JP6124723B2 - Current detector for three-phase inverter - Google Patents

Current detector for three-phase inverter Download PDF

Info

Publication number
JP6124723B2
JP6124723B2 JP2013152658A JP2013152658A JP6124723B2 JP 6124723 B2 JP6124723 B2 JP 6124723B2 JP 2013152658 A JP2013152658 A JP 2013152658A JP 2013152658 A JP2013152658 A JP 2013152658A JP 6124723 B2 JP6124723 B2 JP 6124723B2
Authority
JP
Japan
Prior art keywords
phase
current
value
current detection
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013152658A
Other languages
Japanese (ja)
Other versions
JP2015023755A (en
Inventor
勇作 澁谷
勇作 澁谷
弘行 上田
弘行 上田
敏 川村
敏 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013152658A priority Critical patent/JP6124723B2/en
Publication of JP2015023755A publication Critical patent/JP2015023755A/en
Application granted granted Critical
Publication of JP6124723B2 publication Critical patent/JP6124723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

この発明は、PWM(Pulse Width Modulation)制御される三相インバータの各相に流れる電流を検出する電流検出装置に関するものである。   The present invention relates to a current detection device that detects a current flowing in each phase of a three-phase inverter controlled by PWM (Pulse Width Modulation).

PWM制御される三相インバータの電流検出のために、従来、各相の下アーム側スイッチング素子と直列に電流検出抵抗素子を接続し、この抵抗素子の電圧降下に基づいて各相に流れる電流を検出する方式があった(例えば、特許文献1参照)。   In order to detect the current of the PWM-controlled three-phase inverter, conventionally, a current detection resistor element is connected in series with the lower arm side switching element of each phase, and the current flowing through each phase is determined based on the voltage drop of this resistor element. There was a detection method (see, for example, Patent Document 1).

この方式は構成が簡単で安価であるが、下アーム側スイッチング素子のデューティ比が小さな値(特許文献1では30%未満)になると、ゲート波形の鈍りなどの影響により十分に下アーム側スイッチング素子がONできなくなる場合があり、その相の電流検出が困難になってしまう。   This method is simple and inexpensive, but when the duty ratio of the lower arm side switching element becomes a small value (less than 30% in Patent Document 1), the lower arm side switching element is sufficiently affected by the dullness of the gate waveform. May not be able to be turned on, and current detection of the phase becomes difficult.

そのため、所定相の抵抗素子の電圧降下の値からなる第一電流値と、残る二相の抵抗素子の電圧降下の和の反転値である第二電流値とを、下アーム側スイッチング素子のデューティ比により切り替えて選択することで、下アーム側の電流値を検出できない場合に第二電流値を採用して電流の検出精度を改善していた。よく知られているように、三つの相電流の合計は0であるので、上記第二電流値を精度よく検出することができる。   Therefore, the first current value composed of the voltage drop value of the resistance element of the predetermined phase and the second current value which is an inverted value of the sum of the voltage drops of the remaining two-phase resistance elements are set to the duty of the lower arm switching element. When the current value on the lower arm side cannot be detected by switching according to the ratio, the second current value is adopted to improve the current detection accuracy. As is well known, since the sum of the three phase currents is 0, the second current value can be detected with high accuracy.

特開2003−164159号公報JP 2003-164159 A

しかしながら、下アーム側スイッチング素子のデューティ比に基づいて電流検出の可否を判定する場合、スイッチング素子のON時間から判定することになる。したがって、スイッチング素子の鈍りおよび温度などの諸特性、ならびに電流検出の遅れを考慮して判定値に余裕をもたせる必要があった。結果として電流検出可能と判定される期間が狭まるという課題が残る。   However, when determining whether or not current detection is possible based on the duty ratio of the lower arm side switching element, the determination is made from the ON time of the switching element. Therefore, it is necessary to allow a margin for the judgment value in consideration of various characteristics such as the dullness and temperature of the switching element and a delay in current detection. As a result, there remains a problem that the period in which it is determined that the current can be detected is narrowed.

また、下アーム側スイッチング素子のデューティ比が小値になる相が二相以上ある期間では第二電流値を算出できないという課題もあった。スイッチング素子のデッドタイムおよびゲート波形の鈍りがなく、電流検出に要する処理時間が限りなく0に近い状態であっても、三相インバータを制御するPWM信号の変調率を200%以上に設定すると、二相同時に下アーム側スイッチング素子がONしなくなるタイミングがあり、このとき二相に流れる電流が検出不能となる。   In addition, there is a problem that the second current value cannot be calculated in a period in which there are two or more phases in which the duty ratio of the lower arm switching element is a small value. Even when the dead time of the switching element and the gate waveform are not dull and the processing time required for current detection is infinitely close to 0, when the modulation rate of the PWM signal for controlling the three-phase inverter is set to 200% or more, There is a timing at which the lower arm side switching element is not turned ON simultaneously in the two phases, and at this time, the current flowing in the two phases cannot be detected.

実際にはスイッチング素子のデッドタイムおよびゲート波形の鈍り、ならびに電流検出の処理時間などがあるため、変調率を200%より小さく設定した場合にも、二相の電流が検出不能となる期間が発生することがある。この期間については、上記特許文献1では言及されておらず、電流が検出できない状態を放置してしまうと電流のフィードバック制御が破綻し、電流が安定しなくなることがある。   Actually, there is a dead time of the switching element, a dull gate waveform, and a current detection processing time. Therefore, even when the modulation factor is set smaller than 200%, a period in which the two-phase current cannot be detected occurs. There are things to do. This period is not mentioned in the above-mentioned patent document 1, and if a state in which no current can be detected is left, current feedback control may break down and the current may become unstable.

この発明は、上記のような課題を解決するためになされたもので、三相インバータの下アーム側に流れる電流をより広い期間で検出可能にすることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to make it possible to detect a current flowing in the lower arm side of a three-phase inverter in a wider period.

この発明に係る三相インバータの電流検出装置は、電流検出抵抗素子の電圧降下に基づいて検出した各相の電流値の総和の絶対値が判定値以下である場合に当該検出した各相の電流値を採用する電流検出判定部を備え、電流検出判定部は、各相の電流値の総和の絶対値が判定値より大きい場合に電流検出が不能な相を特定し、当該電流検出が不能な相が二相ある場合、電流検出が可能な残り一相の電流値の反転値を所定の割合で分配して当該電流検出が不能な二相の電流値として採用するものである。 The current detection device for a three-phase inverter according to the present invention has the detected current of each phase when the absolute value of the sum of the current values of each phase detected based on the voltage drop of the current detection resistance element is equal to or less than a determination value. A current detection determination unit that adopts a value, the current detection determination unit identifies a phase incapable of current detection when the absolute value of the sum of the current values of each phase is larger than the determination value, and the current detection is impossible When there are two phases, the reversal value of the current value of the remaining one phase where current detection is possible is distributed at a predetermined ratio and adopted as the current value of two phases where current detection is impossible .

この発明によれば、検出した電流値を判定に用いるようにしたので、スイッチング素子の鈍りおよび温度などの諸特性、ならびに電流検出の遅れを考慮した判定値を用いることなく電流検出の可否を判定でき、より広い期間で検出した電流を採用することができる。   According to the present invention, since the detected current value is used for the determination, it is determined whether or not the current can be detected without using the determination value in consideration of various characteristics such as the dullness and temperature of the switching element and the delay of the current detection. It is possible to adopt a current detected over a wider period.

この発明の実施の形態1に係る三相インバータの電流検出装置を、三相ブラシレスモータに適用した場合の構成例を示す図である。It is a figure which shows the structural example at the time of applying the electric current detection apparatus of the three-phase inverter which concerns on Embodiment 1 of this invention to a three-phase brushless motor. 実施の形態1のモータ制御部で求める各相の電圧指令波形を示すグラフである。4 is a graph showing voltage command waveforms of respective phases obtained by the motor control unit of the first embodiment. 図2のP1点近傍の電圧指令から生成されるゲート電圧波形を示すグラフである。It is a graph which shows the gate voltage waveform produced | generated from the voltage command of P1 vicinity of FIG. 実施の形態1の電流検出部による動作を示すフローチャートである。3 is a flowchart illustrating an operation performed by a current detection unit according to the first embodiment. 図2のP2点近傍の電圧指令から生成されるゲート電圧波形を示すグラフである。It is a graph which shows the gate voltage waveform produced | generated from the voltage command of P2 vicinity of FIG. 実施の形態1のモータ制御部で求める各相の電圧指令波形を示すグラフ(過変調時)である。3 is a graph (at the time of overmodulation) showing voltage command waveforms of respective phases obtained by the motor control unit of the first embodiment. 図6のP3点近傍の電圧指令から生成されるゲート電圧波形を示すグラフである。It is a graph which shows the gate voltage waveform produced | generated from the voltage command of P3 vicinity of FIG.

実施の形態1.
図1は、本実施の形態1に係る三相インバータの電流検出装置を、三相ブラシレスモータに適用した場合の構成例を示す。図1に示す三相モータ装置は、三相ブラシレスモータ1、三相インバータ2、およびコントローラ3で構成される。本実施の形態1に係る三相インバータ2の電流検出装置は、コントローラ3の電流検出部34に相当する。
Embodiment 1 FIG.
FIG. 1 shows a configuration example when the current detection device for a three-phase inverter according to the first embodiment is applied to a three-phase brushless motor. The three-phase motor device shown in FIG. 1 includes a three-phase brushless motor 1, a three-phase inverter 2, and a controller 3. The current detection device for the three-phase inverter 2 according to the first embodiment corresponds to the current detection unit 34 of the controller 3.

三相ブラシレスモータ1は、U相、V相、W相の各相に巻線を有する。   The three-phase brushless motor 1 has a winding in each of the U phase, the V phase, and the W phase.

三相インバータ2は、並列に還流ダイオードを備えたスイッチング素子SW1〜SW6をブリッジ接続した回路と、電流検出抵抗素子R1〜R3とで構成される。電流検出抵抗素子R1〜R3は、各相の下アーム側スイッチング素子SW2,SW4,SW6と低位の直流電源4との間に直列に接続される。三相インバータ2から出力される三相交流電圧は、三相ブラシレスモータ1の各相の巻線に印加される。   The three-phase inverter 2 includes a circuit in which switching elements SW1 to SW6 each including a reflux diode in parallel are bridge-connected and current detection resistance elements R1 to R3. The current detection resistance elements R1 to R3 are connected in series between the lower arm side switching elements SW2, SW4, SW6 of each phase and the lower DC power supply 4. The three-phase AC voltage output from the three-phase inverter 2 is applied to each phase winding of the three-phase brushless motor 1.

コントローラ3は、マイクロコンピュータ30(または、DSP;Digital Signal Processorなど)を内蔵して、モータ制御部31と電流検出部34を構成している。
モータ制御部31のフィードバック制御部32は、三相ブラシレスモータ1に装着された位置センサ(不図示)から入力される回転角信号と、電流検出部34から入力される電流信号と、外部から入力されるかコントローラ3内部で設定するトルク指令信号および磁束指令信号とに基づき、フィードバック制御を行い、各相の駆動電流が所望の電流になるよう三相インバータ2の上アーム側スイッチング素子SW1,SW3,SW5と下アーム側スイッチング素子SW2,SW4,SW6をPWM制御する。
The controller 3 incorporates a microcomputer 30 (or DSP; Digital Signal Processor) and constitutes a motor control unit 31 and a current detection unit 34.
The feedback control unit 32 of the motor control unit 31 receives a rotation angle signal input from a position sensor (not shown) attached to the three-phase brushless motor 1, a current signal input from the current detection unit 34, and an external input. The feedback control is performed based on the torque command signal and the magnetic flux command signal set in the controller 3, and the upper arm side switching elements SW1, SW3 of the three-phase inverter 2 so that the drive current of each phase becomes a desired current. , SW5 and lower arm side switching elements SW2, SW4, SW6 are PWM-controlled.

フィードバック制御部32から駆動回路33へは、U相の上アーム側スイッチング素子SW1をPWM制御するPWM_UP信号、U相の下アーム側スイッチング素子SW2をPWM制御するPWM_UN信号、V相の上アーム側スイッチング素子SW3をPWM制御するPWM_VP信号、V相の下アーム側スイッチング素子SW4をPWM制御するPWM_VN信号、W相の上アーム側スイッチング素子SW5をPWM制御するPWM_WP信号、W相の下アーム側スイッチング素子SW6をPWM制御するPWM_WN信号を出力し、駆動回路33がU相の上アーム側スイッチング素子SW1に印加するゲート電圧UP、U相の下アーム側スイッチング素子SW2に印加するゲート電圧UN、V相の上アーム側スイッチング素子SW3に印加するゲート電圧VP、V相の下アーム側スイッチング素子SW4に印加するゲート電圧VN、W相の上アーム側スイッチング素子SW5に印加するゲート電圧WP、W相の下アーム側スイッチング素子SW6に印加するゲート電圧WNを出力する。
なお、三相インバータ2の各構成および制御方式自体はすでに周知であるため、詳細な説明は省略する。
From the feedback control unit 32 to the drive circuit 33, the PWM_UP signal for PWM control of the U-phase upper arm side switching element SW1, the PWM_UN signal for PWM control of the U-phase lower arm side switching element SW2, and the V-phase upper arm side switching. PWM_VP signal for PWM control of element SW3, PWM_VN signal for PWM control of lower arm side switching element SW4 for V phase, PWM_WP signal for PWM control of upper arm side switching element SW5 for W phase, lower arm side switching element SW6 for W phase The PWM_WN signal for PWM control is output, and the drive circuit 33 applies the gate voltage UP applied to the U-phase upper arm side switching element SW1 and the gate voltage UN applied to the U-phase lower arm side switching element SW2 to the upper side of the V-phase. Arm side switching element SW3 The gate voltage VP to be applied, the gate voltage VN to be applied to the lower arm side switching element SW4 of the V phase, the gate voltage WP to be applied to the upper arm side switching element SW5 of the W phase, and the lower arm side switching element SW6 of the W phase. The gate voltage WN is output.
In addition, since each structure and control system itself of the three-phase inverter 2 are already known, detailed description is abbreviate | omitted.

電流検出部34では、電流検出抵抗素子R1〜R3それぞれの両端に発生する電圧をアナログ電流検出回路35により検出し、検出したアナログ値(U相電流、V相電流、W相電流)をマイクロコンピュータ30のA/D変換器36によりデジタル値(U相電流、V相電流、W相電流)に変換する。電流検出判定部37は、検出できた相の電流値に基づいて検出できなかった相の電流値を補間し、三相の電流信号としてモータ制御部31へ出力する。   In the current detection unit 34, the voltage generated at both ends of each of the current detection resistance elements R1 to R3 is detected by the analog current detection circuit 35, and the detected analog values (U-phase current, V-phase current, W-phase current) are detected by the microcomputer. 30 A / D converters 36 convert the values into digital values (U-phase current, V-phase current, W-phase current). The current detection determination unit 37 interpolates the phase current value that could not be detected based on the detected phase current value, and outputs the current value to the motor control unit 31 as a three-phase current signal.

次に、電流検出部34による相電流の検出方法を説明する。
A/D変換器36は、電流制御の演算周期と同じか、もしくはそれよりも短い周期の所定のタイミングで、アナログ電流検出回路35から出力されるアナログ電流値をA/D変換して各相のデジタル電流値をサンプリングする。A/D変換器36の電流取得タイミングはマイクロコンピュータ30が管理する。
Next, a method for detecting a phase current by the current detection unit 34 will be described.
The A / D converter 36 performs A / D conversion on the analog current value output from the analog current detection circuit 35 at a predetermined timing having a cycle that is the same as or shorter than the current control calculation cycle. The digital current value is sampled. The microcomputer 30 manages the current acquisition timing of the A / D converter 36.

ここで、モータ制御部31で求める各相の電圧指令波形を図2に示し、スイッチング素子SW1〜SW6に印加するゲート電圧波形の例を図3に示す。この図3は、図2に示したP1点近傍における各相の電圧指令と搬送波に基づいて生成されるゲート電圧UP,UN,VP,VN,WP,WNおよび電流取得タイミングを示す波形である。
この実施の形態1では、コントローラ3が5kHzのキャリア周波数でPWM制御を行っており、PWM周期は200μsecになる。各相の電流は、搬送波である三角波の負の頂点でサンプリングされる。スイッチング素子SW1〜SW6は、ゲート電圧がHighでONし、LowでOFFする。また、この例では上アーム側スイッチング素子SW1,SW3,SW5と下アーム側スイッチング素子SW2,SW4,SW6の貫通電流を防止するためデッドタイムを10μsec設けている。デッドタイムは、上アーム側スイッチング素子SW1,SW3,SW5のON/OFFの切り換わりのタイミングを基準にして設定されている。
Here, the voltage command waveform of each phase obtained by the motor control unit 31 is shown in FIG. 2, and an example of the gate voltage waveform applied to the switching elements SW1 to SW6 is shown in FIG. FIG. 3 is a waveform showing gate voltages UP, UN, VP, VN, WP, WN and current acquisition timing generated based on the voltage command and carrier wave of each phase in the vicinity of the point P1 shown in FIG.
In the first embodiment, the controller 3 performs PWM control at a carrier frequency of 5 kHz, and the PWM cycle is 200 μsec. The current of each phase is sampled at the negative peak of a triangular wave that is a carrier wave. The switching elements SW1 to SW6 are turned on when the gate voltage is High and turned off when the gate voltage is Low. In this example, a dead time of 10 μsec is provided in order to prevent a through current of the upper arm side switching elements SW1, SW3, SW5 and the lower arm side switching elements SW2, SW4, SW6. The dead time is set with reference to the ON / OFF switching timing of the upper arm side switching elements SW1, SW3, SW5.

図4は、電流検出部34の動作を示すフローチャートである。
先ずは、各相の電流を正確に検出できたか否か(以下、電流検出の可否と称す)の判定方法を説明する。
電流取得タイミングになると、A/D変換器36が、各相の電流検出抵抗素子R1〜R3の電圧降下をデジタル電流値としてサンプリングし(ステップST1)、電流検出判定部37が三相のデジタル電流値の総和の絶対値を算出する(ステップST2)。続いて電流検出判定部37は、三相デジタル電流値の総和の絶対値が第一の判定値以下かどうか調べる(ステップST3)。第一の判定値以下になる場合は(ステップST3“YES”)、各相の電流を正しく検出できたと判断して、三相のデジタル電流値をフィードバック制御に用いる電流値として採用し、フィードバック制御部32へ出力する(ステップST4)。
FIG. 4 is a flowchart showing the operation of the current detection unit 34.
First, a method for determining whether or not the current of each phase has been accurately detected (hereinafter referred to as current detection capability) will be described.
At the current acquisition timing, the A / D converter 36 samples the voltage drop of the current detection resistor elements R1 to R3 of each phase as a digital current value (step ST1), and the current detection determination unit 37 performs the three-phase digital current. The absolute value of the sum of the values is calculated (step ST2). Subsequently, the current detection determination unit 37 checks whether or not the absolute value of the sum of the three-phase digital current values is equal to or less than the first determination value (step ST3). When the value is equal to or less than the first determination value (step ST3 “YES”), it is determined that the current of each phase has been correctly detected, and the three-phase digital current value is adopted as the current value used for the feedback control. It outputs to the part 32 (step ST4).

ここで、第一の判定値は、三相に流れる電流の総和とする。このようにすることで、スイッチング素子SW1〜SW6の鈍りおよび温度などの諸特性、ならびに電流検出の遅れを考慮した判定値を用いることなく電流検出の可否を判定することができるので、より広い期間においてサンプリングした電流を用いることができる。   Here, the first determination value is the sum of the currents flowing through the three phases. In this way, it is possible to determine whether or not current detection is possible without using various characteristics such as the dullness and temperature of the switching elements SW1 to SW6 and a determination value that takes into account the delay in current detection. The sampled current can be used.

さらに、スイッチング素子SW1〜SW6のスイッチングノイズ、電流検出抵抗素子R1〜R3、アナログ電流検出回路35、A/D変換器36などの電流検出に関わる誤差を考慮して、三相に流れる電流の総和にこれら電流検出の誤差を加味した判定値を設定してもよい。総和=0なので、第一の判定値は実質的に各相の電流値を検出する際に生じる誤差以上の値となる。このようにすることで、電流検出のばらつきおよび誤差による誤判定を防止することができ、より確実に電流検出の可否を判定できる。   Further, considering the switching noise of the switching elements SW1 to SW6, current detection resistance elements R1 to R3, the analog current detection circuit 35, the A / D converter 36, and other errors related to current detection, the sum of the currents flowing in the three phases Alternatively, a determination value may be set in consideration of these current detection errors. Since the total sum = 0, the first determination value is substantially a value equal to or larger than an error that occurs when the current value of each phase is detected. By doing so, it is possible to prevent erroneous determination due to variations and errors in current detection, and it is possible to more reliably determine whether current detection is possible.

次に、三相のデジタル電流値の総和が第一の判定値より大きい場合を説明する。
三相のデジタル電流値の総和の絶対値が第一の判定値より大きく、電流を正確に検出できなかった相があると判定した場合(ステップST3“NO”)、電流検出判定部37は、第二の判定値を用いて電流検出不能の相を調べる(ステップST5)。
Next, a case where the sum of the three-phase digital current values is larger than the first determination value will be described.
When it is determined that the absolute value of the sum of the three-phase digital current values is greater than the first determination value and there is a phase in which the current cannot be accurately detected (step ST3 “NO”), the current detection determination unit 37 Using the second determination value, a phase in which current cannot be detected is examined (step ST5).

本実施の形態1では、上アーム側スイッチング素子のデューティ比に第二の判定値を設けている。上アーム側スイッチング素子のデューティ比が大値になると、反対に下アーム側スイッチング素子のデューティ比が小値になり、デッドタイムおよびゲート電圧波形の鈍りなどにより下アーム側スイッチング素子がONしない場合があり、その場合にはその相の電流検出が不能となる。   In the first embodiment, the second determination value is provided for the duty ratio of the upper arm side switching element. When the duty ratio of the upper arm side switching element becomes large, the duty ratio of the lower arm side switching element becomes small, and the lower arm side switching element may not turn ON due to dead time and dull gate voltage waveform. In that case, the current detection of the phase becomes impossible.

ステップST5にて電流検出判定部37が、各相の上アーム側スイッチング素子のデューティ比が第二の判定値より大きいかどうか調べ、第二の判定値より大きい場合はこの相の下アーム側スイッチング素子のON時間が電流を正しく検出できる所定時間より短いと判断して、この相の電流検出を不可と判定する。このようにすることで、U相、V相、W相のいずれの相の電流検出が不能となるか判定できる。   In step ST5, the current detection determination unit 37 checks whether the duty ratio of the upper arm side switching element of each phase is larger than the second determination value. It is determined that the ON time of the element is shorter than a predetermined time during which the current can be correctly detected, and it is determined that the current detection of this phase is impossible. By doing in this way, it can be determined whether the current detection of any phase of U phase, V phase, and W phase becomes impossible.

なお、第二の判定値は、電流を正しく検出できる下アーム側スイッチング素子のON時間に基づいて設定した上アーム側スイッチング素子のデューティ比とする。さらにスイッチング素子のデッドタイム、ゲート電圧波形の鈍り、電流検出に要する処理時間などを考慮して、第二の判定値を設定してもよい。   The second determination value is a duty ratio of the upper arm side switching element set based on the ON time of the lower arm side switching element that can correctly detect the current. Further, the second determination value may be set in consideration of the dead time of the switching element, the dullness of the gate voltage waveform, the processing time required for current detection, and the like.

次に、電流検出ができない相の電流値を補間する方法を説明する。
ステップST5にて電流検出判定部37がU相、V相、W相のうちのいずれか一相の電流が検出不能と判定した場合、ステップST6において、検出不能な相の電流値を推定する。例えば下式(1)のように、検出できた二相のデジタル電流値の和の反転値を、検出不能な一相の電流値として用いる。このように、三相に流れる電流の総和=0という関係を用い、一相のみ電流検出できない場合に残り二相の電流を用いて精度よく補間することができる。
Next, a method for interpolating the current values of phases where current detection is not possible will be described.
When the current detection determination unit 37 determines in step ST5 that the current of any one of the U phase, V phase, and W phase cannot be detected, in step ST6, the current value of the undetectable phase is estimated. For example, as shown in the following equation (1), the inverted value of the sum of the detected two-phase digital current values is used as the undetectable one-phase current value. In this way, using the relationship that the sum of the currents flowing in the three phases = 0, if only one phase cannot be detected, the remaining two-phase currents can be used for accurate interpolation.

Iv=−(Iu+Iw) (1)
ここで、Iu,Iwは検出できたU相とW相のデジタル電流値であり、Ivは電流検出が不能なV相の補間電流値である。
Iv = − (Iu + Iw) (1)
Here, Iu and Iw are detected U-phase and W-phase digital current values, and Iv is a V-phase interpolated current value where current detection is impossible.

図2に示すような電圧指令波形の場合でも、スイッチング素子のデッドタイムおよびゲート電圧波形の鈍り等の諸条件により、いずれか一相の電流が検出不能となる期間が発生することがある。
図5は、図2に示したP2点近傍における各相の電圧指令と搬送波に基づいて生成されるゲート電圧UP,UN,VP,VN,WP,WNおよび電流取得タイミングを示す波形である。図5の電流取得タイミングでは、ゲート電圧VNがHighにならないので、V相の下アーム側スイッチング素子SW4がONしない。このとき、電流検出判定部37は、V相の電流検出が不能になると判定して、U相およびW相のデジタル電流値の和の反転値をV相の電流値として採用する。
Even in the case of the voltage command waveform as shown in FIG. 2, a period in which any one-phase current cannot be detected may occur due to various conditions such as the dead time of the switching element and the dullness of the gate voltage waveform.
FIG. 5 is a waveform showing gate voltages UP, UN, VP, VN, WP, WN and current acquisition timing generated based on the voltage command and carrier wave of each phase in the vicinity of the point P2 shown in FIG. At the current acquisition timing of FIG. 5, the gate voltage VN does not become High, so the V-phase lower arm side switching element SW4 is not turned ON. At this time, the current detection determination unit 37 determines that the V-phase current detection is disabled, and employs the inverted value of the sum of the U-phase and W-phase digital current values as the V-phase current value.

他方、モータ制御部31で求める各相の電圧指令が過変調などにより、図6に示す波形となる場合、いずれか二相の電流が検出不能となる期間(P3点近傍)が発生することがある。図7は、図6に示したP3点近傍における各相の電圧指令と搬送波に基づいて生成されるゲート電圧UP,UN,VP,VN,WP,WNおよび電流取得タイミングを示す波形である。図7の電流取得タイミングでは、ゲート電圧UN,VNがHighにならないので、U相とV相の下アーム側スイッチング素子SW2,SW4がONしない。このとき、電流検出判定部37では、U相とV相の電流検出が不能になると判定する。   On the other hand, when the voltage command for each phase obtained by the motor control unit 31 has the waveform shown in FIG. 6 due to overmodulation or the like, a period (near point P3) in which any two-phase current cannot be detected may occur. is there. FIG. 7 is a waveform showing gate voltages UP, UN, VP, VN, WP, WN and current acquisition timing generated based on the voltage command and carrier wave of each phase in the vicinity of the point P3 shown in FIG. At the current acquisition timing of FIG. 7, since the gate voltages UN and VN do not become High, the U-phase and V-phase lower arm side switching elements SW2 and SW4 are not turned ON. At this time, the current detection determination unit 37 determines that U-phase and V-phase current detection is disabled.

次に、電流検出ができない相が二相ある場合の、電流値の補間方法を説明する。
ステップST5にて電流検出判定部37がU相、V相、W相のうちのいずれか二相の電流が検出不能と判定した場合、ステップST7において、検出できた一相のデジタル電流値の反転値を所定の割合で分配し、検出不能な二相の電流値として用いる。所定の割合としては、例えば下式(2)のように検出できた一相のデジタル電流値の反転値を均等に分配する。このようにすることで、電流が一相しか検出できない場合においても三相に流れる電流の総和=0という関係性を崩さないように電流値を補間することができる。これにより、実際に流れている電流と補間した電流値に誤差は生じたとしても、電流のフィードバック制御を破綻させることなく制御することができる。
Next, a current value interpolation method when there are two phases in which current detection is not possible will be described.
When the current detection determination unit 37 determines in step ST5 that any two-phase current among the U phase, V phase, and W phase cannot be detected, in step ST7, the detected one-phase digital current value is inverted. The value is distributed at a predetermined ratio and used as an undetectable two-phase current value. As the predetermined ratio, for example, the inversion value of the one-phase digital current value that can be detected as in the following formula (2) is equally distributed. In this way, even when the current can be detected only in one phase, the current value can be interpolated so as not to break the relationship that the sum of the currents flowing in the three phases = 0. As a result, even if an error occurs between the actually flowing current and the interpolated current value, the current feedback control can be controlled without failing.

Iu=−(Iw/2) (2)
Iv=−(Iw/2)
ここで、Iwは検出できたW相のデジタル電流値であり、Iu,Ivは電流検出が不能なU相とV相の補間電流値である。
Iu =-(Iw / 2) (2)
Iv =-(Iw / 2)
Here, Iw is a detected W-phase digital current value, and Iu and Iv are U-phase and V-phase interpolated current values for which current detection is impossible.

なお、上記説明では、検出できた一相のデジタル電流値の反転値を検出不能な二相に均等に分配したが、検出不能な二相のスイッチング素子のON時間に応じた割合で分配してもよい。   In the above description, the inversion value of the detected one-phase digital current value is evenly distributed to the two undetectable phases, but is distributed in proportion to the ON time of the undetectable two-phase switching elements. Also good.

また、電流検出判定部37において、三相とも電流が検出不能となる場合は電流検出異常と判定し、三相インバータ2を停止することで、特別な装置を付加することなく容易に電流検出異常による三相インバータ2および三相ブラシレスモータ1の保護を行うこともできる。   In addition, in the current detection determination unit 37, when the current cannot be detected in any of the three phases, it is determined as a current detection abnormality, and the current detection abnormality can be easily performed without adding a special device by stopping the three-phase inverter 2. The three-phase inverter 2 and the three-phase brushless motor 1 can be protected.

以上より、実施の形態1によれば、PWM制御される三相インバータ2の各相の下アーム側スイッチング素子SW2,SW4,SW6と直列に接続される電流検出抵抗素子R1〜R3の電圧降下に基づいて各相の電流値を検出する電流検出部34において、電流検出判定部37は、電流検出抵抗素子R1〜R3の電圧降下に基づいて検出した各相の電流値の総和の絶対値が第一の判定値以下である場合、当該検出した各相の電流値を採用する構成にした。このため、検出した電流値を判定に用いるようにしたので、スイッチング素子の鈍りおよび温度などの諸特性、ならびに電流検出の遅れを考慮した従来のような判定値を用いることなく電流検出の可否を判定でき、より広い期間で検出した電流を相電流として採用することができる。   As described above, according to the first embodiment, the voltage drop of the current detection resistor elements R1 to R3 connected in series with the lower arm side switching elements SW2, SW4, SW6 of each phase of the three-phase inverter 2 controlled by PWM control. In the current detection unit 34 that detects the current value of each phase based on the current detection determination unit 37, the absolute value of the sum of the current values of each phase detected based on the voltage drop of the current detection resistance elements R1 to R3 is the first value. When the value is equal to or less than one determination value, the detected current value of each phase is adopted. For this reason, since the detected current value is used for the determination, whether or not the current can be detected without using the conventional determination value in consideration of various characteristics such as the dullness and temperature of the switching element and the delay of the current detection is determined. The current detected in a wider period can be adopted as the phase current.

また、実施の形態1によれば、第一の判定値は、各相の電流値を検出する際に生じる誤差以上の値に設定したので、より確実に電流検出の可否を判定でき、電流検出精度が向上する。
なお、各相の電流値を検出する際に生じる誤差としては、スイッチング素子SW1〜SW6のスイッチングノイズに起因した誤差、電流検出抵抗素子R1〜R3の誤差、アナログ電流検出回路35の誤差、A/D変換器36の誤差などがある。
Further, according to the first embodiment, since the first determination value is set to a value that is equal to or greater than the error that occurs when detecting the current value of each phase, it is possible to more reliably determine whether or not current detection is possible. Accuracy is improved.
Note that errors that occur when detecting the current value of each phase include errors caused by switching noise of the switching elements SW1 to SW6, errors of the current detection resistance elements R1 to R3, errors of the analog current detection circuit 35, A / There is an error of the D converter 36.

また、実施の形態1によれば、電流検出判定部37は、所定の時間に基づいて設定された上アーム側のデューティ比を第二の判定値に用いて、上アーム側スイッチング素子SW1,SW3,SW5のデューティ比が第二の判定値より大きい相を電流検出が不能な相を特定するようにしたので、下アーム側スイッチング素子SW2,SW4,SW6がONしない、またはON時間が短く精度よく電流検出できない相を特定できる。
あるいは、所定の時間を直接第二の判定値として用いて、下アーム側スイッチング素子SW2,SW4,SW6のON時間が所定の時間より短い相を電流検出が不能な相に特定してもよい。
なお、所定の時間は、下アームに流れる電流を正しく検出できる程度に長い下アーム側スイッチング素子SW2,SW4,SW6のON時間であり、スイッチング素子のデッドタイム、ゲート電圧波形の鈍り、電流検出に要する処理時間(例えば、A/D変換器36のサンプルホールド)などを考慮して決定する。
Further, according to the first embodiment, the current detection determination unit 37 uses the upper arm side duty ratio set based on a predetermined time as the second determination value, and uses the upper arm side switching elements SW1, SW3. , SW5 has a duty ratio greater than the second determination value, and the phase in which current detection is impossible is specified. Therefore, the lower arm side switching elements SW2, SW4, SW6 are not turned ON or the ON time is short and accurate. Phases that cannot be detected can be identified.
Alternatively, a predetermined time may be directly used as the second determination value to specify a phase in which the ON time of the lower arm side switching elements SW2, SW4, SW6 is shorter than the predetermined time as a phase in which current detection is impossible.
The predetermined time is the ON time of the lower arm side switching elements SW2, SW4, SW6 that is long enough to correctly detect the current flowing in the lower arm, and is used for dead time of the switching elements, dull gate voltage waveform, and current detection. This is determined in consideration of the processing time required (for example, sample hold of the A / D converter 36).

また、実施の形態1によれば、電流検出判定部37は、各相の電流値の総和の絶対値が第一の判定値より大きい場合に電流検出が不能な相を特定し、当該電流検出が不能な相が二相ある場合、電流検出が可能な残り一相の電流値の反転値を所定の割合で分配して当該電流検出が不能な二相の電流値として採用する構成にした。このため、下アーム側の電流を一相検出できれば電流のフィードバック制御を破綻させることなく制御できる。   Further, according to the first embodiment, the current detection determination unit 37 specifies a phase in which current detection is impossible when the absolute value of the sum of the current values of the phases is larger than the first determination value, and detects the current detection. When there are two phases that cannot be detected, the inversion value of the current value of the remaining one phase that can detect current is distributed at a predetermined ratio and adopted as the two-phase current value that cannot be detected. For this reason, if the current on the lower arm side can be detected in one phase, the current feedback control can be performed without breaking.

また、実施の形態1によれば、電流検出判定部37は、各相の電流値の総和の絶対値が第一の判定値より大きい場合に電流検出が不能な相を特定し、当該電流検出が不能な相が一相ある場合、電流検出が可能な残り二相の電流値の和の反転値を当該電流検出が不能な一相の電流値として採用する構成にした。このため、下アーム側の電流を二相検出できれば、三相の電流値の総和=0の関係性に基づいて、電流検出が不能な相の電流値を精度よく補間できる。   Further, according to the first embodiment, the current detection determination unit 37 specifies a phase in which current detection is impossible when the absolute value of the sum of the current values of the phases is larger than the first determination value, and detects the current detection. When there is one phase incapable of being detected, the inverted value of the sum of the current values of the remaining two phases capable of current detection is adopted as the current value of one phase incapable of current detection. For this reason, if the current on the lower arm side can be detected in two phases, the current value of the phase incapable of current detection can be accurately interpolated based on the relationship that the sum of the current values of the three phases = 0.

なお、各相の電流値の総和の絶対値が第一の判定値より大きく、電流検出不能な相がある場合、電流検出判定部37が下アーム側スイッチング素子SW2,SW4,SW6のうちのON時間が最小になる一相を特定し、この一相の電流検出が不能であるとみなして、残り二相の電流値の和の反転値を当該一相の電流値として採用する構成にしてもよい。この構成の場合にも、三相の電流値の総和=0の関係性に基づいて、電流のフィードバック制御を破綻させることなく制御できる。   If the absolute value of the sum of the current values of each phase is larger than the first determination value and there is a phase in which current detection is not possible, the current detection determination unit 37 is turned on among the lower arm side switching elements SW2, SW4, SW6. A configuration is adopted in which one phase that minimizes time is identified, the current detection of this one phase is impossible, and the inverted value of the sum of the current values of the remaining two phases is adopted as the current value of the one phase. Good. Also in this configuration, the current feedback control can be controlled without breaking based on the relationship that the sum of the three-phase current values = 0.

なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。   In the present invention, any constituent element of the embodiment can be modified or any constituent element of the embodiment can be omitted within the scope of the invention.

1 三相ブラシレスモータ、2 三相インバータ、3 コントローラ、4 直流電源、30 マイクロコンピュータ、31 モータ制御部、32 フィードバック制御部、33 駆動回路、34 電流検出部、35 アナログ電流検出回路、36 A/D変換器、37 電流検出判定部、R1〜R3 電流検出抵抗素子、SW1,SW3,SW5 上アーム側スイッチング素子、SW2,SW4,SW6 下アーム側スイッチング素子。   1 Three-phase brushless motor, 2 Three-phase inverter, 3 Controller, 4 DC power supply, 30 Microcomputer, 31 Motor controller, 32 Feedback controller, 33 Drive circuit, 34 Current detector, 35 Analog current detector, 36 A / D converter, 37 Current detection determination part, R1-R3 Current detection resistance element, SW1, SW3, SW5 Upper arm side switching element, SW2, SW4, SW6 Lower arm side switching element.

Claims (6)

PWM(Pulse Width Modulation)制御される三相インバータの各相の下アーム側スイッチング素子と直列に接続される電流検出抵抗素子の電圧降下に基づいて前記各相の電流値を検出する三相インバータの電流検出装置において、
前記電流検出抵抗素子の電圧降下に基づいて検出した前記各相の電流値の総和の絶対値が判定値以下である場合、当該検出した前記各相の電流値を採用する電流検出判定部を備え
前記電流検出判定部は、前記各相の電流値の総和の絶対値が前記判定値より大きい場合に電流検出が不能な相を特定し、当該電流検出が不能な相が二相ある場合、電流検出が可能な残り一相の電流値の反転値を所定の割合で分配して当該電流検出が不能な二相の電流値として採用することを特徴とする三相インバータの電流検出装置。
A three-phase inverter that detects a current value of each phase based on a voltage drop of a current detection resistor element connected in series with a lower arm side switching element of each phase of a three-phase inverter controlled by PWM (Pulse Width Modulation) In the current detection device,
A current detection determination unit that employs the detected current value of each phase when the absolute value of the sum of the current values of each phase detected based on the voltage drop of the current detection resistance element is less than or equal to the determination value; ,
The current detection determination unit specifies a phase incapable of current detection when the absolute value of the sum of the current values of the respective phases is larger than the determination value, and when there are two phases incapable of current detection, A current detection device for a three-phase inverter, characterized in that the inversion value of the remaining one-phase current value that can be detected is distributed at a predetermined ratio and adopted as a two-phase current value that cannot be detected.
前記判定値は、前記各相の電流値を検出する際に生じる誤差以上の値に設定されていることを特徴とする請求項1記載の三相インバータの電流検出装置。   The current detection device for a three-phase inverter according to claim 1, wherein the determination value is set to a value that is equal to or greater than an error that occurs when the current value of each phase is detected. 前記電流検出判定部は、前記各相の電流値の総和の絶対値が前記判定値より大きい場合に一相または二相の電流検出が不能と判断し、前記下アーム側スイッチング素子のON時間が所定の時間より短い一相または二相を当該電流検出が不能な相に特定することを特徴とする請求項1または請求項2記載の三相インバータの電流検出装置。 The current detection determination unit determines that one-phase or two-phase current detection is impossible when the absolute value of the sum of the current values of the respective phases is greater than the determination value, and the ON time of the lower arm side switching element is determined. 3. The current detecting device for a three-phase inverter according to claim 1, wherein one phase or two phases shorter than a predetermined time is specified as a phase incapable of detecting the current. 前記電流検出判定部は、電流検出が不能な相が二相ある場合、電流検出が可能な残り一相の電流値の反転値を均等に分配するか、あるいは当該電流検出が不能な二相の下アーム側スイッチング素子のON時間の比に応じて分配して、当該電流検出が不能な二相の電流値として採用することを特徴とする請求項記載の三相インバータの電流検出装置。 When there are two phases in which current detection is impossible, the current detection determination unit evenly distributes the inversion value of the current value of the remaining one phase in which current detection is possible, or the two-phase incapable of current detection. and distributed according to the ratio of the oN time of the lower arm switching element, a current detection device of the three-phase inverter according to claim 1, wherein the said current detection is adopted as the current value of the secondary phase of impossible. 前記電流検出判定部は、前記各相の電流値の総和の絶対値が前記判定値より大きい場合に電流検出が不能な相を特定し、当該電流検出が不能な相が一相ある場合、電流検出が可能な残り二相の電流値の和の反転値を当該電流検出が不能な一相の電流値として採用することを特徴とする請求項1から請求項のうちのいずれか1項記載の三相インバータの電流検出装置。 The current detection determination unit identifies a phase in which current detection is impossible when the absolute value of the sum of the current values of each phase is greater than the determination value, and when there is one phase incapable of current detection, set forth in any one of the inverted value of the sum of the current values of the remaining two phases that can detect the preceding claims, characterized in that employed as the current value of one phase of impossible the current detection according to claim 4 Current detector for three-phase inverter. 前記電流検出判定部は、前記各相の電流値の総和の絶対値が前記判定値より大きい場合、前記下アーム側スイッチング素子のON時間が最小になる一相を電流検出が不能な相のうちの一つとみなして、残り二相の電流値の和の反転値を当該電流検出が不能とみなした一相の電流値として採用することを特徴とする請求項1または請求項2記載の三相インバータの電流検出装置。   When the absolute value of the sum of the current values of the respective phases is larger than the determination value, the current detection determination unit determines the one phase in which the ON time of the lower arm side switching element is minimized among the phases in which current detection is impossible. 3. The three-phase circuit according to claim 1, wherein an inversion value of a sum of the remaining two-phase current values is adopted as a one-phase current value that is regarded as being impossible to detect the current. Inverter current detector.
JP2013152658A 2013-07-23 2013-07-23 Current detector for three-phase inverter Active JP6124723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013152658A JP6124723B2 (en) 2013-07-23 2013-07-23 Current detector for three-phase inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013152658A JP6124723B2 (en) 2013-07-23 2013-07-23 Current detector for three-phase inverter

Publications (2)

Publication Number Publication Date
JP2015023755A JP2015023755A (en) 2015-02-02
JP6124723B2 true JP6124723B2 (en) 2017-05-10

Family

ID=52487770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013152658A Active JP6124723B2 (en) 2013-07-23 2013-07-23 Current detector for three-phase inverter

Country Status (1)

Country Link
JP (1) JP6124723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441697B2 (en) 2020-03-26 2024-03-01 本田技研工業株式会社 Gas leak inspection method from fuel cell stack

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101691793B1 (en) 2015-07-10 2017-01-09 엘지전자 주식회사 Motor driving apparatus and home appliance including the same
JP6725450B2 (en) * 2017-04-12 2020-07-15 日本電産モビリティ株式会社 Multi-phase electric motor controller
DE102017210071A1 (en) * 2017-06-14 2018-12-20 Robert Bosch Gmbh Method for determining phase currents of a rotating, multi-phase, electrical machine fed by means of a PWM-controlled inverter
JP6950598B2 (en) * 2018-03-15 2021-10-13 トヨタ自動車株式会社 Motor control device, motor control program and motor control method
JP6687164B2 (en) * 2018-04-12 2020-04-22 日本精工株式会社 Current detection device and electric power steering device
JP7157582B2 (en) * 2018-07-26 2022-10-20 株式会社日立産機システム Power converter and system using it
KR102186763B1 (en) * 2019-04-11 2020-12-04 엘에스일렉트릭(주) Overcurrent protection inverter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2288581A1 (en) * 1999-11-05 2001-05-05 Hui Li Three-phase current sensor and estimator
JP3674578B2 (en) * 2001-11-29 2005-07-20 株式会社デンソー Current detector for three-phase inverter
JP4942569B2 (en) * 2007-07-04 2012-05-30 三菱電機株式会社 Power converter
JP5057908B2 (en) * 2007-09-13 2012-10-24 オムロンオートモーティブエレクトロニクス株式会社 Multi-phase AC motor drive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441697B2 (en) 2020-03-26 2024-03-01 本田技研工業株式会社 Gas leak inspection method from fuel cell stack

Also Published As

Publication number Publication date
JP2015023755A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
JP6124723B2 (en) Current detector for three-phase inverter
JP4866216B2 (en) Power converter
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP2013247832A (en) Motor controller and control method of the same
JP6419361B2 (en) Power conversion device and rotating electrical machine drive device
JP5278723B2 (en) Motor control device and motor control method
US11658600B2 (en) Motor controller, motor system and method for controlling motor
JP6293401B2 (en) Motor controller for air conditioner and air conditioner
JP6407175B2 (en) Power converter control device
JP2019057981A (en) Motor control integrated circuit
WO2020059814A1 (en) Motor control device, motor system and inverter control method
WO2021200389A1 (en) Motor control device, motor system, and motor control method
WO2021200845A1 (en) Motor control device, motor system, and motor control method
US11804797B2 (en) Motor controller, motor system and method for controlling motor
JP6805197B2 (en) Integrated circuit for motor control
JP5860630B2 (en) Motor control device
WO2021200236A1 (en) Motor control device, motor system, and motor control method
WO2021200209A1 (en) Motor control device, motor system, and motor control method
JP6324615B2 (en) AC rotating machine control device and electric power steering control device
JP2006180602A (en) Motor controller
US11716045B2 (en) Motor controller, motor system and method for controlling motor
WO2023190173A1 (en) Motor control device, motor module, motor control program, and motor control method
JP6509683B2 (en) Rotational position detection device and rotational position detection method
JP2004289971A (en) Controller of electric motor
JP4764977B2 (en) Power converter for AC motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170404

R150 Certificate of patent or registration of utility model

Ref document number: 6124723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350