JP2017046406A - Rotation position detection device and rotation position detection method - Google Patents

Rotation position detection device and rotation position detection method Download PDF

Info

Publication number
JP2017046406A
JP2017046406A JP2015165755A JP2015165755A JP2017046406A JP 2017046406 A JP2017046406 A JP 2017046406A JP 2015165755 A JP2015165755 A JP 2015165755A JP 2015165755 A JP2015165755 A JP 2015165755A JP 2017046406 A JP2017046406 A JP 2017046406A
Authority
JP
Japan
Prior art keywords
phase
current
rotational position
phases
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015165755A
Other languages
Japanese (ja)
Inventor
佐理 前川
Sari Maekawa
佐理 前川
勇介 柴野
Yusuke Shibano
勇介 柴野
敏満 會澤
Toshimitsu Aizawa
敏満 會澤
真一 小湊
Shinichi Kominato
真一 小湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015165755A priority Critical patent/JP2017046406A/en
Priority to KR1020160106237A priority patent/KR101842781B1/en
Publication of JP2017046406A publication Critical patent/JP2017046406A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotation position detection device capable of maintaining position estimation accuracy even in a control state in which a modulation factor is high.SOLUTION: A rotation position detection device comprises: an inverter circuit driving a three-phase permanent magnet motor; a current detection section detecting each phase current output from the inverter circuit; a current variation detection section detecting a variation of each phase current; and a rotation position detection section obtaining arithmetic results including information of a rotation position from current variations of two phases detected in a period when lower side arms of any two phases out of three phases constituting the inverter circuit are ON and a period when lower side arms of three phases are ON and a current variation of one phase excluding the two phases detected in a period when the lower side arms of the three phases are ON, and detecting the rotation position of the permanent magnet motor from the arithmetic results.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、永久磁石モータの回転位置を検出する装置及び方法に関する。   Embodiments described herein relate generally to an apparatus and a method for detecting a rotational position of a permanent magnet motor.

従来、永久磁石同期モータの回転位置を推定する方法の1つとして、特許文献1では、電圧印加中の電流微分値を用いることで、安価な構成で正弦波状の電流を通電可能な回転位置検出方式が提案されている。この方式は、モータの相電圧方程式に基づいてゼロ電圧ベクトル発生時の電流変化量を求め、その電流変化量に含まれているモータの回転位置情報を利用するものである。   Conventionally, as one method for estimating the rotational position of a permanent magnet synchronous motor, Patent Document 1 uses a current differential value during voltage application to detect a rotational position capable of supplying a sinusoidal current with an inexpensive configuration. A scheme has been proposed. In this method, the current change amount when the zero voltage vector is generated is obtained based on the motor phase voltage equation, and the rotational position information of the motor included in the current change amount is used.

特開2007−336641号公報JP 2007-336641 A

しかしながら、特許文献1のような方法では、モータを高速で回転させる等して変調率が上昇すると、図8に示すように、図7に示す場合と比較して電流変化量を検出するゼロ電圧ベクトルの出力期間が短くなるため、位置推定精度が低下するという問題がある。
そこで、変調率が高い制御状態においても位置推定精度を維持できる回転位置検出装置及び回転位置検出方法を提供する。
However, in the method as disclosed in Patent Document 1, when the modulation rate is increased by rotating the motor at a high speed or the like, as shown in FIG. 8, the zero voltage for detecting the current change amount as compared with the case shown in FIG. Since the vector output period is shortened, there is a problem that the position estimation accuracy is lowered.
Therefore, a rotational position detection device and a rotational position detection method that can maintain position estimation accuracy even in a control state with a high modulation rate are provided.

実施形態の回転位置検出装置は、3相の永久磁石モータを駆動するインバータ回路と、このインバータ回路より出力される各相電流を検出する電流検出部と、前記相電流の変化量を検出する電流変化量検出部と、前記インバータ回路を構成する3相アームのうち、任意の2相の下側アームがオンしている期間及び3相の下側アームがオンしている期間に検出される前記2相の電流変化量と、3相の下側アームがオンしている期間に検出される、前記2相を除く1相の電流変化量とから回転位置の情報が含まれている演算結果を求め、前記演算結果より前記永久磁石モータの回転位置を検出する回転位置検出部とを備える。   The rotational position detection device according to the embodiment includes an inverter circuit that drives a three-phase permanent magnet motor, a current detection unit that detects each phase current output from the inverter circuit, and a current that detects a change amount of the phase current. Of the three-phase arms constituting the change amount detecting unit and the inverter circuit, the two-phase lower arm is detected during the period when the two-phase lower arm is on and the three-phase lower arm is detected during the period. A calculation result including rotational position information from a two-phase current change amount and a one-phase current change amount excluding the two phases, which is detected while the lower arm of the three phases is on. And a rotational position detector that detects the rotational position of the permanent magnet motor from the calculation result.

一実施形態であり、モータ制御装置の構成を示す図The figure which is one Embodiment and shows the structure of a motor control apparatus インバータ回路が発生する電圧を空間ベクトルで表す図A diagram representing the voltage generated by the inverter circuit as a space vector 各電圧ベクトルを出力した際のモータの各相電圧値を示す図The figure which shows each phase voltage value of the motor at the time of outputting each voltage vector PWM周期内で、電流変化量dIv,dIw,dIuを検出する状態を示すタイミングチャートTiming chart showing a state in which current change amounts dIv, dIw, dIu are detected within the PWM cycle モータの回転位置と誘起電圧と差分推定値との関係を時間軸で示す図The figure which shows the relation between the rotational position of the motor, the induced voltage, and the estimated difference value on the time axis 回転位置演算部の構成の一例を示す図The figure which shows an example of a structure of a rotation position calculating part 従来技術を説明する図4相当図(その1)FIG. 4 equivalent view for explaining the prior art (part 1) 従来技術を説明する図4相当図(その2)FIG. 4 equivalent diagram for explaining the prior art (part 2)

以下、一実施形態について図1から図6を参照して説明する。図1は、モータ制御装置の構成を示す機能ブロック図である。直流電源1は、回転子に永久磁石を備える永久磁石同期モータ(以下、単にモータと称す)2を駆動する電力源である。直流電源1は、交流電源を直流に変換したものでも良い。インバータ回路3は、6個のスイッチング素子,例えばNチャネルMOSFET4U+,4Y+,4W+,4U−,4Y−,4W−を3相ブリッジ接続して構成されており、後述するPWM生成部5で生成される3相分6つのスイッチング信号に基づいて、モータ2を駆動する電圧を生成する。   Hereinafter, an embodiment will be described with reference to FIGS. 1 to 6. FIG. 1 is a functional block diagram showing the configuration of the motor control device. The DC power source 1 is a power source that drives a permanent magnet synchronous motor (hereinafter simply referred to as a motor) 2 having a permanent magnet in a rotor. The DC power source 1 may be one obtained by converting an AC power source into DC. The inverter circuit 3 is configured by connecting six switching elements, for example, N-channel MOSFETs 4U +, 4Y +, 4W +, 4U−, 4Y−, 4W−, in a three-phase bridge, and is generated by a PWM generation unit 5 described later. A voltage for driving the motor 2 is generated based on six switching signals for three phases.

電圧検出部6は、直流電源1の電圧VDCを検出する。電流検出部7は、一般にシャント抵抗やホールCTなどを用いた電流センサ及び信号処理回路で構成され、モータ2に流れる電流Iu,Iv,Iwを検出する。図1ではインバータ回路3の各相下側に3つ(7U,7V,7W)配置した場合を例示しており、別の形態として,各相の上側に配置される場合、インバータ回路3の各相出力線に配置される場合がある。   The voltage detector 6 detects the voltage VDC of the DC power supply 1. The current detection unit 7 is generally composed of a current sensor using a shunt resistor, Hall CT, and the like and a signal processing circuit, and detects currents Iu, Iv, Iw flowing through the motor 2. FIG. 1 illustrates a case where three (7U, 7V, 7W) are arranged on the lower side of each phase of the inverter circuit 3. As another form, each inverter circuit 3 is arranged on the upper side of each phase. May be placed on phase output line.

電流変化量検出部8は、後述する検出タイミング信号生成部9からの信号t1,t2,t3に基づき3相電流値を検出し、それぞれの変化量dIu,dIv,dIwを算出する。検出タイミングは、3回の検出で2回の間の変化量を求めるため、変化量は3相につき2種類ずつ,合計で6つの信号となる。   The current change amount detection unit 8 detects a three-phase current value based on signals t1, t2, and t3 from a detection timing signal generation unit 9 to be described later, and calculates respective change amounts dIu, dIv, and dIw. As the detection timing, the amount of change between two detections is obtained by three detections, so there are two types of change amounts for three phases, for a total of six signals.

尚、図1において、電流変化量検出部8より出力される電流微分値をdIa,dIb,dIcとしているが、これは後述するように、インバータ回路3のスイッチングパターンにおける空間ベクトルのエリアに応じて、使用する電圧ベクトルが異なるため、表記を簡略化したものである。すなわち、a,b,cは、u,v,wの何れかに対応する。また、(bc0)の表記は、b,c相の何れか一方の下側スイッチがオン「1」になり、他方及びa相の下側スイッチがオフ「0」になることを示しており、「bc0」の並びは「1,0」の配列を固定したものではない(後述する(1)〜(3)式参照)。   In FIG. 1, the current differential values output from the current change amount detection unit 8 are dIa, dIb, and dIc, depending on the area of the space vector in the switching pattern of the inverter circuit 3 as will be described later. Since the voltage vector to be used is different, the notation is simplified. That is, a, b, and c correspond to any of u, v, and w. The notation (bc0) indicates that the lower switch of either one of the b and c phases is turned on “1”, and the lower switch of the other and the a phase is turned off “0”. The arrangement of “bc0” is not a fixed arrangement of “1, 0” (see equations (1) to (3) described later).

誘起電圧演算部10(回転位置検出部)は、検出した3相の電流変化量dIu,dIv,dIwから3相の誘起電圧差分推定値Euvw,Evwu,Ewuvを演算する。回転位置演算部11(回転位置検出部)は、上記推定値Euvw,Evwu,Ewuvからモータ2の回転位置検出値θcを算出する。3相電圧指令値生成部12は、指令値である電圧振幅指令値Vampと電圧位相指令値φvとから、3相の電圧指令値Vu,Vv,Vwを生成する。   The induced voltage calculation unit 10 (rotational position detection unit) calculates three-phase induced voltage difference estimated values Euvw, Evwu, and Ewuv from the detected three-phase current change amounts dIu, dIv, and dIw. The rotational position calculator 11 (rotational position detector) calculates the rotational position detected value θc of the motor 2 from the estimated values Euvw, Evwu, and Ewuv. The three-phase voltage command value generation unit 12 generates three-phase voltage command values Vu, Vv, and Vw from the voltage amplitude command value Vamp and the voltage phase command value φv that are command values.

デューティ生成部13は、3相電圧指令値Vu,Vv,Vwを直流電圧VDCで除することで各相の変調指令Du,Dv,Dwを演算する。PWM生成部5は、3相変調指令Du,Dv,Dwと三角波状のキャリアとを比較して各相のPWM信号パルスを生成する。1相当たりのパルスにはデッドタイムが付加され、それぞれ3相上下のNチャネルMOSFET44に出力するスイッチング信号U+,U−,V+,V−,W+,W−を生成する。   The duty generation unit 13 calculates the modulation commands Du, Dv, Dw for each phase by dividing the three-phase voltage command values Vu, Vv, Vw by the DC voltage VDC. The PWM generation unit 5 compares the three-phase modulation commands Du, Dv, and Dw with a triangular wave carrier to generate a PWM signal pulse for each phase. A dead time is added to the pulses per phase, and switching signals U +, U−, V +, V−, W +, W− output to the N-channel MOSFET 44 above and below the three phases are generated.

以上の構成において、モータ2,インバータ回路3及びPWM生成部5を除いたものが、回転位置検出装置14を構成している。そして、回転位置検出装置14にPWM生成部5を加えたものが、モータ制御装置15を構成している。   In the above configuration, the motor 2, the inverter circuit 3, and the PWM generator 5 are not included in the rotational position detection device 14. The rotation position detector 14 plus the PWM generator 5 constitutes a motor controller 15.

次に、本実施形態における回転位置検出方法の概要を、図2から図5を参照して説明する。インバータ回路3が発生する電圧は、図2に示すように空間ベクトルで表すと、6つの実電圧ベクトルと2つのゼロ電圧ベクトルとに区分される。ここで電圧ベクトルV1(100)とは、U相の上側スイッチ(FET4U+)がオン、V相及びW相の下側スイッチ(FET4Y−,4W−)がオンという状態で発生する電圧を示す。また図3は、各電圧ベクトルを出力した際のモータ2の各相電圧値を示している。   Next, an outline of the rotational position detection method in the present embodiment will be described with reference to FIGS. When the voltage generated by the inverter circuit 3 is represented by a space vector as shown in FIG. 2, it is divided into six actual voltage vectors and two zero voltage vectors. Here, the voltage vector V1 (100) indicates a voltage generated in a state where the U-phase upper switch (FET 4U +) is on and the V-phase and W-phase lower switches (FET 4Y−, 4W−) are on. FIG. 3 shows the phase voltage values of the motor 2 when the voltage vectors are output.

例えば図4に示すように、U相の上側スイッチのみがオンしている電圧ベクトルV1(100)と、ゼロ電圧ベクトルV0(000)とが出力されている期間に、図中に示すタイミングt1〜t3で検出した3相電流の差分値は次式で表される。

Figure 2017046406
dIv(100)-(000):電圧ベクトルV1及びV0印加時の時刻t1−t3間のV相電流変化量[A]
dIw(100)-(000):電圧ベクトルV1及びV0印加時の時刻t1−t3間のW相電流変化量[A]
dIu(100):電圧ベクトルV0印加時の時刻t1−t2間のU相電流変化量[A]
Ev,Ew,Eu:v,w,u相の誘起電圧[V]
θ:モータ回転位置[rad]
L:モータ相インダクタンス[H]
ω:モータ角速度[rad/s]
φf:電機子鎖交磁束[Wb]
ここで、(1)式の右辺第1項及び第2項が、回転位置θに対して変化する信号となっている。このように、発生する電圧ベクトルV1(100),V0(000)に応じて誘起電圧差分推定値Evwuを演算することで、モータ2の回転位置に基づく信号を得ることができる。これを利用して回転位置検出を行う。 For example, as shown in FIG. 4, the timings t <b> 1 to t <b> 1 shown in the figure are output during a period in which the voltage vector V <b> 1 (100) in which only the U-phase upper switch is on and the zero voltage vector V <b> 0 (000) are output. The difference value of the three-phase current detected at t3 is expressed by the following equation.
Figure 2017046406
dIv (100)-(000): V phase current change amount [A] between time t1 and time t3 when voltage vectors V1 and V0 are applied
dIw (100)-(000): W phase current change amount [A] between time t1 and time t3 when voltage vectors V1 and V0 are applied
dIu (100): U-phase current change amount [A] between time t1 and time t2 when voltage vector V0 is applied
Ev, Ew, Eu: v, w, u phase induced voltage [V]
θ: Motor rotation position [rad]
L: Motor phase inductance [H]
ω: Motor angular velocity [rad / s]
φf: Armature flux linkage [Wb]
Here, the first term and the second term on the right side of the equation (1) are signals that change with respect to the rotational position θ. Thus, the signal based on the rotational position of the motor 2 can be obtained by calculating the induced voltage difference estimated value Evwu according to the generated voltage vectors V1 (100) and V0 (000). Using this, the rotational position is detected.

そして、図2に示すように、空間ベクトルの6つの領域をセクタ1〜6とすると、セクタ2及び3については(2)式により誘起電圧差分推定値Ewuvを演算する。

Figure 2017046406
dIw(010)-(000):電圧ベクトルV3及びV0印加時の時刻t1−t3間のW相電流変化量[A]
dIu(010)-(000):電圧ベクトルV3及びV0印加時の時刻t1−t3間のU相
dIv(000):電圧ベクトルV0印加時の時刻t1−t2間のV相電流変化量[A]
電流変化量[A]
セクタ4及び5については(3)式により誘起電圧差分推定値Euvwを演算する。
Figure 2017046406
dIu(001)-(000):電圧ベクトルV5及びV0印加時の時刻t1−t3間のU相電流変化量[A]
dIv(001)-(000):電圧ベクトルV5及びV0印加時の時刻t1−t3間のV相
dIw(000):電圧ベクトルV0印加時の時刻t1−t2間のW相電流変化量[A]
電流変化量[A] As shown in FIG. 2, assuming that the six areas of the space vector are sectors 1 to 6, for the sectors 2 and 3, the induced voltage difference estimated value Ewuv is calculated by equation (2).
Figure 2017046406
dIw (010)-(000): W-phase current change amount [A] between time t1 and time t3 when voltage vectors V3 and V0 are applied
dIu (010)-(000): U phase between time t1 and t3 when voltage vector V3 and V0 are applied dIv (000): V phase current change amount between time t1 and t2 when voltage vector V0 is applied [A]
Current change [A]
For sectors 4 and 5, the induced voltage difference estimated value Euvw is calculated by equation (3).
Figure 2017046406
dIu (001)-(000): U-phase current change amount [A] between time t1-t3 when voltage vectors V5 and V0 are applied
dIv (001)-(000): V phase between time t1 and t3 when voltage vectors V5 and V0 are applied dIw (000): W phase current change amount between time t1 and t2 when voltage vector V0 is applied [A]
Current change [A]

図5は、各相の誘起電圧に応じて変化する誘起電圧差分推定値Evwu,Ewuv,Evwuを示している。それぞれ細い線で表示しているのは、電気角1周期に亘る全ての波形であり、太い線で表示している部分は、実際に電圧セクタ1〜6に応じて(1)〜(3)式により検出する波形の区間を示している。セクタ毎に太線部分の推定値Evwu,Ewuv,Evwuを用い、それぞれのゼロクロス点を検出することで回転位置を求めることができる。つまり、誘起電圧差分推定値Evwu,Ewuv,Evwuは「回転位置の情報が含まれている演算結果」に相当する。   FIG. 5 shows induced voltage difference estimated values Evwu, Ewuv, and Evwu that change according to the induced voltage of each phase. The thin lines indicate all the waveforms over one period of electrical angle, and the portions indicated by the thick lines are actually (1) to (3) according to the voltage sectors 1 to 6. The section of the waveform detected by the equation is shown. By using the estimated values Evwu, Ewuv, and Evwu of the thick line portion for each sector and detecting the respective zero cross points, the rotational position can be obtained. That is, the induced voltage difference estimated values Evwu, Ewuv, and Evwu correspond to “calculation results including rotational position information”.

ここで、本実施形態における各部の動作について再度説明する。電流変化量検出部8は、電流検出部7で検出した電流から、所定のタイミングで各相の電流変化量を検出する。電流変化量を検出するタイミングt1〜t3は、(1)〜(3)式及び図4に示したように、ゼロ電圧ベクトルと各実電圧ベクトルが発生している期間である。したがって、検出タイミング信号生成部9からの検出タイミング信号t1〜t3は、各相のデューティDu,Dv,Dwがデューティ生成部13で決定された後、電流変化量検出部8に出力される。誘起電圧演算部10は、(1)〜(3)式より誘起電圧に比例する数値を演算する。   Here, the operation of each unit in this embodiment will be described again. The current change amount detection unit 8 detects the current change amount of each phase from the current detected by the current detection unit 7 at a predetermined timing. The timings t1 to t3 for detecting the current change amount are periods in which the zero voltage vector and each actual voltage vector are generated as shown in the equations (1) to (3) and FIG. Therefore, the detection timing signals t <b> 1 to t <b> 3 from the detection timing signal generation unit 9 are output to the current change amount detection unit 8 after the duty Du, Dv, Dw of each phase is determined by the duty generation unit 13. The induced voltage calculation unit 10 calculates a numerical value proportional to the induced voltage from the equations (1) to (3).

図6に、回転位置演算部11の構成の一例を示す。コンパレータ21u,21v,21wは、演算された誘起電圧差分推定値Evwu,Ewuv,Evwuと閾値とを比較し、パルス状の信号を生成する。各誘起電圧差分推定値に応じて得られたパルス信号は、図5に示すように、電圧ベクトルに応じてどの相の誘起電圧を用いるかで変化する回転位置が異なる。このため、θc’演算部22は、各相のデューティDu,Dv,Dwを用いて、適宜用いるパルスを切り替える。   FIG. 6 shows an example of the configuration of the rotational position calculation unit 11. The comparators 21u, 21v, and 21w compare the calculated induced voltage difference estimated values Evwu, Ewuv, and Evwu with threshold values, and generate pulse-shaped signals. As shown in FIG. 5, the pulse signals obtained according to the respective induced voltage difference estimated values have different rotational positions depending on which phase of the induced voltage is used according to the voltage vector. For this reason, the θc ′ calculator 22 switches the pulse to be used as appropriate using the duty Du, Dv, Dw of each phase.

次に、得られた信号θc’を速度演算部23及び回転位置補正部24に入力する。速度演算部23は、信号θc’が変化するタイミングで、その変化量からモータ速度検出値θcを(4)式にて演算する。さらに、回転位置補正部24は、モータ速度検出値ωcと信号θc’を用いて、信号θc’が変化してから次に変化するまでの間の変化量を(5)式にて補正する。信号θc’z−1は、信号θc’が変化した際の前回値であり、tは信号θc’が変化してからの経過時間であり、信号θc’が変化するとゼロにクリアされる。これらの処理により、モータの回転位置θに対応する位置検出値θcが得られる。

Figure 2017046406
Next, the obtained signal θc ′ is input to the speed calculation unit 23 and the rotational position correction unit 24. The speed calculator 23 calculates the motor speed detection value θc from the amount of change at the timing when the signal θc ′ changes, using equation (4). Further, the rotational position correction unit 24 corrects the amount of change from the change of the signal θc ′ to the next change using the motor speed detection value ωc and the signal θc ′ using the equation (5). The signal θc′z −1 is the previous value when the signal θc ′ changes, t is the elapsed time since the signal θc ′ changes, and is cleared to zero when the signal θc ′ changes. By these processes, a position detection value θc corresponding to the rotational position θ of the motor is obtained.
Figure 2017046406

図1に示す3相電圧指令値生成部12は、得られた回転位置θcに基づき、3相の電圧指令値を例えば(6)式のように演算する。電圧振幅指令値Vampは印加する電圧の大きさであり、φvは、誘起電圧位相に対する各相電圧の位相差である。

Figure 2017046406
The three-phase voltage command value generation unit 12 shown in FIG. 1 calculates a three-phase voltage command value based on the obtained rotational position θc, for example, as shown in equation (6). The voltage amplitude command value Vamp is the magnitude of the applied voltage, and φv is the phase difference of each phase voltage with respect to the induced voltage phase.
Figure 2017046406

生成された3相の電圧指令値Vu,Vv,Vwは、(7)式に示すようにデューティ生成部13において直流電源電圧VDCで除されて正規化され、変調指令(デューティ)Du,Dv,Dwとなる。さらに、これらのディーティDu,Dv,Dwは三角波キャリアと比較されて各相PWM信号へと変換され、インバータ回路3の各FET4に入力され、モータ2を駆動する電圧を発生させる。

Figure 2017046406
The generated three-phase voltage command values Vu, Vv, and Vw are normalized by being divided by the DC power supply voltage VDC in the duty generator 13 as shown in the equation (7), and modulated commands (duty) Du, Dv, Dw. Further, these duties Du, Dv, and Dw are compared with the triangular wave carrier, converted into each phase PWM signal, and input to each FET 4 of the inverter circuit 3 to generate a voltage for driving the motor 2.
Figure 2017046406

以上のように本実施形態によれば、電流検出部7によって、インバータ回路3より出力される各相電流を検出すると、電流変化量検出部8が各相電流の変化量を検出する。誘起電圧演算部10は、インバータ回路3を構成する3相アームのうち、任意の2相の下側アームがオンしている期間及び3相の下側アームがオンしている期間に検出される前記2相の電流変化量と、3相の下側アームがオンしている期間に検出される前記2相を除く1相の電流変化量とから、(1)〜(3)式により回転位置の情報が含まれている演算結果,誘起電圧差分推定値Evwu,Ewuv,Evwuを求める。回転位置演算部11は、前記演算結果より前記永久磁石モータの回転位置θcを検出する。   As described above, according to the present embodiment, when the current detection unit 7 detects each phase current output from the inverter circuit 3, the current change amount detection unit 8 detects the change amount of each phase current. The induced voltage calculation unit 10 is detected during a period in which an arbitrary two-phase lower arm is on and a period in which a three-phase lower arm is on, among the three-phase arms constituting the inverter circuit 3. From the two-phase current change amount and the one-phase current change amount excluding the two phases detected during the period when the lower arm of the three phases is on, the rotational position is expressed by the equations (1) to (3). , The induced voltage difference estimated values Evwu, Ewuv, Evwu are obtained. The rotational position calculator 11 detects the rotational position θc of the permanent magnet motor from the calculation result.

これにより、モータ制御装置15を安価な演算器で構成してモータ2に正弦波状の電流を通電することができる。また、磁気的突極性が無いモータにも適用可能であり、高い変調率においてもモータが駆動可能になる。更に、電流変化量を検出する期間が長くとれるので、ノイズ耐性も向上する。
また、電流検出部7u,7v,7wを、インバータ回路3を構成する3相の下側アームと負側電源線との間にそれぞれ配置したので、下側のFET4U−,4V−,4W−がオンした期間に各相電流を検出できる。
As a result, the motor control device 15 can be constituted by an inexpensive arithmetic unit, and a sine wave current can be applied to the motor 2. Further, the present invention can be applied to a motor having no magnetic saliency, and the motor can be driven even at a high modulation rate. Furthermore, since the period for detecting the current change amount can be long, noise resistance is also improved.
Further, since the current detection units 7u, 7v, and 7w are arranged between the three-phase lower arm constituting the inverter circuit 3 and the negative power supply line, the lower FETs 4U−, 4V−, and 4W− Each phase current can be detected during the ON period.

(その他の実施形態)
電流検出部7を2相の下側アームと負側電源線との間に配置して、残り1相の電流は演算で求めても良い。
電流検出部はシャント抵抗でなくCT(Current Trans)でも良い。
スイッチング素子はMOSFET以外にIGBTやパワートランジスタさらにはSiC,GaN等のワイドギャップ半導体等を使用しても良い。
(Other embodiments)
The current detector 7 may be disposed between the two-phase lower arm and the negative power supply line, and the remaining one-phase current may be obtained by calculation.
The current detection unit may be a CT (Current Trans) instead of a shunt resistor.
As the switching element, an IGBT, a power transistor, or a wide gap semiconductor such as SiC or GaN may be used in addition to the MOSFET.

回転位置演算部11は、閾値との比較によるパルスを用いたが、直接演算によって回転位置を求めても良い。
本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Although the rotation position calculation unit 11 uses a pulse by comparison with a threshold value, the rotation position may be obtained by direct calculation.
Although several embodiments of the present invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、2は永久磁石同期モータ、3はインバータ回路、7U,7V,7Wは抵抗素子(電流検出部)、8は電流変化量検出部、10は誘起電圧演算部(回転位置検出部)、11は回転位置演算部(回転位置検出部)、14は回転位置検出装置、15はモータ制御装置を示す。   In the drawings, 2 is a permanent magnet synchronous motor, 3 is an inverter circuit, 7U, 7V, and 7W are resistance elements (current detection units), 8 is a current change amount detection unit, 10 is an induced voltage calculation unit (rotation position detection unit), Reference numeral 11 denotes a rotational position calculation unit (rotational position detection unit), 14 denotes a rotational position detection device, and 15 denotes a motor control device.

Claims (3)

3相の永久磁石モータを駆動するインバータ回路と、
このインバータ回路より出力される各相電流を検出する電流検出部と、
前記相電流の変化量を検出する電流変化量検出部と、
前記インバータ回路を構成する3相アームのうち、
任意の2相の下側アームがオンしている期間及び3相の下側アームがオンしている期間に検出される前記2相の電流変化量と、
3相の下側アームがオンしている期間に検出される、前記2相を除く1相の電流変化量とから回転位置の情報が含まれている演算結果を求め、前記演算結果より前記永久磁石モータの回転位置を検出する回転位置検出部とを備える回転位置検出装置。
An inverter circuit for driving a three-phase permanent magnet motor;
A current detector for detecting each phase current output from the inverter circuit;
A current change amount detection unit for detecting a change amount of the phase current;
Of the three-phase arms constituting the inverter circuit,
A current change amount of the two phases detected during a period in which the lower arm of any two phase is on and a period in which the lower arm of the three phase is on;
A calculation result including rotational position information is obtained from a current change amount of one phase excluding the two phases detected during a period when the lower arm of the three phases is on, and the permanent result is obtained from the calculation result. A rotational position detection apparatus comprising: a rotational position detection unit that detects a rotational position of a magnet motor.
前記電流検出部は、前記インバータ回路を構成する3相の下側アームと、負側電源線との間にそれぞれ配置されている請求項1記載の回転位置検出装置。   The rotational position detection device according to claim 1, wherein the current detection unit is disposed between a three-phase lower arm constituting the inverter circuit and a negative power supply line. 3相の永久磁石モータを駆動するインバータ回路を構成する3相アームのうち、任意の2相の下側アームがオンしている期間及び3相の下側アームがオンしている期間に検出される前記2相の電流変化量と、3相の下側アームがオンしている期間に検出される、前記2相を除く1相の電流変化量とから回転位置の情報が含まれている演算結果を求め、前記演算結果より前記永久磁石モータの回転位置を検出する回転位置検出方法。   Detected during the period when any two-phase lower arm is on and the period when the three-phase lower arm is on, among the three-phase arms that constitute the inverter circuit that drives the three-phase permanent magnet motor The calculation includes rotational position information from the two-phase current change amount and the one-phase current change amount excluding the two phases detected during the period when the lower arm of the three phases is on. A rotation position detection method for obtaining a result and detecting a rotation position of the permanent magnet motor from the calculation result.
JP2015165755A 2015-08-25 2015-08-25 Rotation position detection device and rotation position detection method Pending JP2017046406A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015165755A JP2017046406A (en) 2015-08-25 2015-08-25 Rotation position detection device and rotation position detection method
KR1020160106237A KR101842781B1 (en) 2015-08-25 2016-08-22 Device and method for detecting rotational position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165755A JP2017046406A (en) 2015-08-25 2015-08-25 Rotation position detection device and rotation position detection method

Publications (1)

Publication Number Publication Date
JP2017046406A true JP2017046406A (en) 2017-03-02

Family

ID=58210587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165755A Pending JP2017046406A (en) 2015-08-25 2015-08-25 Rotation position detection device and rotation position detection method

Country Status (2)

Country Link
JP (1) JP2017046406A (en)
KR (1) KR101842781B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057981A (en) * 2017-09-20 2019-04-11 株式会社東芝 Motor control integrated circuit
US11447026B2 (en) 2020-04-14 2022-09-20 Hyundai Motor Company Charging system for vehicle and battery charging stop method thereof
US11456603B2 (en) 2020-04-21 2022-09-27 Hyundai Motor Company Safety charging system for electric vehicle and safety charging method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153027A (en) * 2017-03-14 2018-09-27 株式会社東芝 Rotary position estimation device of synchronous motor, air conditioner and washing machine
JP6805035B2 (en) * 2017-03-14 2020-12-23 株式会社東芝 Integrated circuit
JP6805197B2 (en) * 2018-03-01 2020-12-23 株式会社東芝 Integrated circuit for motor control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197771A (en) * 2005-01-17 2006-07-27 Mitsubishi Electric Corp Inverter with magnetic pole position detecting function
JP2007336641A (en) * 2006-06-13 2007-12-27 Denso Corp Position sensorless driving device for synchronous motor
JP2008278736A (en) * 2007-04-05 2008-11-13 Denso Corp Control system for multiphase rotary machine
JP2009118633A (en) * 2007-11-06 2009-05-28 Denso Corp Control device of multiphase rotary electric machine and multiphase rotary electric machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9930569B2 (en) 2011-08-04 2018-03-27 Qualcomm Incorporated Systems, methods and apparatus for wireless condition based multiple radio access bearer communications
JP6208005B2 (en) 2013-12-25 2017-10-04 株式会社東芝 Electric pole position estimating device for electric motor, inverter device and electric motor system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197771A (en) * 2005-01-17 2006-07-27 Mitsubishi Electric Corp Inverter with magnetic pole position detecting function
JP2007336641A (en) * 2006-06-13 2007-12-27 Denso Corp Position sensorless driving device for synchronous motor
JP2008278736A (en) * 2007-04-05 2008-11-13 Denso Corp Control system for multiphase rotary machine
JP2009118633A (en) * 2007-11-06 2009-05-28 Denso Corp Control device of multiphase rotary electric machine and multiphase rotary electric machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057981A (en) * 2017-09-20 2019-04-11 株式会社東芝 Motor control integrated circuit
US11447026B2 (en) 2020-04-14 2022-09-20 Hyundai Motor Company Charging system for vehicle and battery charging stop method thereof
US11456603B2 (en) 2020-04-21 2022-09-27 Hyundai Motor Company Safety charging system for electric vehicle and safety charging method therefor

Also Published As

Publication number Publication date
KR20170024551A (en) 2017-03-07
KR101842781B1 (en) 2018-03-27

Similar Documents

Publication Publication Date Title
KR101842781B1 (en) Device and method for detecting rotational position
US8878477B2 (en) Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit
JP6805035B2 (en) Integrated circuit
JP6208005B2 (en) Electric pole position estimating device for electric motor, inverter device and electric motor system
KR100960043B1 (en) Apparatus and method for controlling space voltage vector in two-phase synchronous permanent magnet motor
JP2016163518A (en) Rotational position detection device, motor controller and rotational position detection method
JP2006230049A (en) Motor control device and motor current detector
JP5951208B2 (en) Motor control device
CN109728761A (en) Motor drive control device
JP5511700B2 (en) Inverter device, fan drive device, compressor drive device, and air conditioner
US11764715B2 (en) Motor drive control device and motor drive control method
JP6914787B2 (en) Integrated circuit for motor control
JP2010068581A (en) Electric motor drive unit
KR20150044304A (en) Apparatus and Method for driving motor
JP2017093073A (en) Power conversion apparatus
JP6348779B2 (en) Synchronous motor drive system
JP4788603B2 (en) Inverter device
KR102260101B1 (en) Integrated circuit for controlling motor
US20230142956A1 (en) Motor controller, motor system and method for controlling motor
JP6116449B2 (en) Electric motor drive control device
JP5853644B2 (en) Line current detection device and power conversion system
JP6494809B2 (en) Inverter control device
WO2023068012A1 (en) Motor control device
JPWO2019188876A1 (en) Power conversion system, voltage conversion circuit control method
JP5780134B2 (en) Line current estimation apparatus and power conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190723