JP6130759B2 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
JP6130759B2
JP6130759B2 JP2013186080A JP2013186080A JP6130759B2 JP 6130759 B2 JP6130759 B2 JP 6130759B2 JP 2013186080 A JP2013186080 A JP 2013186080A JP 2013186080 A JP2013186080 A JP 2013186080A JP 6130759 B2 JP6130759 B2 JP 6130759B2
Authority
JP
Japan
Prior art keywords
passage
reed valve
hole
downstream
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013186080A
Other languages
English (en)
Other versions
JP2015052306A (ja
Inventor
小村 正人
正人 小村
雅至 井ノ上
雅至 井ノ上
井上 孝
孝 井上
江原 俊行
俊行 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013186080A priority Critical patent/JP6130759B2/ja
Priority to PCT/JP2014/004484 priority patent/WO2015033550A1/ja
Publication of JP2015052306A publication Critical patent/JP2015052306A/ja
Application granted granted Critical
Publication of JP6130759B2 publication Critical patent/JP6130759B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1073Adaptations or arrangements of distribution members the members being reed valves
    • F04B39/1086Adaptations or arrangements of distribution members the members being reed valves flat annular reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/16Check valves with flexible valve members with tongue-shaped laminae

Description

本発明は、圧縮機の逆流防止構造に関するもので、ガスインジェクションサイクルを構成する冷凍サイクルの圧縮機に適用して有効である。
従来、特許文献1には、ガスインジェクションサイクル(エコノマイザ式冷凍サイクル、内部熱交換式冷凍サイクル)に用いられる圧縮機が記載されている。ガスインジェクションサイクルとは、圧縮機の圧縮室にて昇圧過程の冷媒にサイクルの中間圧気相冷媒をインジェクションして合流させてサイクル効率(COP)を向上させる冷凍サイクルのことである。
近年のエネルギー問題の観点からヒートポンプシステムなどの冷凍サイクルシステムのサイクル効率の向上が求められている。そのため、ガスインジェクションサイクル(エコノマイザ式冷凍サイクル、内部熱交換式冷凍サイクル)のような高効率な冷凍サイクルの採用が急務となっている。
ガスインジェクションサイクル(エコノマイザ式冷凍サイクル、内部熱交換式冷凍サイクル)により、サイクル効率が向上することは理論証明が出来ているが、コンプレッサ効率劣化の影響で実際のシステム効率の向上が少なく、費用対効果で採用できていないのが現状である。
この従来技術の圧縮機では、圧縮室に中間圧気相冷媒を逆止弁を介してインジェクションする。逆止弁は、圧縮機室内における圧縮流体の再膨張や潤滑油の流出を防止する役割を果たす。
この従来技術では、逆止弁を薄板状のリードバルブで構成しているので、逆止弁の構造を簡単にできるとともに、圧縮室から逆止弁までのデッドボリュームを小さくできる。すなわち、圧縮室での圧縮はインジェクション経路の逆止弁位置までのデッドボリューム内にも及ぶので、デッドボリュームを小さくすることによって圧縮効率の劣化を低減でき、ひいてはシステムのサイクル効率(COP)を向上させることができる。特に環境負荷の少なくガス密度の高い冷媒(二酸化炭素など)を採用する場合、デッドボリュームの影響は大きく作用する。
特開平11−107950号公報
上記従来技術では、圧縮室へのガスインジェクションを行うインジェクションポート(換言すれば、リードバルブよりも下流側の通路)の開口部とリードバルブとの具体的な位置関係について言及されていない。そして、リードバルブの回転方向に位置決めが無い仕様においては、インジェクションポートとリードバルブとの位置関係によっては、ガスインジェクションを行う際にリードバルブが流路抵抗となってインジェクション流量が低下するおそれがある。そして、ガスインジェクションサイクルでは、インジェクション流量によりシステム効率が変化することが知られており、インジェクション流量の最適値がある。
本発明は上記点に鑑みて、圧縮対象流体の逆流をリードバルブによって防止する圧縮機において、リードバルブと下流側通路の開口部との位置関係に起因する流路抵抗の増加(換言すれば、インジェクション流量の変化)を抑制し、システム効率の安定化を図ることを目的とする。
上記目的を達成するため、請求項1に記載の発明では、
圧縮対象流体を圧縮する圧縮室(15)と、
圧縮室(15)にて昇圧過程の圧縮対象流体に合流させる中間圧の圧縮対象流体を流入させる中間圧流入ポート(1c)と、
圧縮室(15)側から中間圧流入ポート(1c)側への圧縮対象流体の逆流を防止する板状のリードバルブ(52)と、
圧縮対象流体が流れる流体通路のうちリードバルブ(52)よりも圧縮対象流体流れ上流側に位置する上流側通路(531)を形成する上流側通路形成部材(53)と、
流体通路のうちリードバルブ(52)よりも圧縮対象流体流れ下流側に位置する下流側通路(125)を形成する下流側通路形成部材(12)とを備え、
下流側通路形成部材(12)には、リードバルブ(52)が配置されるリードバルブ穴(126)が円柱状に形成されており、
リードバルブ(52)は、環状に形成された環状部(521)と、環状部(521)の内側に配置されて上流側通路(531)の開口部(531a)を下流側通路(125)側から開閉する弁体部(522)と、弁体部(522)と環状部(521)とを繋ぐ接続部(523)とを有しており、
弁体部(522)は、上流側通路(531)側の流体圧力(P1)と下流側通路(125)側の流体圧力(P2)との差圧によって変位して上流側通路(531)の開口部(531a)を開閉するようになっており、
下流側通路形成部材(12)のうちリードバルブ穴(126)の底面を構成する部位には、弁体部(522)が変位するために必要な空間である逆止弁室(51)を形成する逆止弁室形成穴(127)が形成されており、
下流側通路形成部材(12)のうち逆止弁室形成穴(127)を形成する部位には、下流側通路(125)の開口部(125a)が形成されており、
下流側通路(125)の開口部(125a)は、リードバルブ穴(126)の軸方向から見たときに、上流側通路(531)の開口部(531a)に対してずれた位置に配置されており、
接続部(523)には、その表裏を貫通する孔部(524)が少なくとも1つ形成されていることを特徴とする。
これによると、リードバルブ穴(126)の軸方向から見たときにリードバルブ(52)の接続部(523)が下流側通路(125)の開口部(125a)と重なり合っていても、上流側通路(531)を介して逆止弁室(51)へ流入した冷媒が、孔部(524)を通じて下流側通路(125)に流れることができる(図7、図8を参照)。そのため、リードバルブ(52)と下流側通路(125)の開口部(125a)との位置関係(具体的には、リードバルブ穴(126)の軸周りの回転方向における位置関係)に起因する流路抵抗の増加(換言すれば、インジェクション流量の変化)を抑制し、システム効率の安定化を図ることができる。
第1実施形態のヒートポンプサイクルの全体構成図である。 第1実施形態の圧縮機の模式的な断面図である。 第1実施形態の圧縮機の固定スクロール部の拡大断面図である。 第1実施形態の圧縮機の逆流防止部の拡大断面図である。 図4のV−V断面図である。 図4のVI−VI断面図である。 第1実施形態の圧縮機の逆流防止部の組付状態の例を示す拡大断面図である。 図7のVIII−VIII断面図である。 第1実施形態における溝部断面積と流量比との関係を示すグラフである。 第1実施形態における溝容積比と効率比との関係を示すグラフである。 第2実施形態の圧縮機の逆流防止部の拡大断面図である。 図11のXII−XII断面図である。 第3実施形態の圧縮機の逆流防止部の拡大断面図である。 図13のXIV−XIV断面図である。
以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
図1に示すヒートポンプサイクル100は、ヒートポンプ式給湯機にて給湯水を加熱する。ヒートポンプサイクル100は、圧縮機1の圧縮室にて昇圧過程の冷媒にサイクルの中間圧気相冷媒を合流させるガスインジェクションサイクル(エコノマイザ式冷凍サイクル、内部熱交換式冷凍サイクル)として構成されている。より具体的には、ヒートポンプサイクル100は、圧縮機1、水−冷媒熱交換器2、第1膨張弁3、気液分離器4、第2膨張弁5、室外熱交換器6等を有している。
水−冷媒熱交換器2は、圧縮機1の吐出ポート1aから吐出された冷媒と給湯水とを熱交換させて給湯水を加熱する加熱用熱交換器である。第1膨張弁3は、水−冷媒熱交換器2から流出した高圧冷媒を中間圧冷媒となるまで減圧させる高段側減圧手段であって、図示しない制御装置から出力される制御信号によってその作動が制御される電気式膨張弁である。
気液分離器4は、第1膨張弁3にて減圧された中間圧冷媒の気液を分離する気液分離手段である。第2膨張弁5は、気液分離器4の液相冷媒流出口から流出した中間圧液相冷媒を低圧冷媒となるまで減圧させる低段側減圧手段であって、その基本的構成は第1膨張弁3と同様である。室外熱交換器6は、第2膨張弁5にて減圧された低圧冷媒を外気と熱交換させて蒸発させる吸熱用熱交換器である。
室外熱交換器6の冷媒出口側には、圧縮機1の吸入ポート1bが接続され、気液分離器4の気相冷媒流出口には、圧縮機1の中間圧流入ポート(流入ポート)1cが接続されている。従って、本実施形態では、気液分離器4にて分離された中間圧気相冷媒が圧縮機1の圧縮室15にて昇圧過程の冷媒にインジェクションされる。
本実施形態のヒートポンプサイクル100では、冷媒として二酸化炭素を採用しており、圧縮機1の吐出ポート1aから第1膨張弁3入口側へ至るサイクルの高圧側冷媒の圧力が臨界圧力以上となる超臨界冷凍サイクルを構成している。冷媒には、圧縮機1内部の各摺動部位を潤滑するオイル(冷凍機油)が混入されており、このオイルの一部は冷媒とともにサイクルを循環している。
ヒートポンプ式給湯機は、ヒートポンプサイクル100の他に、水−冷媒熱交換器2にて加熱された給湯水を貯湯する貯湯タンク、貯湯タンクと水−冷媒熱交換器2との間で給湯水を循環させる給湯水循環回路、および給湯水循環回路に配置されて給湯水を圧送する水ポンプ(いずれも図示せず)等を有している。
図2に示すように、圧縮機1は、圧縮機構部10、電動機部20(電動モータ部)、ハウジング30、および油分離器40等を有している。図2における上下の各矢印は、圧縮機1をヒートポンプ式給湯機に搭載した状態における上下の各方向を示している。
圧縮機構部10は、圧縮対象流体である冷媒を吸入し、圧縮して吐出する。電動機部20は、圧縮機構部10を駆動する。ハウジング30は、圧縮機構部10および電動機部20を収容する。油分離器40は、ハウジング30の外部に配置されて圧縮機構部10にて圧縮された高圧冷媒からオイルを分離する。
圧縮機1は、電動機部20から圧縮機構部10へ回転駆動力を伝達する駆動軸(シャフト)25が鉛直方向(上下方向)に延びて、圧縮機構部10と電動機部20が鉛直方向に配置された、いわゆる縦置きタイプに構成されている。より具体的には、本実施形態では、圧縮機構部10が電動機部20の下方側に配置されている。
ハウジング30は、中心軸が鉛直方向に延びる筒状部材31、筒状部材31の上端部を塞ぐ椀状の上蓋部材32および筒状部材31の下端部を塞ぐ椀状の下蓋部材33を有し、これらを一体に接合して密閉容器構造としたものである。筒状部材31、上蓋部材32および下蓋部材33は、いずれも鉄系金属で形成されており、これらは溶接にて接合されている。
ハウジング30には、吸入ポート1b(図2では図示せず)、中間圧流入ポート1c、および冷媒流出口(図示せず)等が形成されている。冷媒流出口は、圧縮機構部10から吐出された高圧冷媒をハウジング30の外部に配置された油分離器40側へ流出させる。
電動機部20は、固定子をなすコイルステータ21と回転子をなすロータ22とを有して構成されている。ロータ22の軸中心穴にはシャフト25が圧入により固定されている。従って、制御装置からコイルステータ21のコイルへ電力が供給されて回転磁界が発生すると、ロータ22およびシャフト25が一体となって回転する。
シャフト25は略円筒状に形成されており、その両端部は第1軸受部26および第2軸受部27に回転可能に支持されている。第1軸受部26および第2軸受部27は、すべり軸受けにて構成されている。シャフト25の内部には、シャフト25の外表面と第1、第2軸受部26、27との摺動部位にオイルを供給するための油供給通路25aが形成されている。
第1軸受部26は、ハウジング30内の空間を電動機部20の配置空間と圧縮機構部10の配置空間とに仕切るミドルハウジング28に形成されて、シャフト25の下端側(圧縮機構部10側)を支持している。第2軸受部27は、介在部材を介してハウジング30の筒状部材31に固定されて、シャフト25の上端側(圧縮機構部10の反対側)を支持している。
圧縮機構部10は、それぞれ渦巻き状に形成された歯部を有する可動スクロール11および固定スクロール12からなるスクロール型の圧縮機構で構成されている。可動スクロール11は、ミドルハウジング28の下方側に配置されている。固定スクロール12は、可動スクロール11の下方側に配置されている。
可動スクロール11および固定スクロール12は、それぞれ円板状の基板部111、121を有しており、双方の基板部111、121は、互いに鉛直方向に対向するように配置されている。固定スクロール12の基板部121の外周側は、ハウジング30の筒状部材31に固定されている。
可動スクロール11の基板部111の上面側の中心部には、シャフト25の下端部が挿入される円筒状のボス部113が形成されている。シャフト25の下端部は、シャフト25の回転中心に対して偏心した偏心部25bになっている。従って、可動スクロール11の基板部111の上面側には、シャフト25の偏心部25bが挿入されている。
可動スクロール11およびミドルハウジング28の間には、可動スクロール11が偏心部25b周りに自転することを防止する図示しない自転防止機構が設けられている。このため、シャフト25が回転すると、可動スクロール11は偏心部25b周りに自転することなく、シャフト25の回転中心を公転中心として公転運動(旋回)する。
可動スクロール11には、基板部111から固定スクロール12側に向かって突出する渦巻き状の歯部112が形成されている。一方、固定スクロール12には、基板部121から可動スクロール11側に向かって突出するとともに、可動スクロール11の歯部112に噛み合う渦巻き状の歯部122が形成されている。
そして、両スクロール11、12の歯部112、122同士が噛み合って複数箇所で接触することによって、回転軸方向から見たときに三日月形状に形成される圧縮室15が複数個形成される。図2では図示の明確化のため、複数個の圧縮室15のうち1つの圧縮室のみに符号を付しており、他の圧縮室については符号を省略している。
これらの圧縮室15は、可動スクロール11が公転運動することによって外周側から中心側へ容積を減少させながら移動する。従って、吸入ポート1bは、最外周側に位置付けられる圧縮室15に連通している。中間圧流入ポート1cは、最外周側から中心側へ移動する過程の中間位置に位置付けられる圧縮室15に連通している。
吸入ポート1bから最外周側に位置づけられる圧縮室15へ至る吸入用の冷媒通路、および中間圧流入ポート1cから中間位置に位置づけられる圧縮室15へ至るインジェクション用の冷媒通路は、いずれも固定スクロール12の基板部121の内部に形成されている。
中間圧流入ポート1cから中間位置の圧縮室15へ至る冷媒通路には、逆流防止部50が設けられている。逆流防止部50は、圧縮室15側から中間圧流入ポート1c側へ冷媒が逆流することを防止する。
固定スクロール12側の基板部121の中心部には、圧縮室15で圧縮された冷媒が吐出される吐出孔123が形成されている。吐出孔123の下方側には、吐出孔123と連通する吐出室124が形成されている。この吐出室124には、吐出室124側から圧縮室15側への冷媒の逆流を防止する逆止弁をなすリードバルブと、リードバルブの最大開度を規制するストッパ16が配置されている。
ハウジング30の内部には、吐出室124からハウジング30に形成された冷媒流出口へ導く冷媒通路(図示せず)が形成されている。この冷媒流出口には油分離器40の冷媒流入口40bが接続されている。油分離器40は、鉛直方向に延びる筒状部材41を有し、その内部に形成された空間で圧縮機構部10にて昇圧された冷媒を旋回させ、遠心力の作用によって気相冷媒とオイルとを分離する。
油分離器40にて分離された高圧気相冷媒は、油分離器40の上方側に形成された吐出ポート1aから水−冷媒熱交換器2側へ流出する。一方、油分離器40にて分離されたオイルは、油分離器40の下方側の部位に蓄えられ、図示しない油通路を介してハウジング30内の圧縮機構部10やシャフト25と第1、第2軸受部26、27との摺動部等へ供給される。
逆流防止部50の詳細構成を図3〜図6に基づいて説明する。図3に示すように、逆流防止部50は、固定スクロール12の内部に設けられている。逆流防止部50には逆止弁室51が形成されている。
図4に示すように、固定スクロール12には下流側通路125が形成されている。したがって、固定スクロール12は、下流側通路形成部材を構成している。下流側通路125は、中間圧流入ポート1cから中間位置の圧縮室15へ至る冷媒通路(流体通路)のうち逆止弁室51よりも冷媒流れ下流側に位置する通路である。
固定スクロール12には、リードバルブ配置穴126および逆止弁室形成穴127が形成されている。リードバルブ配置穴126は、リードバルブ52が配置される空間であり、円柱状に形成されている。すなわち、リードバルブ配置穴126は、断面形状が円形状(真円形状)になっている。
逆止弁室形成穴127は、逆止弁室51を形成する穴であり、円盤状に形成されている。逆止弁室形成穴127は、リードバルブ配置穴126の底部において、リードバルブ配置穴126よりも小径に形成されている。リードバルブ配置穴126および逆止弁室形成穴127は、互いに同軸状に形成されている。
リードバルブ配置穴126および逆止弁室形成穴127は、その中心軸がシャフト25に対して斜めに延びるように形成されている。図4における矢印は、リードバルブ配置穴126および逆止弁室形成穴127の中心軸の方向(軸方向)を示している。
固定スクロール12のうち逆止弁室形成穴127の底面を構成する部位には、下流側通路125の開口部125aが形成されている。
リードバルブ配置穴126には弁座53が配置されている。弁座53は、円柱状のリードバルブ配置穴126に対応する円筒状に形成されている。弁座53の内部空間は上流側通路531を構成している。したがって、弁座53は、上流側通路形成部材を構成している。
上流側通路531は、中間圧流入ポート1cから中間位置の圧縮室15へ至る冷媒通路のうち逆止弁室51よりも冷媒流れ上流側に位置する通路である。上流側通路531は、弁座53の中心軸上に配置されている。
リードバルブ配置穴126の内周面には雌ネジが形成されている。弁座53の外周面には、リードバルブ配置穴126の雌ネジに対応する雄ネジが形成されている。リードバルブ配置穴126の雌ネジに弁座53の雄ネジが螺合することによって、弁座53が固定スクロール12に固定される。
リードバルブ52は、固定スクロール12のうちリードバルブ配置穴126の底面を構成する部位と、弁座53の端面との間に配置されている。リードバルブ52は、例えば焼入ステンレス鋼にて薄板状に形成されている。
図5に示すように、リードバルブ52は、環状部521、弁体部522および接続部523を有している。環状部521は、平面形状が円環状であり、その外径はリードバルブ配置穴126の内径よりも僅かに小さくなっている。
環状部521は、固定スクロール12のうちリードバルブ配置穴126の底面を構成する部位と弁座53の端面との間に挟まれて固定されている。したがって、ボルト等の固定部材が用いられることなくリードバルブ52が固定されている。
弁体部522は、平面形状が半長円状であり、環状部521の内側に配置されている。弁体部522は、弁座53に形成された上流側通路531の開口部531aを開閉する。接続部523は、弁体部522を環状部521の内周縁部に繋いでいる。接続部523の全体の幅は、半長円状の弁体部522の幅とほぼ同じになっている。
接続部523には、その表裏を貫通する孔部524が形成されている。図5の例では、孔部524は1個形成されているが、孔部524が多数個形成されていてもよい。図5の例では、孔部524は矩形状に形成されているが、孔部524は円形状や多角形状等、種々の形状に形成されていてもよい。孔部524の面積は、接続部523の必要強度を確保できる範囲内において極力大きいのが好ましい。
弁体部522および接続部523は、上流側通路531側の冷媒圧力P1(流体圧力)と下流側通路125側の冷媒圧力P2(流体圧力)との差圧によって湾曲変位する。これにより、弁体部522が上流側通路531の開口部531aを開閉する。図4中の二点鎖線は、弁体部522が上流側通路531の開口部531aを開けている状態を示している。
逆止弁室51は、固定スクロール12と弁座53とリードバルブ52の環状部521との間に形成されている空間である。逆止弁室51は、リードバルブ52の弁体部522が変位するために必要な空間である。
下流側通路125の開口部125aは、上流側通路531の開口部531aに対してオフセットされている。つまり、下流側通路125の開口部125aは、固定スクロール12のリードバルブ配置穴126の軸方向から見たときに、上流側通路531の開口部531aに対してずれた位置に配置されている。
図4、図6に示すように、弁座53の端面のうち上流側通路531の開口部531aの周囲部には、環状溝532aが形成されている。環状溝532aは、弁座53の端面とリードバルブ52との間に異物が噛み込むことを防止する役割を果たす。
逆流防止部50の組付手順を説明する。まず、固定スクロール12のリードバルブ配置穴126内にリードバルブ52を配置する。次いで、固定スクロール12のリードバルブ配置穴126に弁座53を螺合させて、リードバルブ52の環状部521を固定スクロール12と弁座53との間に挟み込ませる。
ここで、リードバルブ52の環状部521は平面形状が円環状になっており、固定スクロール12のリードバルブ配置穴126は平面形状が円形状になっている。したがって、固定スクロール12のリードバルブ配置穴126に弁座53を螺合させる際に、リードバルブ52がリードバルブ配置穴126の軸周りに回転し得る。
その結果、組付状態におけるリードバルブ52の回転位置にバラツキが生じ得る。例えば、図7、図8に示すように、リードバルブ配置穴126の軸方向から見たときに、リードバルブ52の接続部523が下流側通路125の開口部125aと重なり合うことが起こり得る。
図7、図8の例では、リードバルブ配置穴126の軸方向から見たときに、接続部523に形成された孔部524が、下流側通路125の開口部125aと重なり合っている。
次に、上記構成における本実施形態の圧縮機1の作動を説明する。圧縮機1の電動機部20に電力が供給されてロータ22およびシャフト25が回転すると、可動スクロール11がシャフト25に対して公転運動(旋回運動)する。これにより、可動スクロール11側の歯部112と固定スクロール12側の歯部122との間に形成された三日月状の圧縮室15が外周側から中心側へ旋回しながら移動していく。
最外周側に位置付けられて吸入ポート1bに連通する圧縮室15には、吸入ポート1bを介して室外熱交換器6から流出した低圧冷媒が流入する。低圧冷媒が流入した圧縮室15は、シャフト25の回転に伴って、その容積を縮小させながら中間圧流入ポート1cに連通する位置へ移動する。
この際、中間圧流入ポート1c側の中間圧気相冷媒の圧力P1が圧縮室15側の冷媒圧力P2よりも高くなっている状態では、中間圧流入ポート1c側の冷媒圧力P1と圧縮室15側の冷媒圧力P2との圧力差によって、リードバルブ52の弁体部522が圧縮室15側(弁座53から離れる側)へ変位する。
これにより、上流側通路531(インジェクション用の冷媒通路)が開き、中間圧流入ポート1cから上流側通路531を介して逆止弁室51へ流入した中間圧気相冷媒が、下流側通路125を流れて圧縮室15へインジェクションされる。
シャフト25がさらに回転して圧縮室15の容積が縮小し、圧縮室15側の冷媒圧力P2が中間圧流入ポート1c側の中間圧気相冷媒の圧力P1を上回ると、圧縮室15側の冷媒圧力P2と中間圧流入ポート1c側の冷媒圧力P1との圧力差によって、リードバルブ52の弁体部522が弁座53側へ変位する。
これにより、上流側通路531(インジェクション用の冷媒通路)が閉じられ、圧縮室15側から中間圧流入ポート1c側へ冷媒が逆流してしまうことが防止される。したがって、圧縮室15側から中間圧流入ポート1c側へ冷媒が逆流することに起因するヒートポンプサイクル100の成績係数(COP)の悪化が防止される。
シャフト25がさらに回転して圧縮室15が中心側へ移動して固定スクロール12の吐出孔123へ連通すると、圧縮室15にて圧縮された高圧冷媒が油分離器40を介して吐出ポート1aから水−冷媒熱交換器2側へ流出する。
図7、図8に示すリードバルブ52の組付状態においては、リードバルブ配置穴126の軸方向から見たときにリードバルブ52の接続部523が下流側通路125の開口部125aと重なり合っているので、リードバルブ52が上流側通路531を開いた場合、上流側通路531の開口部531aから下流側通路125の開口部125aへ向かう中間圧気相冷媒の流れがリードバルブ52の弁体部522および接続部523によって阻害される。すなわち、リードバルブ52によって流路抵抗が増大してしまう。
その点に鑑みて、本実施形態では、接続部523に孔部524が形成されているので、上流側通路531を介して逆止弁室51へ流入した中間圧気相冷媒が孔部524を通じて下流側通路125へ流れて圧縮室15へインジェクションされる。
したがって、図7、図8に示すリードバルブ52の組付状態においても、上流側通路531から下流側通路125へ中間圧気相冷媒を良好に流すことができるので、リードバルブ52に起因する流路抵抗の増大を抑制できる。
図9に示すように、孔部524の総面積が下流側通路125の断面積(ポート断面積)以上(孔部総面積/ポート断面積≧1)であると、リードバルブ52に起因する冷媒流量の低減(すなわちリードバルブ52に起因する流路抵抗の増大)を確実に抑制できる。図9の縦軸に示す流量比とは、孔部524の総面積が下流側通路125の断面積と等しい場合(孔部総面積/ポート断面積=1)の冷媒流量を1として表した冷媒流量の値のことである。
孔部524が複数個形成されている場合、複数個の孔部524の総面積が下流側通路125の断面積(ポート断面積)以上であっても、図10に示すように、最も面積の小さい孔部524の面積(孔部最小面積)が下流側通路125の断面積(ポート断面積)の35%を下回ると冷媒流量が著しく低下する。
したがって、最も面積の小さい孔部524の面積(孔部最小面積)が下流側通路125の断面積(ポート断面積)の35%以上になっているのが好ましい。図10の縦軸に示す流量比とは、最も面積の小さい孔部524の面積(孔部最小面積)が下流側通路125の断面積(ポート断面積)と等しい場合(孔部最小面積/ポート断面積=1の冷媒流量を1として表した冷媒流量の値のことである。
本実施形態の圧縮機1は、ヒートポンプサイクル100において、冷媒を吸入し、圧縮して吐出する機能を発揮する。本実施形態の圧縮機1の逆流防止部50では、圧縮室15側の冷媒圧力P2と中間圧流入ポート1c側の冷媒圧力P1との差圧によってリードバルブ52を変位させて、冷媒が圧縮室15側から中間圧流入ポート1c側へ逆流してしまうこと防止できる。
本実施形態の圧縮機1の逆流防止部50では、板状のリードバルブ52によって冷媒の逆流を防止するので、デッドボリュームを低減できる。本実施形態の圧縮機1の逆流防止部50では、リードバルブ52の平面形状が円形になっているので、逆流防止部50を圧縮室15に極力近づけてデッドボリュームを低減できる。したがって、圧縮効率を向上できる。
本実施形態では、リードバルブ52の接続部523に、その表裏を貫通する孔部524が少なくとも1つ形成されている。
これによると、図7、図8に示すようにリードバルブ穴126の軸方向から見たときにリードバルブ52の接続部523が下流側通路125の開口部125aと重なり合っていても、上流側通路531を介して逆止弁室51へ流入した冷媒が、孔部524を通じて下流側通路125に流れることができる。そのため、リードバルブ52に起因する流路抵抗の増加を抑制できる。
図7、図8に示すように、リードバルブ穴126の軸方向から見たときに、孔部524が下流側通路125の開口部125aと重なり合っていれば、上流側通路531を介して逆止弁室51へ流入した冷媒が確実に孔部524を通じて下流側通路125に流れることができるので、リードバルブ52に起因する流路抵抗の増加を確実に抑制できる。
具体的には、孔部524の総面積が、下流側通路125の断面積よりも大きくなっていれば、リードバルブ52と下流側通路125の開口部125aとの位置関係に起因する流路抵抗の増加を確実に抑制できる(図9を参照)。
具体的には、孔部524が複数個形成されている場合、最も面積が小さい孔部524の面積が下流側通路125の断面積の35%以上になっていれば、リードバルブ52と下流側通路125の開口部125aとの位置関係に起因する流路抵抗の増加を確実に抑制できる(図10を参照)。
これにより、各々のインジェクション量をほぼ均一にでき、インジェクション後の圧縮室の圧力上昇を均一化でき、圧縮による負荷バランスを均一化できるので、無理な力が作用せず効率向上と信頼性向上とを図ることができる。
本実施形態では、弁座53は、リードバルブ穴126の内周面に螺合するようになっており、リードバルブ52の環状部521は、リードバルブ穴126の底面と弁座53との間に挟まれることによって固定されている。
これによると、リードバルブ52を固定するためのボルト等の部材が不要であるので、構成を簡素化できるとともにリードバルブ52の組み付けが容易であり、高生産性が期待できる。また、リードバルブ52を固定する軸力が安定し、逆止弁室形成穴127近傍の固定スクロール12の変形が抑制でき、信頼性に好ましい。そして、弁座53をねじ込む際、リードバルブ52も不安定に同期して回転することが予想されるが、これまで述べた効果により、リードバルブ52に起因する流路抵抗の増加を抑制できる。
(第2実施形態)
本実施形態では、図11、図12に示すように、固定スクロール12のうち逆止弁室形成穴127の底面を構成する部位に溝部128が形成されている。図12に示すように、溝部128は、逆止弁室51の周方向に延びていて、下流側通路125の開口部125aに繋がっている。
図12の例では、溝部128は、平面形状が円環状になっている。したがって、溝部128は、リードバルブ配置穴126の周方向において、リードバルブ52の接続部523の幅よりも長く形成されている。図12の例では、溝部128の幅は一定になっている。
円環状の溝部128は、円柱状のリードバルブ配置穴126と同軸状に形成されている。溝部128は、リードバルブ配置穴126の軸方向から見たときに、リードバルブ52の環状部521と弁体部522と接続部523との間に形成される空隙と重なり合うように形成されている。
本実施形態では、固定スクロール12に形成された溝部128が、下流側通路125の開口部125aに繋がっており且つリードバルブ配置穴126の軸方向から見たときに溝部128がリードバルブ52の環状部521と弁体部522との間の空隙と重なり合っているので、上流側通路531を介して逆止弁室51へ流入した中間圧気相冷媒が溝部128を通じて下流側通路125へ流れて圧縮室15へインジェクションされる。
したがって、リードバルブ配置穴126の軸方向から見たときにリードバルブ52の接続部523が下流側通路125の開口部125aと重なり合っていても、上流側通路531から下流側通路125へ中間圧気相冷媒を良好に流すことができるので、リードバルブ52に起因する流路抵抗の増大を抑制できる。
溝部128の断面積が下流側通路125の断面積以上であると、リードバルブ52に起因する冷媒流量の低減(すなわちリードバルブ52に起因する流路抵抗の増大)を確実に抑制できる。
一方、溝部128の容積が大きいほどデッドボリュームが増加して圧縮効率が低下する。そこで、溝部128の容積を逆止弁室51の容積の70%以下にすることによって、圧縮効率の低下を抑制するのが好ましい。
本実施形態では、固定スクロール12のうち逆止弁室形成穴127を形成する部位には、下流側通路125の開口部125aに繋がる溝部128が形成されている。溝部128は、リードバルブ穴126の軸方向から見たときに、リードバルブ52の環状部521と弁体部522と接続部523との間に形成される空隙と重なり合っている。
これによると、リードバルブ穴126の軸方向から見たときにリードバルブ52の接続部523が下流側通路125の開口部125aと重なり合っていても、上流側通路531を介して逆止弁室51へ流入した冷媒が、環状部521と弁体部522と接続部523との間に形成される空隙→溝部128→下流側通路125の順に流れることができる。そのため、リードバルブ52に起因する流路抵抗の増加を抑制できる。
本実施形態では、溝部128は、リードバルブ穴126の周方向において、接続部523の幅よりも長く形成されている。これによると、組付状態におけるリードバルブ52の回転位置に関わらず、リードバルブ穴126の軸方向から見たときに、溝部128が、リードバルブ52の環状部521と弁体部522と接続部523との間に形成される空隙と重なり合うので、リードバルブ52に起因する流路抵抗の増加を確実に抑制できる。
本実施形態では、溝部128は、リードバルブ穴126と同軸状の円環状に形成されている。これによると、円環状の溝部128を円柱状のリードバルブ穴126と同時に加工可能であるので、生産性が良好である。
(第3実施形態)
本実施形態では、図13、図14に示すように、固定スクロール12のうち逆止弁室形成穴127を形成する部位に、下流側通路125の開口部125aの面積を拡大する開口拡大部125bが形成されている。
開口拡大部125bは、深座ぐり穴状に形成されており、リードバルブ穴126の軸方向から見たときに、リードバルブ52の環状部521と弁体部522と接続部523との間に形成される空隙と重なり合っている。
開口拡大部125bは、リードバルブ配置穴126の周方向において、リードバルブ52の接続部523の幅よりも長く形成されているのが好ましい。図14の例では、開口拡大部125bは、リードバルブ配置穴126の周方向において、リードバルブ52の接続部523のうち孔部524の両横に位置する2本の脚状の部分のそれぞれの幅よりも長く形成されているのが好ましい。
本実施形態によると、開口拡大部125bが、上記第2実施形態における溝部128と同様の役割を果たすので、リードバルブ52に起因する流路抵抗の増加を抑制できる。
(他の実施形態)
上記実施形態を例えば以下のように種々変形可能である。
(1)上記実施形態では、圧縮機構部10をスクロール型の圧縮機構にて構成しているが、圧縮機構部10はこれに限定されない。例えば、可動部材の変位によって圧縮対象流体を圧縮する圧縮室の容積を変化させる、レシプロ型やロータリ型、スクリュー型、ヘリカル型といった圧縮機構で構成されていてもよい。
(2)上記実施形態では、リードバルブ52の環状部521の平面形状が円環状であるが、環状部521の形状はこれに限定されない。例えば、円環の一部が切り欠かれた形状や多角環状等であってもよい。
(3)上記実施形態では、リードバルブ52の弁体部522の平面形状が半長円形状であるが、弁体部522の形状はこれに限定されない。例えば、円形状や多角形状等であってもよい。
(4)上記実施形態では、逆流防止部50を圧縮室15から中間圧流入ポート1c側への冷媒の逆流を防止するために適用しているが、逆流防止部50を、圧縮室15から吸入ポート1b側への冷媒の逆流を防止するために適用してもよい。逆流防止部50を、吐出室124側から圧縮室15側への冷媒の逆流を防止するために適用してもよい。
(5)上記実施形態では、逆流防止部50を縦置きタイプの圧縮機に適用した例を説明したが、圧縮機構部10と電動機部20とを水平方向(横方向)に配置した横置きタイプの圧縮機に適用してもよい。
(6)上記実施形態では、逆流防止部50を備える圧縮機をヒートポンプサイクル(冷凍サイクル)に適用した例を説明したが、逆流防止部50を備える圧縮機を種々の用途に適用可能である。
12 固定スクロール(下流側通路形成部材)
125 下流側通路
125a 下流側通路の開口部
126 リードバルブ穴
127 逆止弁室形成穴
52 リードバルブ
521 環状部
522 弁体部
523 接続部
524 孔部
53 弁座(上流側通路形成部材)
531 上流側通路
531a 上流側通路の開口部

Claims (10)

  1. 圧縮対象流体を圧縮する圧縮室(15)と、
    前記圧縮室(15)にて昇圧過程の前記圧縮対象流体に合流させる中間圧の前記圧縮対象流体を流入させる中間圧流入ポート(1c)と、
    前記圧縮室(15)側から前記中間圧流入ポート(1c)側への前記圧縮対象流体の逆流を防止する板状のリードバルブ(52)と、
    前記圧縮対象流体が流れる流体通路のうち前記リードバルブ(52)よりも圧縮対象流体流れ上流側に位置する上流側通路(531)を形成する上流側通路形成部材(53)と、
    前記流体通路のうち前記リードバルブ(52)よりも圧縮対象流体流れ下流側に位置する下流側通路(125)を形成する下流側通路形成部材(12)とを備え、
    前記下流側通路形成部材(12)には、前記リードバルブ(52)が配置されるリードバルブ穴(126)が円柱状に形成されており、
    前記リードバルブ(52)は、環状に形成された環状部(521)と、前記環状部(521)の内側に配置されて前記上流側通路(531)の開口部(531a)を前記下流側通路(125)側から開閉する弁体部(522)と、前記弁体部(522)と前記環状部(521)とを繋ぐ接続部(523)とを有しており、
    前記弁体部(522)は、前記上流側通路(531)側の流体圧力(P1)と前記下流側通路(125)側の流体圧力(P2)との差圧によって変位して前記上流側通路(531)の開口部(531a)を開閉するようになっており、
    前記下流側通路形成部材(12)のうち前記リードバルブ穴(126)の底面を構成する部位には、前記弁体部(522)が変位するために必要な空間である逆止弁室(51)を形成する逆止弁室形成穴(127)が形成されており、
    前記下流側通路形成部材(12)のうち前記逆止弁室形成穴(127)を形成する部位には、前記下流側通路(125)の開口部(125a)が形成されており、
    前記下流側通路(125)の開口部(125a)は、前記リードバルブ穴(126)の軸方向から見たときに、前記上流側通路(531)の開口部(531a)に対してずれた位置に配置されており、
    前記接続部(523)には、その表裏を貫通する孔部(524)が少なくとも1つ形成されていることを特徴とする圧縮機。
  2. 前記下流側通路形成部材(12)のうち前記逆止弁室形成穴(127)を形成する部位には、前記下流側通路(125)の開口部(125a)に繋がる溝部(128)が形成されており、
    前記溝部(128)の少なくとも一部は、前記リードバルブ穴(126)の軸方向から見たときに、前記環状部(521)と前記弁体部(522)と前記接続部(523)の間に形成される空隙と重なり合っていることを特徴とする請求項1に記載の圧縮機。
  3. 前記溝部(128)は、前記リードバルブ穴(126)の周方向において、前記接続部(523)の幅よりも長く形成されていることを特徴とする請求項2に記載の圧縮機。
  4. 前記溝部(128)は、前記リードバルブ穴(126)と同軸状の円環状に形成されていることを特徴とする請求項2または3に記載の圧縮機。
  5. 前記下流側通路形成部材(12)のうち前記逆止弁室形成穴(127)を形成する部位には、前記下流側通路(125)の開口部(125a)の面積を拡大する開口拡大部(125b)が形成されており、
    前記開口拡大部(125b)は、前記リードバルブ穴(126)の軸方向から見たときに、前記環状部(521)と前記弁体部(522)と前記接続部(523)との間に形成される空隙と重なり合っていることを特徴とする請求項1に記載の圧縮機。
  6. 前記上流側通路形成部材(53)は、前記リードバルブ穴(126)の内周面に螺合するようになっており、
    前記環状部(521)は、前記リードバルブ穴(126)の底面と前記上流側通路形成部材(53)との間に挟まれることによって固定されていることを特徴とする請求項1ないし5のいずれか1つに記載の圧縮機。
  7. 前記圧縮対象流体を圧縮する圧縮室(15)を備え、
    前記上流側通路(531)および前記下流側通路(125)は、前記圧縮対象流体を前記圧縮室(15)内へ流入させる通路であることを特徴とする請求項1ないし6のいずれか1つに記載の圧縮機。
  8. 前記孔部(524)の総面積は、前記下流側通路(125)の断面積よりも大きくなっていることを特徴とする請求項1ないし7のいずれか1つに記載の圧縮機。
  9. 前記孔部(524)は複数個形成されており、
    前記複数個の孔部(524)のうち最も面積が小さい孔部(524)の面積は、前記下流側通路(125)の断面積の35%以上になっていることを特徴とする請求項1ないし8のいずれか1つに記載の圧縮機。
  10. 前記孔部(524)は、前記リードバルブ穴(126)の軸方向から見たときに、前記下流側通路(125)の開口部(125a)と重なり合っていることを特徴とする請求項1ないし9のいずれか1つに記載の圧縮機。
JP2013186080A 2013-09-09 2013-09-09 圧縮機 Expired - Fee Related JP6130759B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013186080A JP6130759B2 (ja) 2013-09-09 2013-09-09 圧縮機
PCT/JP2014/004484 WO2015033550A1 (ja) 2013-09-09 2014-09-02 圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186080A JP6130759B2 (ja) 2013-09-09 2013-09-09 圧縮機

Publications (2)

Publication Number Publication Date
JP2015052306A JP2015052306A (ja) 2015-03-19
JP6130759B2 true JP6130759B2 (ja) 2017-05-17

Family

ID=52628049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186080A Expired - Fee Related JP6130759B2 (ja) 2013-09-09 2013-09-09 圧縮機

Country Status (2)

Country Link
JP (1) JP6130759B2 (ja)
WO (1) WO2015033550A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278193A (zh) * 2018-01-23 2018-07-13 珠海易咖科技有限公司 高压微型水泵、咖啡机及其工作方法
JP7400939B2 (ja) * 2020-02-26 2023-12-19 株式会社村田製作所 流体制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181981A (en) * 1981-04-30 1982-11-09 Hitachi Ltd Valve structure of closed type electric motor-driven compressor
JP3602700B2 (ja) * 1997-10-06 2004-12-15 松下電器産業株式会社 圧縮機のインジェクション装置
JP2000054961A (ja) * 1998-06-05 2000-02-22 Toyota Autom Loom Works Ltd 圧縮機の吸入弁装置
US7771178B2 (en) * 2006-12-22 2010-08-10 Emerson Climate Technologies, Inc. Vapor injection system for a scroll compressor

Also Published As

Publication number Publication date
WO2015033550A1 (ja) 2015-03-12
JP2015052306A (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5745450B2 (ja) 圧縮機のインジェクション装置
JP5832325B2 (ja) スクロール型圧縮機
JP2011052603A (ja) スクロール圧縮機
JP6460595B2 (ja) 圧縮機
JP6130771B2 (ja) 圧縮機および冷凍サイクル装置
JP6130759B2 (ja) 圧縮機
JP6507557B2 (ja) 圧縮機
JP5515289B2 (ja) 冷凍装置
JP3963740B2 (ja) ロータリコンプレッサ
JP6059452B2 (ja) 圧縮機の逆流防止構造
JP2018009565A (ja) 多段圧縮機
JP6093676B2 (ja) 圧縮機
JP2006214445A (ja) ロータリコンプレッサ
JP2018127903A (ja) 圧縮機
JP2005002886A (ja) スクロール圧縮機
WO2017081845A1 (ja) 圧縮機
JP5789581B2 (ja) スクロール型圧縮機
WO2018003431A1 (ja) 多段圧縮機
JP6399637B2 (ja) 圧縮機
JP5493958B2 (ja) 圧縮機
JP6285816B2 (ja) 圧縮機
JPWO2020136786A1 (ja) スクロール圧縮機
WO2021038738A1 (ja) スクロール圧縮機
JP6749183B2 (ja) スクロール圧縮機
JP2008138575A (ja) スクロール圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170414

R150 Certificate of patent or registration of utility model

Ref document number: 6130759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees