JP6134520B2 - Balance correction device and power storage device - Google Patents

Balance correction device and power storage device Download PDF

Info

Publication number
JP6134520B2
JP6134520B2 JP2013012594A JP2013012594A JP6134520B2 JP 6134520 B2 JP6134520 B2 JP 6134520B2 JP 2013012594 A JP2013012594 A JP 2013012594A JP 2013012594 A JP2013012594 A JP 2013012594A JP 6134520 B2 JP6134520 B2 JP 6134520B2
Authority
JP
Japan
Prior art keywords
power storage
balance correction
switching element
voltage
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013012594A
Other languages
Japanese (ja)
Other versions
JP2014147149A (en
Inventor
健志 ▲浜▼田
健志 ▲浜▼田
真鶴 宮崎
真鶴 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2013012594A priority Critical patent/JP6134520B2/en
Priority to CN201480005879.7A priority patent/CN105122578B/en
Priority to PCT/JP2014/051083 priority patent/WO2014115714A1/en
Priority to US14/761,516 priority patent/US10110021B2/en
Publication of JP2014147149A publication Critical patent/JP2014147149A/en
Application granted granted Critical
Publication of JP6134520B2 publication Critical patent/JP6134520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

この発明は、直列接続された複数の蓄電セルからなる集合電池において、蓄電セル間又は直列接続された複数の蓄電セルからなる蓄電モジュール間の電圧を均等化するバランス補正装置及び蓄電装置に関する。   The present invention relates to a balance correction device and a power storage device for equalizing voltages between power storage cells or between power storage modules composed of a plurality of power storage cells connected in series in an assembled battery composed of a plurality of power storage cells connected in series.

複数の蓄電セルが直列接続されてなる集合電池においては、放電能力の低下や寿命の短縮化を防ぐべく、蓄電セル間の電圧(起電力)のばらつきを抑える必要がある。とくに電気自動車等に用いられる蓄電装置のように多数の蓄電セルからなる集合電池については蓄電セル間の電圧のばらつきを厳密に抑えることが求められる。   In an assembled battery in which a plurality of power storage cells are connected in series, it is necessary to suppress variations in voltage (electromotive force) between the power storage cells in order to prevent a decrease in discharge capacity and a reduction in life. In particular, for an assembled battery composed of a large number of power storage cells, such as a power storage device used in an electric vehicle or the like, it is required to strictly suppress variations in voltage between the power storage cells.

蓄電セル間の電圧を均等化する仕組みとして、例えば、特許文献1には、直列接続された2次電池B1,B2の接続点にインダクタLの一端を接続しておき、インダクタLの他端を電池B1の他端に接続して形成される第1閉回路に電流を流す第1モードと、インダクタLの他端を電池B2の他端に接続して形成される第2閉回路に電流を流す第2モードとを短時間ずつ交互に繰り返す動作(スイッチング動作)を適当な期間、実行することにより、電池B1と電池B2の電圧を均等化するバランス補正方法について開示されている(以下、同文献に開示されているバランス補正方式のことをコンバータ方式と称する。)。   As a mechanism for equalizing the voltage between the storage cells, for example, in Patent Document 1, one end of the inductor L is connected to the connection point of the secondary batteries B1 and B2 connected in series, and the other end of the inductor L is connected. A first mode in which current flows through a first closed circuit formed by connecting to the other end of the battery B1, and a second closed circuit formed by connecting the other end of the inductor L to the other end of the battery B2. A balance correction method for equalizing the voltages of the battery B1 and the battery B2 by executing an operation (switching operation) that alternately repeats the second mode to be flown alternately for a short period of time is disclosed (hereinafter, the same). The balance correction method disclosed in the literature is called a converter method.)

また特許文献2には、ノートパソコン等に使用されるパック電池において、負荷電流が少ない場合におけるパック電池内の損失を低減しつつセルバランスを補正すべく、複数個の素電池を直列に接続し、これら素電池の出力電圧を入力とし、各素電池を充電する方向に出力を接続したON/OFF方式のコンバータ回路、並びに負荷電流の大きさに応じて一次側電流を増減させる電流制御回路を備えたパック電池について開示されている(以下、同文献に開示されているバランス補正方式のことをトランス方式と称する。)。   In Patent Document 2, in a battery pack used in a notebook computer or the like, a plurality of cells are connected in series in order to correct cell balance while reducing loss in the battery pack when the load current is small. An ON / OFF converter circuit in which the output voltage of these unit cells is input and the output is connected in the charging direction of each unit cell, and a current control circuit that increases or decreases the primary side current according to the magnitude of the load current The battery pack provided is disclosed (hereinafter, the balance correction method disclosed in the document is referred to as a transformer method).

特開2001−185229号公報JP 2001-185229 A 特開平11−176483号公報JP-A-11-176483

図6は、集合電池の蓄電セルのバランスを確保するためのバランス補正装置の一例として示す、コンバータ方式のバランス補正回路6である。同図に示すように、蓄電セルB1とB2とが直列接続されて集合電池3が構成されている。集合電池3の正負端子31,32には、集合電池3に充電電流を供給する電流供給源(例えば、充電器、回生回路)、もしくは集合電池3の電力を利用する負荷(例えば、モータ、需要家負荷、電子回路)が接続される。   FIG. 6 shows a converter-type balance correction circuit 6 shown as an example of a balance correction device for ensuring the balance of the storage battery storage cells. As shown in the figure, the storage battery 3 is configured by connecting power storage cells B1 and B2 in series. The positive and negative terminals 31 and 32 of the assembled battery 3 have a current supply source (for example, a charger, a regenerative circuit) that supplies a charging current to the assembled battery 3 or a load (for example, a motor, a demand) that uses the power of the assembled battery 3. House load, electronic circuit).

蓄電セルB1の負極と蓄電セルB2の正極とを結ぶ線路には、インダクタLの一端が接続されている。インダクタLの他端と蓄電セルB1の正極とを結ぶ線路には、スイッチング素子S1が設けられている。インダクタLの他端と蓄電セルB2の負極とを結ぶ線路には、スイッチング素子S2が設けられている。   One end of the inductor L is connected to a line connecting the negative electrode of the storage cell B1 and the positive electrode of the storage cell B2. A switching element S1 is provided on the line connecting the other end of the inductor L and the positive electrode of the storage cell B1. A switching element S2 is provided on a line connecting the other end of the inductor L and the negative electrode of the storage cell B2.

スイッチング素子S1,S2は、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を用いて構成されている。スイッチング素子S1,S2は、制御回路30によって生成される制御信号φ1,φ2によって制御されるゲートドライバD1,D2によって、一方のスイッチング素子がオンしているときは他方のスイッチング素子がオフするように、互いに相補的に動作する。   The switching elements S1 and S2 are configured using, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). The switching elements S1 and S2 are configured such that when one switching element is turned on by the gate drivers D1 and D2 controlled by the control signals φ1 and φ2 generated by the control circuit 30, the other switching element is turned off. , Operate complementary to each other.

同図に示すように、インダクタLの一端と蓄電セルB1の正極との間には、容量素子C1が、またインダクタLの一端と蓄電セルB2の負極との間には、容量素子C2が、夫々設けられている。容量素子C1,C2は、例えば、スイッチング素子のオンオフ動作に起因して生じるノイズの低減、スイッチングにより蓄電セルB1,B2に生じる電圧変化の緩和などを目的として設けられる。尚、スイッチング素子S1,S2がMOSFETである場合、容量素子C1,C2はスイッチング素子S1,S2の寄生容量であってもよい。   As shown in the figure, a capacitive element C1 is provided between one end of the inductor L and the positive electrode of the storage cell B1, and a capacitive element C2 is provided between one end of the inductor L and the negative electrode of the storage cell B2. Each is provided. Capacitance elements C1 and C2 are provided for the purpose of, for example, reducing noise generated due to the on / off operation of the switching elements, and mitigating voltage changes that occur in power storage cells B1 and B2 due to switching. When the switching elements S1 and S2 are MOSFETs, the capacitive elements C1 and C2 may be parasitic capacitances of the switching elements S1 and S2.

以上の構成からなるバランス補正回路において、制御回路10は、制御信号によりスイッチング素子S1とスイッチング素子S2とを所定のデューティ比で交互にオンオフ制御する。これにより蓄電セルB1と蓄電セルB2との間で電力の授受が行われ、蓄電セルB1と蓄電セルB2の電圧が均等化される。   In the balance correction circuit having the above configuration, the control circuit 10 alternately controls the switching element S1 and the switching element S2 on and off at a predetermined duty ratio by a control signal. Thereby, power is transferred between the storage cell B1 and the storage cell B2, and the voltages of the storage cell B1 and the storage cell B2 are equalized.

制御回路10は、蓄電セルB1,B2の夫々の電圧(例えば、同図における接続点J4−J3間の電圧や接続点J3−J5の間の電圧)を電圧センサ(電圧計等)によってリアルタイムに監視している。制御回路10は、両蓄電セルB1,B2の電圧が略一致していること(セルバランスが十分に確保されていること)を検知すると、スイッチング素子S1,S2のスイッチング動作を停止する。   The control circuit 10 uses a voltage sensor (such as a voltmeter) to measure the voltages of the storage cells B1 and B2 (for example, the voltage between the connection points J4-J3 and the voltage between the connection points J3-J5 in the figure) in real time. Monitoring. The control circuit 10 stops the switching operation of the switching elements S1 and S2 when detecting that the voltages of both the storage cells B1 and B2 are substantially matched (cell balance is sufficiently secured).

ところで、以上の構成からなるバランス補正回路6において、上記オンオフ制御の実施中に、例えば、図7に示す断線部位71にて断線が生じている場合でも、容量素子C1に向かって蓄電セルB2からエネルギーが供給されるので接続点J4の電位が殆ど変化せず、従って制御回路10は断線部位71に断線が生じていることを検出することができない。そしてその後もバランス補正回路6がオンオフ制御を持続する結果、蓄電セルB1,B2間の電圧のばらつきが拡大してしまう可能性がある。こうした事情は、例えば、蓄電セルB1の負極と接続点J3とを結ぶ線路に断線が生じた場合においても同様である。   By the way, in the balance correction circuit 6 having the above-described configuration, even when a disconnection occurs at the disconnection portion 71 shown in FIG. 7 during the on / off control, for example, from the storage cell B2 toward the capacitive element C1. Since the energy is supplied, the potential of the connection point J4 hardly changes, and therefore the control circuit 10 cannot detect that the disconnection site 71 is disconnected. After that, as a result of the balance correction circuit 6 continuing the on / off control, there is a possibility that the variation in voltage between the storage cells B1 and B2 may be increased. Such a situation is the same when, for example, a disconnection occurs in a line connecting the negative electrode of the storage cell B1 and the connection point J3.

本発明は、このような課題を解決すべくなされたもので、回路中に生じた断線を確実に検出することが可能な、バランス補正装置及び蓄電装置を提供することを目的としている。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a balance correction device and a power storage device capable of reliably detecting disconnection occurring in a circuit.

上記目的を達成するための本発明のうちの一つは、直列接続された複数の蓄電セルからなる集合電池において、前記蓄電セル間又は直列接続された複数の前記蓄電セルからなる蓄電モジュール間の電圧を均等化するバランス補正装置であって、前記蓄電モジュールの夫々に対する電流の供給を第1のデューティ比でオンオフ制御することにより、前記蓄電モジュールの夫々が共通に接続する素子を介して前記蓄電モジュール間で電力の授受を生じさせ、前記蓄電モジュール間の電圧を均等化させるスイッチング制御部と、前記第1のデューティ比とは異なる第2のデューティ比で前記オンオフ制御を行う期間を生じさせるデューティ比制御部と、前記蓄電セルの端子間に接続している容量素子に印加される電圧を計測する電圧計測部と、前記期間において前記容量素子に印加される前記電圧の変化に基づき、前記容量素子と前記蓄電セルとを結ぶ線路の断線の有無を判定する断線検出部と、を備える。   In order to achieve the above object, one of the present inventions is an assembled battery composed of a plurality of power storage cells connected in series, and between power storage cells or between power storage modules composed of a plurality of power storage cells connected in series. A balance correction device for equalizing voltages, wherein on / off control of current supply to each of the power storage modules with a first duty ratio allows the power storage modules to be connected via elements commonly connected to each other. A switching control unit that generates power between modules and equalizes the voltage between the power storage modules, and a duty that generates a period for performing the on / off control at a second duty ratio different from the first duty ratio A ratio control unit, a voltage measurement unit that measures a voltage applied to a capacitive element connected between the terminals of the storage cell, and the Based on the change of the voltage applied to the capacitive element between, and a disconnection detecting unit it determines the presence or absence of disconnection of the line connecting the said capacitive element and said energy storage cell.

本発明の他の一つは、上記バランス補正装置であって、前記断線検出部は、前記期間において、前記容量素子に印加される前記電圧の時間変化率が所定の閾値を超えた場合に前記容量素子と前記蓄電セルとを結ぶ線路に断線が生じたと判定する。   Another aspect of the present invention is the balance correction apparatus, wherein the disconnection detection unit is configured to detect the breakage when the time change rate of the voltage applied to the capacitive element exceeds a predetermined threshold during the period. It is determined that a disconnection has occurred in the line connecting the capacitive element and the storage cell.

本発明の他の一つは、上記バランス補正装置であって、前後して接続する第1の前記蓄電モジュールと第2の前記蓄電モジュールとの接続点にその一端が接続されるインダクタと、前記第1の蓄電モジュールの正負端子間に前記インダクタとともに直列接続される第1のスイッチング素子と、前記第2の蓄電モジュールの正負端子間に前記インダクタとともに直列接続される第2のスイッチング素子と、を備え、前記スイッチング制御部は、前記第1のスイッチング素子と前記第2のスイッチング素子とを交互にオンオフ制御することにより、前記インダクタを介して前記蓄電モジュール間で電力の授受を生じさせて前記蓄電モジュール間の電圧を均等化させる。   Another aspect of the present invention is the balance correction apparatus described above, in which an inductor has one end connected to a connection point between the first power storage module and the second power storage module that are connected back and forth, A first switching element connected in series with the inductor between the positive and negative terminals of the first power storage module; and a second switching element connected in series with the inductor between the positive and negative terminals of the second power storage module. And the switching control unit alternately turns on and off the first switching element and the second switching element to cause power to be transferred between the power storage modules via the inductor. Equalize the voltage between modules.

本発明の他の一つは、上記バランス補正装置であって、前記第1のスイッチング素子及び前記第2のスイッチング素子はMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であり、前記容量素子は、前記第1のスイッチング素子又は前記第2のスイッチング素子に存在する寄生容量である。 Another aspect of the present invention is the balance correction apparatus, wherein the first switching element and the second switching element are MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), and the capacitive element is , Parasitic capacitance existing in the first switching element or the second switching element.

本発明の他の一つは、上記バランス補正装置であって、直列接続された複数の前記蓄電モジュールで構成される集合電池の正負端子間に接続される一次巻線、及び前記蓄電モジュールの夫々の正負端子間に接続される複数の二次巻線を有するトランスと、前記集合電池と前記一次巻線とを含む経路において前記集合電池に直列接続されるスイッチング素子と、を備え、前記スイッチング制御部は、前記スイッチング素子をオンオフ制御することにより前記トランスを介して前記蓄電モジュール間で電力の授受を生じさせて前記蓄電モジュール間の電圧を均等化させる。   Another aspect of the present invention is the balance correction apparatus, wherein the primary winding connected between the positive and negative terminals of the battery assembly including the plurality of power storage modules connected in series, and each of the power storage modules. A transformer having a plurality of secondary windings connected between the positive and negative terminals, and a switching element connected in series to the battery assembly in a path including the battery assembly and the primary winding, and the switching control. The unit causes power to be transferred between the power storage modules through the transformer by performing on / off control of the switching element, and equalizes the voltage between the power storage modules.

本発明の他の一つは、蓄電装置であって、前記直列接続された複数の蓄電セルと上記バランス補正装置を備える。   Another aspect of the present invention is a power storage device including the plurality of power storage cells connected in series and the balance correction device.

その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   In addition, the subject which this application discloses, and its solution method are clarified by the column of the form for inventing, and drawing.

本発明によれば、簡素な構成にて回路中に生じた断線を確実に検出することができる。   According to the present invention, it is possible to reliably detect disconnection generated in a circuit with a simple configuration.

コンバータ方式のバランス補正回路1の一例である。1 is an example of a converter type balance correction circuit 1; (a)は、制御回路10が第1の期間に出力する制御信号φ1,φ2の波形であり、(b)乃至(d)は、第1の期間においてインダクタLを流れる電流の波形である。(A) is a waveform of the control signals φ1 and φ2 output by the control circuit 10 in the first period, and (b) to (d) are waveforms of a current flowing through the inductor L in the first period. (a)は、第2の期間における制御信号φ1,φ2の波形であり、(b)は断線が生じていない場合におけるバランス補正回路1の所定箇所の電圧及び電流の変化を示すグラフであり、(c)は、断線が生じている場合におけるバランス補正回路1の所定箇所の電圧及び電流の変化を示すグラフである。(A) is a waveform of the control signals φ1 and φ2 in the second period, (b) is a graph showing changes in voltage and current at a predetermined location of the balance correction circuit 1 when no disconnection occurs, (C) is a graph which shows the change of the voltage and electric current of the predetermined location of the balance correction circuit 1 when the disconnection has arisen. 断線部位41を示す図である。It is a figure which shows the disconnection part 41. FIG. トランス方式のバランス補正回路2の一例である。2 is an example of a transformer type balance correction circuit 2; コンバータ方式のバランス補正回路6の一例である。It is an example of the balance correction circuit 6 of a converter system. 断線部位71を示す図である。It is a figure which shows the disconnection location 71. FIG.

以下、本発明の実施形態について説明する。尚、以下の説明において、同一又は類似の部分に同一の符号を付して重複する説明を省略することがある。   Hereinafter, embodiments of the present invention will be described. In the following description, the same or similar parts may be denoted by the same reference numerals and redundant description may be omitted.

図1は本発明の一実施形態として示すバランス補正回路1(バランス補正装置)である。このバランス補正回路1は、例えば、直列接続された複数の蓄電セルからなる集合電池を利用する蓄電装置(電気自動車、ハイブリッド自動車、電気二輪車、鉄道車両、昇降機、系統連携用蓄電装置、パーソナルコンピュータ、ノートブック型コンピュータ、携帯電話機、スマートフォン、PDA機器等)に適用される。蓄電セルは、例えば、リチウムイオン二次電池、リチウムイオンポリマー二次電池等が代表的であるが、蓄電セルは、例えば、電気二重層キャパシタ等の他の種類の蓄電素子であってもよい。   FIG. 1 shows a balance correction circuit 1 (balance correction apparatus) shown as an embodiment of the present invention. The balance correction circuit 1 includes, for example, a power storage device (an electric vehicle, a hybrid vehicle, an electric two-wheeled vehicle, a railway vehicle, an elevator, a power storage device for system linkage, a personal computer, which uses an assembled battery including a plurality of power storage cells connected in series. (Notebook computers, mobile phones, smartphones, PDA devices, etc.) The power storage cell is typically a lithium ion secondary battery, a lithium ion polymer secondary battery, or the like, for example, but the power storage cell may be another type of power storage element such as an electric double layer capacitor.

集合電池を構成している蓄電セル間で製造品質や劣化の度合いが異なる場合、蓄電セル間の電池特性(電池容量、放電電圧特性)に差が生じることがある。そしてこうした電池特性の差に起因して、充放電時等に蓄電セル間の電圧にばらつきが生じることがある。そこでこのようなばらつきの発生を抑制すべく、バランス補正回路1は、蓄電セル間の電圧もしくは直列接続された複数の蓄電セルからなる蓄電モジュール間の電圧を均等化(セルバランスの確保)させるように動作する。   When the manufacturing quality and the degree of deterioration are different between the storage cells constituting the assembled battery, there may be a difference in battery characteristics (battery capacity, discharge voltage characteristics) between the storage cells. Due to such difference in battery characteristics, the voltage between the storage cells may vary during charging and discharging. Therefore, in order to suppress the occurrence of such variation, the balance correction circuit 1 equalizes the voltage between the storage cells or the voltage between the storage modules composed of a plurality of storage cells connected in series (ensuring cell balance). To work.

同図に示すように、蓄電セルB1とB2とが直列に接続されて集合電池3を構成している。集合電池3の正負端子31,32には、集合電池3に充電電流を供給する電流供給源(例えば、充電器、回生回路)、集合電池3の起電力を利用して機能する負荷(例えば、モータ、需要家負荷、電子回路)等が接続される。   As shown in the drawing, the storage cells B1 and B2 are connected in series to form the battery assembly 3. The positive and negative terminals 31 and 32 of the assembled battery 3 have a current supply source (for example, a charger, a regenerative circuit) that supplies a charging current to the assembled battery 3 and a load that functions using the electromotive force of the assembled battery 3 (for example, Motor, consumer load, electronic circuit) and the like are connected.

蓄電セルB1の負極と蓄電セルB2の正極とを結ぶ線路には、インダクタLの一端が接続されている。またインダクタLの他端と蓄電セルB1の正極とを結ぶ線路には、スイッチング素子S1が設けられている。インダクタLの他端と蓄電セルB2の負極とを結ぶ線路には、スイッチング素子S2が設けられている。   One end of the inductor L is connected to a line connecting the negative electrode of the storage cell B1 and the positive electrode of the storage cell B2. A switching element S1 is provided on a line connecting the other end of the inductor L and the positive electrode of the storage cell B1. A switching element S2 is provided on a line connecting the other end of the inductor L and the negative electrode of the storage cell B2.

スイッチング素子S1,S2はMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を用いて構成されている。スイッチング素子S1,S2は、制御回路10(スイッチング制御部)によって生成される制御信号φ1,φ2によって制御されるゲートドライバD1,D2によって、一方のスイッチング素子がオンの場合は他方のスイッチング素子がオフするように、互いに相補的に動作する。   The switching elements S1 and S2 are configured using MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors). The switching elements S1 and S2 are turned off when one switching element is turned on by the gate drivers D1 and D2 controlled by the control signals φ1 and φ2 generated by the control circuit 10 (switching control unit). Operate in a complementary manner.

インダクタLの一端と蓄電セルB1の正極との間には容量素子C1が、インダクタLの一端と蓄電セルB2の負極との間には容量素子C2が、夫々設けられている。容量素子C1,C2は、例えば、スイッチング素子のオンオフ動作に起因して生じるノイズの低減、スイッチングにより蓄電セルB1,B2に生じる電圧変化の緩和などを目的として設けられる。尚、スイッチング素子S1,S2がMOSFETである場合、容量素子C1,C2は、スイッチング素子S1,S2の寄生容量であってもよい。また容量素子C1は、接続点J4と接続点J5との間に設けてもよい(容量素子C1の両端子を夫々、接続点J4、接続点J5に接続する)。   A capacitive element C1 is provided between one end of the inductor L and the positive electrode of the storage cell B1, and a capacitive element C2 is provided between one end of the inductor L and the negative electrode of the storage cell B2. Capacitance elements C1 and C2 are provided for the purpose of, for example, reducing noise generated due to the on / off operation of the switching elements, and mitigating voltage changes that occur in power storage cells B1 and B2 due to switching. When the switching elements S1 and S2 are MOSFETs, the capacitive elements C1 and C2 may be parasitic capacitances of the switching elements S1 and S2. The capacitive element C1 may be provided between the connection point J4 and the connection point J5 (both terminals of the capacitive element C1 are connected to the connection point J4 and the connection point J5, respectively).

同図に示すように、制御回路10は、制御信号生成回路101、デューティ比制御回路102、計測回路103(電圧計測部)、及び断線検出回路104(断線検出部)を備える。   As shown in the figure, the control circuit 10 includes a control signal generation circuit 101, a duty ratio control circuit 102, a measurement circuit 103 (voltage measurement unit), and a disconnection detection circuit 104 (disconnection detection unit).

制御信号生成回路101は、ゲートドライバD1,D2の夫々に供給する2相の制御信号φ1,φ2を生成する。尚、本実施形態においては、制御信号φ1,φ2は、所定のデューティ比(例えば50%)の2相の方形波(例えばPWMパルス(PWM:Pulse Width Modulation)であるものとする。   The control signal generation circuit 101 generates two-phase control signals φ1 and φ2 to be supplied to the gate drivers D1 and D2, respectively. In the present embodiment, the control signals φ1 and φ2 are two-phase square waves (for example, PWM pulse (PWM: Pulse Width Modulation)) having a predetermined duty ratio (for example, 50%).

デューティ比制御回路102は、制御信号生成回路101が生成する制御信号φ1,φ2のデューティ比を制御する。計測回路103は、バランス補正回路1を構成している線路の所定部位の電圧の計測値並びに電流の計測値をリアルタイムに取得する。   The duty ratio control circuit 102 controls the duty ratio of the control signals φ1 and φ2 generated by the control signal generation circuit 101. The measurement circuit 103 acquires the measurement value of the voltage and the measurement value of the current in real time in a predetermined part of the line constituting the balance correction circuit 1.

断線検出回路104は、第2の期間においてバランス補正回路1を構成している線路の所定部位の電圧の時間変化率(単位時間当たりの電圧変化量)に基づき、バランス補正回路1を構成している線路における断線の有無を検出する。例えば、断線検出回路104は、容量素子C1,C2の端子間に印加される電圧の時間変化率(単位時間当たりの電圧変化量)が所定の閾値を超えているか否かに基づき、容量素子C1,C2と蓄電セルB1又はB2とを結ぶ線路における断線の有無を検出する。   The disconnection detection circuit 104 configures the balance correction circuit 1 on the basis of the time change rate (voltage change amount per unit time) of a predetermined portion of the line constituting the balance correction circuit 1 in the second period. Detects the presence or absence of disconnection on the line. For example, the disconnection detection circuit 104 determines whether or not the time change rate (voltage change amount per unit time) of the voltage applied between the terminals of the capacitor elements C1 and C2 exceeds a predetermined threshold value. , C2 and the storage cell B1 or B2, the presence or absence of disconnection in the line is detected.

続いてバランス補正回路1の基本的な動作について、図2を参照しつつ説明する。   Next, the basic operation of the balance correction circuit 1 will be described with reference to FIG.

図2(a)は、制御回路10が、スイッチング素子S1,S2のオンオフ制御を行っている期間に生成する、制御信号φ1,φ2の波形である。同図に示すように、上記期間中、制御回路10は、例えば、同一周期で相補的にオンオフされる方形波からなる制御信号φ1,φ2を生成する。   FIG. 2A shows the waveforms of the control signals φ1 and φ2 generated by the control circuit 10 during the period when the on / off control of the switching elements S1 and S2 is performed. As shown in the figure, during the period, the control circuit 10 generates control signals φ1 and φ2 composed of square waves that are complementarily turned on and off in the same cycle, for example.

図2(b)〜(d)は、スイッチング素子S1,S2のオンオフ制御を行っている期間においてインダクタLを流れる電流iLの波形である。このうち図2(b)は、蓄電セルB1の電圧E1が蓄電セルB2の電圧E2よりも大きい場合にインダクタLを流れる電流iLの波形であり、図2(c)は、蓄電セルB1の電圧E1が蓄電セルB2の電圧E2よりも小さい場合にインダクタLを流れる電流iLの波形であり、図2(d)は、蓄電セルB1の電圧E1と蓄電セルB2の電圧E2とが均等である(略等しい)場合にインダクタLを流れる電流iLの波形である。   2B to 2D are waveforms of the current iL flowing through the inductor L during the period when the on / off control of the switching elements S1 and S2 is performed. Of these, FIG. 2B shows a waveform of the current iL flowing through the inductor L when the voltage E1 of the storage cell B1 is larger than the voltage E2 of the storage cell B2, and FIG. 2C shows the voltage of the storage cell B1. FIG. 2D shows the waveform of the current iL flowing through the inductor L when E1 is smaller than the voltage E2 of the storage cell B2, and FIG. 2D shows that the voltage E1 of the storage cell B1 and the voltage E2 of the storage cell B2 are equal ( This is a waveform of the current iL flowing through the inductor L in the case of substantially equal).

ここで図2(b)に示すように、蓄電セルB1の電圧E1が蓄電セルB2の電圧E2よりも大きい場合(E1>E2)、スイッチング素子S1がオンでスイッチング素子S2がオフの期間中は、主に蓄電セルB1の正極→接続点J6→接続点J4→スイッチング素子S1→インダクタL→接続点J3→接続点J1→蓄電セルB1の負極の経路(以下、これを第1経路と称する。)で電流iLが流れる。つまりこの期間中は主に図1に示す実線矢印の方向に電流iLが流れてインダクタLにエネルギーが蓄積される。   Here, as shown in FIG. 2B, when the voltage E1 of the storage cell B1 is larger than the voltage E2 of the storage cell B2 (E1> E2), the switching element S1 is on and the switching element S2 is off. Mainly, the positive electrode of the storage cell B1, the connection point J6, the connection point J4, the switching element S1, the inductor L, the connection point J3, the connection point J1, and the negative electrode path of the storage cell B1 (hereinafter referred to as a first path). ) Current iL flows. That is, during this period, current iL flows mainly in the direction of the solid line arrow shown in FIG.

その後、スイッチング素子S1がオフしてスイッチング素子S2がオンすると、インダクタLに蓄積されていたエネルギーが、インダクタL→接続点J3→接続点J1→蓄電セルB2の正極→蓄電セルB2の負極→接続点J7→接続点J5→スイッチング素子S2→インダクタLの経路で放出され、これにより蓄電セルB2が充電される。そしてインダクタLのエネルギーが無くなると、インダクタLには逆方向に電流iLが流れ始める。   Thereafter, when the switching element S1 is turned off and the switching element S2 is turned on, the energy stored in the inductor L is changed from the inductor L → the connection point J3 → the connection point J1 → the positive electrode of the storage cell B2 → the negative electrode of the storage cell B2. It is discharged through a path of point J7 → connection point J5 → switching element S2 → inductor L, whereby the storage cell B2 is charged. When the energy of the inductor L is lost, the current iL starts to flow through the inductor L in the reverse direction.

また図2(c)に示すように、蓄電セルB1の電圧E1が蓄電セルB2の電圧E2よりも小さい場合(E1<E2)、スイッチング素子S1がオフでスイッチング素子S2がオンの期間中は、主に蓄電セルB2の正極→接続点J1→接続点J3→インダクタL→接続点J2→スイッチング素子S2→接続点J5→接続点J7→蓄電セルB2の負極の経路(以下、これを第2経路と称する。)で電流iLが流れる。つまりこの期間中は主に図1に示す破線矢印の方向に電流iLが流れてインダクタLにエネルギーが蓄積される。   Also, as shown in FIG. 2C, when the voltage E1 of the storage cell B1 is smaller than the voltage E2 of the storage cell B2 (E1 <E2), during the period when the switching element S1 is off and the switching element S2 is on, Mainly the positive electrode of the storage cell B2, the connection point J1, the connection point J3, the inductor L, the connection point J2, the switching element S2, the connection point J5, the connection point J7, and the negative electrode path of the storage cell B2 (hereinafter referred to as the second path). Current iL flows. That is, during this period, current iL flows mainly in the direction of the broken line arrow shown in FIG.

その後、スイッチング素子S2がオフしてスイッチング素子S1がオンすると、インダクタLに蓄積されていたエネルギーが、インダクタL→接続点J2→スイッチング素子S1→接続点J4→接続点J6→蓄電セルB1の正極→蓄電セルB1の負極→接続点J1→接続点J3→インダクタLの経路で放出され、これにより蓄電セルB1が充電される。そしてインダクタLのエネルギーが無くなると、インダクタLには逆方向に電流iLが流れ始める。   Thereafter, when the switching element S2 is turned off and the switching element S1 is turned on, the energy stored in the inductor L is changed from the inductor L → the connection point J2 → the switching element S1 → the connection point J4 → the connection point J6 → the positive electrode of the storage cell B1. → The negative electrode of the storage cell B1 → the connection point J1 → the connection point J3 → discharged through the inductor L, whereby the storage cell B1 is charged. When the energy of the inductor L is lost, the current iL starts to flow through the inductor L in the reverse direction.

このように、蓄電セルB1,B2間の電圧に差が存在する場合、第1経路及び第2経路に交互に電流iLが流れることにより、蓄電セルB1と蓄電セルB2との間でエネルギーの授受が行われ、その結果両者の電圧が均等化されてセルバランスが確保される。尚、図2(d)に示すように、蓄電セルB1の電圧E1と蓄電セルB2の電圧E2とが均等である場合(E1E2)、オンオフ制御に伴い蓄電セルB1,B2間で授受されるエネルギーの収支はバランスしており、蓄電セルB1,B2間の電圧は均等に保たれる。 As described above, when there is a difference in the voltage between the storage cells B1 and B2, the current iL alternately flows through the first path and the second path, thereby transferring energy between the storage cell B1 and the storage cell B2. As a result, the voltages of both are equalized to ensure cell balance. As shown in FIG. 2D, when the voltage E1 of the storage cell B1 and the voltage E2 of the storage cell B2 are equal (E1 = E2), the power is transferred between the storage cells B1 and B2 in accordance with the on / off control. The balance of energy balance is balanced, and the voltage between the storage cells B1 and B2 is kept uniform.

制御回路10は、計測回路103によって計測される電圧(蓄電セルB1,B2の夫々の端子間の電圧(例えば、接続点J4−J3間の電圧、接続点J3−J5の間の電圧等)をリアルタイムに監視しており、蓄電セルB1,B2の電圧が均等であること(略一致していること)を検知すると、スイッチング素子S1,S2のオンオフ制御を停止する。   The control circuit 10 determines the voltage measured by the measurement circuit 103 (the voltage between the terminals of the storage cells B1 and B2 (for example, the voltage between the connection points J4-J3, the voltage between the connection points J3-J5, etc.). When monitoring in real time and detecting that the voltages of the storage cells B1 and B2 are equal (substantially match), the on / off control of the switching elements S1 and S2 is stopped.

<断線検出>
続いて、本実施形態のバランス補正回路1による断線検出の仕組みについて説明する。制御回路10は、蓄電セルB1,B2間のセルバランスを確保する必要があると判断すると、第1のデューティ比(例えば50%)からなる制御信号φ1,φ2を出力してスイッチング素子S1,S2をオンオフ制御し、蓄電セルB1,B2間での電力の授受を生じさせて蓄電セルB1,B2間の電圧を均等化させる。
<Disconnection detection>
Subsequently, a mechanism of disconnection detection by the balance correction circuit 1 of the present embodiment will be described. When the control circuit 10 determines that it is necessary to ensure the cell balance between the storage cells B1 and B2, the control circuit 10 outputs the control signals φ1 and φ2 having the first duty ratio (for example, 50%) to output the switching elements S1 and S2. Is turned on and off, and power is transferred between the storage cells B1 and B2 to equalize the voltage between the storage cells B1 and B2.

一方、制御回路10は、線路中の断線検出を行うべく、上記オンオフ制御の期間(以下、第1の期間と称する。)において、第1のデューティ比とは異なる第2のデューティ比(例えば70〜90%)からなる制御信号φ1,φ2を出力する期間(以下、第2の期間と称する。)を、予め設定された間隔で繰り返し生じさせる。尚、制御回路10は、例えば、バランス補正回路1によるセルバランスの均等化に影響が生じないように時間間隔及び期間を設定して上記第2の期間を生じさせる。   On the other hand, in order to detect disconnection in the line, the control circuit 10 has a second duty ratio (for example, 70) different from the first duty ratio in the on-off control period (hereinafter referred to as the first period). A period (hereinafter referred to as a second period) in which the control signals φ1 and φ2 composed of ˜90% are output repeatedly at predetermined intervals. For example, the control circuit 10 sets the time interval and the period so as not to affect the equalization of the cell balance by the balance correction circuit 1 and generates the second period.

図3(a)に上記第1の期間及び第2の期間に制御回路10が出力する制御信号φ1,φ2の一例を示す。同図において、時刻t1〜t3の期間が上記第1の期間に相当し、時刻t3〜t6の期間が上記第2の期間に相当する。ここで第2の期間においては、バランス補正回路1の線路に断線が生じている場合と生じていない場合とで容量素子C1,C2の夫々の端子間に印加される電圧の時間変化率に顕著な差が生じる。以下、これについて図4に示す断線部位41(バランス補正回路1の接続点J4と蓄電セルB1の正極との間を結ぶ線路の所定部位)に断線が生じている場合を例として説明する。   FIG. 3A shows an example of the control signals φ1 and φ2 output from the control circuit 10 in the first period and the second period. In the figure, the period from time t1 to t3 corresponds to the first period, and the period from time t3 to t6 corresponds to the second period. Here, in the second period, the time change rate of the voltage applied between the respective terminals of the capacitive elements C1 and C2 is remarkable depending on whether the line of the balance correction circuit 1 is disconnected or not. There is a big difference. Hereinafter, the case where the disconnection part 41 shown in FIG. 4 (predetermined part of the line connecting the connection point J4 of the balance correction circuit 1 and the positive electrode of the storage cell B1) is broken will be described as an example.

図3(b)は、図3(a)と同一の時間軸で示した、バランス補正回路1に断線が生じていない場合に計測回路103により計測されるバランス補正回路1の所定箇所の電圧変化並びに電流変化を示すグラフである。図3において、Vaは、断線部位41に対して、スイッチング素子S1側に繋がる線路の電圧(容量素子C1の、蓄電セルB1の正極に繋がる端子の電圧)であり(図4を参照)、Vbは、断線部位41に対して蓄電セルB1の正極に繋がる線路の電圧であり、Ibは、後述する断線部位41に対して蓄電セルB1の正極に繋がる線路を流れる電流である。尚、Va、Vbを計測する際の基準電位は、例えば、接続点J3や接続点J5とする。   FIG. 3B shows a voltage change at a predetermined position of the balance correction circuit 1 measured by the measurement circuit 103 when the balance correction circuit 1 is not disconnected, as shown on the same time axis as FIG. And it is a graph which shows an electric current change. In FIG. 3, Va is the voltage of the line connected to the switching element S1 side with respect to the broken portion 41 (the voltage of the terminal connected to the positive electrode of the storage cell B1 of the capacitive element C1) (see FIG. 4), Vb Is the voltage of the line connected to the positive electrode of the storage cell B1 with respect to the disconnection part 41, and Ib is the current flowing through the line connected to the positive electrode of the storage cell B1 with respect to the disconnection part 41 described later. The reference potential when measuring Va and Vb is, for example, the connection point J3 and the connection point J5.

図3(b)に示すように、バランス補正回路1に断線が生じていない場合には、第2の期間中、Va、Vb、及びIbは、いずれも時間の経過とともに緩やかに上昇してゆく。   As shown in FIG. 3B, when no breakage occurs in the balance correction circuit 1, all of Va, Vb, and Ib gradually increase over time during the second period. .

図3(c)は、断線部位41に断線が生じている場合における、図3(a)と同一の時間軸で示したVa、Vb、Ibの時間変化を示すグラフである。同図に示すように、断線部位41に断線が生じている場合には、接続点J4と蓄電セルB1の正極とを結ぶ線路には電流が流れず、従ってVb及びIbはいずれも一定のままである。しかしスイッチング動作によって容量素子C1に電流が流れ込むため、Vaの値が急激に上昇する(同図ではとくに時刻t3〜t5の期間)。   FIG. 3C is a graph showing temporal changes in Va, Vb, and Ib indicated on the same time axis as that in FIG. 3A when the disconnection portion 41 is disconnected. As shown in the figure, when a disconnection occurs in the disconnection portion 41, no current flows through the line connecting the connection point J4 and the positive electrode of the storage cell B1, and therefore both Vb and Ib remain constant. It is. However, since a current flows into the capacitive element C1 by the switching operation, the value of Va increases rapidly (in particular, the period from time t3 to t5 in the figure).

このように、上記第2の期間におけるVaの時間変化率が所定の閾値を超えるか否かを調べることで、接続点J4と蓄電セルB1の正極との間を結ぶ線路における断線の有無を確実に検出することができる。尚、以上と同様の仕組みにより、接続点J5と蓄電セルB2の負極との間を結ぶ線路における断線、接続点J3と蓄電セルB2の正極との間を結ぶ線路における断線についても検出することができる。   In this way, by checking whether or not the time change rate of Va in the second period exceeds a predetermined threshold, it is ensured that there is no disconnection in the line connecting the connection point J4 and the positive electrode of the storage cell B1. Can be detected. By the same mechanism as described above, it is possible to detect disconnection in the line connecting the connection point J5 and the negative electrode of the storage cell B2, and disconnection in the line connecting the connection point J3 and the positive electrode of the storage cell B2. it can.

以上に説明したように、本実施形態のバランス補正回路1によれば、簡素な構成にて回路中の断線の検出を確実に行うことができる。尚、このようにスイッチング動作中に途中でデューティ比を変化させたとしても、一般的なバランス補正装置が備える過充電監視制御や過放電監視制御の仕組みが作動するので、蓄電セルB1,B2の電圧が極端に上昇もしくは低下してしまうことはない。   As described above, according to the balance correction circuit 1 of the present embodiment, the disconnection in the circuit can be reliably detected with a simple configuration. Even if the duty ratio is changed during the switching operation in this way, the mechanism of overcharge monitoring control and overdischarge monitoring control provided in a general balance correction device operates, so that the storage cells B1, B2 The voltage will not rise or fall extremely.

ところで、以上に説明した実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。   By the way, description of embodiment described above is for making an understanding of this invention easy, and does not limit this invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.

例えば、以上の実施形態では、第2のデューティ比を第1のデューティ比よりも高く設定しているが、第2のデューティ比を第1のデューティ比よりも低く設定してもよい。この場合、例えば図4に示す断線部位41に断線が生じるとVaの値が急激に下降するので、これを検知することにより断線の有無を判定すればよい。   For example, in the above embodiment, the second duty ratio is set higher than the first duty ratio, but the second duty ratio may be set lower than the first duty ratio. In this case, for example, if a disconnection occurs in the disconnection part 41 shown in FIG. 4, the value of Va rapidly decreases. Therefore, the presence or absence of the disconnection may be determined by detecting this.

計測回路103としては蓄電セルやセルモジュールのセルバランス(電圧差)を検出するための既存の電圧センサや電流センサを利用することができる。このため、本実施形態のバランス補正回路1は簡易かつ低コストで実現することができる。   As the measurement circuit 103, an existing voltage sensor or current sensor for detecting the cell balance (voltage difference) of the storage cell or the cell module can be used. For this reason, the balance correction circuit 1 of the present embodiment can be realized simply and at low cost.

本発明のバランス補正回路は、蓄電セルとは別体に設けられるものであってもよいし、蓄電セルと一体化されて電池パック等を構成するものであってもよい。   The balance correction circuit of the present invention may be provided separately from the storage cell, or may be integrated with the storage cell to form a battery pack or the like.

また前述した実施形態ではコンバータ方式のバランス補正回路1を例として説明したが、本発明はトランス方式のバランス補正回路にも適用することができる。   In the above-described embodiment, the converter type balance correction circuit 1 has been described as an example. However, the present invention can also be applied to a transformer type balance correction circuit.

図5は本発明を適用したトランス方式のバランス補正回路2の一例である。同図に示すように、蓄電セルB1及び蓄電セルB2が直列接続されて集合電池3が構成されている。集合電池3の正負端子間には、充電電流の供給源もしくは負荷が接続される。集合電池3の正負端子間には、トランスTrの一次巻線N1並びにスイッチング素子Sが接続されている。各蓄電セルB1,B2の正負端子間には、夫々、トランスTrの二次巻線N2が接続されている。   FIG. 5 shows an example of a transformer type balance correction circuit 2 to which the present invention is applied. As shown in the figure, the battery cell B1 and the battery cell B2 are connected in series to form the battery assembly 3. A charging current supply source or a load is connected between the positive and negative terminals of the assembled battery 3. Between the positive and negative terminals of the assembled battery 3, the primary winding N <b> 1 of the transformer Tr and the switching element S are connected. A secondary winding N2 of the transformer Tr is connected between the positive and negative terminals of each of the storage cells B1, B2.

蓄電セルB1,B2の夫々と、夫々の正負端子間に接続する二次巻線N2とで構成される経路には、夫々、整流素子d1,d2が設けられている。また蓄電セルB1,B2の夫々の正負端子間には、夫々容量素子C1,C2が接続している。容量素子C1,C2は、例えばトランスTrや素子から発生するノイズの低減、蓄電セルB1,B2に生じる電圧変化の緩和等を目的として設けられる。   Rectifying elements d1 and d2 are provided on paths formed by the storage cells B1 and B2 and the secondary winding N2 connected between the positive and negative terminals, respectively. Capacitance elements C1 and C2 are connected between the positive and negative terminals of the storage cells B1 and B2, respectively. The capacitive elements C1 and C2 are provided for the purpose of, for example, reducing noise generated from the transformer Tr and the elements, mitigating voltage changes occurring in the storage cells B1 and B2, and the like.

スイッチング素子Sは、制御回路20によって生成される制御信号によってオンオフ制御される。制御回路20は、前述した制御回路10と同様、制御信号生成回路201、デューティ比制御回路202、計測回路203、及び断線検出回路204を備える。   The switching element S is ON / OFF controlled by a control signal generated by the control circuit 20. Similar to the control circuit 10 described above, the control circuit 20 includes a control signal generation circuit 201, a duty ratio control circuit 202, a measurement circuit 203, and a disconnection detection circuit 204.

制御信号生成回路201は、スイッチング素子Sをオンオフ制御するための制御信号を生成する。スイッチング素子Sは、例えば、MOSFETやバイポーラトランジスタを用いて構成される。スイッチング素子Sがバイポーラトランジスタで構成されている場合、制御信号はベースに入力される。またスイッチング素子SがMOSFETで構成されている場合、制御信号はゲートに入力される。   The control signal generation circuit 201 generates a control signal for on / off control of the switching element S. The switching element S is configured using, for example, a MOSFET or a bipolar transistor. When the switching element S is composed of a bipolar transistor, the control signal is input to the base. When the switching element S is composed of a MOSFET, the control signal is input to the gate.

このバランス補正回路2においては、直列接続された蓄電セルB1,B2で構成される集合電池3の電力が、一次巻線N1から各二次巻線N2に再分配されることにより、蓄電セルB1,B2間の電圧が均等化される。   In this balance correction circuit 2, the power of the battery assembly 3 composed of the storage cells B1 and B2 connected in series is redistributed from the primary winding N1 to the secondary windings N2, thereby storing the storage cell B1. , B2 are equalized.

前述したコンバータ方式の場合と同様、同図に示す断線部位51における断線の有無は、前述した第2の期間におけるVaの時間変化率が所定の閾値を超えているか否かを調べることにより判定する。また前述したコンバータ方式の場合と同様、容量素子C1と蓄電セルB1の負極との間を結ぶ線路における断線の有無、容量素子C2と蓄電セルB2の正極との間を結ぶ線路における断線の有無、容量素子C2と蓄電セルB2の負極との間を結ぶ線路における断線の有無を判定することも可能である。   As in the case of the converter method described above, the presence / absence of disconnection in the disconnection portion 51 shown in the figure is determined by examining whether the time change rate of Va in the second period described above exceeds a predetermined threshold value. . Further, as in the case of the converter method described above, the presence or absence of disconnection in the line connecting the capacitive element C1 and the negative electrode of the storage cell B1, the presence or absence of disconnection in the line connecting the capacitive element C2 and the positive electrode of the storage cell B2, It is also possible to determine whether or not there is a break in the line connecting the capacitive element C2 and the negative electrode of the storage cell B2.

1 バランス補正回路、 10 制御回路、 41 断線部位、 101 制御信号生成回路、 102 デューティ比制御回路、 103 計測回路、 104 断線検出回路、 L インダクタ、 C1,C2 容量素子、 B1,B2 蓄電セル、 S1,S2 スイッチング素子   DESCRIPTION OF SYMBOLS 1 Balance correction circuit, 10 Control circuit, 41 Disconnection part, 101 Control signal generation circuit, 102 Duty ratio control circuit, 103 Measurement circuit, 104 Disconnection detection circuit, L inductor, C1, C2 capacitive element, B1, B2 storage cell, S1 , S2 switching element

Claims (6)

直列接続された複数の蓄電セルからなる集合電池において、前記蓄電セル間又は直列接続された複数の前記蓄電セルからなる蓄電モジュール間の電圧を均等化するバランス補正装置であって、
前記蓄電モジュールの夫々に対する電流の供給を第1のデューティ比でオンオフ制御することにより、前記蓄電モジュールの夫々が共通に接続する素子を介して前記蓄電モジュール間で電力の授受を生じさせ、前記蓄電モジュール間の電圧を均等化させるスイッチング制御部と、
前記第1のデューティ比とは異なる第2のデューティ比で前記オンオフ制御を行う期間を生じさせるデューティ比制御部と、
前記蓄電セルの端子間に接続している容量素子に印加される電圧を計測する電圧計測部と、
前記期間において前記容量素子に印加される前記電圧の変化に基づき、前記容量素子と前記蓄電セルとを結ぶ線路の断線の有無を判定する断線検出部と、
を備えるバランス補正装置。
In an assembled battery composed of a plurality of power storage cells connected in series, a balance correction device for equalizing a voltage between the power storage cells or between power storage modules composed of a plurality of power storage cells connected in series,
By controlling on / off of current supply to each of the power storage modules with a first duty ratio, power is transferred between the power storage modules via elements commonly connected to the power storage modules, and the power storage A switching controller that equalizes the voltage between the modules;
A duty ratio control unit that generates a period for performing the on / off control at a second duty ratio different from the first duty ratio;
A voltage measuring unit for measuring a voltage applied to a capacitive element connected between terminals of the storage cell;
A disconnection detector for determining the presence or absence of a disconnection of a line connecting the capacitive element and the storage cell based on a change in the voltage applied to the capacitive element in the period;
A balance correction device comprising:
前記断線検出部は、前記期間において、前記容量素子に印加される前記電圧の時間変化率が所定の閾値を超えた場合に前記容量素子と前記蓄電セルとを結ぶ線路に断線が生じたと判定する、請求項1に記載のバランス補正装置。   The disconnection detection unit determines that a disconnection has occurred in a line connecting the capacitive element and the storage cell when a time change rate of the voltage applied to the capacitive element exceeds a predetermined threshold during the period. The balance correction apparatus according to claim 1. 前後して接続する第1の前記蓄電モジュールと第2の前記蓄電モジュールとの接続点にその一端が接続されるインダクタと、前記第1の蓄電モジュールの正負端子間に前記インダクタとともに直列接続される第1のスイッチング素子と、前記第2の蓄電モジュールの正負端子間に前記インダクタとともに直列接続される第2のスイッチング素子と、を備え、
前記スイッチング制御部は、前記第1のスイッチング素子と前記第2のスイッチング素子とを交互にオンオフ制御することにより、前記インダクタを介して前記蓄電モジュール間で電力の授受を生じさせて前記蓄電モジュール間の電圧を均等化させる
請求項1または2に記載のバランス補正装置。
An inductor having one end connected to a connection point between the first power storage module and the second power storage module that are connected back and forth, and the inductor connected in series between the positive and negative terminals of the first power storage module A first switching element and a second switching element connected in series with the inductor between the positive and negative terminals of the second power storage module;
The switching control unit alternately turns on and off the first switching element and the second switching element, thereby causing power to be transferred between the power storage modules via the inductor, so that the power storage modules The balance correction apparatus according to claim 1 or 2, wherein the voltage is equalized.
前記第1のスイッチング素子及び前記第2のスイッチング素子はMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であり、前記容量素子は、前記第1のスイッチング素子又は前記第2のスイッチング素子に存在する寄生容量である
請求項3に記載のバランス補正装置。
The first switching element and the second switching element are MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), and the capacitive element is present in the first switching element or the second switching element. The balance correction device according to claim 3, wherein the balance correction device is a parasitic capacitance.
直列接続された複数の前記蓄電モジュールで構成される集合電池の正負端子間に接続される一次巻線、及び前記蓄電モジュールの夫々の正負端子間に接続される複数の二次巻線を有するトランスと、前記集合電池と前記一次巻線とを含む経路において前記集合電池に直列接続されるスイッチング素子と、を備え、
前記スイッチング制御部は、前記スイッチング素子をオンオフ制御することにより前記トランスを介して前記蓄電モジュール間で電力の授受を生じさせて前記蓄電モジュール間の電圧を均等化させる、
請求項1または2に記載のバランス補正装置。
A transformer having a primary winding connected between positive and negative terminals of an assembled battery composed of a plurality of power storage modules connected in series, and a plurality of secondary windings connected between positive and negative terminals of the power storage module And a switching element connected in series to the battery assembly in a path including the battery assembly and the primary winding,
The switching control unit causes the power to be exchanged between the power storage modules via the transformer by performing on / off control of the switching element, and equalizes the voltage between the power storage modules.
The balance correction apparatus according to claim 1.
前記複数の蓄電セルと、請求項1乃至5のいずれか一項に記載の前記バランス補正装置とを備える蓄電装置。   A power storage device comprising the plurality of power storage cells and the balance correction device according to any one of claims 1 to 5.
JP2013012594A 2013-01-25 2013-01-25 Balance correction device and power storage device Active JP6134520B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013012594A JP6134520B2 (en) 2013-01-25 2013-01-25 Balance correction device and power storage device
CN201480005879.7A CN105122578B (en) 2013-01-25 2014-01-21 Balanced compensating device and electrical storage device
PCT/JP2014/051083 WO2014115714A1 (en) 2013-01-25 2014-01-21 Balance correction device and electricity storage device
US14/761,516 US10110021B2 (en) 2013-01-25 2014-01-21 Balancing device and electrical storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013012594A JP6134520B2 (en) 2013-01-25 2013-01-25 Balance correction device and power storage device

Publications (2)

Publication Number Publication Date
JP2014147149A JP2014147149A (en) 2014-08-14
JP6134520B2 true JP6134520B2 (en) 2017-05-24

Family

ID=51227505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013012594A Active JP6134520B2 (en) 2013-01-25 2013-01-25 Balance correction device and power storage device

Country Status (4)

Country Link
US (1) US10110021B2 (en)
JP (1) JP6134520B2 (en)
CN (1) CN105122578B (en)
WO (1) WO2014115714A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168911B1 (en) * 2014-07-08 2019-09-04 Nissan Motor Co., Ltd Battery system and battery system control method
EP3026750A1 (en) * 2014-11-28 2016-06-01 Siemens Aktiengesellschaft Method for symmetrizing an energy storage system
JP6481199B2 (en) * 2015-02-16 2019-03-13 ソニー株式会社 Power control apparatus, power control method, and power control system
ITUB20169952A1 (en) * 2016-01-13 2017-07-13 Genport Srl Electronic regulation device for battery type electrical energy storage devices
JP2017167050A (en) * 2016-03-17 2017-09-21 株式会社ケーヒン Voltage detector
JP6575040B2 (en) * 2016-03-25 2019-09-18 株式会社ケーヒン Voltage detector
JP6750288B2 (en) * 2016-04-15 2020-09-02 株式会社オートネットワーク技術研究所 Relay device
US11251628B2 (en) * 2017-01-23 2022-02-15 Rafael Advanced Defense Systems Ltd. System for balancing a series of cells
JP6814437B2 (en) * 2017-02-13 2021-01-20 NExT−e Solutions株式会社 Control device, balance correction device, power storage system, and device
JP7007681B2 (en) * 2017-09-29 2022-01-25 NExT-e Solutions株式会社 Control device, balance correction system, power storage system, and device
JP7118660B2 (en) * 2018-02-19 2022-08-16 三菱重工業株式会社 DISCONNECTION DETECTION SYSTEM FOR DIFFERENTIAL TRANSFORMER DISPLACEMENT GAUGE, DIFFERENTIAL TRANSFORMER DISPLACEMENT GAUGE, AND DISCONNECTION DETECTION METHOD
KR102374744B1 (en) 2018-10-16 2022-03-14 주식회사 엘지에너지솔루션 Apparatus and method for balancing of battery module
CN111210610B (en) * 2018-11-22 2021-09-24 珠海格力电器股份有限公司 Control method, circuit board and electronic equipment
CN109444751A (en) * 2018-12-27 2019-03-08 江苏南自通华电力自动化股份有限公司 A kind of single battery is broken online support device and method
WO2020228026A1 (en) * 2019-05-16 2020-11-19 Oppo广东移动通信有限公司 Power supply circuit, charging-discharging circuit and intelligent terminal
CN113696785A (en) * 2021-09-06 2021-11-26 鲨港科技(上海)有限公司 Control circuit of series power supply pack, charging and discharging method and vehicle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3267221B2 (en) 1997-12-16 2002-03-18 エフ・ディ−・ケイ株式会社 Battery pack
JP4378009B2 (en) 1999-12-28 2009-12-02 Fdk株式会社 Balance correction method and apparatus for secondary batteries connected in series
US7176654B2 (en) * 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US20090140693A1 (en) * 2007-11-30 2009-06-04 Eaton Corporation Flyback charge redistribution apparatus for serially connected energy storage devices using flyback-type converters
US8896315B1 (en) * 2009-02-12 2014-11-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Battery cell balancing system and method
JP5133926B2 (en) * 2009-03-26 2013-01-30 株式会社日立製作所 Battery system for vehicles
US8405349B2 (en) * 2009-06-25 2013-03-26 Tigo Energy, Inc. Enhanced battery storage and recovery energy systems
JP5440918B2 (en) * 2009-09-02 2014-03-12 独立行政法人 宇宙航空研究開発機構 Power storage device with balance circuit
CN102754303A (en) * 2010-02-25 2012-10-24 三洋电机株式会社 Battery control apparatus, battery system, electrically driven vehicle, charge control apparatus, charger, moving body, power supply system, power storage apparatus, and power supply apparatus
US9520736B2 (en) * 2011-07-27 2016-12-13 Mitsubishi Electric Corporation Charging control apparatus and charging control method for secondary battery
WO2013035183A1 (en) * 2011-09-08 2013-03-14 日立ビークルエナジー株式会社 Battery system monitoring device
JP5918961B2 (en) 2011-10-07 2016-05-18 株式会社ケーヒン Cell balance control device

Also Published As

Publication number Publication date
CN105122578A (en) 2015-12-02
JP2014147149A (en) 2014-08-14
WO2014115714A1 (en) 2014-07-31
CN105122578B (en) 2017-08-25
US10110021B2 (en) 2018-10-23
US20150326041A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP6134520B2 (en) Balance correction device and power storage device
TWI571030B (en) Balance correcting device and electricity accumulation system
JP6177496B2 (en) Charge control device with protection function and battery pack
US9893539B2 (en) Power storage apparatus and control method for a power storage apparatus
JP5827019B2 (en) Balance correction device and power storage system
JP2018133851A (en) Control device, balance correction device, power storage system and device
JP2015070653A (en) Battery voltage equalization control device and method
WO2014115713A1 (en) Balance correction device and electricity storage device
US9178367B2 (en) Balance correction apparatus and electric storage system
WO2014167855A1 (en) Balance correction apparatus and storage system
JP2015033283A (en) Balance correction device and electrical storage device
JP5744598B2 (en) Balance correction device and power storage system
JP5966373B2 (en) Charging device and power supply device
JP2015100175A (en) Balance correction device and power storage device
JP5718702B2 (en) Balance correction device and power storage system
JP6116260B2 (en) Balance correction device and power storage device
JP6234049B2 (en) Balance correction device and power storage system
JP6133110B2 (en) Balance correction device and power storage system
JP2015100176A (en) Balance correction device and power storage device
WO2015005273A1 (en) Balance correction device and electricity storage device
JP2015061378A (en) Balance correction device and power storage device
JP2019017215A (en) Power storage device and equalization method therefor
JP2014117091A (en) Charging/discharging device and overcharge prevention method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6134520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250