JP3674578B2 - Current detector for three-phase inverter - Google Patents

Current detector for three-phase inverter Download PDF

Info

Publication number
JP3674578B2
JP3674578B2 JP2001363872A JP2001363872A JP3674578B2 JP 3674578 B2 JP3674578 B2 JP 3674578B2 JP 2001363872 A JP2001363872 A JP 2001363872A JP 2001363872 A JP2001363872 A JP 2001363872A JP 3674578 B2 JP3674578 B2 JP 3674578B2
Authority
JP
Japan
Prior art keywords
phase
current value
lower arm
current
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001363872A
Other languages
Japanese (ja)
Other versions
JP2003164159A (en
Inventor
尚志 亀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001363872A priority Critical patent/JP3674578B2/en
Priority to DE10255832.9A priority patent/DE10255832B4/en
Priority to FR0215025A priority patent/FR2832871B1/en
Publication of JP2003164159A publication Critical patent/JP2003164159A/en
Application granted granted Critical
Publication of JP3674578B2 publication Critical patent/JP3674578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration

Description

【0001】
【発明の属する技術分野】
本発明は、三相インバータの電流検出方式に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
たとえば三相ブラシレスモータを駆動制御する三相インバータの電流検出装置として、PWM制御される三相インバータの各相の下アーム素子と低位直流電源線との間にそれぞれ介設される電流検出抵抗素子の電圧降下に基づいて各相の電流値を検出する抵抗素子電圧降下検出方式が構成が簡単で低コストの方式として知られている。
【0003】
しかし、この抵抗素子電圧降下検出方式は、この抵抗素子と直列接続される下アーム素子のデューティ比が30%未満といった小値、すなわち上アーム素子のデューティ比が70%以上といった大値となると、下アーム素子に印加されるゲート電圧波形の鈍りなどにより下アーム素子が十分にターンオンできなくなる場合があり、この相の正確な電流検出が困難となってしまうという欠点があり、通常は高価なホール素子が使用されていた。
【0004】
本発明は上記問題点に鑑みなされたものであり、電流検出精度を従来より格段に改善可能な抵抗素子電圧降下型の三相インバータの電流検出方式を提供することをその目的としている。
【0005】
【課題を解決するための手段】
請求項1記載の三相インバータの電流検出装置は、PWM制御される三相インバータの各相の下アーム側にて下アーム素子と直列接続される電流検出抵抗素子の電圧降下に基づいて各相の電流値を検出する三相インバータの電流検出装置において、
所定相の前記電流値として、前記所定相の前記電流検出抵抗素子の電圧降下の値からなる第一電流値と、残る二相の前記電流検出抵抗素子の電圧降下の和の符号を反転した値である第二電流値とを所定の条件で切り替えて用いる電流値決定部を有し、前記電流値決定部は、前記下アーム素子のデューティ比が30%未満の小値以上である相の前記前記電流値として前記第一電流値を採用し、前記下アーム素子のデューティ比が30%未満の小値であることを特徴としている。すなわち、本発明によれば、所定条件たとえば電流検出抵抗素子を流れる電流値の減少による電流検出精度低下の弊害を上記第二電流値を用いて解決するので、全体として高精度の電流検出精度を得ることができる。
【0007】
また、この発明によれば、下アーム素子のデューティ比が所定値未満であり、下アーム側の電流値を正確に検出できない場合でも第二電流値を用いるので電流検出精度を大幅に向上することができる。
【0008】
好適な態様において、前記電流値決定部は、各PWM周期のうち、すべての前記下アーム素子がターンオンする位相期間T1が所定時間以上の長さをもつ場合に各相の前記電流値として前記一電流値を採用し、すべての前記下アーム素子がターンオンする位相期間T1が前記所定時間未満の長さをもつ場合に前記下アーム素子のターンオン時間がもっとも短い相の電流値として前記第二電流値を採用することを特徴としている。
【0009】
この構成によれば、位相期間T1が所定時間未満の長さをもつため下アーム側の電流値を正確に検出できない場合でも第二電流値を用いるので電流検出精度を大幅に向上することができる。
【0010】
好適な態様において、前記電流値決定部は、各PWM周期のうち、すべての前記下アーム素子がターンオンする位相期間T1が所定時間以上の長さをもつ場合に各相の電流値として前記位相期間T1にサンプルホールドした前記第一電流値を採用し、すべての前記下アーム素子がターンオンする位相期間T1が前記所定時間未満の長さをもつ場合に前記位相期間T1がもっとも短い相の電流値として前記位相期間T1にサンプルホールドした前記第二電流値を採用することを特徴としてる。
【0011】
この構成によれば、位相期間T1が所定時間未満の長さをもつため下アーム側の電流値を正確に検出できない場合でも第二電流値を用いるので電流検出精度を大幅に向上することができる。
【0012】
好適な態様において、前記電流値決定部は、各PWM周期のうち、所定の一相の前記上アーム素子と残る二相の前記下アーム素子がターンオンする位相期間T2に前記所定の一相の前記電流値として前記第二電流値を採用することを特徴としている。
【0013】
この構成によれば、位相期間T2に下アーム素子がターンオフしている相の電流値を正確に検出することができる。
【0014】
【発明の実施の形態】
三相ブラシレスモータの駆動制御に用いる本発明の三相インバータの電流検出装置の好適な態様を以下の実施例により詳細に説明する。
【0015】
【実施例1】
この実施例の三相モータ装置を図1に示す。
【0016】
1は三相ブラシレスモータ、2は三相インバータ、3はコントローラ(モータ制御部、電流検出部)である。三相ブラシレスモータ1は、U相巻線11、V相巻線12、W相巻線13を有している。三相インバータ2は、MOSパワートランジスタで構成されたU相上アーム素子21、U相下アーム素子22、V相上アーム素子23、V相下アーム素子24、W相上アーム素子25、W相下アーム素子26と、各素子21〜26と個別に逆並列されたフライホイルダイオードDと、電流検出抵抗素子27〜29とにより構成されている。電流検出抵抗素子27はU相下アーム素子22と低位直流電源線LLとの間に介設され、電流検出抵抗素子28はV相下アーム素子24と低位直流電源線LLとの間に介設され、電流検出抵抗素子29はW相下アーム素子26と低位直流電源線LLとの間に介設されている。低位直流電源線LLと高位直流電源線LHとの間には図示しない平滑回路を通じてバッテリ電圧が印加され、三相インバータ2から出力される三相交流出力電圧は三相ブラシレスモータ1の各相巻線の各一端に個別に印加されている。コントローラ3は、三相ブラシレスモータ1に装備された回転角センサから入力される回転角信号と、電流検出抵抗素子27〜29から入力される三つの相電流と、外部から入力されるトルク指令信号とに基づいて三相インバータ2の各素子21〜26をスイッチング制御する。この実施例では説明を簡単にするために、コントローラ3が、デジタル信号に変換された電流検出抵抗素子27〜29の電圧降下を処理するマイクロコンピュータ(図示説明は省略する)を内蔵すものとするが、デジタル回路構成などにより構成してもよいことはもちろんである。上記説明した三相モータ装置の各構成およびその種々の制御方式自体はもはや周知であるので、さらなる詳細説明は省略する。
【0017】
次に、この実施例の特徴をなす相電流検出方式を以下に説明する。
【0018】
PWM制御される各素子21〜26の1つのPWM周期ΔTにおけるゲート電圧V1〜V6の波形(1周期波形)の一例を図2に示す。コントローラ3はたとえば20kHzのキャリヤ周波数でPWM制御を行っており、上アーム素子21、23、25の100%のデューティ比(下アーム素子22、24、26の0%のデューティ比)は、そのゲート電圧の正の最大値を、上アーム素子および下アーム素子の50%デューティ比はそのゲート電圧の0Vを、上アーム素子21、23、25の0%のデューティ比(下アーム素子22、24、26の100%)のデューティ比に相当している。図2に示すように、各デューティ比は、各PWM周期ΔTの中央点から時間軸方向前後に均等に広がる形で制御されるものとする。なお、この実施例では、20kHzのキャリヤ周波数でPWM制御を行っているので、各PWM周期ΔTは、50マイクロ秒に設定されている。
【0019】
ゲート電圧V1はU相上アーム素子21のゲート電圧波形を、ゲート電圧V2はU相下アーム素子22のゲート電圧波形を、ゲート電圧V3はV相上アーム素子23のゲート電圧波形を、ゲート電圧V4はV相下アーム素子24のゲート電圧波形を、ゲート電圧V5はW相上アーム素子25のゲート電圧波形を、ゲート電圧V6はW相下アーム素子26のゲート電圧波形を示す。
【0020】
一つのPWM周期ΔTは、図2に示すように、7つの周期に区分されている。T1、T7は、すべての上アーム素子がオフ、すべての下アーム素子がオンしている位相期間を示す。T2、T6は、U相上アーム素子21、V相下アーム素子24、W相下アーム素子26がオンし、U相下アーム素子22、V相上アーム素子23、W相上アーム素子25がオフしている位相期間を示す。T3、T5は、U相上アーム素子21、V相上アーム素子23、W相下アーム素子26がオンし、U相下アーム素子22、V相下アーム素子24、W相上アーム素子25がオフしている位相期間を示す。T4は、すべての上アーム素子がオンし、すべての下アーム素子がオフする位相期間を示す。
【0021】
なお、位相期間T2、T6においてオンする二つの下アーム素子の組み合わせは電気角度の変化につれて順次変化し、位相期間T3、T5においてオンする二つの上アーム素子の組み合わせも電気角度の変化につれて順次変化することは、もちろんである。
【0022】
コントローラ3は、各位相期間よりも短いサンプリング周期で所定タイミングで電流検出抵抗素子27、28、29の電圧降下をサンプルホールドし、A/D変換して各相のデジタル相電流データとする。T1、T7における電流の流れを図3に、T2、T6における電流の流れを図4に示す。サンプルホールドした各デジタル相電流データの処理を図5のフローチャートを参照して以下に説明する。
【0023】
まず、電流検出抵抗素子27、28、29の電圧降下を上記デジタル相電流データとして上記所定タイミングで読み込む(S100)。次に、読み込んだデジタル相電流データのうち下アーム素子がオンしている相の上記デジタル相電流データをこの相のデジタル相電流データ(第一電流値)として仮決定する(S102)。
【0024】
次に、下アーム素子の一つがオフしているかどうか(S104)、さらにオンしている下アーム素子のデューティ比が所定値以下かどうかを調べ(S106)、下アーム素子の一つがオフしているか、又は、さらにオンしている下アーム素子のデューティ比が所定値以下である場合に、該当相のデジタル相電流データとして残る2の相のデジタル相電流データの和の逆符号値(第二電流値)をこの該当相のデジタル相電流データを算出して第二電流値とし、この第二電流値をこの該当相のデジタル相電流データとして書き換えて(S108)、ステップS100に戻る。なお。ここで言う該当相とは、下アーム素子がオフしている相、又は、下アーム素子のデューティ比が所定値以下である相を指定するものとする。よく知られているように、三つの相電流の合計は0であるので、上記第二電流値を精度よく検出することができる。
【0025】
このようにすれば、下アーム側に配置されるため検出できない下アーム素子が一つだけオフしている位相期間、および、下アーム素子がオンしているもかかわらず下アーム素子のオン期間が短いために高精度の検出が困難な位相期間において、すべての相電流を高精度に検出することが可能となる。
【0026】
【実施例2】
他の実施例を図6を参照して以下に説明する。
【0027】
この実施例では、実施例で説明したデジタル相電流データのサンプルホールドは、各PWM周期ΔTごとに1回ずつ各電流検出抵抗素子27、28、29の電圧降下をサンプルホールドするものとする。各PWM周期ΔTの最初のサンプルホールドは位相期間T1又はT2(図2参照)にて行われれるものとする。
【0028】
サンプルホールドを位相期間T1又はT7に行うか、位相期間T2又はT6に行うかの選択は、コントローラ3が決定した各下アーム素子22、24、26のデューティ比によって行う。すなわち、下アーム素子のデューティ比が所定値未満である場合には位相期間T2において各相電流のサンプルホールドを行うことにより二つのデジタル相電流データと、これらふたつのデジタル相電流データの和の逆符号値からなる残るひとつのデジタル相電流データとを求める。また、下アーム素子のデューティ比が所定値以上である場合には位相期間T1において各相電流のサンプルホールドを行うことにより三つのデジタル相電流データを求め、上記逆符号値は使用しない。
【0029】
なお、位相期間T2又はT6におけるサンプルホールドはどれかの下アーム素子が一つだけオンしたと判定した場合にサンプルホールドを開始すればよく、位相期間T1又はT7におけるサンプルホールドはすべての下アーム素子がオンしたと判定した場合にサンプルホールドを開始すればよい。このサンプルホールド制御の一例を図5のフローチャートに示し、このときの各相電圧の変化をデューティ比変化として図7に示す。
【0030】
図7は、大デューティ比運転している場合を示しており、上記逆符号値を用いたデジタル相電流データの採取を電気角度で120度ごとに相を変えて行う実施例を示している。すなわち、位相期間TxではU相デジタル相電流データはV、W相デジタル相電流データの和の逆符号値を用いて形成され、位相期間TyではV相デジタル相電流データはU、W相デジタル相電流データの和の逆符号値を用いて形成され、位相期間TzではW相デジタル相電流データはU、V相デジタル相電流データの和の逆符号値を用いて形成される。
【0031】
このようにすれば、下アーム側に配置されるため検出できない下アーム素子が一つだけオフしている位相期間、および、下アーム素子がオンしているなもかかわらず下アーム素子のオン期間が短いために高精度の検出が困難な位相期間において、すべての相電流を高精度に検出することが可能となる。
【図面の簡単な説明】
【図1】本発明の三相インバータの電流検出装置の一実施例を示す回路図である。
【図2】1PWM周期における三相ゲート電圧波形図である。
【図3】位相期間T1、T7における電流の流れを示す回路図である。
【図4】位相期間T2、T6における電流の流れを示す回路図である。
【図5】相電流決定処理を示すフローチャートである。
【図6】サンプルホールド制御を示すフローチャートである。
【図7】モータの1回転期間における各相の上アーム素子のデューティ変化を示すタイミングチャートである。
【符号の説明】
1 三相ブラシレスモータ
2 三相インバータ
3 コントローラ(電流値決定部)
21、23、25 上アーム素子
22,24、26 下アーム素子
27,28、29 電流検出抵抗素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current detection method for a three-phase inverter.
[0002]
[Prior art and problems to be solved by the invention]
For example, as a current detection device for a three-phase inverter that drives and controls a three-phase brushless motor, a current detection resistor element interposed between the lower arm element of each phase of the PWM-controlled three-phase inverter and the lower DC power line A resistance element voltage drop detection method for detecting the current value of each phase based on the voltage drop is known as a simple and low-cost method.
[0003]
However, in this resistance element voltage drop detection method, when the duty ratio of the lower arm element connected in series with the resistance element is a small value such as less than 30%, that is, the duty ratio of the upper arm element is a large value such as 70% or more, The lower arm element may not be able to turn on sufficiently due to the dullness of the gate voltage waveform applied to the lower arm element, which makes it difficult to accurately detect the current in this phase. The element was used.
[0004]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a current detection method of a resistance element voltage drop type three-phase inverter capable of remarkably improving the current detection accuracy as compared with the prior art.
[0005]
[Means for Solving the Problems]
The current detection device for a three-phase inverter according to claim 1 is based on a voltage drop of a current detection resistor element connected in series with a lower arm element on the lower arm side of each phase of a three-phase inverter controlled by PWM. In the current detector of the three-phase inverter that detects the current value of
As the current value of the predetermined phase, a value obtained by inverting the sign of the sum of the first current value consisting of the voltage drop value of the current detection resistor element of the predetermined phase and the voltage drop of the remaining two-phase current detection resistor elements have a current value determining section using a second current value is switched under a predetermined condition, the current value determination section, the duty ratio of the phase is greater than or equal to a small value of less than 30% of the lower arm device The first current value is adopted as the current value, and the duty ratio of the lower arm element is a small value of less than 30% . That is, according to the present invention, the adverse effect of the current detection accuracy decrease due to a decrease in the current value flowing through the current detection resistor element is solved by using the second current value according to the present invention. Can be obtained.
[0007]
Further, according to the present invention, even when the duty ratio of the lower arm element is less than a predetermined value and the current value on the lower arm side cannot be accurately detected, the second current value is used, so that the current detection accuracy is greatly improved. Can do.
[0008]
In a preferred aspect, the current value determination unit includes the first current value as the current value of each phase when a phase period T1 in which all the lower arm elements are turned on has a length of a predetermined time or more in each PWM period . When the phase period T1 in which all the lower arm elements are turned on has a length less than the predetermined time, the second current is set as the current value of the phase with the shortest turn-on time of the lower arm elements. It is characterized by adopting a value .
[0009]
According to this configuration, even when the current value on the lower arm side cannot be accurately detected because the phase period T1 is shorter than the predetermined time, the current detection accuracy can be greatly improved because the second current value is used. .
[0010]
In a preferred aspect, the current value determining unit includes the phase period as a current value of each phase when a phase period T1 in which all the lower arm elements are turned on has a length of a predetermined time or more in each PWM period. The first current value sampled and held at T1 is adopted, and when the phase period T1 in which all the lower arm elements are turned on has a length less than the predetermined time, the phase period T1 is set as the current value of the shortest phase. The second current value sampled and held in the phase period T1 is employed.
[0011]
According to this configuration, even when the current value on the lower arm side cannot be accurately detected because the phase period T1 is shorter than the predetermined time, the current detection accuracy can be greatly improved because the second current value is used. .
[0012]
In a preferred aspect, the current value determining unit includes the predetermined one phase of the PWM period in a phase period T2 in which the predetermined one phase of the upper arm element and the remaining two phases of the lower arm elements are turned on. The second current value is employed as the current value.
[0013]
According to this configuration, it is possible to accurately detect the current value of the phase in which the lower arm element is turned off during the phase period T2.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the current detection device for a three-phase inverter of the present invention used for driving control of a three-phase brushless motor will be described in detail with reference to the following examples.
[0015]
[Example 1]
A three-phase motor device of this embodiment is shown in FIG.
[0016]
1 is a three-phase brushless motor, 2 is a three-phase inverter, and 3 is a controller (motor control unit, current detection unit). The three-phase brushless motor 1 has a U-phase winding 11, a V-phase winding 12, and a W-phase winding 13. The three-phase inverter 2 includes a U-phase upper arm element 21, a U-phase lower arm element 22, a V-phase upper arm element 23, a V-phase lower arm element 24, a W-phase upper arm element 25, and a W-phase configured by MOS power transistors. The lower arm element 26, the flywheel diode D individually antiparallel to the elements 21 to 26, and current detection resistance elements 27 to 29 are configured. The current detection resistor element 27 is interposed between the U-phase lower arm element 22 and the lower DC power supply line LL, and the current detection resistor element 28 is interposed between the V-phase lower arm element 24 and the lower DC power supply line LL. The current detection resistance element 29 is interposed between the W-phase lower arm element 26 and the lower DC power supply line LL. A battery voltage is applied between the low-level DC power supply line LL and the high-level DC power supply line LH through a smoothing circuit (not shown), and the three-phase AC output voltage output from the three-phase inverter 2 is each phase winding of the three-phase brushless motor 1. Applied individually to each end of the wire. The controller 3 includes a rotation angle signal input from a rotation angle sensor mounted on the three-phase brushless motor 1, three phase currents input from the current detection resistor elements 27 to 29, and a torque command signal input from the outside. Based on the above, each element 21 to 26 of the three-phase inverter 2 is subjected to switching control. In this embodiment, for simplicity of explanation, the controller 3 includes a microcomputer (not shown) that processes a voltage drop of the current detection resistor elements 27 to 29 converted into digital signals. However, of course, it may be configured by a digital circuit configuration or the like. Each configuration of the above-described three-phase motor device and its various control methods are already well known, and will not be described in further detail.
[0017]
Next, the phase current detection method that characterizes this embodiment will be described below.
[0018]
FIG. 2 shows an example of the waveforms (one-cycle waveform) of the gate voltages V1 to V6 in one PWM cycle ΔT of each of the elements 21 to 26 that are PWM controlled. The controller 3 performs PWM control at a carrier frequency of 20 kHz, for example, and the 100% duty ratio of the upper arm elements 21, 23, 25 (0% duty ratio of the lower arm elements 22, 24, 26) The maximum positive value of the voltage, the 50% duty ratio of the upper arm element and the lower arm element is 0V of the gate voltage, and the duty ratio of the upper arm elements 21, 23, 25 is 0% (the lower arm elements 22, 24, This corresponds to a duty ratio of 100% of H.26. As shown in FIG. 2, it is assumed that each duty ratio is controlled so as to spread evenly around the time axis direction from the center point of each PWM cycle ΔT. In this embodiment, since PWM control is performed at a carrier frequency of 20 kHz, each PWM cycle ΔT is set to 50 microseconds.
[0019]
The gate voltage V1 is the gate voltage waveform of the U-phase upper arm element 21, the gate voltage V2 is the gate voltage waveform of the U-phase lower arm element 22, and the gate voltage V3 is the gate voltage waveform of the V-phase upper arm element 23. V4 represents the gate voltage waveform of the V-phase lower arm element 24, gate voltage V5 represents the gate voltage waveform of the W-phase upper arm element 25, and gate voltage V6 represents the gate voltage waveform of the W-phase lower arm element 26.
[0020]
One PWM cycle ΔT is divided into seven cycles as shown in FIG. T1 and T7 indicate phase periods in which all upper arm elements are off and all lower arm elements are on. In T2 and T6, the U-phase upper arm element 21, the V-phase lower arm element 24, and the W-phase lower arm element 26 are turned on, and the U-phase lower arm element 22, the V-phase upper arm element 23, and the W-phase upper arm element 25 are turned on. Indicates the phase period that is off. In T3 and T5, the U-phase upper arm element 21, the V-phase upper arm element 23, and the W-phase lower arm element 26 are turned on, and the U-phase lower arm element 22, the V-phase lower arm element 24, and the W-phase upper arm element 25 are turned on. Indicates the phase period that is off. T4 indicates a phase period in which all the upper arm elements are turned on and all the lower arm elements are turned off.
[0021]
The combination of the two lower arm elements that are turned on in the phase periods T2 and T6 sequentially changes as the electrical angle changes, and the combination of the two upper arm elements that are turned on in the phase periods T3 and T5 also changes sequentially as the electrical angle changes. Of course to do.
[0022]
The controller 3 samples and holds the voltage drop of the current detection resistor elements 27, 28, and 29 at a predetermined timing with a sampling period shorter than each phase period, and A / D converts it into digital phase current data for each phase. FIG. 3 shows the current flow in T1 and T7, and FIG. 4 shows the current flow in T2 and T6. The processing of each sampled and held digital phase current data will be described below with reference to the flowchart of FIG.
[0023]
First, the voltage drop of the current detection resistor elements 27, 28, 29 is read as the digital phase current data at the predetermined timing (S100). Next, the digital phase current data of the phase in which the lower arm element is turned on among the read digital phase current data is provisionally determined as the digital phase current data (first current value) of this phase (S102).
[0024]
Next, it is checked whether one of the lower arm elements is off (S104), and whether the duty ratio of the lower arm element that is on is equal to or less than a predetermined value (S106), one of the lower arm elements is turned off. Or when the duty ratio of the lower arm element that is turned on is equal to or less than a predetermined value, the reverse sign value of the sum of the digital phase current data of the two phases remaining as the digital phase current data of the corresponding phase (the first value) The second current value is calculated as the second current value by calculating the digital phase current data of the corresponding phase, the second current value is rewritten as the digital phase current data of the corresponding phase (S108), and the process returns to step S100. Note that. The relevant phase here refers to a phase in which the lower arm element is turned off or a phase in which the duty ratio of the lower arm element is a predetermined value or less . As is well known, since the sum of the three phase currents is 0, the second current value can be detected with high accuracy.
[0025]
In this way, the phase period lower arm device can not be detected because it is arranged on the lower arm side are turned off only one, and, the on period of the lower arm device despite the lower arm element is on Therefore, it is possible to detect all phase currents with high accuracy in a phase period in which detection with high accuracy is difficult due to the short period of time.
[0026]
[Example 2]
Another embodiment will be described below with reference to FIG.
[0027]
In this embodiment, the sample-and-hold of the digital phase current data described in the embodiment is to sample and hold the voltage drop of each of the current detection resistor elements 27, 28, and 29 once for each PWM period ΔT. It is assumed that the first sample and hold of each PWM cycle ΔT is performed in the phase period T1 or T2 (see FIG. 2).
[0028]
The selection of whether the sample hold is performed in the phase period T1 or T7 or in the phase period T2 or T6 is performed according to the duty ratio of each lower arm element 22, 24, 26 determined by the controller 3. That is, when the duty ratio of the lower arm element is less than the predetermined value, the sample current of each phase current is sampled and held in the phase period T2, thereby reversing the sum of the two digital phase current data and the two digital phase current data. One remaining digital phase current data consisting of a code value is obtained. Further, when the duty ratio of the lower arm element is equal to or greater than a predetermined value, three digital phase current data are obtained by sampling and holding each phase current in the phase period T1, and the reverse sign value is not used.
[0029]
The sample hold in the phase period T2 or T6 may be started when it is determined that any one of the lower arm elements is turned on. The sample hold in the phase period T1 or T7 is all the lower arm elements. When it is determined that is turned on, sample hold may be started. An example of this sample-and-hold control is shown in the flowchart of FIG. 5, and the change of each phase voltage at this time is shown in FIG. 7 as the duty ratio change.
[0030]
FIG. 7 shows a case where the operation is performed with a large duty ratio, and shows an example in which the digital phase current data using the reverse sign value is collected by changing the phase every 120 degrees in electrical angle. That is, in the phase period Tx, the U-phase digital phase current data is formed using the reverse sign value of the sum of the V and W-phase digital phase current data, and in the phase period Ty, the V-phase digital phase current data is the U and W-phase digital phase. In the phase period Tz, the W-phase digital phase current data is formed using the reverse sign value of the sum of the U and V-phase digital phase current data.
[0031]
In this way, a phase period in which only one lower arm element that cannot be detected because it is arranged on the lower arm side is off, and an on period in which the lower arm element is on regardless of whether the lower arm element is on Therefore, it is possible to detect all phase currents with high accuracy in a phase period in which detection with high accuracy is difficult due to the short period of time.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of a current detector for a three-phase inverter according to the present invention.
FIG. 2 is a three-phase gate voltage waveform diagram in one PWM cycle.
FIG. 3 is a circuit diagram showing a current flow in phase periods T1 and T7.
FIG. 4 is a circuit diagram showing a current flow in phase periods T2 and T6.
FIG. 5 is a flowchart showing a phase current determination process.
FIG. 6 is a flowchart showing sample hold control.
FIG. 7 is a timing chart showing the duty change of the upper arm element of each phase during one rotation period of the motor.
[Explanation of symbols]
1 Three-phase brushless motor 2 Three-phase inverter 3 Controller (current value determination unit)
21, 23, 25 Upper arm elements 22, 24, 26 Lower arm elements 27, 28, 29 Current detection resistance elements

Claims (4)

PWM制御される三相インバータの各相の下アーム側にて下アーム素子と直列接続される電流検出抵抗素子の電圧降下に基づいて各相の電流値を検出する三相インバータの電流検出装置において、
所定相の前記電流値として、前記所定相の前記電流検出抵抗素子の電圧降下の値からなる第一電流値と、残る二相の前記電流検出抵抗素子の電圧降下の和の符号を反転した値である第二電流値とを所定の条件で切り替えて用いる電流値決定部を有し、
前記電流値決定部は、
前記下アーム素子のデューティ比が30%未満の小値以上である相の前記前記電流値として前記第一電流値を採用し、前記下アーム素子のデューティ比が30%未満の小値未満である相の前記電流値として前記第二電流値を採用することを特徴とする三相インバータの電流検出装置
In a current detection device for a three-phase inverter that detects a current value of each phase based on a voltage drop of a current detection resistor element connected in series with a lower arm element on the lower arm side of each phase of a PWM-controlled three-phase inverter ,
As the current value of the predetermined phase, a value obtained by inverting the sign of the sum of the first current value consisting of the voltage drop value of the current detection resistor element of the predetermined phase and the voltage drop of the remaining two-phase current detection resistor elements have a current value determining section using a second current value is switched in a predetermined condition,
The current value determining unit
The first current value is adopted as the current value of the phase in which the duty ratio of the lower arm element is not less than a small value less than 30%, and the duty ratio of the lower arm element is less than a small value less than 30%. The current detection device for a three-phase inverter, wherein the second current value is adopted as the current value of a phase .
前記電流値決定部は、
各PWM周期のうち、すべての前記下アーム素子がターンオンする位相期間T1が所定時間以上の長さをもつ場合に各相の前記電流値として前記一電流値を採用し、
すべての前記下アーム素子がターンオンする位相期間T1が前記所定時間未満の長さをもつ場合に前記下アーム素子のターンオン時間がもっとも短い相の電流値として前記第二電流値を採用することを特徴とする請求項記載の三相インバータの電流検出装置。
The current value determining unit
In each PWM cycle, when the phase period T1 in which all the lower arm elements are turned on has a length of a predetermined time or more, the first current value is adopted as the current value of each phase,
When the phase period T1 during which all the lower arm elements are turned on has a length less than the predetermined time, the second current value is adopted as the current value of the phase with the shortest turn-on time of the lower arm elements. The current detection device for a three-phase inverter according to claim 1 .
前記電流値決定部は、
各PWM周期のうち、
すべての前記下アーム素子がターンオンする位相期間T1が所定時間以上の長さをもつ場合に各相の電流値として前記位相期間T1にサンプルホールドした前記第一電流値を採用し、
すべての前記下アーム素子がターンオンする位相期間T1が前記所定時間未満の長さをもつ場合に前記位相期間T1がもっとも短い相の電流値として前記位相期間T1にサンプルホールドした前記第二電流値を採用することを特徴とする請求項記載の三相インバータの電流検出装置。
The current value determining unit
Of each PWM period,
When the phase period T1 in which all the lower arm elements are turned on has a length of a predetermined time or more, the first current value sampled and held in the phase period T1 is adopted as the current value of each phase,
When the phase period T1 in which all the lower arm elements are turned on has a length less than the predetermined time, the second current value sampled and held in the phase period T1 as the current value of the phase with the shortest phase period T1 is obtained. The current detection device for a three-phase inverter according to claim 2 , wherein the current detection device is used.
前記電流値決定部は、
各PWM周期のうち、
所定の一相の前記上アーム素子と残る二相の前記下アーム素子がターンオンする位相期間T2に前記所定の一相の前記電流値として前記第二電流値を採用することを特徴とする請求項1記載の三相インバータの電流検出装置
The current value determining unit
Of each PWM period,
The second current value is adopted as the current value of the predetermined one phase in a phase period T2 in which the upper arm element of a predetermined one phase and the remaining lower arm elements of the remaining two phases are turned on. The current detection device for a three-phase inverter according to 1 .
JP2001363872A 2001-11-29 2001-11-29 Current detector for three-phase inverter Expired - Fee Related JP3674578B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001363872A JP3674578B2 (en) 2001-11-29 2001-11-29 Current detector for three-phase inverter
DE10255832.9A DE10255832B4 (en) 2001-11-29 2002-11-29 Controller of a brushless 3-phase motor
FR0215025A FR2832871B1 (en) 2001-11-29 2002-11-29 CONTROL UNIT AND CURRENT MEASURING METHOD FOR A BRUSHLESS THREE-PHASE MOTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363872A JP3674578B2 (en) 2001-11-29 2001-11-29 Current detector for three-phase inverter

Publications (2)

Publication Number Publication Date
JP2003164159A JP2003164159A (en) 2003-06-06
JP3674578B2 true JP3674578B2 (en) 2005-07-20

Family

ID=19174138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363872A Expired - Fee Related JP3674578B2 (en) 2001-11-29 2001-11-29 Current detector for three-phase inverter

Country Status (3)

Country Link
JP (1) JP3674578B2 (en)
DE (1) DE10255832B4 (en)
FR (1) FR2832871B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113509A1 (en) 2008-03-12 2009-09-17 三洋電機株式会社 Inverter device
WO2019198496A1 (en) 2018-04-12 2019-10-17 日本精工株式会社 Current detection device and electric power steering device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346711A1 (en) * 2003-10-08 2005-05-25 Minebea Co., Ltd. Method for commutating a brushless DC motor
JP4378151B2 (en) 2003-11-04 2009-12-02 株式会社デンソー Motor drive device
JP4371844B2 (en) 2004-02-16 2009-11-25 株式会社デンソー Brushless motor drive device
US7583523B2 (en) 2004-07-20 2009-09-01 Panasonic Corporation Three phase inverter control circuit detecting two phase currents and deducting or adding identical ON periods
JP4896407B2 (en) * 2005-01-17 2012-03-14 三菱電機株式会社 Inverter device with magnetic pole position detection function
CN101151793A (en) 2005-03-29 2008-03-26 株式会社安川电机 Current control apparatus and current offset correction method thereof
JP4894312B2 (en) * 2005-03-30 2012-03-14 パナソニック株式会社 Inverter device
JP5230068B2 (en) * 2006-01-13 2013-07-10 オムロンオートモーティブエレクトロニクス株式会社 Inverter device
JP4913661B2 (en) * 2007-04-26 2012-04-11 ルネサスエレクトロニクス株式会社 Inverter device and semiconductor device used therefor.
JP5057908B2 (en) 2007-09-13 2012-10-24 オムロンオートモーティブエレクトロニクス株式会社 Multi-phase AC motor drive device
DE602008005074D1 (en) 2007-09-12 2011-04-07 Omron Automotive Electronics Multi-phase AC motor drive device
JP5014034B2 (en) 2007-09-12 2012-08-29 オムロンオートモーティブエレクトロニクス株式会社 Multi-phase AC motor drive device
DE102008017642A1 (en) * 2008-04-04 2009-12-10 Sew-Eurodrive Gmbh & Co. Kg Inverter and method for determining a current space pointer
JP5396948B2 (en) * 2009-03-17 2014-01-22 株式会社ジェイテクト Motor control device and electric power steering device
JP5402336B2 (en) * 2009-07-10 2014-01-29 株式会社ジェイテクト Motor control device and electric power steering device
JP2011135629A (en) * 2009-12-22 2011-07-07 Hitachi Automotive Systems Ltd Motor controller
KR101393828B1 (en) * 2010-05-14 2014-05-12 미쓰비시덴키 가부시키가이샤 Brushless-motor drive apparatus
CN104284828B (en) * 2012-05-11 2018-08-03 三菱电机株式会社 Electric power-assisted steering apparatus
FR2992498B1 (en) * 2012-06-26 2015-04-24 Valeo Sys Controle Moteur Sas METHOD FOR CONTROLLING A VOLTAGE INVERTER AND ASSOCIATED DEVICE
GB2512078A (en) * 2013-03-19 2014-09-24 Control Tech Ltd Control system for multi-phase rotary machines
CN103217582B (en) * 2013-04-10 2015-03-25 湖南主导科技发展有限公司 System for detecting internal resistance of three-phase motor of electric water pump
KR101508834B1 (en) 2013-07-02 2015-04-06 엘에스산전 주식회사 Apparatus for modifying voltage command for detecting output current in inverter
JP6124723B2 (en) * 2013-07-23 2017-05-10 三菱電機株式会社 Current detector for three-phase inverter
US9071187B2 (en) * 2013-11-06 2015-06-30 GM Global Technology Operations LLC Method and apparatus for increasing a current sensing range in a polyphase motor system
KR101516497B1 (en) * 2013-11-18 2015-05-04 엘에스산전 주식회사 Method for detecting output phase open in inverter
JP2016012959A (en) * 2014-06-27 2016-01-21 株式会社豊田中央研究所 Ac load drive device
US9225264B1 (en) * 2014-08-26 2015-12-29 Texas Instruments Incorporated Method and apparatus for multiphase inverter control
JP6583000B2 (en) 2016-01-07 2019-10-02 株式会社デンソー Control device for rotating electrical machine
JP6958234B2 (en) 2017-10-26 2021-11-02 株式会社デンソー Current detector
JP7200900B2 (en) 2019-10-01 2023-01-10 株式会社デンソー Rotating electric machine controller
WO2021124521A1 (en) * 2019-12-19 2021-06-24 株式会社日立産機システム Power conversion device and current detection method for same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228973A1 (en) * 1992-08-31 1994-03-10 Grundfos A S Bjerringbro Method and device for measuring electrical quantities, in particular the current, on a frequency converter-controlled electric motor
DK172570B1 (en) * 1995-01-23 1999-01-25 Danfoss As Inverters and method for measuring the inverter phase currents
FR2753318B1 (en) * 1996-09-09 1998-10-30 Schneider Electric Sa DEVICE FOR MEASURING CURRENTS IN AN INVERTER
EP1143604B1 (en) * 1999-06-29 2007-09-26 Mitsubishi Denki Kabushiki Kaisha Power conversion device
WO2003041256A2 (en) * 2001-11-08 2003-05-15 Sew-Eurodrive Gmbh & Co Converter and method for determination of a current sinor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113509A1 (en) 2008-03-12 2009-09-17 三洋電機株式会社 Inverter device
US8223521B2 (en) 2008-03-12 2012-07-17 Sanyo Electric Co., Ltd. Inverter device
WO2019198496A1 (en) 2018-04-12 2019-10-17 日本精工株式会社 Current detection device and electric power steering device

Also Published As

Publication number Publication date
FR2832871A1 (en) 2003-05-30
DE10255832B4 (en) 2014-05-15
DE10255832A1 (en) 2003-07-10
FR2832871B1 (en) 2005-08-26
JP2003164159A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP3674578B2 (en) Current detector for three-phase inverter
US8223521B2 (en) Inverter device
US7301298B2 (en) Back EMF detection circuit and method for a sensorless brushless DC (BLDC) motor
JP2005269880A (en) Three-phase voltage type pwm inverter device
JP6124723B2 (en) Current detector for three-phase inverter
CN109729757B (en) Motor control device
KR20150071449A (en) Apparatus for driving motor and Controlling Method thereof
KR20150051002A (en) Apparatus and Method for driving motor
US10199974B2 (en) Motor driving circuit and motor driving method
CN111585481B (en) Counter potential zero crossing point detection method and device of brushless direct current motor
US10658947B2 (en) Semiconductor device, power module, and control method of power conversion device
JP4491670B2 (en) Inverter device
JP4122806B2 (en) Brushless motor control device
KR20150044304A (en) Apparatus and Method for driving motor
JPH11275890A (en) Drive circuit for sensorless switched reluctance motor
JP4178946B2 (en) Inverter device and motor current detection method
JP2009118681A (en) Controller of multi-phase electric motor
JP4300352B2 (en) Motor drive control device
WO2007083486A1 (en) Output inverter for single phase and its output current detection method
US20180128652A1 (en) Motor-driven integrated circuit, motor device, and application apparatus
JP5330728B2 (en) Brushless motor drive device
JPH1054852A (en) Method for detecting output current of inverter
JP2003079159A (en) Pulse width modulated type power converter
CN114762243A (en) Motor drive control device and motor drive control method
US10381969B2 (en) Control device and control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Ref document number: 3674578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees