JP6116413B2 - Method for manufacturing power semiconductor device - Google Patents

Method for manufacturing power semiconductor device Download PDF

Info

Publication number
JP6116413B2
JP6116413B2 JP2013143186A JP2013143186A JP6116413B2 JP 6116413 B2 JP6116413 B2 JP 6116413B2 JP 2013143186 A JP2013143186 A JP 2013143186A JP 2013143186 A JP2013143186 A JP 2013143186A JP 6116413 B2 JP6116413 B2 JP 6116413B2
Authority
JP
Japan
Prior art keywords
power semiconductor
oxide film
region
semiconductor device
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013143186A
Other languages
Japanese (ja)
Other versions
JP2015018843A (en
Inventor
伸緒 横村
伸緒 横村
卓 楠
卓 楠
荒木 健
健 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013143186A priority Critical patent/JP6116413B2/en
Publication of JP2015018843A publication Critical patent/JP2015018843A/en
Application granted granted Critical
Publication of JP6116413B2 publication Critical patent/JP6116413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Description

本発明は、焼結性金属接合材を用いて電力用半導体素子を実装した電力用半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a power semiconductor device in which a power semiconductor element is mounted using a sinterable metal bonding material.

半導体装置の中でも電力用半導体装置は、産業用機器から家電・情報端末まで幅広い機器の主電力(パワー)の制御に用いられ、とくに高い信頼性と小型化が求められている。近年、とくに大電流を流すことができ、高温動作も可能なワイドバンドギャップ半導体材料である炭化珪素(SiC)がシリコン(Si)に代わる半導体材料として開発が進められている。   Among semiconductor devices, power semiconductor devices are used to control main power of a wide range of devices from industrial equipment to home appliances and information terminals, and particularly high reliability and miniaturization are required. In recent years, silicon carbide (SiC), which is a wide band gap semiconductor material capable of flowing a particularly large current and capable of high-temperature operation, has been developed as a semiconductor material replacing silicon (Si).

一方、これまで用いられてきたはんだでは、高温動作への対応は困難であり、焼結接合材と呼ばれるナノあるいは、マイクロレベルの金属微粒子を含むペーストによる接合が高温対応の接合技術として提案されている(例えば、特許文献1〜4参照。)。   On the other hand, it has been difficult to cope with high-temperature operation with the solders used so far, and joining with paste containing nano- or micro-level metal fine particles called sintered joining materials has been proposed as a joining technique for high temperatures. (For example, refer to Patent Documents 1 to 4.)

特開2004−525503号公報(段落0016〜0018、図1)JP 2004-525503 A (paragraphs 0016 to 0018, FIG. 1) 特開2006−352080号公報(段落0036〜0064、図1)JP 2006-352080 A (paragraphs 0036 to 0064, FIG. 1) 特開2011−71301号公報(段落0023〜0032、図1〜図5)JP 2011-71301 A (paragraphs 0023 to 0032, FIGS. 1 to 5) 特開2011−249257号公報(段落0031〜0053、図1〜図5)Japanese Patent Laying-Open No. 2011-249257 (paragraphs 0031 to 0053, FIGS. 1 to 5)

このような焼結接合材による接合は、接合時の温度よりも接合後の融点の方が高くなるため、高温運転が想定される電力用半導体装置の信頼性を向上させることが期待できる。しかしながら、焼結接合材は、所定の接合力を得るためには、原理的に接合時に加圧力を必要とする。そのため、焼結接合材を塗布した際の余り部あるいはニジミ部は接合時に圧力の掛からない無加圧状態となり、以降の工程で脱離の可能性がある。この脱離物が製品内に残留すると、様々な不具合を引き起こす可能性があり、信頼性を阻害する要因となっていた。   In such a joining with a sintered joining material, since the melting point after joining becomes higher than the temperature at the time of joining, it can be expected to improve the reliability of the power semiconductor device assumed to be operated at a high temperature. However, in order to obtain a predetermined bonding force, the sintered bonding material in principle requires a pressing force during bonding. For this reason, the surplus part or the blurring part when the sintered joining material is applied is in a non-pressurized state where no pressure is applied during joining, and there is a possibility of detachment in the subsequent steps. If this desorbed substance remains in the product, it may cause various problems, which has been a factor that hinders reliability.

本発明は、上記のような課題を解決するためになされたもので、高温に対応し、かつ信頼性の高い電力用半導体装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power semiconductor device that can cope with high temperatures and has high reliability.

本発明の電力用半導体装置の製造方法は、焼結性金属粒子を含有する接合材を用いて、電力用半導体素子と回路基板との接合を行う電力用半導体装置の製造方法であって、前記回路基板の電極の表面のうち、前記電力用半導体素子の設置領域の外周に所定の領域を残して前記設置領域を囲む第一領域から、前記設置領域に内包される第二領域を除いた領域に、加熱によって酸化膜を形成する工程と、前記設置領域を網羅するように、前記第一領域内に前記接合材を塗布する工程と、前記設置領域に前記電力用半導体素子を設置する工程と、前記回路基板と前記電力用半導体素子との間に圧力をかけながら加熱して、前記焼結性金属粒子の焼結体を形成し、前記電力用半導体素子と前記電極とを接合する工程と、前記酸化膜を溶解する洗浄剤を用い、前記焼結体のうち、前記電力用半導体素子からはみ出た部分を前記酸化膜とともに除去する工程と、を順次実行することを特徴とする。   A method for manufacturing a power semiconductor device according to the present invention is a method for manufacturing a power semiconductor device in which a power semiconductor element and a circuit board are bonded using a bonding material containing sinterable metal particles, Of the surface of the electrode of the circuit board, a region excluding a second region included in the installation region from a first region surrounding the installation region leaving a predetermined region on the outer periphery of the installation region of the power semiconductor element A step of forming an oxide film by heating, a step of applying the bonding material in the first region so as to cover the installation region, and a step of installing the power semiconductor element in the installation region. Heating while applying pressure between the circuit board and the power semiconductor element to form a sintered body of the sinterable metal particles, and joining the power semiconductor element and the electrode; , A cleaning agent that dissolves the oxide film There, among the sintered body, and executes a step of removing the protruding portion from the power semiconductor element together with the oxide film, sequentially.

本発明の電力用半導体装置の製造方法によれば、接合時に加圧されなかった焼結体の残留を抑制できるので、高温に対応し、かつ信頼性が高い電力用半導体装置を得ることができる。   According to the method for manufacturing a power semiconductor device of the present invention, it is possible to suppress the remaining of the sintered body that has not been pressurized at the time of joining, and thus it is possible to obtain a power semiconductor device that can handle high temperatures and has high reliability. .

本発明の実施の形態1にかかる電力用半導体装置の製造方法を用いて製造した電力用半導体装置の平面図および断面図である。It is the top view and sectional drawing of the power semiconductor device manufactured using the manufacturing method of the power semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電力用半導体装置の製造方法における製造工程ごとの部分断面図である。It is a fragmentary sectional view for every manufacturing process in the manufacturing method of the semiconductor device for electric power concerning Embodiment 1 of the present invention. 本発明の実施の形態2にかかる電力用半導体装置の製造方法を用いて製造した電力用半導体装置の平面図および断面図である。It is the top view and sectional drawing of a power semiconductor device manufactured using the manufacturing method of the power semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる電力用半導体装置の製造方法における製造工程ごとの部分断面図である。It is a fragmentary sectional view for every manufacturing process in the manufacturing method of the semiconductor device for electric power concerning Embodiment 2 of the present invention. 本発明の各実施の形態にかかる電力用半導体装置の製造方法の効果を確認するための試験結果を示す図である。It is a figure which shows the test result for confirming the effect of the manufacturing method of the semiconductor device for electric power concerning each embodiment of this invention. 本発明の各実施の形態にかかる電力用半導体装置の製造方法の効果を確認するための試験結果を示す図である。It is a figure which shows the test result for confirming the effect of the manufacturing method of the semiconductor device for electric power concerning each embodiment of this invention.

実施の形態1.
図1および図2は、本発明の実施の形態1にかかる電力用半導体装置の製造方法について説明するためのものであって、図1は本製造方法で製造した電力用半導体装置の構成を示すもので、図1(a)は平面図、図1(b)は図1(a)におけるB−B線による断面図である。図2(a)〜(f)は、本製造方法を説明するためのもので、図1(a)のB−B線による断面図のうち、絶縁基材より上側の部分に相当する部分の製造工程ごとの状態を示す図である。
Embodiment 1 FIG.
1 and 2 are for explaining a method for manufacturing a power semiconductor device according to a first embodiment of the present invention. FIG. 1 shows a configuration of a power semiconductor device manufactured by the present manufacturing method. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line BB in FIG. 2 (a) to 2 (f) are for explaining the manufacturing method, and in the cross-sectional view taken along the line BB in FIG. 1 (a), the portion corresponding to the portion above the insulating substrate. It is a figure which shows the state for every manufacturing process.

本実施の形態1にかかる電力用半導体装置の製造方法の説明の前に、本製造方法により得られた電力用半導体装置の基本構成について、図1を用いて説明する。電力用半導体装置10は窒化ケイ素(Si)等のセラミックス板を絶縁基材4iとし、両面に銅(Cu)の電極4f、4rをろう付け処理した30mm×40mm×1mmtの回路基板4と、回路基板4の回路面側の電極4fの所定領域に焼結接合材による接合層2を介して裏面が接合された9mm×9mm大の電力用半導体素子1とを備えている。そして、電極4fの電力用半導体素子1が接合された領域は、他の領域よりも厚みが厚く、接合層2との境界部分に2μm以上の部分金(Au)メッキ層(被覆膜3)が形成されている。 Prior to the description of the manufacturing method of the power semiconductor device according to the first embodiment, the basic configuration of the power semiconductor device obtained by the manufacturing method will be described with reference to FIG. The power semiconductor device 10 is a circuit board 4 of 30 mm × 40 mm × 1 mmt in which a ceramic plate such as silicon nitride (Si 3 N 4 ) is used as an insulating base 4i and copper (Cu) electrodes 4f and 4r are brazed on both sides. And a 9 mm × 9 mm large power semiconductor element 1 having a back surface bonded to a predetermined region of the electrode 4 f on the circuit surface side of the circuit board 4 via a bonding layer 2 made of a sintered bonding material. And the area | region where the power semiconductor element 1 of the electrode 4f was joined is thicker than another area | region, and a partial gold (Au) plating layer (covering film 3) of 2 micrometers or more in the boundary part with the joining layer 2 Is formed.

電力用半導体素子1は、例えば、スイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)を用いた場合、裏面にはコレクタ電極が形成され、主面(表面)には主電力電極であるエミッタ電極と、制御電極であるゲート電極が形成されている。さらに、電力用半導体素子1としては、MOSFET(Metal Oxide Semiconductor Field-Effect Transistor)の他、整流素子であるSBD(Schottky Barrier diode)、FWD(Free Wheeling Diode)などを用いることができる。   For example, when an IGBT (Insulated Gate Bipolar Transistor) is used as a switching element, the power semiconductor element 1 has a collector electrode formed on the back surface and an emitter electrode that is a main power electrode on the main surface (front surface). A gate electrode, which is an electrode, is formed. Furthermore, as the power semiconductor element 1, in addition to a MOSFET (Metal Oxide Semiconductor Field-Effect Transistor), an SBD (Schottky Barrier Diode), an FWD (Free Wheeling Diode), or the like, which is a rectifier element, can be used.

なお、回路基板4の電極4rおよび、電力用半導体素子1の表面側には、外部回路との電気接続を行うための図示しない電極端子等が接合され、回路面の反対側である電極4rには、電力用半導体素子1で発生した熱を除去するために、図示しない冷却部材が設けられている。そして、電力用半導体素子1を含む回路面は図示しない封止樹脂で覆われていることが一般的に行われている。しかし、この段落で説明した部分は、本発明には、直接関係しない部分であるので、これらの説明を省略して製造方法の説明に移る。なお、以下、サイズや工程に関する記載の際は、電力用半導体素子1を「チップ」と称する。   An electrode terminal (not shown) for electrical connection with an external circuit is joined to the electrode 4r of the circuit board 4 and the surface side of the power semiconductor element 1, and the electrode 4r on the opposite side of the circuit surface is joined to the electrode 4r. In order to remove the heat generated in the power semiconductor element 1, a cooling member (not shown) is provided. The circuit surface including the power semiconductor element 1 is generally covered with a sealing resin (not shown). However, since the part described in this paragraph is a part not directly related to the present invention, the description is omitted and the description shifts to the manufacturing method. Hereinafter, the power semiconductor element 1 will be referred to as a “chip” when describing the size and process.

図2(a)に示すように、電極4fのうち、電力用半導体素子1を接合する領域(設置領域:9mm×9mm)に、部分金メッキにより厚さ2μm以上の被覆膜3を形成する。この被覆膜3は、次の熱処理工程にて、下地の銅が酸化するのを防ぐ役割があり、ピンホール等の欠陥が形成されないよう注意する必要がある。なお、上記の条件(所定領域で下地の銅が酸化するのを防ぐ)を満たすならば被覆方法は問わない。また、被覆金属も金に限らず、後述する酸化膜を形成する工程で酸化を防ぐものであれば、例えば、白金(Pt)、パラジウム(Pd)等の貴金属を用いることができる。   As shown in FIG. 2A, a coating film 3 having a thickness of 2 μm or more is formed by partial gold plating in a region (installation region: 9 mm × 9 mm) of the electrode 4f where the power semiconductor element 1 is bonded. This coating film 3 has a role of preventing the underlying copper from being oxidized in the next heat treatment step, and care must be taken so that no defects such as pinholes are formed. Note that the coating method is not limited as long as the above conditions (preventing oxidation of the underlying copper in a predetermined region) are satisfied. Further, the coating metal is not limited to gold, and a noble metal such as platinum (Pt) or palladium (Pd) can be used as long as it prevents oxidation in the step of forming an oxide film described later.

また、被覆膜3のサイズ(被覆領域)に関して、チップサイズよりも少し小さなサイズとしても良い。この場合、被覆膜3が電力用半導体素子1の設置領域からはみ出るというチップマウント時の位置ズレリスクを軽減することができる。なお、この場合、次の工程中の構造として、チップ直下に酸化膜が食い込む形となるが、その食い込み程度を制限することで、接合に関する問題も回避することができる。少し小さなサイズの領域としては、例えば、その外周が、チップの中心よりも側部に近い位置になる領域などがある。   Further, the size of the coating film 3 (covering region) may be a little smaller than the chip size. In this case, the positional deviation risk at the time of chip mounting that the coating film 3 protrudes from the installation region of the power semiconductor element 1 can be reduced. In this case, as a structure in the next process, an oxide film bites in immediately below the chip. However, by limiting the biting level, a problem related to bonding can be avoided. As an area of a slightly smaller size, for example, there is an area where the outer periphery is located closer to the side than the center of the chip.

このように一部に被覆膜3を形成した回路基板4(上述したように、図では電極4fより上側部分のみ表示)に大気中で200〜400℃の温度で熱処理を行い、図2(b)に示すように、電極4fの表面に、銅の酸化膜5を形成した。酸化膜5の組成(例えば、CuOあるいはCuOのどちらであるか等)は問わないが、厚みは所定(230nm)以上に形成した。このとき、電極4fの表面のうち、チップ接合部となる領域は、被覆膜3が形成されているため、酸化を防ぐことができる。 The circuit board 4 having the coating film 3 partially formed in this way (as described above, only the upper part of the electrode 4f is shown in the figure) is heat-treated in the atmosphere at a temperature of 200 to 400 ° C. As shown in b), a copper oxide film 5 was formed on the surface of the electrode 4f. The composition of the oxide film 5 (for example, whether it is CuO or Cu 2 O, etc.) does not matter, but the thickness is formed to be a predetermined (230 nm) or more. At this time, since the coating film 3 is formed in the region of the surface of the electrode 4f that serves as the chip bonding portion, oxidation can be prevented.

次に、図2(c)に示すように、回路基板4のチップ接合領域に、ナノ銀(Ag)粒子による焼結接合材のペースト2Pを印刷する。印刷サイズは、10mm×10mmと、チップ設置領域を内包するように、チップサイズよりも意図的に大きくし、印刷位置ズレがあっても、マウント時にチップが印刷エリア外に出ないようにした。印刷厚みは、接合後の段階で、接合層厚みが10〜100μmとなる厚みとした。なお、焼結接合材も銀に限ることなく、電力用半導体素子1と電極4f(あるいは被覆膜3)とを接合できるのであれば、他の材料であってもよい。   Next, as shown in FIG. 2 (c), a paste 2 </ b> P of a sintered bonding material made of nano silver (Ag) particles is printed on the chip bonding region of the circuit board 4. The print size is 10 mm × 10 mm, which is intentionally larger than the chip size so as to include the chip installation area, so that the chip does not come out of the print area when mounted even if there is a print position shift. The printing thickness was set to a thickness at which the bonding layer thickness was 10 to 100 μm at the stage after bonding. The sintered bonding material is not limited to silver, and may be other materials as long as the power semiconductor element 1 and the electrode 4f (or the coating film 3) can be bonded.

印刷後、図2(d)に示すように、電極4fの被覆膜3で被覆された領域を内包するように電力用半導体素子1をマウントする。そして、10〜50MPaの圧力を掛けながら、200〜400℃に加熱することで、焼結銀による電力用半導体素子1と電極4fとの接合層2が形成される。   After printing, as shown in FIG. 2D, the power semiconductor element 1 is mounted so as to enclose the region covered with the coating film 3 of the electrode 4f. And the joining layer 2 of the semiconductor element 1 for electric power and the electrode 4f by sintered silver is formed by heating at 200-400 degreeC, applying a pressure of 10-50 Mpa.

上記のように電力用半導体素子1が接合された回路基板4に、(銅酸化膜)除去剤を用いて湿式超音波洗浄を実施し、回路基板4上の酸化膜5を除去する。この際、図2(e)に示すように、酸化膜5上の各種異物、汚れも除去剤によって除去された除去酸化膜5Rと一緒に除去される。なお、ペースト2Pには、銅酸化膜還元剤が添加されているため、自然酸化膜程度の被膜であれば印刷後に還元される。そのため、大気中での熱処理工程を経ずに接合を行うと、チップ接合エリアからはずれた電極表面のうち、ペースト2Pが塗布された部分の酸化被膜が除去されてしまい、焼結銀との部分接合が進行するので、洗浄後にも無加圧の焼結銀が電極4f上に残留してしまう。   The circuit board 4 to which the power semiconductor element 1 is bonded as described above is subjected to wet ultrasonic cleaning using a (copper oxide film) remover, and the oxide film 5 on the circuit board 4 is removed. At this time, as shown in FIG. 2E, various foreign matters and dirt on the oxide film 5 are also removed together with the removed oxide film 5R removed by the remover. In addition, since the copper oxide film reducing agent is added to the paste 2P, if it is a film about a natural oxide film, it is reduced after printing. Therefore, when bonding is performed without passing through a heat treatment step in the atmosphere, the oxide film on the portion of the electrode surface that is off the chip bonding area where the paste 2P is applied is removed, and the portion with the sintered silver is removed. Since joining proceeds, unpressurized sintered silver remains on the electrode 4f even after cleaning.

しかし、本実施の形態1にかかる電力用半導体装置の製造方法では、接合工程の前に、大気中(酸化雰囲気)での熱処理により、被覆膜3が形成された部分を取り巻く領域には、所定厚み以上の(銅)酸化膜5が形成されている。そのため、洗浄による酸化膜を除去する段階でも、被覆膜3が形成された領域の外側の部分では、ペースト2Pと電極4fとの間には、酸化膜5が介在する。つまり、焼結銀のうち、接合層2として寄与しない無加圧の部分(無加圧部2R)と電極4fの金属銅との間には酸化膜5が存在する。その結果、チップ直下から外れた印刷余り部、ニジミ部(無加圧部2R)は、湿式超音波洗浄により、図2(f)のように除去酸化膜5Rと一緒に除去される。   However, in the method for manufacturing the power semiconductor device according to the first embodiment, the region surrounding the portion where the coating film 3 is formed by heat treatment in the atmosphere (oxidizing atmosphere) before the bonding step is A (copper) oxide film 5 having a predetermined thickness or more is formed. Therefore, even in the stage of removing the oxide film by cleaning, the oxide film 5 is interposed between the paste 2P and the electrode 4f in the portion outside the region where the coating film 3 is formed. That is, the oxide film 5 exists between the non-pressurized part (non-pressurized part 2R) which does not contribute as the joining layer 2 among sintered silver, and the metal copper of the electrode 4f. As a result, the excess printing portion and the blurring portion (non-pressurized portion 2R) deviated from immediately below the chip are removed together with the removed oxide film 5R as shown in FIG. 2F by wet ultrasonic cleaning.

洗浄後、回路基板4と図示しないベース板を還元性雰囲気リフローによりはんだ接合し、図示しないモジュール用ケースに取り付け、ワイヤーボンド結線し、樹脂による封止を行うことで、電力用半導体装置10を作製した。この洗浄後の工程には、例えばワイヤーボンド結線の際の振動など、接合層2およびその周辺部分に衝撃が加わる工程があるが、酸化膜5と一緒に無加圧部2Rを除去しているため、脱離物は形成されなかった。   After cleaning, the circuit board 4 and a base plate (not shown) are solder-bonded by reductive atmosphere reflow, attached to a module case (not shown), wire-bonded, and sealed with resin to produce the power semiconductor device 10. did. In this post-cleaning process, for example, there is a process in which impact is applied to the bonding layer 2 and its peripheral part such as vibration during wire bond connection, but the non-pressurized part 2R is removed together with the oxide film 5. Therefore, no desorbed material was formed.

なお、例えば、酸化膜5の代わりに、有機物によるマスキングを施した場合、洗浄工程後にマスキングの一部が残留して、回路部材を汚染し、動作信頼性が損なわれることが懸念される。しかし、本実施の形態1にかかる電力用半導体装置の製造方法のように、無加圧部2Rを除去するための膜として、もともと電極4fを構成した金属(銅)の酸化膜5を用いているので、除去後に不純物が残ることなく、信頼性を損ねる心配もない。   For example, when masking with an organic substance is performed instead of the oxide film 5, there is a concern that a part of the masking remains after the cleaning process, contaminates the circuit member and impairs the operation reliability. However, as in the method for manufacturing the power semiconductor device according to the first embodiment, the metal (copper) oxide film 5 originally constituting the electrode 4f is used as the film for removing the non-pressurized portion 2R. As a result, no impurities remain after removal, and there is no fear of impairing reliability.

比較例として、チップ接合部である9mm×9mmの領域に被覆膜3を形成せず、熱処理工程を経ずに接合を行い、電力用半導体装置を作製した結果、ワイヤーボンド結線工程における振動にて、焼結銀の脱離物が検出された。   As a comparative example, the coating film 3 was not formed in the 9 mm × 9 mm region that is the chip bonding portion, and bonding was performed without going through the heat treatment process, and as a result, a power semiconductor device was manufactured. As a result, detachment of sintered silver was detected.

以上のように、本発明の実施の形態1にかかる電力用半導体装置の製造方法によれば、焼結性金属粒子を含有する接合材(ペースト2P)を用いて、電力用半導体素子1と回路基板4との接合を行う電力用半導体装置10の製造方法であって、回路基板4の電極4fの表面のうち、電力用半導体素子1の設置領域に内包される領域(接合領域)に貴金属の被覆膜3を形成する工程と、加熱によって酸化膜5を形成する工程と、設置領域を網羅するように、設置領域の外周に所定の領域を残して設置領域を囲む領域に接合材(ペースト2P)を塗布する工程と、設置領域に、電力用半導体素子1を設置する工程と、回路基板4と電力用半導体素子1との間に圧力をかけながら加熱して、焼結性金属粒子の焼結体(接合層2)を形成し、電力用半導体素子1と電極4fとを接合する工程と、酸化膜5を溶解する洗浄剤(酸化膜除去剤)を用い、焼結体のうち、電力用半導体素子1からはみ出た部分(無加圧部2R)を酸化膜5とともに除去する工程と、を順次実行するように構成したので、接合時に加圧されなかった焼結体(無加圧部2R)の残留を抑制できるので、高温に対応し、かつ信頼性が高い電力用半導体装置10を得ることができる。   As described above, according to the method for manufacturing the power semiconductor device according to the first embodiment of the present invention, the power semiconductor element 1 and the circuit are formed using the bonding material (paste 2P) containing the sinterable metal particles. In the method for manufacturing the power semiconductor device 10 for bonding to the substrate 4, a region (bonding region) of the surface of the electrode 4 f of the circuit substrate 4 that is included in the installation region of the power semiconductor element 1 (bonding region) is made of noble metal. A step of forming the coating film 3, a step of forming the oxide film 5 by heating, and a bonding material (paste) in a region surrounding the installation region leaving a predetermined region on the outer periphery of the installation region so as to cover the installation region 2P), a step of installing the power semiconductor element 1 in the installation region, and heating while applying pressure between the circuit board 4 and the power semiconductor element 1, Form a sintered body (bonding layer 2) The portion of the sintered body that protrudes from the power semiconductor element 1 (non-pressurized portion) using a step of bonding the body element 1 and the electrode 4f and a cleaning agent (oxide film removing agent) that dissolves the oxide film 5 2R) together with the oxide film 5 are sequentially executed, so that it is possible to suppress the remaining of the sintered body (non-pressurized portion 2R) that has not been pressurized at the time of joining. In addition, a highly reliable power semiconductor device 10 can be obtained.

実施の形態2.
上記実施の形態1にかかる電力用半導体装置の製造方法では、チップ接合領域を確保するために被覆膜を形成する例について説明した。本実施の形態2にかかる電力用半導体装置の製造方法では、酸化膜を部分的に除去することにより、チップ接合領域を形成する例について説明する。
Embodiment 2. FIG.
In the method for manufacturing the power semiconductor device according to the first embodiment, the example in which the coating film is formed in order to secure the chip bonding region has been described. In the method for manufacturing the power semiconductor device according to the second embodiment, an example in which the chip bonding region is formed by partially removing the oxide film will be described.

図3および図4は、本発明の実施の形態2にかかる電力用半導体装置の製造方法について説明するためのものであって、図3は本製造方法で製造した電力用半導体装置の構成を示すもので、図3(a)は平面図、図3(b)は図3(a)におけるB−B線による断面図である。図4(a)〜(g)は、本製造方法を説明するためのもので、図3(a)のB−B線による断面図のうち、絶縁基材より上側の部分に相当する部分の製造工程ごとの状態を示す図である。なお、実施の形態1と同様の部分については同じ符号を付し、詳細な説明は省略する。   3 and 4 are for explaining a method for manufacturing a power semiconductor device according to the second embodiment of the present invention, and FIG. 3 shows a configuration of the power semiconductor device manufactured by the present manufacturing method. FIG. 3 (a) is a plan view, and FIG. 3 (b) is a cross-sectional view taken along line BB in FIG. 3 (a). 4 (a) to 4 (g) are for explaining the manufacturing method, and in the cross-sectional view taken along the line BB in FIG. 3 (a), the portion corresponding to the portion above the insulating substrate. It is a figure which shows the state for every manufacturing process. In addition, the same code | symbol is attached | subjected about the part similar to Embodiment 1, and detailed description is abbreviate | omitted.

本実施の形態2にかかる電力用半導体装置の製造方法の説明の前に、本製造方法により得られた電力用半導体装置の基本構成について、図3を用いて説明する。電力用半導体装置10は窒化ケイ素(Si)等のセラミックス板を絶縁基材4iとし、両面に銅(Cu)の電極4f、4rをろう付け処理した30mm×40mm×1mmtの回路基板4と、回路基板4の回路面側の電極4fの所定領域に焼結接合材による接合層2を介して裏面が接合された9mm×9mm大の電力用半導体素子1とを備えている。 Prior to the description of the method for manufacturing the power semiconductor device according to the second embodiment, the basic configuration of the power semiconductor device obtained by this manufacturing method will be described with reference to FIG. The power semiconductor device 10 is a circuit board 4 of 30 mm × 40 mm × 1 mmt in which a ceramic plate such as silicon nitride (Si 3 N 4 ) is used as an insulating base 4i and copper (Cu) electrodes 4f and 4r are brazed on both sides. And a 9 mm × 9 mm large power semiconductor element 1 having a back surface bonded to a predetermined region of the electrode 4 f on the circuit surface side of the circuit board 4 via a bonding layer 2 made of a sintered bonding material.

つぎに、製造方法について図4を用いて説明する。
はじめに、回路基板4(上述したように、図では電極4fより上側部分のみ表示)を大気中で200〜400℃の温度で熱処理を行い、図4(b)に示すように、電極4fの表面に、銅の酸化膜5を形成した。酸化膜5の組成(例えば、CuOあるいはCuOのどちらであるか等)は問わないが、厚みは所定(230nm)以上に形成した。
Next, the manufacturing method will be described with reference to FIG.
First, the circuit board 4 (as shown above, only the portion above the electrode 4f is shown) is heat-treated in the atmosphere at a temperature of 200 to 400 ° C., and as shown in FIG. 4B, the surface of the electrode 4f Then, a copper oxide film 5 was formed. The composition of the oxide film 5 (for example, whether it is CuO or Cu 2 O, etc.) does not matter, but the thickness is formed to be a predetermined (230 nm) or more.

つぎに、図4(c)に示すように、酸化膜5のうち、電力用半導体素子1を接合する領域(9mm×9mm)部分5Eのみ、部分的にエッチングして除去した。酸化膜5の除去方法は、化学処理、物理処理を問わない。また、部分エッチングのサイズ(除去領域)に関して、チップサイズよりも少し小さなサイズとしても良い。この場合、除去領域が電力用半導体素子1の設置領域からはみ出るというチップマウント時の位置ズレリスクを軽減することができる。なお、この場合、次の工程中の構造として、チップ直下に酸化膜が食い込む形となるが、その食い込み程度を制限することで、接合に関する問題も回避することができる。   Next, as shown in FIG. 4C, only the region (9 mm × 9 mm) portion 5E to which the power semiconductor element 1 is bonded is partially removed by etching. The removal method of the oxide film 5 may be any chemical treatment or physical treatment. Further, the size of the partial etching (removal region) may be a little smaller than the chip size. In this case, the positional deviation risk at the time of chip mounting that the removal region protrudes from the installation region of the power semiconductor element 1 can be reduced. In this case, as a structure in the next process, an oxide film bites in immediately below the chip. However, by limiting the biting level, a problem related to bonding can be avoided.

次に、図4(d)に示すように、回路基板4のチップ接合領域に、ナノ銀(Ag)粒子による焼結接合材のペースト2Pを印刷する。印刷サイズは、10mm×10mmと、チップ設置領域を内包するように、チップサイズよりも意図的に大きくし、印刷位置ズレがあっても、マウント時にチップが印刷エリア外に出ないようにした。印刷厚みは、接合後の段階で、接合層厚みが10〜100μmとなる厚みとした。   Next, as shown in FIG. 4 (d), a paste 2 </ b> P of a sintered bonding material made of nano silver (Ag) particles is printed on the chip bonding region of the circuit board 4. The print size is 10 mm × 10 mm, which is intentionally larger than the chip size so as to include the chip installation area, so that the chip does not come out of the print area when mounted even if there is a print position shift. The printing thickness was set to a thickness at which the bonding layer thickness was 10 to 100 μm at the stage after bonding.

印刷後、図4(e)に示すように、電極4fの酸化膜5が部分エッチングされた領域を内包するように電力用半導体素子1をマウントする。そして、10〜50MPaの圧力を掛けながら、200〜400℃に加熱することで、焼結銀による電力用半導体素子1と電極4fとの接合層2が形成される。   After printing, as shown in FIG. 4E, the power semiconductor element 1 is mounted so as to include a region where the oxide film 5 of the electrode 4f is partially etched. And the joining layer 2 of the semiconductor element 1 for electric power and the electrode 4f by sintered silver is formed by heating at 200-400 degreeC, applying a pressure of 10-50 Mpa.

上記のように電力用半導体素子1が接合された回路基板4に、(銅酸化膜)除去剤を用いて湿式超音波洗浄を実施し、回路基板4上の酸化膜5を除去する。この際、図4(f)に示すように、酸化膜5上の各種異物、汚れも除去剤によって除去された除去酸化膜5Rと一緒に除去される。なお、ペースト2Pには、銅酸化膜還元剤が添加されているため、自然酸化膜程度の被膜であれば印刷後に還元される。そのため、大気中での熱処理工程を経ずに接合を行うと、チップ接合エリアからはずれた電極表面のうち、ペースト2Pが塗布された部分の酸化被膜が除去されてしまい、焼結銀との部分接合が進行するので、洗浄後にも無加圧の焼結銀が電極4f上に残留してしまう。   The circuit board 4 to which the power semiconductor element 1 is bonded as described above is subjected to wet ultrasonic cleaning using a (copper oxide film) remover, and the oxide film 5 on the circuit board 4 is removed. At this time, as shown in FIG. 4F, various foreign matters and dirt on the oxide film 5 are also removed together with the removed oxide film 5R removed by the remover. In addition, since the copper oxide film reducing agent is added to the paste 2P, if it is a film about a natural oxide film, it is reduced after printing. Therefore, when bonding is performed without passing through a heat treatment step in the atmosphere, the oxide film on the portion of the electrode surface that is off the chip bonding area where the paste 2P is applied is removed, and the portion with the sintered silver is removed. Since joining proceeds, unpressurized sintered silver remains on the electrode 4f even after cleaning.

しかし、本実施の形態2にかかる電力用半導体装置の製造方法では、接合工程の前に、大気中(酸化雰囲気)での熱処理により、部分エッチングで除去された部分を取り巻く領域には、所定厚み以上の(銅)酸化膜5が形成されている。そのため、洗浄による酸化膜を除去する段階でも、接合領域の外側の部分では、ペースト2Pと電極4fとの間には、酸化膜5が介在する。つまり、焼結銀のうち、接合層2として寄与しない無加圧の部分(無加圧部2R)と電極4fの金属銅との間には酸化膜5が存在する。その結果、チップ直下から外れた印刷余り部、ニジミ部(無加圧部2R)は、湿式超音波洗浄により、図4(g)のように除去酸化膜5Rと一緒に除去される。   However, in the method of manufacturing the power semiconductor device according to the second embodiment, the region surrounding the portion removed by the partial etching by the heat treatment in the atmosphere (oxidizing atmosphere) before the bonding step has a predetermined thickness. The above (copper) oxide film 5 is formed. Therefore, even in the stage of removing the oxide film by cleaning, the oxide film 5 is interposed between the paste 2P and the electrode 4f in the portion outside the bonding region. That is, the oxide film 5 exists between the non-pressurized part (non-pressurized part 2R) which does not contribute as the joining layer 2 among sintered silver, and the metal copper of the electrode 4f. As a result, the excess printing part and the blurring part (non-pressurized part 2R) deviated from immediately below the chip are removed together with the removed oxide film 5R as shown in FIG. 4G by wet ultrasonic cleaning.

洗浄後、回路基板4と図示しないベース板を還元性雰囲気リフローによりはんだ接合し、図示しないモジュール用ケースに取り付け、ワイヤーボンド結線し、樹脂による封止を行うことで、電力用半導体装置10を作製した。この洗浄後の工程には、例えばワイヤーボンド結線の際の振動など、接合層2およびその周辺部分に衝撃が加わる工程があるが、酸化膜5と一緒に無加圧部2Rを除去しているため、脱離物は形成されなかった。   After cleaning, the circuit board 4 and a base plate (not shown) are solder-bonded by reductive atmosphere reflow, attached to a module case (not shown), wire-bonded, and sealed with resin to produce the power semiconductor device 10. did. In this post-cleaning process, for example, there is a process in which impact is applied to the bonding layer 2 and its peripheral part such as vibration during wire bond connection, but the non-pressurized part 2R is removed together with the oxide film 5. Therefore, no desorbed material was formed.

比較例として、熱処理による酸化膜形成工程を経ずに接合を行い、電力用半導体装置を作製した結果、ワイヤーボンド結線工程における振動にて、焼結銀の脱離物が検出された。   As a comparative example, joining was carried out without an oxide film forming step by heat treatment, and a power semiconductor device was produced. As a result, a detachment of sintered silver was detected by vibration in the wire bond connecting step.

以上のように、本実施の形態2にかかる電力用半導体装置の製造方法によれば、焼結性金属粒子を含有する接合材(ペースト2P)を用いて、電力用半導体素子1と回路基板4との接合を行う電力用半導体装置10の製造方法であって、回路基板4の電極4fの表面に加熱によって酸化膜5を形成する工程と、前記酸化膜5のうち、電力用半導体素子1の設置領域に内包される領域(接合領域)の部分をエッチングによって除去する工程と、設置領域を網羅するように、設置領域の外周に所定の領域を残して設置領域を囲む領域に接合材(ペースト2P)を塗布する工程と、設置領域に電力用半導体素子1を設置する工程と、回路基板4と電力用半導体素子1との間に圧力をかけながら加熱して、焼結性金属粒子の焼結体(接合層2)を形成し、電力用半導体素子1と電極4fとを接合する工程と、酸化膜5を溶解する洗浄剤(酸化膜除去剤)を用い、焼結体のうち、電力用半導体素子1からはみ出た部分(無加圧部2R)を酸化膜5とともに除去する工程と、を順次実行するように構成したので、接合時に加圧されなかった焼結体(無加圧部2R)の残留を抑制できるので、高温に対応し、かつ信頼性が高い電力用半導体装置10を得ることができる。   As described above, according to the manufacturing method of the power semiconductor device according to the second embodiment, the power semiconductor element 1 and the circuit board 4 are used using the bonding material (paste 2P) containing the sinterable metal particles. A method of manufacturing the power semiconductor device 10 for bonding to the surface of the electrode 4f of the circuit board 4 by heating, and the step of forming the power semiconductor element 1 of the oxide film 5 The step of removing the region (bonding region) included in the installation region by etching, and the bonding material (paste) in the region surrounding the installation region leaving the predetermined region on the outer periphery of the installation region so as to cover the installation region 2P), the step of installing the power semiconductor element 1 in the installation region, and heating while applying pressure between the circuit board 4 and the power semiconductor element 1 to sinter the sintered metal particles. Forming a bonded body (bonding layer 2) The step of joining the power semiconductor element 1 and the electrode 4f and a cleaning agent (oxide film removing agent) that dissolves the oxide film 5 are used. Since the step of removing the pressurizing portion 2R) together with the oxide film 5 is sequentially performed, the residual of the sintered body (no pressurizing portion 2R) that has not been pressurized at the time of bonding can be suppressed. And the power semiconductor device 10 with high reliability can be obtained.

<接合材除去効果評価試験>
つぎに、上述した各製造方法における不要な焼結銀を除去する効果を検証するため、酸化膜5の厚みをパラメータとする焼結銀(接合材)除去効果評価試験を行った。
<Bonding material removal effect evaluation test>
Next, in order to verify the effect of removing unnecessary sintered silver in each of the manufacturing methods described above, a sintered silver (bonding material) removal effect evaluation test using the thickness of the oxide film 5 as a parameter was performed.

試験は、以下のようにして行った。
回路基板4単位をサンプルとし、サンプルごとに、大気中での温度と保持時間を変えて電極4f上に厚みの異なる酸化膜5を形成する。そして、各サンプルの電極4f上に同じ条件(ペースト2P塗布、乾燥(130℃、30分)、接合(10MPa、250℃、5分))で焼結銀を形成する。電極4f上に焼結銀が形成されたサンプルに対して酸化膜除去洗浄液を用いた超音波洗浄により、焼結銀を除去し、最終的に焼結銀が残留したか否かを評価する。
The test was conducted as follows.
The circuit board 4 unit is used as a sample, and the oxide film 5 having a different thickness is formed on the electrode 4f by changing the temperature and holding time in the atmosphere for each sample. Then, sintered silver is formed on the electrode 4f of each sample under the same conditions (application of paste 2P, drying (130 ° C., 30 minutes), bonding (10 MPa, 250 ° C., 5 minutes)). The sample in which the sintered silver is formed on the electrode 4f is subjected to ultrasonic cleaning using an oxide film removing cleaning solution to remove the sintered silver and finally evaluate whether or not the sintered silver remains.

図4と図5は、それぞれ本評価結果を表形式で示すものであり、1段目はサンプル番号、2段目の上段は酸化膜を形成する際の処理条件、下段は形成された酸化膜の厚みを示す。そして、3段目はサンプルの工程ごとの状態を示す写真(平面)で、上段がペースト印刷前の状態、中断がペースト印刷後の状態、下段が酸化膜除去(洗浄)後の状態を示す。そして4段目が結果である。なお、酸化膜5の厚みは、SERA法(Sequential Electrochemical Reduction Analysis:連続電気化学還元法)により算出した。   FIG. 4 and FIG. 5 show the results of the evaluation in a tabular format. The first stage is the sample number, the upper stage is the processing conditions for forming the oxide film, and the lower stage is the formed oxide film. The thickness of is shown. The third row is a photograph (plane) showing the state of each process of the sample, the upper row shows the state before paste printing, the interruption is the state after paste printing, and the lower row shows the state after oxide film removal (cleaning). The fourth row is the result. The thickness of the oxide film 5 was calculated by the SERA method (Sequential Electrochemical Reduction Analysis).

図4と図5に示すように、酸化膜5の厚みが120nm以下の場合(サンプルSP−1〜SP−2)は、洗浄後に接合材が残留し、酸化膜の厚みが230nm以上の場合は(サンプルSP−3〜SP−7)接合材が除去できていることがわかった。つまり、酸化膜5の厚みを230nm以上にしておけば、還元剤が添加されたペースト2Pが塗布されても金属部分と焼結銀との間に介在(残留)し、洗浄工程で焼結銀を除去できることが分かった。   As shown in FIGS. 4 and 5, when the thickness of the oxide film 5 is 120 nm or less (samples SP-1 to SP-2), the bonding material remains after cleaning, and the thickness of the oxide film is 230 nm or more. (Samples SP-3 to SP-7) It was found that the bonding material was removed. That is, if the thickness of the oxide film 5 is set to 230 nm or more, even if the paste 2P to which the reducing agent is added is applied, it is interposed (residual) between the metal part and the sintered silver, and the sintered silver is removed in the cleaning process. It was found that can be removed.

なお、上記各実施の形態1あるいは2では、電極4fの接合領域を除く全体に、酸化膜5を形成した例について説明した。しかし、上述したように、無加圧部2R部分を除去できればいいのであって、ペースト2Pの塗布領域あるいは塗布される可能性のある領域以外まで、酸化膜5が形成されている必要はない。したがって、酸化膜5を形成する領域としては、接合領域を縁取り、ペースト2Pの塗布範囲である枠状の領域であれば事足りる。   In each of the first and second embodiments, the example in which the oxide film 5 is formed on the entire surface excluding the bonding region of the electrode 4f has been described. However, as described above, it suffices if the non-pressurized portion 2R portion can be removed, and the oxide film 5 does not have to be formed except for the application region of the paste 2P or the region where the paste 2P may be applied. Therefore, the region for forming the oxide film 5 is sufficient if it is a frame-like region that borders the bonding region and is the application range of the paste 2P.

以上のように、本実施の形態1あるいは2にかかる電力用半導体装置の製造方法によれば、焼結性金属粒子を含有する接合材(ペースト2P)を用いて、電力用半導体素子1と回路基板4との接合を行う電力用半導体装置10の製造方法であって、回路基板4の電極4fの表面のうち、電力用半導体素子1の設置領域の外周に所定の領域を残して前記設置領域を囲む第一領域から、設置領域に内包される(設置領域と同等以下の)第二領域を除いた領域に、加熱によって酸化膜5を形成する工程と、設置領域を網羅するように、第一領域内に接合材(ペースト2P)を塗布する工程と、設置領域に、電力用半導体素子1を設置する工程と、回路基板4と電力用半導体素子1との間に圧力をかけながら加熱して、焼結性金属粒子の焼結体(接合層2)を形成し、電力用半導体素子1と電極4fとを接合する工程と、酸化膜5を溶解する洗浄剤(酸化膜除去剤)を用い、焼結体のうち、電力用半導体素子1からはみ出た部分(無加圧部2R)を酸化膜5とともに除去する工程と、を順次実行するように構成したので、接合時に加圧されなかった焼結体(無加圧部2R)の残留を抑制できるので、高温に対応し、かつ信頼性が高い電力用半導体装置10を得ることができる。   As described above, according to the method for manufacturing the power semiconductor device according to the first or second embodiment, the power semiconductor element 1 and the circuit are formed using the bonding material (paste 2P) containing the sinterable metal particles. A method of manufacturing a power semiconductor device 10 for bonding to a substrate 4, wherein the installation region is left on the surface of the electrode 4 f of the circuit substrate 4, leaving a predetermined region on the outer periphery of the installation region of the power semiconductor element 1. A step of forming the oxide film 5 by heating in a region excluding a second region (equal to or less than the installation region) included in the installation region from the first region surrounding the A process of applying a bonding material (paste 2P) in one area, a process of installing the power semiconductor element 1 in the installation area, and heating while applying pressure between the circuit board 4 and the power semiconductor element 1 Sintered body of sinterable metal particles (joining 2), a step of bonding the power semiconductor element 1 and the electrode 4f, and a cleaning agent (oxide film removing agent) for dissolving the oxide film 5, and from the power semiconductor element 1 in the sintered body. The step of removing the protruding portion (non-pressurized portion 2R) together with the oxide film 5 is sequentially executed, so that the remaining sintered body (non-pressurized portion 2R) that has not been pressurized during bonding is removed. Since it can suppress, the semiconductor device 10 for electric power corresponding to high temperature and having high reliability can be obtained.

とくに、電極4fが銅であり、その酸化膜5の厚みが230nm以上になるように構成したので、還元剤が添加されたペースト2Pが塗布されても、金属部分と焼結銀との間に酸化膜5が介在(残留)し、洗浄工程で焼結銀を容易に除去できる。   In particular, since the electrode 4f is made of copper and the thickness of the oxide film 5 is 230 nm or more, even if the paste 2P to which a reducing agent is added is applied, it is between the metal portion and the sintered silver. The oxide film 5 is interposed (residual), and the sintered silver can be easily removed in the cleaning process.

なお、上記各実施の形態においては、電力用半導体素子1には、シリコンウエハを基材とした一般的な素子でも良いが、本発明においては炭化ケイ素(SiC)や窒化ガリウム(GaN)系材料、またはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料を用い、高耐圧および高温動作が可能な半導体素子を用いた場合に、特に顕著な効果が現れる。特に炭化ケイ素を用いた電力用半導体素子に好適に用いることができる。   In each of the above embodiments, the power semiconductor element 1 may be a general element based on a silicon wafer, but in the present invention, silicon carbide (SiC) or gallium nitride (GaN) -based material. In particular, when a so-called wide band gap semiconductor material having a wider band gap than silicon, such as diamond, is used, and a semiconductor element capable of high breakdown voltage and high temperature operation is used, a particularly remarkable effect appears. In particular, it can be suitably used for a power semiconductor element using silicon carbide.

ワイドバンドギャップ半導体によって形成されたスイッチング素子や整流素子は、ケイ素で形成された素子よりも電力損失が低いため、スイッチング素子や整流素子における高効率化が可能であり、ひいては、電力用半導体装置の高効率化が可能となる。さらに、耐電圧性が高く、許容電流密度も高いため、スイッチング素子や整流素子の小型化が可能であり、これら小型化されたスイッチング素子や整流素子を用いることにより、電力用半導体装置も小型化が可能となる。また耐熱性が高いので、高温動作が可能であり、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化も可能となるので、電力用半導体装置の一層の小型化が可能になる。   Since switching elements and rectifying elements formed of wide band gap semiconductors have lower power loss than elements formed of silicon, it is possible to increase the efficiency of switching elements and rectifying elements. High efficiency can be achieved. In addition, because it has high voltage resistance and high allowable current density, it is possible to reduce the size of switching elements and rectifier elements. By using these reduced switching elements and rectifier elements, power semiconductor devices can also be reduced in size. Is possible. In addition, since the heat resistance is high, it is possible to operate at a high temperature, and it is possible to reduce the size of the heat dissipating fins of the heat sink and the air cooling of the water-cooled portion, thereby further reducing the size of the power semiconductor device.

その際、本発明による効果を発揮することで、ワイドバンドギャップ半導体の特性を活かすことができるようになる。なお、複数の半導体素子全てが、ワイドバンドギャップ半導体によって形成されていても、一部の半導体素子がワイドバンドギャップ半導体によって形成されていてもよい。   At that time, the characteristics of the wide band gap semiconductor can be utilized by exhibiting the effects of the present invention. Note that all of the plurality of semiconductor elements may be formed of a wide band gap semiconductor, or some of the semiconductor elements may be formed of a wide band gap semiconductor.

1:電力用半導体素子、 2:接合層、 2P:ペースト、 2R:無加圧部、
3:被覆膜、 4:回路基板、 4f:電極(回路面側)、 4i:絶縁基材、
4r:電極(放熱面側)、 5:酸化膜、 5E:(電力用半導体素子を接合する領域部分の)酸化膜、 5R:除去酸化膜、 10:電力用半導体装置。
1: power semiconductor element, 2: bonding layer, 2P: paste, 2R: no pressure part,
3: coating film, 4: circuit board, 4f: electrode (circuit surface side), 4i: insulating base material,
4r: Electrode (heat radiation surface side), 5: Oxide film, 5E: Oxide film (in the region where the power semiconductor element is joined), 5R: Removal oxide film, 10: Power semiconductor device.

Claims (4)

焼結性金属粒子を含有する接合材を用いて、電力用半導体素子と回路基板との接合を行う電力用半導体装置の製造方法であって、
前記回路基板の電極の表面のうち、前記電力用半導体素子の設置領域の外周に所定の領域を残して前記設置領域を囲む第一領域から、前記設置領域に内包される第二領域を除いた領域に、加熱によって酸化膜を形成する工程と、
前記設置領域を網羅するように、前記第一領域内に前記接合材を塗布する工程と、
前記設置領域に前記電力用半導体素子を設置する工程と、
前記回路基板と前記電力用半導体素子との間に圧力をかけながら加熱して、前記焼結性金属粒子の焼結体を形成し、前記電力用半導体素子と前記電極とを接合する工程と、
前記酸化膜を溶解する洗浄剤を用い、前記焼結体のうち、前記電力用半導体素子からはみ出た部分を前記酸化膜とともに除去する工程と、
を順次実行することを特徴とする電力用半導体装置の製造方法。
Using a bonding material containing sinterable metal particles, a method for manufacturing a power semiconductor device for bonding a power semiconductor element and a circuit board,
Of the surface of the electrode of the circuit board, the second region included in the installation region is excluded from the first region surrounding the installation region leaving a predetermined region on the outer periphery of the installation region of the power semiconductor element. Forming an oxide film by heating in the region;
Applying the bonding material in the first region so as to cover the installation region;
Installing the power semiconductor element in the installation area;
Heating while applying pressure between the circuit board and the power semiconductor element to form a sintered body of the sinterable metal particles, and joining the power semiconductor element and the electrode;
Using a cleaning agent that dissolves the oxide film, and removing the portion of the sintered body that protrudes from the power semiconductor element together with the oxide film;
Are sequentially executed. A method for manufacturing a power semiconductor device.
前記電極は銅で構成され、
前記酸化膜の厚みが230μm以上であることを特徴とする請求項1に記載の電力用半導体装置の製造方法。
The electrode is made of copper;
The method for manufacturing a power semiconductor device according to claim 1, wherein the oxide film has a thickness of 230 μm or more.
前記酸化膜を形成する工程では、
前記第二領域に貴金属の被覆膜を形成してから前記加熱を行うことを特徴とする請求項1または2に記載の電力用半導体装置の製造方法。
In the step of forming the oxide film,
The method for manufacturing a power semiconductor device according to claim 1, wherein the heating is performed after a noble metal coating film is formed in the second region.
前記酸化膜を形成する工程では、
前記第一領域の全域に前記酸化膜を形成したのち、形成した酸化膜のうち、前記第二領域の部分をエッチングにより除去することを特徴とする請求項1または2に記載の電力用半導体装置の製造方法。
In the step of forming the oxide film,
3. The power semiconductor device according to claim 1, wherein after the oxide film is formed over the entire area of the first region, a portion of the second region of the formed oxide film is removed by etching. 4. Manufacturing method.
JP2013143186A 2013-07-09 2013-07-09 Method for manufacturing power semiconductor device Active JP6116413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143186A JP6116413B2 (en) 2013-07-09 2013-07-09 Method for manufacturing power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143186A JP6116413B2 (en) 2013-07-09 2013-07-09 Method for manufacturing power semiconductor device

Publications (2)

Publication Number Publication Date
JP2015018843A JP2015018843A (en) 2015-01-29
JP6116413B2 true JP6116413B2 (en) 2017-04-19

Family

ID=52439621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143186A Active JP6116413B2 (en) 2013-07-09 2013-07-09 Method for manufacturing power semiconductor device

Country Status (1)

Country Link
JP (1) JP6116413B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6214576B2 (en) * 2015-01-08 2017-10-18 三菱電機株式会社 Manufacturing method of semiconductor device
JP7067002B2 (en) * 2017-09-22 2022-05-16 昭和電工マテリアルズ株式会社 Manufacturing method of semiconductor device
JP7235379B2 (en) * 2019-06-19 2023-03-08 住友電工デバイス・イノベーション株式会社 Electronic device manufacturing method
CN114230359B (en) * 2020-09-09 2023-03-14 比亚迪股份有限公司 Ceramic copper-clad plate and preparation method thereof
CN112447616A (en) * 2020-11-19 2021-03-05 中车永济电机有限公司 Novel integrated bottom plate structure of SiC IGBT device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220783A (en) * 1975-08-11 1977-02-16 Nippon Telegr & Teleph Corp <Ntt> Semi-conductor unit
JPS5412265A (en) * 1977-06-28 1979-01-29 Nec Corp Production of semiconductor elements
JPS5852681Y2 (en) * 1978-05-23 1983-12-01 日本電気ホームエレクトロニクス株式会社 semiconductor equipment
JP2726141B2 (en) * 1990-06-05 1998-03-11 三菱電機株式会社 Semiconductor device and manufacturing method thereof
DE10062108B4 (en) * 2000-12-13 2010-04-15 Infineon Technologies Ag Power module with improved transient thermal resistance
US7187083B2 (en) * 2001-05-24 2007-03-06 Fry's Metals, Inc. Thermal interface material and solder preforms
JP4895994B2 (en) * 2006-12-28 2012-03-14 株式会社日立製作所 Joining method and joining material using metal particles
JP5160201B2 (en) * 2007-11-20 2013-03-13 株式会社豊田中央研究所 Solder material and manufacturing method thereof, joined body and manufacturing method thereof, power semiconductor module and manufacturing method thereof
JP5375343B2 (en) * 2009-06-04 2013-12-25 日立金属株式会社 Bonding material, manufacturing method thereof, and mounting method using the same

Also Published As

Publication number Publication date
JP2015018843A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP6632686B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN100444371C (en) Power semiconductor package
JP6116413B2 (en) Method for manufacturing power semiconductor device
US8916871B2 (en) Bondable top metal contacts for gallium nitride power devices
JP6366766B2 (en) Semiconductor device
JP6143687B2 (en) Semiconductor device and manufacturing method of semiconductor device
TW200929408A (en) Wafer level chip scale packaging
WO2015114987A1 (en) Power module substrate, power module substrate manufacturing method, and power module using power module substrate
JP2018117054A (en) Semiconductor device and power conversion device
JP6399906B2 (en) Power module
US20180158762A1 (en) Semiconductor device
JP2010097963A (en) Circuit board and method for manufacturing the same, and electronic component module
CN109413886B (en) Method for manufacturing semiconductor device and soldering auxiliary tool
JP5579148B2 (en) Power semiconductor device
JP2011086821A (en) Semiconductor device, and method of manufacturing the same
JP7123688B2 (en) Semiconductor device and its manufacturing method
US9633927B2 (en) Chip arrangement and method for producing a chip arrangement
JP6366806B1 (en) Power semiconductor device
JP5120917B2 (en) Semiconductor device and manufacturing method thereof
JP6119553B2 (en) Power semiconductor device and manufacturing method thereof
JP2018116960A (en) Power semiconductor device
JP5884625B2 (en) Semiconductor device
JP2016081943A (en) Semiconductor device, and method of manufacturing the same
JP5734493B2 (en) Power semiconductor device
US20230028808A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R151 Written notification of patent or utility model registration

Ref document number: 6116413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250