或いは生物化学変換に対して更に分析と研究を行う。
なお、配列式近接場光高散乱材料の検出方法は非平面の高散乱材料構造に適応可能であり、小型化或いは曲面化設計された配列式光学エネルギー読取装置を使用し、特殊な位置での高散乱材料内を進行する光の強度分布信号を取得し、特殊な構造の高散乱材料に適用する。
本発明に係る配列式近接場光高散乱材料の検出方法では、分離入射光源及び配列式光学エネルギー読取装置が使用可能な設計になる。
様々な需要に対応するため、また、主に近接場光学配列式光学エネルギー読取装置を使用して必要な映像データを獲得するため、光源の形式については制限がない。本発明では、X線の波長帯から遠赤外線の波長帯までの同調する、或いは同調しない照射光が使用され、配列式光学エネルギー読取装置が近接場の光学範囲内でサンプル内を進行する光の信号を取得できる光源であれば使用可能である。
入射光と配列式光学エネルギー読取装置との間の角度にも制限がなく、測定時に配列式光学エネルギー読取装置とサンプルとの間の間隔が近接場の光学範囲内であれば適用可能である。
配列式光学エネルギー読取装置の形式は走査を行い異なる位置の空間信号を順に取得する形式により、近接場の光学信号を取得することを主な目標とする。走査方式では、光学エネルギー読取装置とサンプルとの間には近接場の光学距離範囲の間隔を保持させて、皮膚全体の組織構造を表現して分析に使用するデータが読み取れるようにする。
近接場の光学範囲内で取得された映像は遠方場の光学範囲内で取得された映像とは異なるが、但し元データ或いは処理されたデータ映像はサンプル材料として構造の変異の分析及び研究に使用可能である。
配列式光学エネルギー読取装置は周期性の配列式光エネルギー取り出しユニットに限定されず、光エネルギーの取り出し位置及び取り出した信号の強度を確認し且つプローブ及びサンプルが近接場の光学範囲にあれば適用可能である。同様の形式では、集束光ファイバー或いは移動走査式で記録する既知間隔の単列光ファイバーを備えるものも本発明の範囲に含まれる。
以下に図式及び実施形態を加えて本発明の特徴及び実施方式を詳細に説明する。内容は関係する技術に習熟する者にとっては、本発明によって解決される技術的問題への応用手段を容易に理解できると共に実施可能であり、このため本発明によって達成される効果が実現する。なお、図1乃至図は本発明に係る配列式近接場光学高散乱材料の検出方法の実施方式を示す概念図である。
<第1実施形態>
図1は本発明に係る配列式近接場光学高散乱材料の検出方法に使用される設備及び前記材料内の断面状態図である。前記設備は入力光源10及び配列式光学エネルギー読取装置2を備え、入力光源10が入力光1を発光させる。入力光1は光学高散乱材料3のサンプルに対して入力され、これにより光学高散乱材料3のサンプルの検出を行う。入力光1は高散乱材料3内で自然に散乱反射され、散乱及び伝達により光学高散乱材料3中を進行する光11に転換される。
配列式光学エネルギー読取装置2は光エネルギー入力端5を有し、前記光エネルギー入力端5と光学高散乱材料3との間の距離は入力光1の光波長より小さい。配列式光学エネルギー読取装置2の光エネルギー入力端5により光学高散乱材料3の異なる位置を進行する光11及び異なる位置の光学エネルギーが読み取られ、且つ2次元光強度分布データ映像が形成され、光学高散乱材料3の構成構造の状況の分析に用いられる。
前記入力光1の発生形式はガス光源或いは半導体光源である。このほか、光学高散乱材料3に入力される前に、入力光1は前述の光源が透過式、反射式、ないしは光学伝達インターフェース導管等の光学部材により調整された後に出力される単一もしくは複合光源である。入力光1の光源形式及び光学調整の目的は、異なる光学高散乱材料3に適応させるためである。前記配列式光学エネルギー読取装置2は操作形式次第では光学高散乱材料3の複数の異なる位置での光エネルギー強度の読み取りが可能であり、前記異なる位置の数は本発明の実施形態では少なくとも20存在する。
前記配列式光学エネルギー読取装置2は光エネルギーを電荷信号に転換させるための配列式電荷結合光電変換素子及び映像化検出設備である。配列式光学エネルギー読取装置2は多チャンネル光結合素子(図示せず)を備え、光エネルギーを高散乱材料のサンプル表面の近接場の光学距離範囲から遠方場までの距離の範囲に伝達させる光結合光エネルギー取り出し装置及び映像化装置を備えてもよい。
取得された映像データを更に分析するために、配列式光学エネルギー読取装置2が獲得した2次元光強度分布データ映像には映像データ処理が更に施され、例えば映像データの加減乗除、フーリエ変換、特定の空間の周波数信号のフィルタリング、突出した特定の空間の周波数信号の増強、特定の幾何学的特徴のフィルタリング等の処理が施される。
光学高散乱材料3中の特定の構造を強調するため、光学高散乱材料3に対して予め染料による染色ないしは金属顆粒の付着等の方式で異なる深度領域の追加の光交互作用反応強度を強化させ、より多くのデータを有するデータ映像を獲得する。
図2は本発明に係る光学高散乱材料の内部に異なる散乱材料が埋め込まれる断面状態図である。光学高散乱材料3中を進行する光11が埋め込まれた異なる散乱材料31に接触すると、光学的、物理的ないしは化学的な交互作用により別の散乱光12が発生する。これにより、配列式光学エネルギー読取装置2の光エネルギー入力端5で光学高散乱材料3の異なる位置の光学高散乱材料3が発生させた進行する光11及び埋め込まれた異なる散乱材料31の別の散乱光12の光学エネルギーが同時に読み取られ、且つ2次元光強度分布データ映像が形成される。
図3は本発明に係る光学高散乱材料の内部に大きめの異なる散乱材料が埋め込まれる断面状態図である。光学高散乱材料3中を進行する光11が埋め込まれた差異が大きい散乱材料32に接触すると、光学的、物理的或いは化学的な交互作用により埋め込まれた差異が大きい散乱材料32を進行する光11ないしは埋め込まれた異なる散乱材料31の散乱光12を発生させる。異なる散乱材料31は図示せず、また、図中には差異が大きい散乱材料32の後のみを示す。
配列式光学エネルギー読取装置2の光エネルギー入力端5により高散乱材料3の異なる位置を進行する光11と、埋め込まれた異なる散乱材料31の散乱光12と、埋め込まれた差異が大きい散乱材料32を進行する光13の光学エネルギーとが読み取られ、且つ2次元光強度分布データ映像が形成される。入力光1は光学高散乱材料3を進行する光11、埋め込まれた大きな異なる散乱材料31を進行する光13、或いは埋め込まれた異なる散乱材料31の散乱光12の伝達及び散乱経路は高散乱材料や表層領域に限定されず、よって光学高散乱材料3の状況の分析も高散乱材料の表層領域に限定されない。
図4は本発明に係る光学高散乱材料の内部に蛍光散乱材料が埋め込まれる断面状態図である。光学高散乱材料3中を進行する光11が埋め込まれた蛍光散乱材料33に接触すると、光学的な物理的或いは化学的な交互作用により埋め込まれた異なる散乱材料が発生させる散乱光12、埋め込まれた蛍光散乱材料が発生させる散乱14、及び埋め込まれた蛍光散乱材料が発生させる蛍光15が発生する。
配列式光学エネルギー読取装置2の光エネルギー入力端5により高散乱材料3の異なる位置の進行する光11、埋め込まれた異なる散乱材料の散乱光12、埋め込まれた蛍光散乱材料の散乱14、及び埋め込まれた蛍光散乱材料の蛍光15の光学エネルギーが読み取られ、且つ2次元光強度分布データ映像が形成される。使用される配列式近接場光学エネルギー読取装置2の計測は、個別の画素エネルギーユニットが複数の副画素ユニットで構成される複合ユニットを備え、異なる波長光にそれぞれ対応すると共に異なる光電変換反応を有し、もしくは取り出された光のスペクトルを分析する分析機能部材を有する。また、入力光1は受信する信号を固定させ、且つ非入射光源の波長光の信号反応強度を強化させて、蛍光或いはラマンスペクトル反応の計測を強化させる。
図5は本発明に係る光学高散乱材料の異なる角度で光照射が入力された場合の材料内部の断面状態図である。入力光1は適合する角度で傾斜する傾斜入射光16になる。傾斜入射光16の入射傾斜角度161の調整は傾斜入射光16が異なる位置の光学エネルギー分布をより明確にするために行われ、3列配列式光学エネルギー読取装置がより分析に適合する2次元光強度分布データ映像を獲得する。
は本発明に係る配列式光学エネルギー読取装置の分離検出ヘッドモジュール及び入力光源10の分離検出ヘッドモジュールが異なる平面にそれぞれ架設される断面状態図である。入力光1或いは分離式入力光入力装置の検出ヘッドモジュール44及び配列式光学エネルギー読取装置2或いは分離式配列式光学エネルギー読取装置の検出ヘッドモジュール43は異なる平面に架設され、光学高散乱材料3が非平面である場合、進行する光11が表示する材料構造及び光学特性を取得し、且つ配列式光学エネルギー読取装置2がより分析に適する2次元光強度分布データ映像を獲得する。
は本発明に係る適応した外型の配列式光学エネルギー読取装置及び入力光源10が異なる平面にそれぞれ架設される断面状態図である。前記配列式光学エネルギー読取装置21は適応した設計の外型を有し、配列式光学エネルギー読取装置2がより分析に適する2次元光強度分布データ映像を獲得する。
は本発明に係る複数の配列式光学エネルギー読取装置及び入力光源10が異なる平面にそれぞれ架設される断面状態図である。複数の分離プローブを有する配列式光学エネルギー読取装置22が配列式光学エネルギー読取装置2がより分析に適する2次元光強度分布データ映像を獲得するのに使用される。
しかも、本設備に使用される光学部材は必要があれば変形させたり光の経路を調整して光エネルギーを収集する光学部材を追加させてもよい。また、全ての光学構成部材は機械及び支持構造を適度に増加させてもよく、必要な追加の補助設備も未記述であるからといって本発明の特許範囲を制限させるものではない。
本発明に係る前記高散乱材料はプラスチック材料、セラミック材料、堆積材料等である。前記堆積材料は堆積或いは液体に懸濁して形成される材料であり、且つガラス、砂利、プラスチック、金属粒、セラミック顆粒、及び他の化学物質が粘着されるガラスの内の何れか1つである。前記堆積材料は非平面の曲面或いは不規則形状を有し、複数の人工材料を含む。また、これら前記人工材料はガラス、砂利、プラスチック、金属粒及びセラミック顆粒の何れか1つから任意で選択されて堆積して完成する
また、本発明に係る光学高散乱材料3及び非平面高散乱材料34は計測対象物であり、実際の操作では他の形状のサンプルも計測可能であり、よって本発明の計測法の計測対象については本発明の特許範囲に制限はない。
本発明に係る非平面高散乱材料34は計測対象物であり、実際の操作では外形の構造は非常に複雑であり、即ち外型が適応した設計になる配列式光学エネルギー読取装置22、或いは複数の分離プローブを有する配列式光学エネルギー読取装置21を使用する。配列式近接場光学エネルギー読取装置2の各光エネルギー読み取り画素ユニットと非平面高散乱材料34との間の間隔は近接場の光学範囲内に完全に維持されるわけではなく、但し概念上は配列式近接場光高散乱材料の検出方法の技術精神には符合し、よって本発明の計測法に係る操作の些細な変化は本発明の特許範囲において制限されるものではない。
続いて、図を参照し本発明に係る配列式近接場光高散乱材料の検出方法を説明する。
まず、入力光が高散乱材料に照射され、前記照射光が前記高散乱材料中で散乱反射、散乱、及び伝達される(工程101)。
続いて、前記高散乱材料の異なる位置の光学エネルギーが読み取られる(工程102)。
その後、これら前記光学エネルギーに基づいて2次元光強度分布データ映像が形成される(工程103)。
最後に、前記2次元光強度分布データ映像に基づいて前記高散乱材料の構成構造の分析を行う(工程104)。
従って、本明細書に開示された実施形態は、本発明を限定するものではなく、説明するためのものであり、このような実施形態によって本発明の思想と範囲が限定されるものではない。本発明の範囲は特許請求の範囲により解釈すべきであり、それと同等の範囲内にある全ての技術は、本発明の権利範囲に含まれるものと解釈すべきである
1 入力光
2 配列式光学エネルギー読取装置
3 光学高散乱材料
光エネルギー入力端
6 拡散反射検出ヘッドモジュール
10 入力光源
11 進行する光
12 散乱光
13 進行する光
14 散乱
15 蛍光
16 傾斜入射光
21 配列式光学エネルギー読取装置
22 配列式光学エネルギー読取装置
31 異なる散乱材料
32 差異が大きい散乱材料
33 蛍光散乱材料
34 非平面高散乱材料
41 接続線
42 外掛け制御装置
43 検出ヘッドモジュール
44 検出ヘッドモジュール
161 入射傾斜角度

Claims (9)

  1. 光エネルギーを高散乱材料のサンプル表面の近接場の光学距離範囲から遠方場までの距離の範囲に伝達させるように、高散乱材料へ向けて入力光を照射する入力光源と、光エネルギー入力端である多チャンネル光結合素子、光結合光エネルギー取り出し装置及び映像化装置を備え、高散乱材料の異なる位置の光学エネルギーを読み取り可能な配列式光学エネルギー読取装置とを使用し、
    前記入力光源から入力光が高散乱材料に照射され、前記入力光が前記高散乱材料で拡散反射、拡散、及び伝達される工程と、
    前記配列式光学エネルギー読取装置により前記高散乱材料の異なる位置の光学エネルギーが読み取られる工程と、
    2次元光強度分布データ映像に基づいて映像データ処理を行い、前記2次元光強度分布データ映像を分析し、前記高散乱材料の内部構成構造の変化を分析し、これにより前記高散乱材料の内部構成構造のデータを獲得するため、前記配列式光学エネルギー読取装置によりこれら前記光学エネルギーに基づいて2次元光強度分布データ映像が形成される工程と、を含み、
    前記映像データ処理は、異なる測定、設定で獲得した映像間の加減乗除、フーリエ変換の演算処理、特定の空間の周波数信号をフィルタリング演算処理、突出した特定の空間の周波数信号を増強させる演算処理、或いは特定の幾何学的特徴のフィルタリング演算処理の内の何れか1つの工程と、を含むことを特徴とする、
    配列式近接場光高散乱材料の検出方法。
  2. 前記入力光は光学部材による調整を経た後に出力されるX線光源、ガス光源、半導体光源、レーザー光源等の単一の光源であるか、或いは前記光学部材により1つ以上の前記単一の光源が組み合わされて調整された後に出力される複合光源であり、前記光学部材は透過式光学部材、反射式光学部材或いは光学伝達インターフェース導管の何れか1つであることを特徴とする、請求項1記載の配列式近接場光高散乱材料の検出方法。
  3. 記高散乱材料での異なる位置の光学エネルギーが読み取られる工程は、前記高散乱材料での1次元配列の等間隔の異なる位置の光学エネルギーが読み取られる工程と、前記高散乱材料での1次元配列の等間隔の少なくとも20の異なる位置の光学エネルギーが読み取られる工程とを更に含むことを特徴とする、請求項1記載の配列式近接場光高散乱材料の検出方法。
  4. 前記2次元光強度分布データ映像に基づいて、映像スペクトル反応データを獲得し、入射光の信号をフィルタリングし、非入射光源の波長の信号反応強度を強化し、前記高散乱材料或いは前記高散乱材料の深層領域の蛍光反応ないしはラマンスペクトル反応の分析を行うように映像データ処理を行って前記高散乱材料の構成構造を分析することを特徴とする、請求項1記載の配列式近接場光高散乱材料の検出方法。
  5. 前記入射光の伝達及び拡散経路は前記高散乱材料或いは前記高散乱材料にある表層領域の外の領域を含み、且つ前記高散乱材料の構成構造の分析は前記高散乱材料の表層領域の外の領域を含むことを特徴とする、請求項記載の配列式近接場光高散乱材料の検出方法。
  6. 前記高散乱材料は予め染料による染色ないしは金属顆粒付着方式により異なる深度領域の追加の光交互作用反応強度を強化させ、前記2次元光強度分布データ映像がより多くのデータを有するようにすることを特徴とする、請求項1記載の配列式近接場光高散乱材料の検出方法。
  7. 前記高散乱材料はプラスチック材料、セラミック材料、或いは堆積材料の何れか1つであることを特徴とする、請求項1記載の配列式近接場光高散乱材料の検出方法。
  8. 前記堆積材料は堆積或いは液体中に懸濁して形成される材料であり、且つガラス、砂利、プラスチック、金属粒、セラミック顆粒、他の化学物質が粘着されるガラスの内の何れか1つから任意で選択されることを特徴とする、請求項記載の配列式近接場光高散乱材料の検出方法。
  9. 前記堆積材料は平面以外の曲面或いは不規則な形状を有し、複数の人工材料を含み、且つこれら前記人工材料はガラス、砂利、プラスチック、金属粒、及びセラミック顆粒の何れか1つから任意で選択されて堆積して完成することを特徴とする、請求項記載の配列式近接場光高散乱材料の検出方法。
JP2015123795A 2015-06-19 2015-06-19 配列式近接場光高散乱材料の検出方法 Active JP6140772B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015123795A JP6140772B2 (ja) 2015-06-19 2015-06-19 配列式近接場光高散乱材料の検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123795A JP6140772B2 (ja) 2015-06-19 2015-06-19 配列式近接場光高散乱材料の検出方法

Publications (2)

Publication Number Publication Date
JP2017009373A JP2017009373A (ja) 2017-01-12
JP6140772B2 true JP6140772B2 (ja) 2017-05-31

Family

ID=57761830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123795A Active JP6140772B2 (ja) 2015-06-19 2015-06-19 配列式近接場光高散乱材料の検出方法

Country Status (1)

Country Link
JP (1) JP6140772B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3779352B2 (ja) * 1995-05-17 2006-05-24 聡 河田 赤外顕微分光分析方法及び装置
JP4290367B2 (ja) * 2000-02-07 2009-07-01 パナソニック株式会社 生体情報検出用接触子、およびそれを用いた生体情報測定装置
JP5202736B2 (ja) * 2009-06-24 2013-06-05 株式会社日立製作所 生体計測装置
JP5796056B2 (ja) * 2013-06-26 2015-10-21 韓国科学技術院Korea Advanced Institute Of Science And Technology 光の散乱を用いた近接場制御装置及び方法

Also Published As

Publication number Publication date
JP2017009373A (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
US11330985B2 (en) Near-infrared optical imaging system for hemodynamic imaging, pulse monitoring, and mapping spatio-temporal features
US9706929B2 (en) Method and apparatus for imaging tissue topography
Kallaway et al. Advances in the clinical application of Raman spectroscopy for cancer diagnostics
CA2731409C (en) Quantitative multi-spectral opto-acoustic tomography (msot) of tissue biomarkers
CN104968257B (zh) 具有高光谱相机引导的探头的成像系统
US20070073156A1 (en) Combined visual-optic and passive infra-red technologies and the corresponding systems for detection and identification of skin cancer precursors, nevi and tumors for early diagnosis
US20110059016A1 (en) Optical assay system with a multi-probe imaging array
JP2008537995A (ja) 高分解能空間変調蛍光画像化および断層撮影のための方法ならびに装置
WO2005089637A2 (en) Method and system for tomographic imaging using fluorescent proteins
Kirillin et al. Fluence compensation in raster-scan optoacoustic angiography
CN107957401A (zh) 一种可用于介入式肿瘤诊断的高光谱显微成像仪
US20160320299A1 (en) Array near-field high optical scattering material detection method
CN207636480U (zh) 一种可用于介入式肿瘤诊断的高光谱显微成像仪
TWI588492B (zh) 陣列式近場光學高散射材料檢測方法
EP1797818A2 (en) Method and system for tomographic imaging using fluorescent proteins
JP6140772B2 (ja) 配列式近接場光高散乱材料の検出方法
Zalev et al. Characterization of opto-acoustic color mapping for oxygen saturation of blood using biologically relevant phantoms
Takahashi et al. Quantitative evaluation of blood flow obstruction in microcirculation with sidestream dark-field images
WO2018217171A1 (en) Apparatus, optical probe and method for in vivo characterisation of a tissue
US20220160233A1 (en) Raman computed tomography (raman-ct) system and method
Racovita et al. Near infrared imaging for tissue analysis
Hofmann Development of large-scale multi-wavelength optoacoustic and ultrasound mesoscopy for biomedical applications
DE102015110134B4 (de) Nahfeld-Array-Detektionsverfahren zur Detektion von optisch hochstreuendem Material
Cano et al. Deep learning assisted classification of spectral photoacoustic imaging of carotid plaques
Ching-Roa et al. Diffuse Correlation Tomography Geometry Optimization with Genetic Algorithm Using Singular Value Analysis

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6140772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250