JP6805197B2 - Integrated circuit for motor control - Google Patents

Integrated circuit for motor control Download PDF

Info

Publication number
JP6805197B2
JP6805197B2 JP2018036535A JP2018036535A JP6805197B2 JP 6805197 B2 JP6805197 B2 JP 6805197B2 JP 2018036535 A JP2018036535 A JP 2018036535A JP 2018036535 A JP2018036535 A JP 2018036535A JP 6805197 B2 JP6805197 B2 JP 6805197B2
Authority
JP
Japan
Prior art keywords
phase
voltage
current
induced voltage
rotation position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018036535A
Other languages
Japanese (ja)
Other versions
JP2019154114A (en
Inventor
佐理 前川
佐理 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Priority to JP2018036535A priority Critical patent/JP6805197B2/en
Priority to KR1020190009114A priority patent/KR102260101B1/en
Priority to CN201910085425.XA priority patent/CN110224641B/en
Publication of JP2019154114A publication Critical patent/JP2019154114A/en
Application granted granted Critical
Publication of JP6805197B2 publication Critical patent/JP6805197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/12Stator flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/923Specific feedback condition or device
    • Y10S388/9281Counter or back emf, CEMF

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明の実施形態は、モータ制御用集積回路に関する。 An embodiment of the present invention relates to an integrated circuit for motor control.

従来、永久磁石同期モータの回転位置を中〜高速域において推定する方法としては、例えば永久磁石同期モータの速度に比例する誘起電圧や回転子磁束を永久磁石同期モータへの入力電圧と電流とから演算し、誘起電圧に基づいて推定する方法が広く用いられている。このような推定方式では、インバータが印加するモータの駆動電圧を演算に用いるほか、算出した誘起電圧やそれに準じた信号から回転位置を算出するためにPI制御器やオブザーバを用いる必要があり、それらの制御器にゲイン等のパラメータを設計・調整する必要もある。 Conventionally, as a method of estimating the rotation position of a permanent magnet synchronous motor in the medium to high speed range, for example, an induced voltage or rotor magnetic flux proportional to the speed of the permanent magnet synchronous motor is calculated from the input voltage and current to the permanent magnet synchronous motor. A method of calculating and estimating based on the induced voltage is widely used. In such an estimation method, in addition to using the drive voltage of the motor applied by the inverter for calculation, it is necessary to use a PI controller or an observer to calculate the rotation position from the calculated induced voltage or a signal equivalent thereto. It is also necessary to design and adjust parameters such as gain in the controller.

また、モータの駆動状態や設定したパラメータ次第によっては、センサレス制御が不安定化する問題があり、純粋な位置センサであるレゾルバ,エンコーダやホールセンサなどの代用とするには、高度な設計技術や経験を要する。 In addition, there is a problem that sensorless control becomes unstable depending on the drive state of the motor and the set parameters, and advanced design technology and advanced design technology can be used as a substitute for pure position sensors such as resolvers, encoders, and hall sensors. It takes experience.

また、中〜高速域のセンサレス駆動方式として、120度通電において無通電区間に発生する誘起電圧の位相を検出し、これに基づき通電相を切り替える方式がある。この方式によれば、制御器の設計等を行うことなくセンサレス駆動が実現できる。しかし、通電方式が120度通電に限定され、モータ電流が歪んで騒音が悪化するほか、極低速域ではセンサレス駆動ができないという課題がある。 Further, as a sensorless drive method in the middle to high speed range, there is a method of detecting the phase of the induced voltage generated in the non-energized section at 120 degree energization and switching the energized phase based on the phase. According to this method, sensorless drive can be realized without designing a controller or the like. However, the energization method is limited to 120-degree energization, and there is a problem that the motor current is distorted and noise is exacerbated, and sensorless drive cannot be performed in an extremely low speed range.

特許文献1には、電圧ベクトル印加中の電流変化量を用いて位置を検出する手法が開示されている。この手法では、分解能は小さいが制御パラメータの調整無しでセンサレス正弦波駆動が可能となる。 Patent Document 1 discloses a method of detecting a position by using a current change amount during application of a voltage vector. In this method, although the resolution is small, sensorless sine wave drive is possible without adjusting the control parameters.

特開2007−336641号公報JP-A-2007-336641

しかしながら、特許文献1では、電流を検出するためにインバータ回路にシャント抵抗を3つ配置する必要がある。小型モータや家電分野のモータ等簡易な構成でモータドライブシステムを構築するには低コスト化が重視される。そのため、直流部に単一のシャント抵抗を配置する1シャント電流検出方式が用いられることが多く、その検出方式に対応した位置センサレス制御方式が望まれる。 However, in Patent Document 1, it is necessary to arrange three shunt resistors in the inverter circuit in order to detect the current. Cost reduction is important for constructing a motor drive system with a simple configuration such as a small motor or a motor in the field of home appliances. Therefore, a one-shunt current detection method in which a single shunt resistor is arranged in a DC unit is often used, and a position sensorless control method corresponding to the detection method is desired.

そこで、1シャント電流検出方式に対応した位置センサレス制御を実行可能なモータ制御用集積回路を提供する。 Therefore, an integrated circuit for motor control that can execute position sensorless control corresponding to the one-shunt current detection method is provided.

実施形態のモータ制御用集積回路は、同期電動機の相電流を検出するために直流部に配置される電流検出部と、
前記同期電動機の回転位置に応じて、3相のPWMデューティ指令を生成するデューティ生成部と、
前記3相のPWMデューティ指令及び3相の搬送波に基づいて、各相の信号パルスを発生させる中心の位相が互いに120度異なる3相のPWM信号を生成するPWM生成部と、
前記PWMデューティ指令に基づいて、前記相電流の検出タイミング信号を生成する検出タイミング信号生成部と、
前記電流検出部に発生した信号と前記検出タイミング信号とに基づいて前記同期電動機の相電流を検出し、更に前記相電流の変化量を検出する電流変化量検出部と、
この電流変化量検出部により検出された変化量に基づいて、前記同期電動機の回転位置を求める回転位置演算部とを備える。
The integrated circuit for motor control of the embodiment includes a current detection unit arranged in a DC unit for detecting the phase current of the synchronous motor, and a current detection unit.
A duty generating unit that generates a three-phase PWM duty command according to the rotation position of the synchronous motor, and
Based on the carrier of a PWM duty command and the three-phase of the three-phase, and the PWM generation unit center of the phase generating each phase signal pulses to produce a 120-degree different three-phase PWM signal to each other,
A detection timing signal generation unit that generates a detection timing signal for the phase current based on the PWM duty command.
A current change amount detection unit that detects the phase current of the synchronous motor based on the signal generated in the current detection unit and the detection timing signal, and further detects the change amount of the phase current.
A rotation position calculation unit for obtaining the rotation position of the synchronous motor based on the change amount detected by the current change amount detection unit is provided.

一実施形態であり、モータ駆動制御装置の構成を示す機能ブロック図A functional block diagram showing a configuration of a motor drive control device according to an embodiment. PWMキャリアとして用いる3相三角波を示す波形図Waveform diagram showing a three-phase triangular wave used as a PWM carrier インバータ回路を構成するスイッチング素子のオン状態を空間ベクトルで表した図A diagram showing the ON state of the switching elements that make up the inverter circuit as a space vector. 各電圧ベクトル発生時の相電圧の大きさを直流電圧VDCを用いて示す図The figure which shows the magnitude of the phase voltage at the time of each voltage vector generation using DC voltage VDC . 各電圧セクタにおいて発生する電圧ベクトルの大きさと、検出可能な誘起電圧の相を示す図The figure which shows the magnitude of the voltage vector generated in each voltage sector, and the phase of the detected induced voltage. 一般的な三角波比較法を用いた場合に発生する電圧ベクトルの発生率を示す図The figure which shows the generation rate of the voltage vector generated when the general triangular wave comparison method is used. 3相三角波比較法を用いた場合に発生する電圧ベクトルの発生率を示す図The figure which shows the generation rate of the voltage vector generated when the three-phase triangular wave comparison method is used. 電圧ベクトルV0,V1,V2のそれぞれに対応するU,V相上側のPWM信号と直流電流IDC,電流検出タイミングt1〜t4を示す図The figure which shows the PWM signal on the upper side of the U, V phase corresponding to each of voltage vectors V0, V1, V2, the direct current I DC , and the current detection timings t1 to t4. 従来の三角波比較法におけるPWM信号波形及び直流電流IDCを示す図The figure which shows the PWM signal waveform and the direct current I DC in the conventional triangular wave comparison method. 3相三角波比較法におけるPWM信号波形及び直流電流IDCを示す図The figure which shows the PWM signal waveform and the direct current I DC in the three-phase triangular wave comparison method. 回転位置検出装置が行う処理内容を示すフローチャートFlow chart showing the processing contents performed by the rotation position detection device ステップS1における位置検出演算の内容を示すフローチャートFlow chart showing the content of the position detection operation in step S1 各部の動作波形を示す図The figure which shows the operation waveform of each part

以下、一実施形態について図面を参照して説明する。図1は、モータ駆動制御装置の構成を示す機能ブロック図である。直流電源1は、回転子に永久磁石を備える永久磁石同期モータ2を駆動する電力源である。直流電源1は、交流電源を直流に変換したものでも良い。インバータ回路3は、6個のスイッチング素子,例えばNチャネルMOSFET4U+,4Y+,4W+,4U−,4Y−,4W−を3相ブリッジ接続して構成されており、後述するPWM生成部5で生成される3相分6つのスイッチング信号に基づいて、モータ2を駆動する電圧を生成する。 Hereinafter, one embodiment will be described with reference to the drawings. FIG. 1 is a functional block diagram showing a configuration of a motor drive control device. The DC power supply 1 is a power source for driving a permanent magnet synchronous motor 2 having a permanent magnet in the rotor. The DC power supply 1 may be a DC power source converted into a direct current. The inverter circuit 3 is configured by connecting six switching elements, for example, N-channel MOSFETs 4U +, 4Y +, 4W +, 4U-, 4Y-, and 4W- in a three-phase bridge, and is generated by a PWM generation unit 5 described later. A voltage for driving the motor 2 is generated based on six switching signals for three phases.

電圧検出部6は、直流電源1の電圧Vdcを検出する。電流検出部7は、インバータ回路3の負側電源線と直流電源1の負側端子との間に接続されている。電流検出部7は、一般にシャント抵抗やホールCTなどを用いた電流センサ及び信号処理回路で構成され、モータ2に流れる直流電流Idcを検出する。 The voltage detection unit 6 detects the voltage Vdc of the DC power supply 1. The current detection unit 7 is connected between the negative power supply line of the inverter circuit 3 and the negative terminal of the DC power supply 1. The current detection unit 7 is generally composed of a current sensor and a signal processing circuit using a shunt resistor, a Hall CT, or the like, and detects a direct current Idc flowing through the motor 2.

電流変化量検出部8は、後述する電圧セクタ及び検出タイミング信号生成部9より入力される検出タイミング信号t1〜t4に基づいて直流電流Idcを4回検出し、2回毎の検出値の差分値を変化量dIDC1,dIDC2として算出する。誘起電圧演算部10は、変化量dIDC1,dIDC2に基づいて、3相のうち何れか2相の誘起電圧をEnow,Epreとして演算する。 The current change amount detection unit 8 detects the DC current Idc four times based on the voltage sector and the detection timing signals t1 to t4 input from the detection timing signal generation unit 9, which will be described later, and the difference value of the detected values every two times. Is calculated as the amount of change dI DC1 and dI DC2 . The induced voltage calculation unit 10 calculates the induced voltage of any two of the three phases as E now and E pre based on the changes dI DC1 and dI DC2 .

回転位置演算部11は、2相の誘起電圧Enow,Epreとから残り1相の誘起電圧を求め、得られた3相の誘起電圧からモータ2の回転位置検出値θcを算出する。3相電圧指令値生成部12は、上位の制御装置より与えられる指令値である電圧振幅指令値Vamp及び電圧位相指令値φvと回転位置θcとから、3相の電圧指令値Vu,Vv,Vwを生成する。 The rotation position calculation unit 11 obtains the induced voltage of the remaining one phase from the two-phase induced voltages E now and E pre, and calculates the rotation position detection value θc of the motor 2 from the obtained three-phase induced voltage. The three-phase voltage command value generation unit 12 has three-phase voltage command values Vu, Vv, Vw from the voltage amplitude command value Vamp, the voltage phase command value φv, and the rotation position θc, which are command values given by the upper control device. To generate.

デューティ生成部13は、3相電圧指令値Vu,Vv,Vwを直流電圧Vdcで除すことで各相の変調指令,デューティ指令Du,Dv,Dwを演算する。キャリア生成部14は、PWM制御に用いるキャリア,搬送波として、図2に示すように、各相間の位相差が120度となる3相三角波信号をPWM生成部5に出力する。図2では、三角波の谷を基準として各相のPWM信号パルスを発生させている。 The duty generation unit 13 calculates the modulation command and duty command Du, Dv, Dw of each phase by dividing the three-phase voltage command values Vu, Vv, Vw by the DC voltage Vdc. As shown in FIG. 2, the carrier generation unit 14 outputs a three-phase triangular wave signal having a phase difference of 120 degrees between the phases to the PWM generation unit 5 as carriers and carrier waves used for PWM control. In FIG. 2, PWM signal pulses of each phase are generated with reference to the valley of the triangular wave.

PWM生成部5は、3相変調指令Du,Dv,Dwと、キャリア生成部14より入力される3相三角波とを比較して各相のPWM信号パルスを生成する。1相当たりのパルスにはデッドタイムが付加され、それぞれ3相上下のNチャネルMOSFET4に出力するスイッチング信号U+,U−,V+,V−,W+,W−を生成する。 The PWM generation unit 5 compares the three-phase modulation commands Du, Dv, and Dw with the three-phase triangular wave input from the carrier generation unit 14, and generates PWM signal pulses for each phase. A dead time is added to the pulse per phase, and switching signals U +, U−, V +, V−, W +, and W− output to the N channel MOSFETs 4 above and below the three phases are generated, respectively.

電圧セクタ及び検出タイミング信号生成部9には、3相変調指令Du,Dv,Dwが入力されている。当該信号生成部9は、3相変調指令Du,Dv,Dwに基づいて電気角周期を6等分した電圧セクタ(0)〜(5)を(1)式に示す条件で判別し、その判別結果を電流変化量検出部8,誘起電圧演算部10及び回転位置演算部11に出力する。
if Du>Dv>Dw →Sector=0
elseif Dv>Du>Dw →Sector=1
elseif Dv>Dw>Du →Sector=2
elseif Dw>Dv>Du →Sector=3
elseif Dw>Du>Dv →Sector=4
else →Sector=5 …(1)
そして、前述した検出タイミング信号t1〜t4についても、電圧セクタ(0)〜(5)の判別結果に応じて生成する。
Three-phase modulation commands Du, Dv, and Dw are input to the voltage sector and the detection timing signal generation unit 9. The signal generation unit 9 discriminates the voltage sectors (0) to (5) obtained by dividing the electric angle period into six equal parts based on the three-phase modulation commands Du, Dv, and Dw under the conditions shown in the equation (1), and discriminates the voltage sectors (0) to (5). The result is output to the current change amount detection unit 8, the induced voltage calculation unit 10, and the rotation position calculation unit 11.
if Du>Dv> Dw → Vector = 0
elseif Dv>Du> Dw → Vector = 1
elseif Dv>Dw> Du → Sector = 2
elseif Dw>Dv> Du → Sector = 3
elseif Dw>Du> Dv → Vector = 4
else → Vector = 5… (1)
Then, the detection timing signals t1 to t4 described above are also generated according to the determination results of the voltage sectors (0) to (5).

以上の構成において、モータ2及びインバータ回路3を除いたものが、回転位置検出装置15を構成している。そして、回転位置検出装置15にインバータ回路3を加えたものがモータ駆動制御装置16を構成している。また、本実施形態では、回転位置検出装置15は、マイクロコンピュータの内部にハードウェア的に構成されている。すなわち、モータ2の速度制御や電流制御等はソフトウェアによって実現し、回転位置検出装置15をハードウェア又はそれに準じる構成としてマイクロコンピュータや集積回路の内部に設ける。 In the above configuration, the rotation position detecting device 15 is configured by excluding the motor 2 and the inverter circuit 3. The motor drive control device 16 is formed by adding the inverter circuit 3 to the rotation position detection device 15. Further, in the present embodiment, the rotation position detecting device 15 is configured as hardware inside the microcomputer. That is, the speed control, current control, and the like of the motor 2 are realized by software, and the rotation position detection device 15 is provided inside the microcomputer or the integrated circuit as hardware or a configuration similar thereto.

次に、本実施形態において回転位置を検出する原理を説明する。回転位置の検出は、モータの回転によって発生する誘起電圧(EMF:electromotive force)を用いる。(2)式は、永久磁石同期モータの3相電圧方程式を示している。右辺第3項が誘起電圧項であり、回転位置θの情報が含まれている。 Next, the principle of detecting the rotation position in this embodiment will be described. The rotational position is detected by using the induced voltage (EMF: electromotive force) generated by the rotation of the motor. Equation (2) shows a three-phase voltage equation for a permanent magnet synchronous motor. The third term on the right side is the induced voltage term, which contains information on the rotation position θ.

ここで、図3に示す空間ベクトル図における各電圧ベクトル発生時の相電圧の大きさは直流電圧VDCを用いて図4に示すように表すことができる。そして、電圧ベクトルV1(100)印加時のU相電圧方程式は、(3)式となる。 Here, the magnitude of the phase voltage when each voltage vector is generated in the space vector diagram shown in FIG. 3 can be expressed as shown in FIG. 4 using the DC voltage VDC . Then, the U-phase voltage equation when the voltage vector V1 (100) is applied becomes the equation (3).

このとき発生する電流変化量dIuをdIu(100)と表記し、(3)式を変形すると(4)式が得られる。 The amount of change in current dIu generated at this time is expressed as dIu (100), and the equation (4) is obtained by modifying the equation (3).

同様に、図3に示す空間ベクトル図における電圧ベクトルV2(110)印加時のW相電流変化量をdIw(110)とすると、(5)式となる。 Similarly, if the amount of change in the W-phase current when the voltage vector V2 (110) is applied in the space vector diagram shown in FIG. 3 is dIw (110), the equation (5) is obtained.

また、永久磁石の磁束に対してモータの突極性の影響が小さいと仮定して、
Lu=Lw=Lと近似する。さらに、(4)式に(5)式を加えると、相電流の総和はゼロであるから(6)式を得る。
Also, assuming that the influence of the polarity of the motor on the magnetic flux of the permanent magnet is small,
Approximate to Lu = Lw = L. Further, when the equation (5) is added to the equation (4), the total phase current is zero, so the equation (6) is obtained.

同様に、電圧ベクトルV2(110)及びV3(010)時の電流変化量の和は、(7)式で表せる。 Similarly, the sum of the current changes at the voltage vectors V2 (110) and V3 (010) can be expressed by the equation (7).

更に、相電流及び誘起電圧の総和はゼロであるため、−(6)式−(7)式を演算すると、(8)式を得る。 Further, since the sum of the phase current and the induced voltage is zero, the equation (8) is obtained by calculating the equations − (6) − (7).

ここで、モータの回転速度ωがある程度速い状態では、(6),(7),(8)式の右辺は第1項≪第2項となるため、抵抗による電圧降下である右辺第1項をゼロと近似できる。これらを3相の誘起電圧Eu,Ev,Ewとして表すと(9)式が得られる。 Here, when the rotation speed ω of the motor is high to some extent, the right side of equations (6), (7), and (8) is the first term << the second term, so the first term on the right side, which is the voltage drop due to the resistance. Can be approximated to zero. When these are expressed as three-phase induced voltages Eu, Ev, and Ew, equation (9) is obtained.

すなわち、電圧ベクトル印加中の電流変化量を用いれば、それぞれ位相差が2π/3の3相誘起電圧を検出できる。更に、検出した3相誘起電圧を(10)式で3相/2相変換し、(11)式で逆正接を演算することで回転位置θcを求めることができる。 That is, by using the amount of change in current while the voltage vector is applied, it is possible to detect a three-phase induced voltage having a phase difference of 2π / 3, respectively. Further, the rotation position θc can be obtained by converting the detected three-phase induced voltage into three-phase / two-phase with Eq. (10) and calculating the inverse tangent with Eq. (11).

尚、電圧ベクトルV1,V2印加時の電圧ベクトルを用いるとV相誘起電圧Evが求まるが、全ての電圧ベクトルについて一般化すると、図5に示す関係となる。すなわち、発生する電圧ベクトルに応じて検出できる誘起電圧相が切り替わる。そして、電圧セクタ毎に発生する電圧ベクトルは異なる。例えば電圧セクタ(0)で発生する電圧ベクトルは
V1(100),V2(110)のみである。このため、(9)式における電流変化量のうちdIu(100),dIw(110)のみが検出でき、dIv(010)は検出できない。尚、厳密には、他の電圧ベクトルも発生するが、ここでは、電圧セクタ毎に発生率が最も高くなる2つの電圧ベクトルを抽出している。
The V-phase induced voltage Ev can be obtained by using the voltage vectors when the voltage vectors V1 and V2 are applied, but when all the voltage vectors are generalized, the relationship shown in FIG. 5 is obtained. That is, the induced voltage phase that can be detected is switched according to the generated voltage vector. The voltage vector generated for each voltage sector is different. For example, the voltage vectors generated in the voltage sector (0) are only V1 (100) and V2 (110). Therefore, of the current changes in the equation (9), only dIu (100) and dIw (110) can be detected, and dIv (010) cannot be detected. Strictly speaking, other voltage vectors are also generated, but here, two voltage vectors having the highest generation rate are extracted for each voltage sector.

そこで、図3に示す空間ベクトルにおいて、電圧セクタが切り替わるタイミングに着目する。例えば電圧セクタが(0)から(1)に切り替わった直後では、電圧セクタ(1)での電圧ベクトルV2(110),V3(010)が発生する期間に電流変化量dIw(110),dIv(010)が検出できる。これらにより、今回の誘起電圧Enow=Euが検出できる。また、切り替わる前の電圧セクタは(0)であるから、電圧ベクトルV1(100),V2(110)が発生する期間に電流変化量dIu(100),dIw(110)が検出できる。これらにより誘起電圧Evが検出できる。これを前回の誘起電圧Epreとして保存しておく。 Therefore, in the space vector shown in FIG. 3, attention is paid to the timing at which the voltage sector is switched. For example, immediately after the voltage sector is switched from (0) to (1), the amount of current change dIw (110), dIv (1) during the period when the voltage vectors V2 (110) and V3 (010) in the voltage sector (1) are generated. 010) can be detected. From these, the induced voltage E now = Eu can be detected. Further, since the voltage sector before switching is (0), the current change amounts dIu (100) and dIw (110) can be detected during the period when the voltage vectors V1 (100) and V2 (110) are generated. From these, the induced voltage Ev can be detected. This is stored as the previous induced voltage E pre .

そして、電圧セクタの切替わりに要する時間を、モータ2が回転する周期に比較して非常に速いと言える制御領域においてゼロとみなせば、Enow(Eu)とEpre(Ev)とから、(9)式に基づいて3相目の誘起電圧Ewが求まる。3相の誘起電圧が求まれば、(10),(11)式により回転位置θcが求められる。
なお、(9)式左辺の各相電流変化量は、本実施形態では直流電流IDCから(12)式に従って求める。
Then, if the time required for switching the voltage sector is regarded as zero in the control region, which can be said to be very fast compared to the period in which the motor 2 rotates, E now (Eu) and E pre (Ev) indicate (9). ), The induced voltage Ew of the third phase can be obtained. If the induced voltage of the three phases is obtained, the rotation position θc can be obtained by the equations (10) and (11).
In this embodiment, the amount of change in each phase current on the left side of equation (9) is obtained from the direct current I DC according to equation (12).

ここで(12)式のように、3相の電流を各スイッチングパターンに応じて検出するためには、各相電流を検出するために対応する電圧ベクトルを発生させる必要がある。3相のPWM信号を生成するために一般的な三角波比較法を用いると、例えば変調率が0.3の場合、図6に示すように各電圧ベクトルが発生する。横軸は電気角,縦軸はPWM1周期中における各電圧ベクトルの発生割合である。これに対し、下記の文献に示されているような3相三角波をキャリアとして用いると、各電圧ベクトルの発生割合は図7に示すように増加する。
文献名:「電気学会半導体電力変換方式調査専門委員会:「半導体電力変換回路」,電気学会(1987)」
Here, as in Eq. (12), in order to detect the three-phase current according to each switching pattern, it is necessary to generate a corresponding voltage vector in order to detect each phase current. When a general triangular wave comparison method is used to generate a three-phase PWM signal, for example, when the modulation factor is 0.3, each voltage vector is generated as shown in FIG. The horizontal axis is the electrical angle, and the vertical axis is the rate of occurrence of each voltage vector during one PWM cycle. On the other hand, when a three-phase triangular wave as shown in the following document is used as a carrier, the generation ratio of each voltage vector increases as shown in FIG.
Reference name: "Institute of Electrical Engineers of Japan Semiconductor Power Conversion Method Research Expert Committee:" Semiconductor Power Conversion Circuit ", Institute of Electrical Engineers of Japan (1987)"

例えば、電流変化量を検出するために必要な電圧ベクトル発生期間の割合をPWM周期の0.2として、図6中に破線で示す。この場合、単一の三角波キャリア比較法では、各電圧ベクトルV0及びV7以外は0.2に達しておらず検出できない。これに対して、3相三角波キャリアを用いると、図7に示すように、各電圧セクタにおいて対応する相の誘起電圧を検出するために必要な2つの電圧ベクトルが0.2以上となっている。これにより、必要な電流変化量が検出できるようになる。 For example, the ratio of the voltage vector generation period required to detect the amount of current change is shown by a broken line in FIG. 6 as 0.2 of the PWM period. In this case, in the single triangular wave carrier comparison method, the voltages other than the voltage vectors V0 and V7 have not reached 0.2 and cannot be detected. On the other hand, when a three-phase triangular wave carrier is used, as shown in FIG. 7, the two voltage vectors required to detect the induced voltage of the corresponding phase in each voltage sector are 0.2 or more. .. This makes it possible to detect the required amount of change in current.

尚、電流変化量を検出するために必要な電圧ベクトルの発生期間は、インバータの仕様等によって異なる。図8は、電圧ベクトルV0(000),V1(100),V2(110)のそれぞれに対応するスイッチング状態において、U,V相の上側PWM信号と直流電流IDC,電流検出タイミングt1〜t4を示している。 The period for generating the voltage vector required to detect the amount of change in current differs depending on the specifications of the inverter and the like. FIG. 8 shows the upper PWM signals of the U and V phases, the direct current I DC , and the current detection timings t1 to t4 in the switching state corresponding to each of the voltage vectors V0 (000), V1 (100), and V2 (110). Shown.

例えば、スイッチング状態が電圧ベクトルV0からV1に変化すると、電流IDCにはスイッチングの過渡状態でリップルが発生するため、変化の時点からある程度時間が経過したタイミングt1で電流IDCの1回目のサンプリングを行う。この待ち時間をPWM周期Tpwmの0.1としている。そこから、更に周期Tpwmの0.1分経過したタイミングt2で2回目のサンプリングを行い、電流変化量ΔIDCを求める。 For example, when the switching state changes from the voltage vector V0 to V1, ripple occurs in the current I DC in the transitional state of switching, so the first sampling of the current I DC at the timing t1 when a certain amount of time has passed from the time of the change. I do. This waiting time is set to 0.1 of the PWM cycle T pwm . From there, the second sampling is performed at the timing t2 after 0.1 minutes of the period T pwm , and the current change amount ΔI DC is obtained.

尚、タイミングt1,t2で検出されるのはU相(+)の電流変化量であり、タイミングt3,t4で検出されるのはW相(−)の電流変化量である。このように、精度良く電流IDCを検出するには、特定の電圧ベクトルが発生する期間を十分確保する必要があるが、3相三角波キャリアを用いれば必要な電圧ベクトルの発生期間を十分確保でき、回転位置θcの検出が可能になる。 It should be noted that what is detected at the timings t1 and t2 is the amount of change in the U-phase (+) current, and what is detected at the timings t3 and t4 is the amount of change in the W-phase (−) current. In this way, in order to detect the current I DC with high accuracy, it is necessary to secure a sufficient period for generating a specific voltage vector, but if a three-phase triangular wave carrier is used, a sufficient period for generating the required voltage vector can be secured. , The rotation position θc can be detected.

図9,図10は、従来の三角波比較法と3相三角波比較法とにおけるPWM信号波形及び直流電流IDCを示している。3相三角波比較法では120度位相差のPWM信号が生成されるので、各電圧ベクトルの発生時間が増加することで、直流電流IDCの通電時間が図9に比較して増加していることが分かる。 9 and 10 show the PWM signal waveform and the direct current I DC in the conventional triangular wave comparison method and the three-phase triangular wave comparison method. In the three-phase triangular wave comparison method, a PWM signal having a phase difference of 120 degrees is generated. Therefore, as the generation time of each voltage vector increases, the energization time of the direct current I DC increases as compared with FIG. I understand.

次に、本実施形態の作用について図11から図13を参照して説明する。図11及び図12は、ここまで説明した原理に基いて、主として回転位置検出装置14が行う処理内容を示すフローチャートである。先ず、回転位置演算部11が図12に示す位置検出演算を行うと(S1)、デューティ生成部13が各相デューティDu,Dv,Dwを算出する(S2)。信号生成部9は、現在の電圧セクタを「前回セクタ」に代入すると(S3)、(1)式に基づき各相デューティDu,Dv,Dwから現在の電圧セクタを求める(S4)。PWM生成部5は、3相三角波キャリアと各相デューティDu,Dv,Dwとに基づき生成した各相PWM信号をインバータ回路3に出力する(S5)。 Next, the operation of this embodiment will be described with reference to FIGS. 11 to 13. 11 and 12 are flowcharts showing the processing contents mainly performed by the rotation position detecting device 14 based on the principle described so far. First, when the rotation position calculation unit 11 performs the position detection calculation shown in FIG. 12 (S1), the duty generation unit 13 calculates each phase duty Du, Dv, Dw (S2). When the current voltage sector is substituted into the "previous sector" (S3), the signal generation unit 9 obtains the current voltage sector from each phase duty Du, Dv, Dw based on the equation (1) (S4). The PWM generation unit 5 outputs each phase PWM signal generated based on the three-phase triangular wave carrier and each phase duty Du, Dv, Dw to the inverter circuit 3 (S5).

ステップS1における位置検出演算は、図12に示すように実行される。電流変化量検出部8は、直流電流IDCから、その時点の電圧セクタに対応した2相の電流変化量dIDC1,dIDC2を求める(S11)。誘起電圧演算部10は、前回検出した誘起電圧Epreに今回検出した誘起電圧Enowを代入すると(S12)、電流変化量dIDC1,dIDC2から今回の誘起電圧Enowを検出する(S13)。 The position detection operation in step S1 is executed as shown in FIG. The current change amount detection unit 8 obtains the two-phase current change amounts dI DC1 and dI DC2 corresponding to the voltage sector at that time from the direct current I DC (S11). When the induced voltage E now detected this time is substituted into the induced voltage E pre detected last time (S12), the induced voltage calculation unit 10 detects the current induced voltage E now from the current change amounts dI DC1 and dI DC2 (S13). ..

続いて、現在の電圧セクタと前回の電圧セクタとが異なるか否かを判断し(S14)、同じ電圧セクタであれば(NO)処理を終了する。一方、電圧セクタが異なれば(YES)、誘起電圧Enow,Epreから第3相の誘起電圧E3を求める(S15)。そして、誘起電圧Enow,Epre,E3を(10)式により3相/2相変換し、(11)式の逆正接演算を行って回転位置θcを求める(S16)。 Subsequently, it is determined whether or not the current voltage sector and the previous voltage sector are different (S14), and if they are the same voltage sector, (NO) processing is terminated. On the other hand, different voltage sectors (YES), the induced voltage E now, seek induced voltage E 3 of the third phase from the E pre (S15). Then, the induced voltages E now , E pre , and E 3 are converted into three-phase / two-phase by the equation (10), and the inverse tangent calculation of the equation (11) is performed to obtain the rotation position θc (S16).

図13は、各部の動作波形を示している。各相の変調指令に基づき、3相電流が流れモータ2が駆動されている。このとき、検出した電流変化量から誘起電圧演算部10で求めた今回の誘起電圧Enowが検出できていることが分かる。破線が各電圧セクタが切り替わるタイミングであり、電圧セクタ毎に検出した誘起電圧がEu,Ev,Ewと切り替わっている。そして、電圧セクタの切り替わりタイミングで今回の誘起電圧と前回の電圧セクタの誘起電圧から求めた回転位置がθcである。実際の回転位置θに対し、ある程度の誤差があるものの電気角1周期を6分解能で位置が検出できていることがわかる。 FIG. 13 shows the operation waveform of each part. Based on the modulation command of each phase, a three-phase current flows and the motor 2 is driven. At this time, it can be seen that the current induced voltage E now obtained by the induced voltage calculation unit 10 can be detected from the detected current change amount. The broken line is the timing at which each voltage sector is switched, and the induced voltage detected for each voltage sector is switched between Eu, Ev, and Ew. Then, the rotation position obtained from the induced voltage of this time and the induced voltage of the previous voltage sector at the switching timing of the voltage sector is θc. It can be seen that the position can be detected with 6 resolutions for one period of the electric angle, although there is some error with respect to the actual rotation position θ.

以上のように本実施形態によれば、デューティ生成部13は、モータ2の回転位置に追従するように3相デューティ指令Du,Dv,Dwを生成し、PWM生成部5は、3相三角波をキャリアとして用い、3相デューティ指令Du,Dv,Dwより各相の信号パルスを発生させる中心の位相が120度異なる3相のPWM信号パターンを生成する。信号生成部9は、デューティ指令Du,Dv,Dwに基づき相電流の検出タイミング信号t1〜t4を生成する。 As described above, according to the present embodiment, the duty generation unit 13 generates the three-phase duty commands Du, Dv, Dw so as to follow the rotation position of the motor 2, and the PWM generation unit 5 generates a three-phase triangular wave. It is used as a carrier to generate a three-phase PWM signal pattern in which the phases of the centers that generate signal pulses of each phase differ by 120 degrees from the three-phase duty commands Du, Dv, and Dw. The signal generation unit 9 generates phase current detection timing signals t1 to t4 based on the duty commands Du, Dv, and Dw.

電流変化量検出部8は、電流検出部7に発生した信号と検出タイミング信号t1〜t4とに基づいてモータ2の相電流を検出し、更にその相電流の変化量を検出する。回転位置演算部11は、電流変化量検出部8により検出された変化量に基づいて、モータ2の回転位置に同期した信号を演算する。このように構成すれば、モータ2の定数設定や制御ゲインの調整等が不要となり、回転位置を検出した電流変化量から直接演算で求めることができる。 The current change amount detection unit 8 detects the phase current of the motor 2 based on the signal generated by the current detection unit 7 and the detection timing signals t1 to t4, and further detects the change amount of the phase current. The rotation position calculation unit 11 calculates a signal synchronized with the rotation position of the motor 2 based on the change amount detected by the current change amount detection unit 8. With this configuration, it is not necessary to set the constant of the motor 2 or adjust the control gain, and the rotation position can be directly calculated from the detected current change amount.

また、誘起電圧演算部10は、相電流の変化量から3相の誘起電圧を算出すると、3相の誘起電圧を直交座標系の2相の電圧に変換し、2相の電圧について逆正接演算を行うことで回転位置を求める。具体的には、3相のPWM信号パターンにおいて、発生率が高い2つの電圧ベクトルの組に応じて電気角周期を6等分した電圧セクタ(0)〜(5)を設定し、移行前の電圧セクタにおいて第1相の誘起電圧Epreを演算し、次に移行した電圧セクタにおいて第2相の誘起電圧Enowを演算し、誘起電圧Epre,Enowから第3相の誘起電圧E3を演算する。これら3相の誘起電圧を直交座標系の2相の電圧Eα,Eβに変換し、2相の電圧について逆正接演算tan-1(Eα/Eβ)を行うことで回転位置θcを求める。これにより、回転位置θcを効率的に演算することができる。
(その他の実施形態)
Further, the induced voltage calculation unit 10 calculates the three-phase induced voltage from the amount of change in the phase current, converts the three-phase induced voltage into the two-phase voltage of the orthogonal coordinate system, and performs an inverse tangential calculation on the two-phase voltage. The rotation position is obtained by performing. Specifically, in the three-phase PWM signal pattern, voltage sectors (0) to (5) in which the electrical angular period is divided into six equal parts are set according to the set of two voltage vectors having a high generation rate, and before the transition. The induced voltage E pre of the first phase is calculated in the voltage sector, the induced voltage E now of the second phase is calculated in the next transitioned voltage sector, and the induced voltage E pre , E now to the induced voltage E 3 of the third phase are calculated. Is calculated. The induced voltage of these three phases is converted into the voltages Eα and Eβ of the two phases of the Cartesian coordinate system, and the rotation position θc is obtained by performing the inverse tangent calculation tan -1 (Eα / Eβ) on the voltages of the two phases. As a result, the rotation position θc can be calculated efficiently.
(Other embodiments)

また、電流を検出するタイミングはPWMキャリアの周期に一致させる必要はなく、例えばキャリア周期の2倍や4倍の周期で検出を行っても良い。したがって、電流変化量検出部に入力する電流検出タイミング信号は、キャリアから得られた信号そのものである必要はなく、別個のタイマで生成した信号であっても良い。
電流検出部はシャント抵抗でもCTでも良い。
スイッチング素子はMOSFET、IGBT,パワートランジスタ,SiC,GaN等のワイドギャップ半導体等を使用しても良い。
Further, the timing of detecting the current does not need to match the cycle of the PWM carrier, and the detection may be performed at a cycle of, for example, twice or four times the carrier cycle. Therefore, the current detection timing signal input to the current change amount detection unit does not have to be the signal itself obtained from the carrier, and may be a signal generated by a separate timer.
The current detection unit may be a shunt resistor or CT.
As the switching element, a wide-gap semiconductor such as MOSFET, IGBT, power transistor, SiC, or GaN may be used.

本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

図面中、2は永久磁石同期モータ、3はインバータ回路、5はPWM生成部、7は電流検出部、8は電流変化量検出部、9は電圧セクタ及び検出タイミング信号生成部、10は誘起電圧演算部、11は回転位置演算部、14はキャリア生成部、15は回転位置検出装置、16はモータ駆動制御装置を示す。 In the drawing, 2 is a permanent magnet synchronous motor, 3 is an inverter circuit, 5 is a PWM generator, 7 is a current detector, 8 is a current change amount detector, 9 is a voltage sector and detection timing signal generator, and 10 is an induced voltage. The calculation unit, 11 is a rotation position calculation unit, 14 is a carrier generation unit, 15 is a rotation position detection device, and 16 is a motor drive control device.

Claims (3)

同期電動機の相電流を検出するために直流部に配置される電流検出部と、
前記同期電動機の回転位置に応じて、3相のPWM(Pulse Width Modulation)デューティ指令を生成するデューティ生成部と、
前記3相のPWMデューティ指令及び3相の搬送波に基づいて、各相の信号パルスを発生させる中心の位相が互いに120度異なる3相のPWM信号を生成するPWM生成部と、
前記PWMデューティ指令に基づいて、前記相電流の検出タイミング信号を生成する検出タイミング信号生成部と、
前記電流検出部に発生した信号と前記検出タイミング信号とに基づいて前記同期電動機の相電流を検出し、更に前記相電流の変化量を検出する電流変化量検出部と、
この電流変化量検出部により検出された変化量に基づいて、前記同期電動機の回転位置を求める回転位置演算部とを備えるモータ制御用集積回路。
A current detector located in the DC section to detect the phase current of the synchronous motor,
A duty generator that generates a three-phase PWM (Pulse Width Modulation) duty command according to the rotation position of the synchronous motor, and
Based on the carrier of a PWM duty command and the three-phase of the three-phase, and the PWM generation unit center of the phase generating each phase signal pulses to produce a 120-degree different three-phase PWM signal to each other,
A detection timing signal generation unit that generates a detection timing signal for the phase current based on the PWM duty command.
A current change amount detection unit that detects the phase current of the synchronous motor based on the signal generated in the current detection unit and the detection timing signal, and further detects the change amount of the phase current.
An integrated circuit for motor control including a rotation position calculation unit that obtains a rotation position of the synchronous motor based on the change amount detected by the current change amount detection unit.
前記回転位置演算部は、前記相電流の変化量から3相の誘起電圧を算出する誘起電圧演算部を備え、
前記3相の誘起電圧を直交座標系の2相の電圧に変換し、
前記2相の電圧について逆正接演算を行うことで前記回転位置を求める請求項1記載のモータ制御用集積回路。
The rotation position calculation unit includes an induced voltage calculation unit that calculates three-phase induced voltages from the amount of change in the phase current.
The three-phase induced voltage is converted into a two-phase voltage in the Cartesian coordinate system.
Claim 1 Symbol mounting of the motor control integrated circuit determining the rotational position by performing the arctangent operation on the voltage of the two phases.
前記検出タイミング信号生成部は、前記3相のPWMデューティ指令の大小関係に応じて電気角周期を6等分した6つの電圧セクタを設定して前記回転位置演算部及び前記誘起電圧演算部に出力し、
前記誘起電圧演算部は、移行前の電圧セクタにおいて第1相の誘起電圧を演算し、次に移行した電圧セクタにおいて第2相の誘起電圧を演算し、前記第1相及び第2相の誘起電圧から第3相の誘起電圧を演算する請求項記載のモータ制御用集積回路。
The detection timing signal generation unit sets six voltage sectors in which the electric angle period is divided into six equal parts according to the magnitude relationship of the three-phase PWM duty command, and outputs the six voltage sectors to the rotation position calculation unit and the induced voltage calculation unit . And
The induced voltage calculation unit calculates the induced voltage of the first phase in the voltage sector before the transition, calculates the induced voltage of the second phase in the voltage sector next to the transition, and induces the first phase and the second phase. The integrated circuit for motor control according to claim 2, wherein the induced voltage of the third phase is calculated from the voltage.
JP2018036535A 2018-03-01 2018-03-01 Integrated circuit for motor control Active JP6805197B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018036535A JP6805197B2 (en) 2018-03-01 2018-03-01 Integrated circuit for motor control
KR1020190009114A KR102260101B1 (en) 2018-03-01 2019-01-24 Integrated circuit for controlling motor
CN201910085425.XA CN110224641B (en) 2018-03-01 2019-01-29 Integrated circuit for controlling motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018036535A JP6805197B2 (en) 2018-03-01 2018-03-01 Integrated circuit for motor control

Publications (2)

Publication Number Publication Date
JP2019154114A JP2019154114A (en) 2019-09-12
JP6805197B2 true JP6805197B2 (en) 2020-12-23

Family

ID=67822317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018036535A Active JP6805197B2 (en) 2018-03-01 2018-03-01 Integrated circuit for motor control

Country Status (3)

Country Link
JP (1) JP6805197B2 (en)
KR (1) KR102260101B1 (en)
CN (1) CN110224641B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978265B (en) * 2021-10-19 2024-01-19 安徽江淮汽车集团股份有限公司 Hybrid electric vehicle control circuit and control method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4455981B2 (en) * 2004-11-30 2010-04-21 株式会社日立産機システム Synchronous motor drive device
JP2007336641A (en) 2006-06-13 2007-12-27 Denso Corp Position sensorless driving device for synchronous motor
JP5150585B2 (en) * 2009-08-28 2013-02-20 株式会社日立産機システム Permanent magnet synchronous motor drive device
JP2011147272A (en) * 2010-01-14 2011-07-28 Toshiba Elevator Co Ltd Motor control device
JP5534935B2 (en) * 2010-05-20 2014-07-02 株式会社東芝 Rotation sensorless control device
JP5748051B2 (en) * 2011-05-10 2015-07-15 サンデンホールディングス株式会社 Synchronous motor applied voltage electrical angle setting method and motor control device
JP5433657B2 (en) * 2011-09-15 2014-03-05 株式会社東芝 Motor control device
JP2013225979A (en) * 2012-04-20 2013-10-31 Hitachi Appliances Inc Motor driving device, compressor driving device employing the same, and heat exchanger equipped with the same
JP6067402B2 (en) * 2013-02-13 2017-01-25 株式会社東芝 Motor control device
JP2014176157A (en) * 2013-03-07 2014-09-22 Toshiba Corp Motor rotation position detection device, washer, and method for detecting motor rotation position
JP6317904B2 (en) * 2013-10-02 2018-04-25 日立ジョンソンコントロールズ空調株式会社 Motor control device and air conditioner
BR112017013124A2 (en) * 2014-12-19 2017-12-26 Nsk Ltd engine control apparatus and electric power steering apparatus using the same
JP2016163518A (en) * 2015-03-05 2016-09-05 株式会社東芝 Rotational position detection device, motor controller and rotational position detection method
CN107078672B (en) * 2015-03-27 2019-08-30 三菱电机株式会社 The control device of AC rotary machine
JP6279507B2 (en) * 2015-04-07 2018-02-14 日立オートモティブシステムズ株式会社 Motor driving device and phase current detection method for three-phase brushless motor
JP2017046406A (en) * 2015-08-25 2017-03-02 株式会社東芝 Rotation position detection device and rotation position detection method
JP6433404B2 (en) * 2015-10-16 2018-12-05 三菱電機株式会社 Motor control device

Also Published As

Publication number Publication date
CN110224641A (en) 2019-09-10
JP2019154114A (en) 2019-09-12
KR20190104875A (en) 2019-09-11
KR102260101B1 (en) 2021-06-03
CN110224641B (en) 2023-04-28

Similar Documents

Publication Publication Date Title
US8890450B2 (en) Motor control device
AU2005203077B9 (en) Startup control method of brushless DC motor
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
US9531307B2 (en) Motor control method and motor control apparatus
JP6805035B2 (en) Integrated circuit
JP6124723B2 (en) Current detector for three-phase inverter
US10326388B2 (en) Lead angle controller
CN108633323B (en) Power conversion device and rotating electric machine drive device
KR20150051002A (en) Apparatus and Method for driving motor
JP2017046406A (en) Rotation position detection device and rotation position detection method
JP2016163518A (en) Rotational position detection device, motor controller and rotational position detection method
JP5951208B2 (en) Motor control device
CN109525161B (en) Integrated circuit for motor control
JP6805197B2 (en) Integrated circuit for motor control
US20160156294A1 (en) Motor driving module
JP4171612B2 (en) Inverter device, semiconductor integrated circuit device
JP6348779B2 (en) Synchronous motor drive system
JPH09271198A (en) Control equipment of pm motor
US20200091845A1 (en) Rotor position estimation device, motor control device, and recording medium
KR102311975B1 (en) Bldc motor system including parameter detection circuit and operating method for bldc motor system
JP2008136271A (en) Motor controller and fan motor
JP2005045990A (en) Device for detecting speed electromotive force and method therefor, and inverter controller and the like
KR101910012B1 (en) Apparatus and method of re-starting sensorless brushless dc motor
WO2019031157A1 (en) Three-phase synchronous electric motor control device and electric power steering device using same
JP2019154143A (en) Motor drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201203

R150 Certificate of patent or registration of utility model

Ref document number: 6805197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150