JP6118816B2 - 接合部材、単電池および組電池 - Google Patents

接合部材、単電池および組電池 Download PDF

Info

Publication number
JP6118816B2
JP6118816B2 JP2014546805A JP2014546805A JP6118816B2 JP 6118816 B2 JP6118816 B2 JP 6118816B2 JP 2014546805 A JP2014546805 A JP 2014546805A JP 2014546805 A JP2014546805 A JP 2014546805A JP 6118816 B2 JP6118816 B2 JP 6118816B2
Authority
JP
Japan
Prior art keywords
metal
external terminal
aluminum
copper
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014546805A
Other languages
English (en)
Other versions
JPWO2014076817A1 (ja
Inventor
英毅 篠原
英毅 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2014076817A1 publication Critical patent/JPWO2014076817A1/ja
Application granted granted Critical
Publication of JP6118816B2 publication Critical patent/JP6118816B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、2つの単電池を電気的に接続するための接合部材、単電池および複数の単電池を備えた組電池に関する。
近年、ハイブリッド型の電気自動車や純粋な電気自動車等の動力源として大容量(Wh)の二次電池が開発されており、その中でもエネルギー密度(Wh/kg)の高い角形のリチウムイオン二次電池が注目されている。
角形のリチウムイオン二次電池においては、正極活物質を塗布した正極箔、負極活物質を塗布した負極箔およびそれぞれを絶縁するためのセパレータを重ね合わせて捲回することで扁平形状の捲回電極群が形成される。捲回電極群は、電池蓋に設けられた正極外部端子および負極外部端子に電気的に接続される。捲回電極群は、電池缶に収容され、電池缶の開口部は電池蓋で封止溶接される。二次電池は、捲回電極群を収容した電池容器の注液孔から電解液が注液された後、注液栓が挿入されてレーザ溶接により封止溶接されることで形成される。
複数の上記角形のリチウムイオン二次電池(単電池)の正極外部端子と負極外部端子とをバスバーなどの導通部材により電気的に接続することで組電池が形成され、外部端子と外部機器とをリード線などの導通部材により電気的に接続することで、外部機器に電力を供給でき、あるいは、外部発電電力により二次電池を充電できる。
電気化学的な理由から、正極外部端子は純アルミニウムまたはアルミニウム合金で製作され、負極外部端子は純銅または銅合金で製作される。このため、一の単電池の正極外部端子と、他の単電池の負極外部端子とを電気的に接続する場合に、充放電電流経路に異種金属界面が形成される。
異種金属界面領域が外界の腐食性物質と接すると、電気化学的局所電池が形成され、純銅や銅合金に比べてイオン化傾向の大きい純アルミニウムやアルミニウム合金が腐食する、いわゆるガルバニック腐食現象が発生し、純アルミニウムまたはアルミニウム合金からなる部材が断線してしまうおそれがある。
特許文献1には、銅からなる端子と、アルミニウムからなる固定具との間に、銅とアルミニウムとの間のイオン化傾向を有するニッケル、ステンレススチール等からなる腐食防止部材を設け、ガルバニック腐食の発生を抑制することができる二次電池が記載されている。
日本国特開2011−77039号公報
特許文献1に記載の二次電池では、ニッケルとアルミニウムとの間に電気化学的電位差が生じるため、アルミニウムのガルバニック腐食が発生し、アルミニウムからなる部材の減肉が生じる。その結果、ニッケルとアルミニウムの界面において接触抵抗が増加し、二次電池の出力が低下するおそれがある。
本発明の第1の態様によると、第1金属からなる正極外部端子および第2金属からなる負極外部端子をそれぞれ備えた2つの単電池を電気的に接続するための結合部材は、第1金属からなる一端側が一方の単電池の正極外部端子に接続され、第2金属からなる他端側が他方の単電池の負極外部端子に接続され、充放電電流の電流経路に第1金属と第2金属とが結合され、第1金属と第2金属の界面が形成されており、第1金属および第2金属の両方に接して配置される犠牲防食層を備え、第1金属は、純アルミニウムまたはアルミニウム合金であり、第2金属は、純銅または銅合金であり、犠牲防食層は、第1金属よりもイオン化傾向の大きい材質からなり、界面を覆うように取り付けられている。
本発明の第2の態様によると、単電池は、充放電電流の電流経路に第1金属と第2金属とが結合され、第1金属と第2金属の界面が形成された正極外部端子と、第2金属からなる負極外部端子と、正極外部端子において、第1金属および第2金属の両方に接して配置される犠牲防食層と、を備え、第1金属は、純アルミニウムまたはアルミニウム合金であり、第2金属は、純銅または銅合金であり、犠牲防食層は、第1金属よりもイオン化傾向の大きい材質からなり、界面を覆うように取り付けられており、正極外部端子には、単電池内の正極集電体に接続される正極基部と、単電池同士を電気的に接続するための導通部材が接続される正極接続部とが設けられ、正極基部は、第1金属からなり、正極接続部は、第2金属からなる。
本発明の第3の態様によると、単電池は、充放電電流の電流経路に第1金属と第2金属とが結合され、第1金属と第2金属の界面が形成された負極外部端子と、第1金属からなる正極外部端子と、負極外部端子において、第1金属および第2金属の両方に接して配置される犠牲防食層と、を備え、第1金属は、純アルミニウムまたはアルミニウム合金であり、第2金属は、純銅または銅合金であり、犠牲防食層は、第1金属よりもイオン化傾向の大きい材質からなり、界面を覆うように取り付けられており、負極外部端子には、単電池内の負極集電体に接続される負極基部と、単電池同士を電気的に接続するための導通部材が接続される負極接続部とが設けられ、負極基部は、第2金属からなり、負極接続部は、第1金属からなる。
本発明の第の態様によると、組電池は、単電池を複数備え、単電池同士が電気的に接続された組電池であって、充放電電流の電流経路に第1金属と第2金属とが結合され、第1金属と第2金属の界面が形成された結合部材と、結合部材において、第1金属および第2金属の両方に接して配置される犠牲防食層を備え、第1金属は、純アルミニウムまたは
アルミニウム合金であり、第2金属は、純銅または銅合金であり、犠牲防食層は、第1金属よりもイオン化傾向の大きい材質からなり、界面を覆うように取り付けられ、単電池同士は、第2金属からなる導通部材により電気的に接続され、結合部材は、導通部材と第1金属からなる正極外部端子とが結合されてなる。
本発明の第の態様によると、組電池は、単電池を複数備え、単電池同士が電気的に接続された組電池であって、充放電電流の電流経路に第1金属と第2金属とが結合され、第1金属と第2金属の界面が形成された結合部材と、結合部材において、第1金属および第2金属の両方に接して配置される犠牲防食層を備え、第1金属は、純アルミニウムまたはアルミニウム合金であり、第2金属は、純銅または銅合金であり、犠牲防食層は、第1金属よりもイオン化傾向の大きい材質からなり、界面を覆うように取り付けられ、単電池同士は、第1金属からなる導通部材により電気的に接続され、結合部材は、導通部材と第2金属からなる負極外部端子とが結合されてなる。
本発明によれば、純アルミニウムまたはアルミニウム合金と、純銅または銅合金の界面における腐食に起因した接触抵抗の増加を防止することができ、長期に亘って電池の出力の低下を防止することができる。
第1の実施の形態に係る組電池の平面図。 図1の組電池を構成する単電池の外観を示す斜視図。 図2の単電池の構成を示す分解斜視図。 図3の捲回電極群を示す斜視図。 (a)は第1の実施の形態に係る組電池のバスバーに設けられた犠牲防食部材を示す図、(b)は(a)のC部拡大図、(c)は(b)に示すバスバーとは別の構成のバスバーを示す図。 (a)は図5のバスバーの腐食表面における腐食電流密度の解析結果を示す図、(b)は図5のバスバーの解析モデルを示す図。 (a)は犠牲防食部材が設けられていないバスバーの腐食表面における腐食電流密度の解析結果を示す図、(b)は犠牲防食部材が設けられていないバスバーの解析モデルを示す図。 (a)はアルミニウムと銅との間にニッケルを設けたバスバーの腐食表面における腐食電流密度の解析結果を示す図、(b)はアルミニウムと銅との間にニッケルを設けたバスバーの解析モデルを示す図。 第1の実施の形態の変形例(1)に係る組電池のバスバーに設けられた犠牲防食部材を示す図。 (a)は図9のバスバーの腐食表面における腐食電流密度の解析結果を示す図、(b)は図9のバスバーの解析モデルを示す図。 アルミニウムと銅の界面と、犠牲防食部材との距離Xとの関係を説明する図。 距離Xと腐食電流との関係を示すグラフ。 第1の実施の形態の変形例(2)に係る組電池のバスバーに設けられた犠牲防食部材を示す図。 (a)は図13のバスバーの腐食表面における腐食電流密度の解析結果を示す図、(b)は図13のバスバーの解析モデルを示す図。 第1の実施の形態の変形例(3)に係る組電池のバスバーに設けられた犠牲防食部材を示す図。 (a)は図15のバスバーの腐食表面における腐食電流密度の解析結果を示す図、(b)は図15のバスバーの解析モデルを示す図。 第2の実施の形態に係る組電池を構成する単電池の正極外部端子に設けられた犠牲防食部材を示す図。 第2の実施の形態の変形例に係る組電池を構成する単電池の負極外部端子に設けられた犠牲防食部材を示す図。 第3の実施の形態に係る組電池のバスバーおよび単電池の正極外部端子の両方に接して配置された犠牲防食部材を示す図。 第3の実施の形態の変形例に係る組電池のバスバーおよび単電池の負極外部端子の両方に接して配置された犠牲防食部材を示す図。 第4の実施の形態に係る組電池のバスバーおよび単電池の正極外部端子の両方に接して配置された犠牲防食部材を示す図。 第4の実施の形態の変形例に係る組電池のバスバーおよび単電池の負極外部端子の両方に接して配置された犠牲防食部材を示す図。 第5の実施の形態に係る組電池を構成する単電池の正極外部端子に設けられた犠牲防食部材を示す図。 第5の実施の形態の変形例に係る組電池を構成する単電池の負極外部端子に設けられた犠牲防食部材を示す図。 矩形状の正極電極および負極電極を積層してなる積層電極群を示す図。
以下、図面を参照して、本発明をハイブリッド型の電気自動車や純粋な電気自動車に搭載される蓄電装置に組み込まれる組電池であって、角形リチウムイオン二次電池(以下単電池と記す)を複数備えた組電池に適用した実施の形態について説明する。
―第1の実施の形態―
図1は、本発明の第1の実施の形態に係る組電池の平面図である。図1に示すように、組電池は、9個の単電池100が直列に接続された第1セルグループ10Aと、9個の単電池100が直列に接続された第2セルグループ10Bとが隣接して設けられている。
第1セルグループ10Aを構成する単電池100は、扁平な直方体形状であって、側面のうちで広い面積を有する幅広面同士が対向するように並べて配置されている。同様に、第2セルグループ10Bを構成する単電池100は、扁平な直方体形状であって、側面のうちで広い面積を有する幅広面同士が対向するように並べて配置されている。
第1セルグループ10Aを構成する単電池100は、正極外部端子141および負極外部端子151の位置が逆転するように、向きが反転して配置されている。隣り合う各単電池100の正極外部端子141と負極外部端子151とは矩形平板状の導通部材であるバスバー110によって電気的に接続されている。同様に、第2セルグループ10Bを構成する単電池100は、正極外部端子141および負極外部端子151の位置が逆転するように、向きが反転して配置されている。隣り合う各単電池100の正極外部端子141と負極外部端子151とは矩形平板状の導通部材であるバスバー110によって電気的に接続されている。
バスバー110,111は、レーザ溶接により正極外部端子141および負極外部端子151に接続されている。
図1に示す第1セルグループ10Aおよび第2セルグループ10Bから構成される組電池には、他の組電池に電気的に直列または並列にバスバー112により接続されるか、不図示の電力取り出し用の端子にバスバー112により接続され、電力取り出し用の端子に接続されるリード線等を介して外部機器に電気的に接続される。
組電池を構成する単電池100について説明する。組電池を構成する各単電池100はそれぞれ同じ構造である。図2は単電池100の外観を示す斜視図であり、図3は単電池100の構成を示す分解斜視図である。
図2および図3に示すように、単電池100は、扁平な直方体形状であって、電池缶101と電池蓋102とからなる電池容器を備えている。電池缶101および電池蓋102の材質は、アルミニウムなどである。
図3に示すように、電池缶101には捲回電極群170が収容されている。電池缶101は、一対の幅広面101aと一対の幅狭面101bと底面101cとを有し、一端が開口された有底箱状に形成されている。捲回電極群170は絶縁ケース108に覆われた状態で電池缶101に収容されている。絶縁ケース108の材質は、ポリプロピレンやポリエチレンテレフタレート等の絶縁性を有する樹脂である。これにより、電池缶101の底面および側面と、捲回電極群170とは電気的に絶縁されている。
図2および図3に示すように、電池蓋102は、矩形平板状であって、電池缶101の開口を塞ぐようにレーザ溶接されている。つまり、電池蓋102は、電池缶101の開口を封止している。電池蓋102には、正極外部端子141および負極外部端子151が配設されている。
正極外部端子141は正極集電体180を介して捲回電極群170の正極電極174に電気的に接続され、負極外部端子151は負極集電体190を介して捲回電極群170の負極電極175に電気的に接続されている。このため、正極外部端子141および負極外部端子151を介して外部負荷に電力が供給され、あるいは、正極外部端子141および負極外部端子151を介して外部発電電力が捲回電極群170に供給されて充電される。
図3に示すように、電池蓋102には、電池容器内に電解液を注入するための注液孔106aが穿設されている。注液孔106aは、電解液注入後に注液栓106bによって封止される。電解液としては、たとえば、エチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を用いることができる。
図2に示すように、電池蓋102の表面には、ガス排出弁103が凹設されている。ガス排出弁103は、内圧作用時の応力集中度合が相対的に高くなるように、プレス加工によって電池蓋102を部分的に薄肉化することで形成されている。ガス排出弁103は、単電池100が過充電等の異常により発熱してガスが発生し、電池容器内の圧力が上昇して所定圧力(たとえば、約1MPa)に達したときに開裂して、内部からガスを排出することで電池容器内の圧力を低減させる。
図3に示すように、電池蓋102には、正極外部端子141、負極外部端子151、正極集電体180、および、負極集電体190が取り付けられる。正極外部端子141と電池蓋102との間、および、負極外部端子151と電池蓋102との間のそれぞれには、端子受け部161が配置される。正極集電体180と電池蓋102との間、および、負極集電体190と電池蓋102との間のそれぞれには、集電体受け部160が配置される。
電気化学的な理由から、正極外部端子141および正極集電体180、ならびに、後述する捲回電極群170の正極箔171は、純アルミニウムまたはアルミニウム合金で製作される。負極外部端子151および負極集電体190、ならびに、後述する捲回電極群170の負極箔172は、純銅または銅合金で製作される。純アルミニウムとは、100%純度のアルミニウムを指すものではなく、通常の精錬工程や製造工程で不可避的に混入する不純物が含まれていても構わない。アルミニウム合金とは、不可避不純物を含み、他の成分に比べてアルミニウムが最も多く含まれていればよい。つまり、アルミニウム合金とは、アルミニウムを主成分とする合金のことを指す。同様に、純銅とは、100%純度の銅を指すものではなく、通常の精錬工程や製造工程で不可避的に混入する不純物が含まれていても構わない。銅合金とは、不可避不純物を含み、他の成分に比べて銅が最も多く含まれていればよい。つまり、銅合金とは、銅を主成分とする合金のことを指す。以下、純アルミニウムまたはアルミニウム合金のことをアルミニウムと記し、純銅または銅合金のことを銅と記す。
正極外部端子141は、直方体形状の基部141aと、基部141aの電池蓋102側の面から電池蓋102側に向かって突出する突部とを有している。基部141aの電池蓋102側の面と反対側の面は、バスバーが接する平坦面141sとされている。突部は、端子受け部161の貫通孔、電池蓋102の貫通孔102h、集電体受け部160の貫通孔、および、正極集電体180の端子接続板181の貫通孔184に挿通され、先端が電池容器内において正極集電体180の端子接続板181にかしめられてカシメ部143が形成される。カシメ部143と端子接続板181とは、かしめ固定された後、レーザによりスポット溶接される。これにより、正極外部端子141と正極集電体180とが電気的に接続されるとともに、正極外部端子141および正極集電体180のそれぞれが電池蓋102に固定される。
負極外部端子151は、直方体形状の基部151aと、基部151aの電池蓋102側の面から電池蓋102側に向かって突出する突部とを有している。基部151aの電池蓋102側の面と反対側の面は、バスバーが接する平坦面151sとされている。突部は、端子受け部161の貫通孔、電池蓋102の貫通孔102h、集電体受け部160の貫通孔、および、負極集電体190の端子接続板191の貫通孔194に挿通され、先端が電池容器内において負極集電体190の端子接続板191にかしめられてカシメ部153が形成される。カシメ部153と端子接続板191とは、かしめ固定された後、レーザによりスポット溶接される。これにより、負極外部端子151と負極集電体190とが電気的に接続されるとともに、負極外部端子151および負極集電体190のそれぞれが電池蓋102に固定される。
端子受け部161および集電体受け部160の材質は、ポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂である。正極外部端子141および負極外部端子151のそれぞれと、電池蓋102との間には端子受け部160が配置される。このため、正極外部端子141および負極外部端子151のそれぞれと、電池蓋102とは電気的に絶縁される。正極集電体180の端子接続板181および負極集電体190の端子接続板191のそれぞれと、電池蓋102との間には、端子受け部160が配置される。このため、正極集電体180および負極集電体190のそれぞれと、電池蓋102とは電気的に絶縁される。
図3に示すように、正極集電体180は、電池蓋102の内面に沿って配置される矩形平板状の端子接続板181と、端子接続板181の長辺側部から略直角に曲がって、電池缶101の幅広面101aに沿いながら電池缶101の底面101cに向かって延在する平板部182と、平板部182の下端に設けた連結部186により接続される接合板183とを備えている。接合板183は、捲回電極群170の正極電極174に超音波接合される部分である。
同様に、負極集電体190は、電池蓋102の内面に沿って配置される矩形平板状の端子接続板191と、端子接続板191の長辺側部から略直角に曲がって、電池缶101の幅広面101aに沿いながら電池缶101の底面101cに向かって延在する平板部192と、平板部192の下端に設けた連結部196により接続される接合板193とを備えている。接合板193は、捲回電極群170の負極電極175に超音波接合される部分である。
図4を参照して、捲回電極群170について説明する。図4は、単電池100の電池缶101に収容される捲回電極群170を示す斜視図であり、捲回電極群170の巻き終り側を展開した状態を示している。発電要素である捲回電極群170は、長尺状の正極電極174および負極電極175をセパレータ173a,173bを介在させて捲回中心軸W周りに扁平形状に捲回することで積層構造とされている。
正極電極174は、正極活物質合剤が正極箔171の両面に塗工された正極塗工部176aと、正極活物質合剤が正極箔171の両面に塗工されていない正極未塗工部176bとを有している。正極活物質合剤は、正極活物質に結着材(バインダ)が配合されてなる。負極電極175は、負極活物質合剤が負極箔172の両面に塗工された負極塗工部177aと、負極活物質合剤が負極箔172の両面に塗工されていない負極未塗工部177bとを有している。負極活物質合剤は、負極活物質に結着材(バインダ)が配合されてなる。正極活物質と負極活物質との間では、充放電が行われる。
正極箔171は、厚さ20〜30μm程度のアルミニウム箔であり、負極箔172は、厚さ15〜20μm程度の銅箔である。セパレータ173a,173bの素材はリチウムイオンが通過可能な微多孔質のポリエチレン樹脂である。正極活物質は、マンガン酸リチウム等のリチウム含有遷移金属複酸化物であり、負極活物質は、リチウムイオンを可逆に吸蔵、放出可能な黒鉛等の炭素材である。
捲回電極群170は、捲回電極群170の幅方向(捲回方向に直交する捲回中心軸W方向)の一端部に正極未塗工部176b(正極箔171の露出部)の積層部が設けられ、捲回電極群170の幅方向の他端部に負極未塗工部177b(負極箔172の露出部)の積層部が設けられている。正極未塗工部176bの積層部および負極未塗工部177bの積層部は、それぞれ予め押し潰され、それぞれ正極集電体180の接合板183および負極集電体190の接合板193と超音波接合により電気的に接続される。
捲回電極群170は、一方の湾曲部が電池蓋102に対向し、他方の湾曲部が底面101cに対向し、平面部が幅広面101aに対向するように、電池容器内に配置される。
上述したとおり、正極外部端子141および負極外部端子151はそれぞれアルミニウムおよび銅により製作されるため、一の単電池100の正極外部端子141と、他の単電池100の負極外部端子151とを電気的に接続する場合に、充放電電流経路にアルミニウムと銅の界面が形成される。銅とアルミニウムとの間で電気化学的電位差が生じるため、防食対策が何ら施されていない場合、バスバー110の表面に空気中の水分が付着するなどしてバスバー110が腐食環境に晒されると、ガルバニック腐食によるアルミニウムの減肉が生じ、界面における接触抵抗の増加に起因して、電池の出力が低下するおそれがある。
そこで、本実施の形態では、アルミニウムよりもイオン化傾向の大きい材質からなる犠牲防食部材を界面の近傍に配置した。これにより、アルミニウムより電気化学的に卑な犠牲防食部材が優先的に腐食されるため、アルミニウムの腐食を防止することができる。この原理は、一般的に犠牲防食作用と呼ばれる。以下、この犠牲防食作用を利用してアルミニウムの腐食を防止する構成について、詳細に説明する。
図5(a)は第1の実施の形態に係る組電池のバスバー110に設けられた犠牲防食部材130Aを示す図であり、たとえば図1のA−A線切断断面を模式的に示している。なお、B−B線切断断面を模式的に示した場合にも同様の図示となる。図5(b)は図5(a)のC部拡大図を示している。各図において、犠牲防食部材130Aの厚みは、誇張して示されている。第1の実施の形態では、バスバー110は、アルミニウム/銅複合材(クラッド材)であって、アルミニウムからなる正極端子接続部110aと、銅からなる負極端子接続部110cとが結合されてなり、バスバー110の長手方向の中央にアルミニウムと銅の界面115が形成されている。
正極端子接続部110aは一の単電池100Aの正極外部端子141にレーザ溶接され、負極端子接続部110cは他の単電池100Bの負極外部端子151にレーザ溶接される。
犠牲防食部材130Aは、バスバー110の正極端子接続部110aと負極端子接続部110cの両方に接して配置されている。犠牲防食部材130Aは、アルミニウムよりも電気化学的に卑な、すなわちイオン化傾向の大きい材質からなる。
犠牲防食部材130Aの材質としては、純マグネシウムまたはマグネシウム合金(以下、マグネシウムと記す)を採用することが好ましい。なお、純マグネシウムとは、100%純度のマグネシウムを指すものではなく、通常の精錬工程や製造工程で不可避的に混入する不純物が含まれていても構わない。マグネシウム合金とは、不可避不純物を含み、他の成分に比べてマグネシウムが最も多く含まれていればよい。つまり、マグネシウム合金とは、マグネシウムを主成分とする合金のことを指す。犠牲防食部材130Aをマグネシウム合金により構成する場合は、腐食防止の観点から、マグネシウムを10%以上含むことが好ましく、マグネシウムを90%以上含むことがより好ましい。経済性の観点から、マグネシウムを10%程度含んだアルミニウム合金等を犠牲防食部材130Aの材質として採用した場合であっても、その標準酸化還元電位は、アルミニウムより卑側にあるため、犠牲防食部材130Aとして十分に機能する。
犠牲防食部材130Aとしては、たとえば、マグネシウム箔を採用することができる。犠牲防食部材130Aは、界面115を覆うように、バスバー110の外表面の全周に亘って取り付けられている。犠牲防食部材130Aとバスバー110の外表面とは、導電性を有する接着剤により接着されている。
なお、図5(b)に示すマグネシウム箔に代えて、図5(c)に示すように、犠牲防食部材にマグネシウム板を採用し、マグネシウム板をバスバー110の所定位置に重ねて圧延し、その後、熱処理を行うことにより拡散接合して、バスバー110と一体化させてもよい。バスバー110のアルミニウム板(正極端子接続部110a)と銅板(負極端子接続部110c)とを結合する際に、同時にマグネシウム板もバスバー110に結合させることができるため、製作性が向上する。この場合、マグネシウム板の表面に、ナトリウム塩溶液などによる表面防食処理を容易に施すことができ、犠牲防食層自体の腐食を抑制して、犠牲防食作用を長期に亘って発揮することができる。さらに、バスバー110の正極端子接続部110aにアルマイト処理などを施して、正極端子接続部110aの防食性能を向上させることもできる。
第1の実施の形態に係る組電池に犠牲防食部材130Aを設けたことによる防食効果を確認するために、有限要素法による数値解析を行った。図6(a)は図5のバスバー110の腐食表面における腐食電流密度の解析結果を示す図であり、図6(b)は図5のバスバー110の解析モデルを示す図である。
図6(b)に示すように、本解析モデルは、マグネシウム板をバスバー110に一体成形したもの(図5(c)参照)を対象として作成した。解析モデルは、腐食表面110Sに塩分を含む水が付着されていることを想定し、バスバー110の表面に接触する電解物質の導電率を7.95S/mとした。「アルミニウム」、「銅」、「マグネシウム」、「ニッケル」の標準酸化還元電位はそれぞれ、「−1.676V」、「0.340V」、「−2.356V」、「−0.257V」とした。モデルサイズは、一般的な角形リチウムイオン二次電池の端子やバスバーのサイズを想定し、アルミニウム領域の長さXaは50mm、銅領域の長さXcは50mmとした。マグネシウム領域は、バスバー110の長手方向の中央に位置され、マグネシウム領域の長さは、5mmとした。
図6(a)に示すグラフでは、横軸がバスバーの長手方向の位置座標を示し、縦軸が腐食表面110Sにおける腐食電流密度を示している。横軸の位置座標は、解析モデルにおけるバスバー110の長手方向の中心位置を10mmとして設定している。腐食電流密度が正の方向に大きいほど、金属がイオンとして電解物質中に溶け出し、腐食が進行することを意味する。
なお、異種金属界面を介して物性値が急峻に変化するため、有限要素解析において、異種金属界面(図6(b)においては、アルミニウムとマグネシウムの界面、および、マグネシウムと銅の界面)における腐食表面110Sは計算上特異点となり、その近傍の電流密度分布は無限大あるいは振動挙動を示す。このため、特異点近傍の計算結果は表示せず、特異点から所定の距離だけ離れた位置、すなわち、計算結果数値が安定した領域からの結果を示している。これは、各材料表面領域の腐食挙動を把握するには十分な結果である。
図6(a)に示すように、第1の実施の形態では、アルミニウム領域の腐食電流密度分布D11は、アルミニウム領域の全域に亘って、小さい絶対値を示した。特に、アルミニウムとマグネシウムの界面近傍では、後述する比較例(1)や比較例(2)と比べて、非常に小さな値を示し、たとえば、アルミニウムとマグネシウムの界面から、距離約1mmの位置、すなわち座標6.5mmの点Pにおける腐食電流密度は、約3A/mであり、非常に大きな腐食低減効果を見込むことができることが確認できた。これは、アルミニウム領域、すなわちバスバー110の正極端子接続部110aが腐食によりほとんど減肉されないことを意味しており、犠牲防食作用によるアルミニウムの腐食防止機能が有効に発揮されていることを示している。一方、マグネシウム領域、すなわち犠牲防食部材130Aにおける腐食電流密度分布はアルミニウムとの界面近傍や銅との界面近傍において正の方向に大きな値となり、アルミニウムに代わってマグネシウムの腐食が進行し、犠牲防食作用を発揮させる部材として機能していることが確認できた。
図7は比較例(1)を示す図であって、図7(a)は犠牲防食部材が設けられていないバスバー810の腐食表面810Sにおける腐食電流密度の解析結果を示す図であり、図7(b)は犠牲防食部材が設けられていないバスバー810の解析モデルを示す図である。
図7(b)に示すように、比較例(1)では、犠牲防食部材130Aが設けられていない。このため、図7(a)に示すように、アルミニウム領域の腐食電流密度分布D8は、アルミニウム領域の全域に亘って正の値を示し、アルミニウムと銅の界面815に近づくほど正の方向に大きくなる。この結果は、アルミニウムと銅の界面815の近傍におけるアルミニウム領域、すなわちバスバー110の正極端子接続部810aの腐食が進行することを意味する。
図8は、比較例(2)を示す図であって、図8(a)はアルミニウムと銅との間にニッケルを設けたバスバー910の腐食表面910Sにおける腐食電流密度の解析結果を示す図であり、図8(b)はアルミニウムと銅との間にニッケルを設けたバスバー910の解析モデルを示す図である。
図8(b)に示すように、比較例(2)では、銅よりもイオン化傾向が大きく、かつ、アルミニウムよりもイオン化傾向が小さいニッケルを、アルミニウムと銅との間に介在させている。なお、比較例(2)の解析モデルでは、ニッケル領域の長さを5mmとした。図8(a)に示すように、アルミニウム領域の腐食電流密度分布D9は、アルミニウム領域の全域に亘って正の値を示し、アルミニウムとニッケルとの界面915aに近づくほど正の方向に大きくなる。この結果は、アルミニウムとニッケルとの界面915aの近傍におけるアルミニウムの腐食が進行することを意味する。
比較例(2)では、アルミニウムとニッケルとの電気化学的電位差は、アルミニウムと銅との電気化学的電位差に比べて小さい。このため、何ら防食対策が施されていない比較例(1)に比べると、アルミニウムのガルバニック腐食の進行を抑えることができる。たとえば、比較例(1)における銅とアルミニウムの界面815から距離約1mm、すなわち座標9mmの点Qにおける腐食電流密度は、約2900A/mとなった。これに対して、比較例(2)におけるニッケルとアルミニウムの界面915aから、距離約1mmの値、すなわち座標6.5mmの点Rにおける腐食電流密度は、約2000A/mとなった。つまり、比較例(2)の点Rにおける腐食電流密度は、比較例(1)の点Qにおける腐食電流密度に対して約2/3になっており、比較例(2)では比較例(1)よりもアルミニウムの腐食が抑制されていることがわかる。
以上のとおり、本実施の形態の解析結果、ならびに、比較例(1)および(2)の解析結果により、本実施の形態が比較例(1)、(2)に比べて、高い腐食抑制効果が発揮されていることが確認できた。
上述した第1の実施の形態によれば、以下のような作用効果を奏することができる。
組電池は、充放電電流の電流経路にアルミニウムからなる正極端子接続部110aと銅からなる負極端子接続部110cとが結合され、アルミニウムと銅の界面115が形成されたバスバー110によって、単電池100同士が電気的に接続されてなる。バスバー110には、アルミニウムからなる正極端子接続部110aおよび銅からなる負極端子接続部110cの両方に接するように犠牲防食部材130Aが配置されている。犠牲防食部材130Aは、アルミニウムよりもイオン化傾向の大きいマグネシウムからなる。これにより、犠牲防食部材130Aが優先的に腐食されるため、アルミニウムの腐食を防止することができる。その結果、界面115における腐食に起因した接触抵抗の増加を防止することができ、長期に亘って電池の出力の低下を防止することができる。
−第1の実施の形態の変形例(1)−
図9〜図12を参照して第1の実施の形態の変形例(1)に係る組電池を説明する。なお、図中、第1の実施の形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図9は第1の実施の形態の変形例(1)に係る組電池のバスバー110に設けられた犠牲防食部材130Bを示す図である。
第1の実施の形態では、図5に示すように、犠牲防食部材130Aが、バスバー110の正極端子接続部110aと負極端子接続部110cの両方に接して配置されていた。これに対して、第1の実施の形態の変形例(1)では、図9に示すように、犠牲防食部材130Bが正極端子接続部110aにのみ接して配置されている。
図10(a)は図9のバスバー110の腐食表面110Sにおける腐食電流密度の解析結果を示す図であり、図10(b)は図9のバスバー110の解析モデルを示す図である。第1の実施の形態では、図6(b)に示すように、マグネシウム領域が、バスバー110の長手方向の中央部に配置されていた。これに対して、第1の実施の形態の変形例(1)では、図10(b)に示すように、アルミニウム領域における界面115から2.5mm〜7.5mm離れた範囲にマグネシウム領域が配置されている。
図10(a)に示すように、第1の実施の形態の変形例(1)では、アルミニウム領域の腐食電流密度分布D12は、アルミニウム領域のうちマグネシウム領域との界面に近い部分では、ほぼ0に近い値を示した。なお、アルミニウム領域の腐食電流密度分布D12は、アルミニウムと銅の界面115に近づくほど正の方向に大きくなっているが、比較例(1)や比較例(2)に比べて、腐食電流密度の大きさは小さい。
たとえば、第1の実施の形態の変形例(1)における銅とアルミニウムの界面115から距離約1mm、すなわち座標9mmの点Sにおける腐食電流密度は約1500A/mとなった。この値は、比較例(1)の点Qにおける腐食電流密度である約2900A/m、および、比較例(2)の点Rにおける腐食電流密度である約2000A/mに比べて小さい。この結果により、第1の実施の形態の変形例(1)が比較例(1)、(2)に比べて優れていることがわかる。
図11はアルミニウムと銅の界面115と犠牲防食部材130Bとの距離Xとの関係を説明する図であり、図12は図11に示す距離Xと腐食電流との関係を示すグラフであり、犠牲防食部材130Bの取付位置による腐食電流依存性を示している。図12に示すグラフは、上記した腐食電流密度の解析を距離Xに応じて行い、界面115から5mmの範囲の電流密度を積分し、腐食電流を求めたものである。なお、2次元計算のため、奥行き方向の厚さを単位長さ1mと定義し、腐食電流の単位をA/mとしてグラフ化した。また、異種金属界面近傍の値については、界面から離れた部分の腐食電流密度計算結果を多項式(6次)近似し、推定・積分することにより求めた。
図12では、第1の実施の形態に対応する計算条件としてX=0mmの位置に犠牲防食部材130Aを配置した場合、ならびに、第1の実施の形態の変形例(1)に対応する計算条件としてX=5,10,15,20,25,30,40mmのそれぞれの位置に犠牲防食部材130Bを配置した場合の計算結果をプロットした。また、比較例(2)に対応する計算結果も合わせてプロットした。さらに、防食対策の無い比較例(1)に対応する計算結果を破線で示している。
図12に示すように、アルミニウムと銅の界面115から距離Xだけ離れた位置に犠牲防食部材130Bを設置した場合、距離Xが大きいほど、腐食電流が大きくなることがわかった。換言すれば、距離Xが小さいほど防食の効果が大きいことがわかる。なお、距離Xが大きいほど、腐食電流は大きくなるが、その値は、防食対策の無い比較例(1)に比べると小さい。つまり、第1の実施の形態の変形例(1)において、犠牲防食部材130Bの取付位置が界面115から離れた位置、たとえば距離X=40mmの場合であっても、防食対策の無い場合に比べて防食効果が発揮されていることがわかる。なお、上記した腐食電流値を考慮し、組電池の使用環境に応じて、防食効果を充分に発揮できる位置に犠牲防食部材を取付けることが好ましい。
以上のとおり、犠牲防食部材130Bを正極端子接続部110aにのみ接するように配置する第1の実施の形態の変形例(1)によれば、第1の実施の形態と同様に、犠牲防食作用によりアルミニウムの腐食を防止する作用効果を奏する。
−第1の実施の形態の変形例(2)−
図13および図14を参照して第1の実施の形態の変形例(2)に係る組電池を説明する。なお、図中、第1の実施の形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図13は第1の実施の形態の変形例(2)に係る組電池のバスバー110に設けられた犠牲防食部材130Cを示す図である。
第1の実施の形態の変形例(2)では、図13に示すように、犠牲防食部材130Cが負極端子接続部110cにのみ接して配置されている。
図14(a)は図13のバスバー110の腐食表面110Sにおける腐食電流密度の解析結果を示す図であり、図14(b)は図13のバスバー110の解析モデルを示す図である。第1の実施の形態の変形例(2)では、図14(b)に示すように、銅領域における界面115から2.5mm〜7.5mm離れた範囲にマグネシウム領域が配置されている。
図14(a)に示すように、第1の実施の形態の変形例(2)では、アルミニウム領域の腐食電流密度分布D13は、アルミニウムと銅の界面115に近づくほど正の方向に大きくなっているが、比較例(1)に比べて、腐食電流密度の大きさは小さい。
たとえば、第1の実施の形態の変形例(2)における銅とアルミニウムの界面115から距離約1mm、すなわち座標9mmの点Tにおける腐食電流密度は約2000A/mとなった。この値は、比較例(1)の点Qにおける腐食電流密度である約2900A/mに比べて小さい。この結果により、第1の実施の形態の変形例(1)が比較例(1)に比べて優れていることがわかる。なお、第1の実施の形態の変形例(2)の腐食電流密度分布D13における点Tは、比較例(2)の点Rにおける腐食電流密度とほぼ同じ値となった。つまり、第1の実施の形態の変形例(2)に示す犠牲防食部材130Cの取付位置よりも、アルミニウムと銅との界面115に近接して犠牲防食部材130Cを配置することで、比較例(2)に比べて優れた防食効果を発揮することになる。このため、腐食電流密度の値を考慮し、組電池の使用環境に応じて、防食効果を充分に発揮できる位置に犠牲防食部材130Cを取付けることが好ましい。
このように、第1の実施の形態の変形例(2)によれば、第1の実施の形態と同様に、犠牲防食作用によりアルミニウムの腐食を防止する作用効果を奏する。
−第1の実施の形態の変形例(3)−
図15および図16を参照して第1の実施の形態の変形例(3)に係る組電池を説明する。なお、図中、第1の実施の形態の変形例(1)および(2)と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図13は第1の実施の形態の変形例(3)に係る組電池のバスバー110に設けられた犠牲防食部材130Bおよび犠牲防食部材130Cを示す図である。
第1の実施の形態の変形例(3)に係る組電池は、図15に示すように、正極端子接続部110aにのみ接して配置される犠牲防食部材130Bと、負極端子接続部110cにのみ接して配置される犠牲防食部材130Cとを備えている。すなわち、第1の実施の形態の変形例(3)に係る組電池は、上記した第1の実施の形態の変形例(1)と変形例(2)とを組み合わせた構成とされている。
図16(a)は図15のバスバー110の腐食表面110Sにおける腐食電流密度の解析結果を示す図であり、図16(b)は図15のバスバー110の解析モデルを示す図である。第1の実施の形態の変形例(3)では、図16(b)に示すように、アルミニウム領域における界面115から2.5mm〜7.5mm離れた範囲、ならびに、銅領域における界面115から2.5mm〜7.5mm離れた範囲のそれぞれにマグネシウム領域が配置されている。
図16(a)に示すように、第1の実施の形態の変形例(3)では、アルミニウム領域の腐食電流密度分布D14は、アルミニウムと銅の界面115に近づくほど正の方向に大きくなっているが、比較例(1)や比較例(2)に比べて、腐食電流密度の大きさは小さい。
たとえば、第1の実施の形態の変形例(3)における銅とアルミニウムの界面115から距離約1mm、すなわち座標9mmの点Uにおける腐食電流密度は約700A/mとなった。この値は、比較例(1)の点Qにおける腐食電流密度である約2900A/m、および、比較例(2)の点Rにおける腐食電流密度である約2000A/mに比べて小さい。この結果により、第1の実施の形態の変形例(3)が比較例(1)、(2)に比べて優れていることがわかる。
このように、第1の実施の形態の変形例(3)によれば、第1の実施の形態と同様に、犠牲防食作用によりアルミニウムの腐食を防止する作用効果を奏する。
―第2の実施の形態―
図17を参照して第2の実施の形態に係る組電池および単電池を説明する。なお、図中、第1の実施の形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図17は、第2の実施の形態に係る組電池を構成する単電池200Aの正極外部端子241Aに設けられた犠牲防食部材230Aを示す図である。
第1の実施の形態では、バスバー110が銅とアルミニウムとを結合したクラッド材により構成されていた。これに対して、第2の実施の形態では、バスバー210cは銅のみにより構成され、バスバー210cに異種金属界面が形成されていない。
第1の実施の形態では、正極外部端子141は、アルミニウムにより形成されていた。これに対して、第2の実施の形態では、正極外部端子241Aは、アルミニウム/銅複合材(クラッド材)であって、アルミニウムからなる基部242aと、銅からなるバスバー接続部242cとが結合されてなり、アルミニウムと銅の界面215Aが電池蓋102に平行に形成されている。なお、クラッド材に限らず、アルミニウムと銅とをろう付けなどにより接合して正極外部端子241Aを構成することもできる。
基部242aには、第1の実施の形態と同様、電池蓋102側に向かって突出する突部(不図示)が設けられており、突部は電池蓋102を貫通して、正極集電体180の端子接続板181にかしめ固定されている。バスバー接続部242cは、界面215Aと反対側の面がバスバー210cに接する平坦面とされている。負極外部端子251Aは、第1の実施の形態と同様の構成であり、銅のみからなる。
バスバー210cは、一の単電池200A1の正極外部端子241Aのバスバー接続部242c、ならびに、他の単電池200A2の負極外部端子251Aにレーザ溶接され、単電池200A1と、単電池200A2とが直列に接続される。複数の単電池200Aが電気的に接続され、組電池が形成される。
第2の実施の形態では、犠牲防食部材230Aは、正極外部端子241Aの基部242aとバスバー接続部242cの両方に接して配置されている。犠牲防食部材230Aとしては、第1の実施の形態と同様に、マグネシウム箔やマグネシウム板が採用される。
上述した第2の実施の形態によれば、以下のような作用効果を奏することができる。
単電池200Aは、充放電電流の電流経路にアルミニウムからなる基部242aと銅からなるバスバー接続部242cとが結合され、アルミニウムと銅の界面215Aが形成された正極外部端子241Aに、犠牲防食部材230Aが設けられている。犠牲防食部材230Aは、アルミニウムからなる基部242aおよび銅からなるバスバー接続部242cの両方に接して配置されている。犠牲防食部材230Aは、アルミニウムよりもイオン化傾向の大きいマグネシウムからなる。これにより、犠牲防食部材230Aが優先的に腐食されるため、アルミニウムの腐食を防止することができる。その結果、界面215Aにおける腐食に起因した接触抵抗の増加を防止することができ、長期に亘って電池の出力の低下を防止することができる。
なお、第2の実施の形態において、犠牲防食部材230Aの取付位置は、犠牲防食効果を発揮させることができる位置に適宜設定することができ、基部242aおよびバスバー接続部242cの両方に接するように配置する場合に限られない。犠牲防食部材230Aを基部242aにのみ接して配置してもよいし、犠牲防食部材230Aをバスバー接続部242cにのみ接して配置してもよい。基部242aにのみ接する犠牲防食部材230A、ならびに、バスバー接続部242cにのみ接する犠牲防食部材230Aの両方を正極外部端子241Aに設けてもよい。
―第2の実施の形態の変形例―
図18を参照して第2の実施の形態の変形例に係る組電池および単電池を説明する。なお、図中、第2の実施の形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図18は、第2の実施の形態の変形例に係る組電池を構成する単電池200Bの負極外部端子251Bに設けられた犠牲防食部材230Bを示す図である。
第2の実施の形態の変形例では、バスバー210aはアルミニウムのみにより構成され、バスバー210aに異種金属界面が形成されていない。
第2の実施の形態では、正極外部端子241Aはアルミニウムと銅のクラッド材により形成され、負極外部端子251Aは銅のみにより形成されていた。これに対して、第2の実施の形態の変形例では、正極外部端子241Bはアルミニウムのみにより形成され、負極外部端子251Bはアルミニウム/銅複合材(クラッド材)であって、銅からなる基部252aと、アルミニウムからなるバスバー接続部252cとが結合されてなり、アルミニウムと銅の界面215Bが電池蓋102に平行に形成されている。なお、クラッド材に限らず、アルミニウムと銅とをろう付けなどにより接合して負極外部端子251Bを構成することもできる。
基部252aには、第1の実施の形態と同様、電池蓋102側に向かって突出する突部(不図示)が設けられており、突部は電池蓋102を貫通して、負極集電体190の端子接続板191にかしめ固定されている。バスバー接続部252cは、界面215Bと反対側の面がバスバー210aに接する平坦面とされている。正極外部端子241Bは、第1の実施の形態と同様の構成であり、アルミニウムのみからなる。
バスバー210cは、一の単電池200B1の正極外部端子241B、ならびに、他の単電池200B2の負極外部端子251Aのバスバー接続部252cにレーザ溶接され、単電池200B1と、単電池200B2とが直列に接続される。複数の単電池200Bが電気的に接続され、組電池が形成される。
第2の実施の形態の変形例では、犠牲防食部材230Bは、負極外部端子251Bの基部252aとバスバー接続部252cの両方に接して配置されている。犠牲防食部材230Bとしては、第1の実施の形態と同様に、マグネシウム箔やマグネシウム板が採用される。
上述した第2の実施の形態の変形例によれば、以下のような作用効果を奏することができる。
単電池200Bは、充放電電流の電流経路にアルミニウムからなる基部252aと銅からなるバスバー接続部252cとが結合され、アルミニウムと銅の界面215Bが形成された負極外部端子251Aに、犠牲防食部材230Bが設けられている。犠牲防食部材230Bは、銅からなる基部252aおよびアルミニウムからなるバスバー接続部252cの両方に接して配置されている。犠牲防食部材230Bは、アルミニウムよりもイオン化傾向の大きいマグネシウムからなる。これにより、犠牲防食部材230Bが優先的に腐食されるため、アルミニウムの腐食を防止することができる。その結果、界面215Bにおける腐食に起因した接触抵抗の増加を防止することができ、長期に亘って電池の出力の低下を防止することができる。
なお、第2の実施の形態の変形例において、犠牲防食部材230Bの取付位置は、犠牲防食効果を発揮させることができる位置に適宜設定することができ、基部252aおよびバスバー接続部252cの両方に接するように配置する場合に限られない。犠牲防食部材230Bを基部252aにのみ接して配置してもよいし、犠牲防食部材230Bをバスバー接続部252cにのみ接して配置してもよい。基部252aにのみ接する犠牲防食部材230B、ならびに、バスバー接続部252cにのみ接する犠牲防食部材230Bの両方を負極外部端子251Bに設けてもよい。
―第3の実施の形態―
図19を参照して第3の実施の形態に係る組電池および単電池を説明する。なお、図中、第1および第2の実施の形態およびその変形例と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図19は、第3の実施の形態に係る組電池のバスバー210cおよび単電池100の正極外部端子141の両方に接して配置された犠牲防食部材330Aを示す図である。第3の実施の形態に係る単電池100は、第1の実施の形態と同一の構成とされ、バスバー210cは第2の実施の形態と同一の構成とされている。
第3の実施の形態では、バスバー210cは銅のみにより構成され、正極外部端子141はアルミニウムのみにより構成され、負極外部端子151は銅のみにより構成されている。
バスバー210cは、一の単電池100Aの正極外部端子141、ならびに、他の単電池100Bの負極外部端子151にレーザ溶接され、単電池100Aと、単電池100Bとが直列に接続される。複数の単電池100が電気的に接続され、組電池が形成される。なお、図19では、正極外部端子141の溶接部(溶接金属)318についてのみ図示し、負極外部端子151の溶接部(溶接金属)の図示は省略している。
第3の実施の形態では、アルミニウムからなる正極外部端子141と、銅からなるバスバー210cとが結合されてなる結合部材に、アルミニウムと銅の界面315Aが形成されている。第3の実施の形態では、犠牲防食部材330Aは、正極外部端子141とバスバー210cの両方に接して配置されている。
上述した第3の実施の形態によれば、以下のような作用効果を奏することができる。
組電池は、充放電電流の電流経路にアルミニウムからなる正極外部端子141と銅からなるバスバー210cとが結合された結合部材を有し、この結合部材には、アルミニウムと銅の界面315Aが形成されている。犠牲防食部材330Aは、アルミニウムからなる正極外部端子141および銅からなるバスバー210cの両方に接して配置されている。犠牲防食部材330Aは、アルミニウムよりもイオン化傾向の大きいマグネシウムからなる。これにより、犠牲防食部材330Aが優先的に腐食されるため、アルミニウムの腐食を防止することができる。その結果、界面315Aにおける腐食に起因した接触抵抗の増加を防止することができ、長期に亘って電池の出力の低下を防止することができる。
なお、第3の実施の形態において、犠牲防食部材330Aの取付位置は、犠牲防食効果を発揮させることができる位置に適宜設定することができ、正極外部端子141およびバスバー210cの両方に接するように配置する場合に限られない。犠牲防食部材330Aを正極外部端子141にのみ接して配置してもよいし、犠牲防食部材330Aをバスバー210cにのみ接して配置してもよい。正極外部端子141にのみ接する犠牲防食部材330A、ならびに、バスバー210cにのみ接する犠牲防食部材330Aの両方を設けてもよい。
―第3の実施の形態の変形例―
図20を参照して第3の実施の形態の変形例に係る組電池および単電池を説明する。なお、図中、第1および第2の実施の形態およびその変形例と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図20は、第3の実施の形態の変形例に係る組電池のバスバー210aおよび単電池100の負極外部端子151の両方に接して配置された犠牲防食部材330Bを示す図である。第3の実施の形態の変形例に係る単電池100は、第1の実施の形態と同一の構成とされ、バスバー210aは第2の実施の形態の変形例と同一の構成とされている。
第3の実施の形態の変形例では、バスバー210aはアルミニウムのみにより構成され、正極外部端子141はアルミニウムのみにより構成され、負極外部端子151は銅のみにより構成されている。
バスバー210aは、一の単電池100Aの正極外部端子141、ならびに、他の単電池100Bの負極外部端子151にレーザ溶接され、単電池100Aと、単電池100Bとが直列に接続される。複数の単電池100が電気的に接続され、組電池が形成される。なお、図20では、負極外部端子151の溶接部(溶接金属)319についてのみ図示し、正極外部端子141の溶接部(溶接金属)の図示は省略している。
第3の実施の形態の変形例では、銅からなる負極外部端子151と、アルミニウムからなるバスバー210aとが結合されてなる結合部材に、アルミニウムと銅の界面315Bが形成されている。第3の実施の形態の変形例では、犠牲防食部材330Bは、負極外部端子151とバスバー210aの両方に接して配置されている。
上述した第3の実施の形態の変形例によれば、以下のような作用効果を奏することができる。
組電池は、充放電電流の電流経路にアルミニウムからなるバスバー210aと銅からなる負極外部端子151とが結合された結合部材を有し、この結合部材には、アルミニウムと銅の界面315Bが形成されている。犠牲防食部材330Bは、アルミニウムからなるバスバー210aおよび銅からなる負極外部端子151の両方に接して配置されている。犠牲防食部材330Bは、アルミニウムよりもイオン化傾向の大きいマグネシウムからなる。これにより、犠牲防食部材330Bが優先的に腐食されるため、アルミニウムの腐食を防止することができる。その結果、界面315Bにおける腐食に起因した接触抵抗の増加を防止することができ、長期に亘って電池の出力の低下を防止することができる。
なお、第3の実施の形態の変形例において、犠牲防食部材330Bの取付位置は、犠牲防食効果を発揮させることができる位置に適宜設定することができ、負極外部端子151およびバスバー210aの両方に接するように配置する場合に限られない。犠牲防食部材330Bを負極外部端子151にのみ接して配置してもよいし、犠牲防食部材330Bをバスバー210aにのみ接して配置してもよい。負極外部端子151にのみ接する犠牲防食部材330B、ならびに、バスバー210aにのみ接する犠牲防食部材330Bの両方を設けてもよい。
―第4の実施の形態―
図21を参照して第4の実施の形態に係る組電池および単電池を説明する。なお、図中、第1の形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図21は、第4の実施の形態に係る組電池のバスバー410cおよび単電池400Aの正極外部端子441の両方に接して配置された犠牲防食部材430A1,430A2を示す図である。
第1の実施の形態では、正極外部端子141および負極外部端子151のそれぞれに、バスバー110が接触される平坦面141s,151sが設けられ、バスバー110が平坦面141s,151sにレーザ溶接されていた(図1参照)。これに対して、第4の実施の形態では、正極外部端子441の平坦面にボルト部441bが突設され、負極外部端子451の平坦面にボルト部451bが突設されている。
第4の実施の形態では、バスバー410cは銅のみにより構成され、バスバー410cの長手方向の一端近傍に正極外部端子441のボルト部441bが挿通される貫通孔が設けられ、バスバー410cの長手方向の他端近傍に負極外部端子451のボルト部451bが挿通される貫通孔が設けられている。
バスバー410cは、一の単電池400A1の正極外部端子441のボルト部441bにナット441cが取り付けられ、他の単電池400A2の負極外部端子451のボルト部441bにナット451cが取り付けられることで、単電池400A1と、単電池400A2とが直列に接続される。複数の単電池400Aが電気的に接続され、組電池が形成される。なお、ナット441cはアルミニウムにより形成され、ナット451cは銅により形成されている。
第4の実施の形態では、アルミニウムからなる正極外部端子441と、銅からなるバスバー410cとが結合されてなる結合部材に、アルミニウムと銅の界面415Aが形成されている。第4の実施の形態では、犠牲防食部材430A1が、正極外部端子441とバスバー410aの両方に接して配置され、犠牲防食部材430A2が、ナット441cの周面と、ナット441cの周囲におけるバスバー410cの表面の両方に接して配置されている。なお、第4の実施の形態では、犠牲防食部材430A1,430A2は、マグネシム箔を採用することが好ましく、接着剤により容易に取り付けることができる。
上述した第4の実施の形態によれば、以下のような作用効果を奏することができる。
組電池は、充放電電流の電流経路にアルミニウムからなる正極外部端子441と銅からなるバスバー410cとが結合された結合部材を有し、この結合部材には、アルミニウムと銅の界面415Aが形成されている。犠牲防食部材430A1は、アルミニウムからなる正極外部端子441および銅からなるバスバー410cの両方に接して配置されている。犠牲防食部材430A1は、アルミニウムよりもイオン化傾向の大きいマグネシウムからなる。これにより、犠牲防食部材430A1が優先的に腐食されるため、アルミニウムの腐食を防止することができる。その結果、界面415Aにおける腐食に起因した接触抵抗の増加を防止することができ、長期に亘って電池の出力の低下を防止することができる。
なお、第4の実施の形態において、犠牲防食部材430A1の取付位置は、犠牲防食効果を発揮させることができる位置に適宜設定することができ、正極外部端子441およびバスバー410cの両方に接するように配置する場合に限られない。犠牲防食部材430A1を正極外部端子441にのみ接して配置してもよいし、犠牲防食部材430A1をバスバー410cにのみ接して配置してもよい。正極外部端子441にのみ接する犠牲防食部材430A1、ならびに、バスバー410cにのみ接する犠牲防食部材430A1の両方を設けてもよい。
―第4の実施の形態の変形例―
図22を参照して第4の実施の形態の変形例に係る組電池および単電池を説明する。なお、図中、第4の形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図22は、第4の実施の形態の変形例に係る組電池のバスバー410aおよび単電池400Bの負極外部端子451の両方に接して配置された犠牲防食部材430B1,430B2を示す図である。
第4の実施の形態では、バスバー410cは銅により構成されていたが、第4の実施の形態の変形例では、バスバー410aはアルミニウムにより構成されている。
バスバー410aは、一の単電池400B1の正極外部端子441のボルト部441bにナット441cが取り付けられ、他の単電池400B2の負極外部端子451のボルト部441bにナット451cが取り付けられることで、単電池400B1と、単電池400B2とが直列に接続される。複数の単電池400Bが電気的に接続され、組電池が形成される。なお、ナット441cはアルミニウムにより形成され、ナット451cは銅により形成されている。
第4の実施の形態の変形例では、アルミニウムからなるバスバー410aと、銅からなる負極外部端子451とが結合されてなる結合部材に、アルミニウムと銅の界面415Bが形成されている。第4の実施の形態の変形例では、犠牲防食部材430B1が、負極外部端子451とバスバー410aの両方に接して配置され、犠牲防食部材430B2が、ナット451cの周面と、ナット451cの周囲におけるバスバー410aの表面の両方に接して配置されている。なお、第4の実施の形態の変形例では、犠牲防食部材430B1,430B2は、マグネシム箔を採用することが好ましく、接着剤により容易に取り付けることができる。
上述した第4の実施の形態の変形例によれば、以下のような作用効果を奏することができる。
組電池は、充放電電流の電流経路にアルミニウムからなるバスバー410aと銅からなる負極外部端子451とが結合された結合部材を有し、この結合部材には、アルミニウムと銅の界面415Bが形成されている。犠牲防食部材430B1は、アルミニウムからなるバスバー410aおよび銅からなる負極外部端子451の両方に接して配置されている。犠牲防食部材430B1は、アルミニウムよりもイオン化傾向の大きいマグネシウムからなる。これにより、犠牲防食部材430B1が優先的に腐食されるため、アルミニウムの腐食を防止することができる。その結果、界面415Bにおける腐食に起因した接触抵抗の増加を防止することができ、長期に亘って電池の出力の低下を防止することができる。
なお、第4の実施の形態の変形例において、犠牲防食部材430B1の取付位置は、犠牲防食効果を発揮させることができる位置に適宜設定することができ、負極外部端子451およびバスバー410aの両方に接するように配置する場合に限られない。犠牲防食部材430B1を負極外部端子451にのみ接して配置してもよいし、犠牲防食部材430B1をバスバー410aにのみ接して配置してもよい。負極外部端子451にのみ接する犠牲防食部材430B1、ならびに、バスバー410aにのみ接する犠牲防食部材430B1の両方を設けてもよい。
―第5の実施の形態―
図23を参照して第5の実施の形態に係る組電池および単電池を説明する。なお、図中、第4の実施の形態と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図23は、第5の実施の形態に係る組電池を構成する単電池500Aの正極外部端子542に設けられた犠牲防食部材530Aを示す図である。
第4の実施の形態では、正極外部端子441は、ボルト部441bと基部441aとが同一の材質により一体に形成されていた(図21参照)。これに対して、第5の実施の形態では、銅からなるボルト部542bと、アルミニウムからなる基部542aとが個別に形成されている。正極外部端子542は、ボルト部542bの端部を基部542aの凹部に嵌合させることで、ボルト部542bと基部542aとが結合されてなる。このため、正極外部端子542には、アルミニウムと銅の界面515Aが形成される。
第5の実施の形態では、犠牲防食部材530Aは、バスバー410cと基部542aとの間において、正極外部端子542のボルト部542bの周面、ならびに、ボルト部542bの周囲における基部542aの平坦面542sの両方に接して配置されている。なお、第5の実施の形態では、犠牲防食部材530Aは、マグネシム箔を採用することが好ましく、接着剤により容易に取り付けることができる。
バスバー410cは、一の単電池500A1の正極外部端子542のボルト部542bにナット542cが取り付けられ、他の単電池500A2の負極外部端子551のボルト部551bにナット551cが取り付けられることで、単電池500A1と、単電池500A2とが直列に接続される。複数の単電池500Aが電気的に接続され、組電池が形成される。なお、ナット542c、および、ナット551cは、それぞれ銅により形成されている。
上述した第5の実施の形態によれば、以下のような作用効果を奏することができる。
単電池500Aは、充放電電流の電流経路にアルミニウムからなる基部542aと銅からなるボルト部542bとが結合され、アルミニウムと銅の界面515Aが形成された正極外部端子542に、犠牲防食部材530Aが設けられている。犠牲防食部材530Aは、アルミニウムからなる基部542aおよび銅からなるボルト部542bの両方に接して配置されている。犠牲防食部材530Aは、アルミニウムよりもイオン化傾向の大きいマグネシウムからなる。これにより、犠牲防食部材530Aが優先的に腐食されるため、アルミニウムの腐食を防止することができる。その結果、界面515Aにおける腐食に起因した接触抵抗の増加を防止することができ、長期に亘って電池の出力の低下を防止することができる。
なお、第5の実施の形態において、犠牲防食部材530Aの取付位置は、犠牲防食効果を発揮させることができる位置に適宜設定することができ、基部542aおよびボルト部542bの両方に接するように配置する場合に限られない。たとえば、犠牲防食部材530Aを基部542aの外周側面にのみ接して配置してもよい。
―第5の実施の形態の変形例―
図24を参照して第5の実施の形態の変形例に係る組電池および単電池を説明する。なお、図中、第4の実施の形態の変形例と同一もしくは相当部分には同一の参照番号を付し、相違点を主に説明する。図24は、第5の実施の形態の変形例に係る組電池を構成する単電池500Bの負極外部端子552に設けられた犠牲防食部材530Bを示す図である。
第4の実施の形態の変形例では、負極外部端子451は、ボルト部451bと基部451aとが同一の材質により一体に形成されていた(図22参照)。これに対して、第5の実施の形態の変形例では、アルミニウムからなるボルト部552bと、銅からなる基部552aとが個別に形成されている。負極外部端子552は、ボルト部552bの端部を基部552aの凹部に嵌合させることで、ボルト部552bと基部552aとが結合されてなる。このため、負極外部端子552には、アルミニウムと銅の界面515Bが形成される。
第5の実施の形態の変形例では、犠牲防食部材530Bは、バスバー410aと基部552aとの間において、負極外部端子552のボルト部552bの周面、ならびに、ボルト部552bの周囲における基部552aの平坦面552sの両方に接して配置されている。なお、第5の実施の形態の変形例では、犠牲防食部材530Bは、マグネシム箔を採用することが好ましく、接着剤により容易に取り付けることができる。
バスバー410aは、一の単電池500B1の正極外部端子541のボルト部541bにナット541cが取り付けられ、他の単電池500B2の負極外部端子552のボルト部552bにナット552cが取り付けられることで、単電池500B1と、単電池500B2とが直列に接続される。複数の単電池500Bが電気的に接続され、組電池が形成される。なお、ナット541c、および、ナット552cは、それぞれアルミニウムにより形成されている。
上述した第5の実施の形態の変形例によれば、以下のような作用効果を奏することができる。
単電池500Bは、充放電電流の電流経路にアルミニウムからなるボルト部552bと銅からなる基部552aとが結合され、アルミニウムと銅の界面515Bが形成された負極外部端子552に、犠牲防食部材530Bが設けられている。犠牲防食部材530Bは、アルミニウムからなるボルト部552bおよび銅からなる基部552aの両方に接して配置されている。犠牲防食部材530Bは、アルミニウムよりもイオン化傾向の大きいマグネシウムからなる。これにより、犠牲防食部材530Bが優先的に腐食されるため、アルミニウムの腐食を防止することができる。その結果、界面515Bにおける腐食に起因した接触抵抗の増加を防止することができ、長期に亘って電池の出力の低下を防止することができる。
なお、第5の実施の形態の変形例において、犠牲防食部材530Bの取付位置は、犠牲防食効果を発揮させることができる位置に適宜設定することができ、基部552aおよびボルト部552bの両方に接するように配置する場合に限られない。たとえば、犠牲防食部材530Bを基部552aの外周側面にのみ接して配置してもよい。
なお、次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
[変形例]
(1)上記した実施の形態では、マグネシウム箔やマグネシウム板が犠牲防食部材として採用され、犠牲防食部材がバスバー110に接して配置される犠牲防食層として形成される例について説明したが、本発明はこれに限定されない。マグネシウムをバスバー110に鋳くるんで犠牲防食層を形成してもよいし、マグネシウム粉末を含んだ塗料をバスバー110に塗布して犠牲防食層を形成してもよいし、マグネシウムめっきにより犠牲防食層を形成してもよい。
(2)上記した実施の形態では、電池容器の形状を角形としたが、本発明はこれに限定されない。断面長円形状の扁平形電池容器や円筒形状の電池容器を備える単電池、および、その単電池を複数備える組電池にも本発明を適用できる。
(3)発電要素は、長尺状の正極電極174および負極電極175をセパレータとともに捲回した捲回電極群170を例に説明したが、図25に示すように、矩形状の正極電極674および負極電極675を矩形状のセパレータ673を介在させて、積層させることで構成される積層電極群にも本発明を適用できる。
(4)ナット441c,541c,552cはそれぞれアルミニウムにより形成される場合に限定されない。ナット451c,542c,551cは、それぞれ銅により形成される場合に限定されない。ナットの材質は、アルミニウムよりもイオン化傾向が小さいものであればよい。たとえば、ステンレス鋼や炭素鋼などの種々の材質でナットを形成することができる。
(5)上記した実施の形態では、ハイブリッド型の電気自動車や純粋な電気自動車に搭載される蓄電装置に組み込まれる組電池について説明したが本発明はこれに限定されない。他の電動車両、たとえばハイブリッド電車などの鉄道車両、バスなどの乗合自動車、トラックなどの貨物自動車、バッテリ式フォークリフトトラックなどの産業車両などの蓄電装置に利用可能な組電池に本発明を適用してもよい。車両に用いられる組電池に限定されることもなく、コンピュータシステムやサーバシステムなどに用いられる無停電電源装置、自家用発電設備に用いられる電源装置などを構成する蓄電装置に組み込まれる組電池にも適用することもできる。
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。

Claims (10)

  1. 第1金属からなる正極外部端子および第2金属からなる負極外部端子をそれぞれ備えた2つの単電池を電気的に接続するための結合部材であって、
    前記第1金属からなる一端側が一方の単電池の前記正極外部端子に接続され、
    前記第2金属からなる他端側が他方の単電池の前記負極外部端子に接続され、
    充放電電流の電流経路に前記第1金属と前記第2金属とが結合され、前記第1金属と前記第2金属の界面が形成されており、
    記第1金属および前記第2金属の両方に接して配置される犠牲防食層を備え、
    前記第1金属は、純アルミニウムまたはアルミニウム合金であり、
    前記第2金属は、純銅または銅合金であり、
    前記犠牲防食層は、前記第1金属よりもイオン化傾向の大きい材質からなり、前記界面を覆うように取り付けられている結合部材
  2. 単電池であって、
    充放電電流の電流経路に第1金属と第2金属とが結合され、前記第1金属と前記第2金属の界面が形成された正極外部端子と、
    前記第2金属からなる負極外部端子と、
    前記正極外部端子において、前記第1金属および前記第2金属の両方に接して配置される犠牲防食層と、を備え、
    前記第1金属は、純アルミニウムまたはアルミニウム合金であり、
    前記第2金属は、純銅または銅合金であり、
    前記犠牲防食層は、前記第1金属よりもイオン化傾向の大きい材質からなり、前記界面を覆うように取り付けられており、
    前記正極外部端子には、前記単電池内の正極集電体に接続される正極基部と、単電池同士を電気的に接続するための導通部材が接続される正極接続部が設けられ、
    前記正極基部は、前記第1金属からなり、
    前記正極接続部は、前記第2金属からなる単電池。
  3. 単電池であって、
    充放電電流の電流経路に第1金属と第2金属とが結合され、前記第1金属と前記第2金属の界面が形成された負極外部端子と、
    前記第1金属からなる正極外部端子と、
    前記負極外部端子において、前記第1金属および前記第2金属の両方に接して配置される犠牲防食層と、を備え、
    前記第1金属は、純アルミニウムまたはアルミニウム合金であり、
    前記第2金属は、純銅または銅合金であり、
    前記犠牲防食層は、前記第1金属よりもイオン化傾向の大きい材質からなり、前記界面を覆うように取り付けられており、
    前記負極外部端子には、前記単電池内の負極集電体に接続される負極基部と、単電池同士を電気的に接続するための導通部材が接続される負極接続部が設けられ、
    前記負極基部は、前記第2金属からなり、
    前記負極接続部は、前記第1金属からなる単電池。
  4. 請求項2に記載の単電池において、
    前記正極外部端子は、第1金属と第2金属の複合材により構成されている単電池。
  5. 請求項3に記載の単電池において、
    前記負極外部端子は、第1金属と第2金属の複合材により構成されている単電池。
  6. 請求項2に記載の単電池において、
    前記正極接続部は、ボルトである単電池。
  7. 請求項3に記載の単電池において、
    前記負極接続部は、ボルトである単電池。
  8. 組電池であって、
    請求項〜7のいずれか1項に記載の単電池を複数備え、
    前記単電池同士が電気的に接続された組電池。
  9. 単電池を複数備え、前記単電池同士が電気的に接続された組電池であって、
    充放電電流の電流経路に第1金属と第2金属とが結合され、前記第1金属と前記第2金属の界面が形成された結合部材と、
    前記結合部材において、前記第1金属および前記第2金属の両方に接して配置される犠牲防食層を備え、
    前記第1金属は、純アルミニウムまたはアルミニウム合金であり、
    前記第2金属は、純銅または銅合金であり、
    前記犠牲防食層は、前記第1金属よりもイオン化傾向の大きい材質からなり、前記界面を覆うように取り付けられ、
    前記単電池同士は、前記第2金属からなる導通部材により電気的に接続され、
    前記結合部材は、前記導通部材と前記第1金属からなる正極外部端子とが結合されてなる組電池。
  10. 単電池を複数備え、前記単電池同士が電気的に接続された組電池であって、
    充放電電流の電流経路に第1金属と第2金属とが結合され、前記第1金属と前記第2金属の界面が形成された結合部材と、
    前記結合部材において、前記第1金属および前記第2金属の両方に接して配置される犠牲防食層を備え、
    前記第1金属は、純アルミニウムまたはアルミニウム合金であり、
    前記第2金属は、純銅または銅合金であり、
    前記犠牲防食層は、前記第1金属よりもイオン化傾向の大きい材質からなり、前記界面を覆うように取り付けられ、
    前記単電池同士は、前記第1金属からなる導通部材により電気的に接続され、
    前記結合部材は、前記導通部材と前記第2金属からなる負極外部端子とが結合されてなる組電池。
JP2014546805A 2012-11-16 2012-11-16 接合部材、単電池および組電池 Active JP6118816B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/079804 WO2014076817A1 (ja) 2012-11-16 2012-11-16 単電池および組電池

Publications (2)

Publication Number Publication Date
JPWO2014076817A1 JPWO2014076817A1 (ja) 2017-01-05
JP6118816B2 true JP6118816B2 (ja) 2017-04-19

Family

ID=50730757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014546805A Active JP6118816B2 (ja) 2012-11-16 2012-11-16 接合部材、単電池および組電池

Country Status (4)

Country Link
US (1) US20150287970A1 (ja)
JP (1) JP6118816B2 (ja)
CN (1) CN104756285A (ja)
WO (1) WO2014076817A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689499B2 (ja) * 2013-05-17 2015-03-25 ファナック株式会社 防錆機能を有するワイヤ放電加工機
DE102013112060A1 (de) * 2013-11-01 2015-05-07 Johnson Controls Advanced Power Solutions Gmbh Elektrochemischer Akkumulator
KR102316343B1 (ko) * 2015-02-24 2021-10-21 삼성에스디아이 주식회사 이차 전지 및 그 모듈
JP6529806B2 (ja) * 2015-03-31 2019-06-12 三洋電機株式会社 二次電池及び組電池
JP6363645B2 (ja) 2016-03-09 2018-07-25 株式会社東芝 電池モジュール、電池、蓄電池、及び電気装置
CN105845881A (zh) * 2016-05-20 2016-08-10 惠州市亿鹏能源科技有限公司 一种动力电池电源模块连接结构
CN106159175A (zh) * 2016-08-12 2016-11-23 东莞力朗电池科技有限公司 一种电池组铜铝导电连接装置
US10593638B2 (en) * 2017-03-29 2020-03-17 Xilinx, Inc. Methods of interconnect for high density 2.5D and 3D integration
CN106992280A (zh) * 2017-04-12 2017-07-28 北京新能源汽车股份有限公司 一种电动汽车的电池系统及电动汽车
DE102018208340A1 (de) * 2018-05-28 2019-11-28 Bayerische Motoren Werke Aktiengesellschaft Zellkontaktieranordnung für ein Energiespeichermodul
CN112602231B (zh) * 2018-08-23 2024-03-19 瑞维安知识产权控股有限责任公司 具有集成的压印可熔联接件的母线
JP7132871B2 (ja) * 2019-02-26 2022-09-07 株式会社豊田自動織機 蓄電モジュール
JP6923099B1 (ja) * 2021-03-23 2021-08-18 秋田県 異種金属接合体およびその製造方法
KR20230142373A (ko) * 2022-04-01 2023-10-11 주식회사 엘지에너지솔루션 배터리셀 및 이를 포함하는 배터리모듈

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766198A (ja) * 1993-06-30 1995-03-10 Kawasaki Steel Corp 半導体装置
JP2001357834A (ja) * 2000-06-16 2001-12-26 Japan Storage Battery Co Ltd 電 池
JP2002358945A (ja) * 2000-11-15 2002-12-13 Ngk Insulators Ltd リチウム二次単電池の接続構造体
JP2007134233A (ja) * 2005-11-11 2007-05-31 Toyota Motor Corp 電池端子構造
JP2007324004A (ja) * 2006-06-01 2007-12-13 Toyota Motor Corp 組電池及び組電池の製造方法
JP5100140B2 (ja) * 2007-01-30 2012-12-19 三洋電機株式会社 電池パック及びその製造方法
JP2009017697A (ja) * 2007-07-05 2009-01-22 Toyota Industries Corp かご型誘導電動機及びかご型誘導電動機の製造方法
JP5528746B2 (ja) * 2009-09-11 2014-06-25 三洋電機株式会社 組電池
US8263255B2 (en) * 2009-10-01 2012-09-11 Sb Limotive Co., Ltd. Rechargeable battery and battery module
JP5481178B2 (ja) * 2009-12-08 2014-04-23 日立ビークルエナジー株式会社 組電池および単電池
JP6014837B2 (ja) * 2011-03-30 2016-10-26 日立金属株式会社 リチウムイオン電池用の負極端子および蓋部材、並びにリチウムイオン電池

Also Published As

Publication number Publication date
US20150287970A1 (en) 2015-10-08
WO2014076817A1 (ja) 2014-05-22
JPWO2014076817A1 (ja) 2017-01-05
CN104756285A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP6118816B2 (ja) 接合部材、単電池および組電池
JP5651557B2 (ja) 単電池および組電池
JP5541250B2 (ja) 二次電池
JP5868265B2 (ja) 単電池および組電池
JP5909504B2 (ja) 電池における溶接構造、その形成方法、二次電池セルおよび二次電池モジュール
JP5663415B2 (ja) 二次電池
JP5795937B2 (ja) 二次電池
JP6550848B2 (ja) 角形二次電池
WO2012169055A1 (ja) 二次電池
JP7368080B2 (ja) 二次電池
KR20140104366A (ko) 축전 소자 및 축전 장치
JP6177908B2 (ja) 二次電池
JP2012009317A (ja) リチウムイオン二次電池および組電池
JP2010527499A (ja) 電気化学単電池及びエネルギー貯蔵装置
KR20170070401A (ko) 전극판에 만입부가 형성되어 있는 전극조립체 및 이를 포함하는 이차전지
KR101821488B1 (ko) 전지
JP6398602B2 (ja) 蓄電素子とその製造方法、および蓄電装置
JP2020149952A (ja) 蓄電素子
WO2022163636A1 (ja) 蓄電素子
WO2023063329A1 (ja) 蓄電素子
CN219017865U (zh) 电池及电子设备
JP7321984B2 (ja) 二次電池
WO2023063328A1 (ja) 蓄電素子
JP2019061893A (ja) 蓄電素子
WO2023063332A1 (ja) 蓄電素子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R150 Certificate of patent or registration of utility model

Ref document number: 6118816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170927

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250