JP6111674B2 - 圧縮機台数制御システム - Google Patents

圧縮機台数制御システム Download PDF

Info

Publication number
JP6111674B2
JP6111674B2 JP2013002672A JP2013002672A JP6111674B2 JP 6111674 B2 JP6111674 B2 JP 6111674B2 JP 2013002672 A JP2013002672 A JP 2013002672A JP 2013002672 A JP2013002672 A JP 2013002672A JP 6111674 B2 JP6111674 B2 JP 6111674B2
Authority
JP
Japan
Prior art keywords
pressure
limit pressure
compressor
load
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013002672A
Other languages
English (en)
Other versions
JP2014134146A (ja
Inventor
重喜 越智
重喜 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2013002672A priority Critical patent/JP6111674B2/ja
Publication of JP2014134146A publication Critical patent/JP2014134146A/ja
Application granted granted Critical
Publication of JP6111674B2 publication Critical patent/JP6111674B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、複数台の空気圧縮機を備え、圧縮空気の使用負荷に応じて圧縮機の運転台数を変更する圧縮機台数制御システムに関するものである。
出願人は、先に、下記特許文献1に開示されるように、すべての圧縮機を容量制御しつつ、レシーバタンクの圧力に基づき、運転中の圧縮機の負荷率(停止時0%〜全負荷時100%)を求め、この負荷率が運転台数に基づき定められる停止負荷率以下になると、運転中の一台を停止させる圧縮機台数制御システムを提案している。
特許第4924855号公報(請求項2、段落0009)
しかしながら、容量制御される吸込絞り機と、容量制御されないロードアンロード機とが混在する場合、吸込絞り機についての台数制御方法のみで制御するか、ロードアンロード機についての台数制御方法のみで制御すると、運転台数が過小または過大となり、適切な運転台数を保てない。
そこで、本発明が解決しようとする課題は、吸込絞り機とロードアンロード機とが混在した圧縮機群でも、圧縮空気の使用負荷に応じて適切な運転台数を維持できる圧縮機台数制御システムを提供することにある。
本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、複数台の圧縮機と、これら圧縮機から圧縮空気が供給されると共に圧縮空気利用機器へ圧縮空気を送るレシーバタンクに設けられ、圧縮空気の圧力を検出する圧力センサと、前記圧縮機の運転台数を変更する台数制御器とを備え、前記圧縮機として、容量調整弁により上限圧力と下限圧力との範囲で容量制御される一または複数の吸込絞り機と、上限圧力を上回るとアンロード運転に切り替える一方で下限圧力を下回るとロード運転に切り替える一または複数のロードアンロード機とを備え、ロードアンロード機の上限圧力は、吸込絞り機の上限圧力と同じかそれ以上に設定されており、
(a)吸込絞り機とロードアンロード機との双方が運転中、前記台数制御器は、吸込絞り機の運転台数に基づき設定した台数減少用圧力以上に前記圧力センサの検出圧力がなると、前記圧縮機を一台停止させ
(b)吸込絞り機のみが複数台運転中、前記台数制御器は、吸込絞り機の運転台数に基づき設定した台数減少用圧力以上に前記圧力センサの検出圧力がなると、前記圧縮機を一台停止させ、
(c)ロードアンロード機のみが運転中、前記台数制御器は、(i)前記圧力センサの検出圧力が下降から上昇に転じた時から、上昇から下降に転じた時までの時間をタイマで計測して昇圧時間TUとし、この昇圧時間TUが第一設定時間よりも短いか、および/または、(ii)前記検出圧力が上昇から下降に転じた時から、下降から上昇に転じた時までの時間をタイマで計測して降圧時間TDとし、この降圧時間TDが第二設定時間よりも長ければ、前記圧縮機を一台停止させる
ことを特徴とする圧縮機台数制御システムである。
請求項1に記載の発明によれば、ロードアンロード機の上限圧力を吸込絞り機の上限圧力と同じかそれより高く設定しておくことで、吸込絞り機とロードアンロード機との双方が運転中には、ロードアンロード機を基本的にロード運転に維持して、吸込絞り機についての台数制御方法で制御することができる。つまり、吸込絞り機とロードアンロード機との双方が運転中であっても、吸込絞り機の運転台数に基づき設定した台数減少用圧力以上になると、圧縮機を一台停止させればよい。
請求項に記載の発明によれば、吸込絞り機とロードアンロード機との双方が混在するシステムであっても、吸込絞り機のみが運転中には、吸込絞り機についての台数制御方法で制御することができる。つまり、吸込絞り機のみが運転中、吸込絞り機の運転台数に基づき設定した台数減少用圧力以上になると、圧縮機を一台停止させればよい。
請求項1に記載の発明によれば、吸込絞り機とロードアンロード機との双方が混在するシステムであっても、ロードアンロード機のみが運転中には、ロードアンロード機についての台数制御方法で制御することができる。つまり、ロードアンロード機のみが運転中、下限圧力から上限圧力までの昇圧時間が第一設定時間よりも短いか、および/または、上限圧力から下限圧力までの降圧時間が第二設定時間よりも長ければ、圧縮機を一台停止させればよい。
請求項に記載の発明は、前記台数減少用圧力は、運転中の吸込絞り機の上限圧力、下限圧力および運転台数に基づき、次式により設定されることを特徴とする請求項に記載の圧縮機台数制御システムである。
台数減少用圧力={(上限圧力−下限圧力)/運転台数}+下限圧力
請求項に記載の発明によれば、運転台数を減少させるか否かの境界値としての台数減少用圧力は、運転台数が多いほど低くなるよう設定される。圧縮機の運転台数が多いほど、目標圧力に維持するための一台当たりの寄与率は下がり、圧力変動は抑えられるので、運転台数の増加に応じて台数減少用圧力を下げることができる。言い換えれば、台数減少用圧力以上になれば圧縮機を一台停止するが、運転台数を増すほど台数減少用圧力を下げて、圧力変動幅を抑制することができる。また、吸込絞り機が二台運転しているときは一台当たりの負荷率が50%以下になると一台停止させ、吸込絞り機が三台運転しているときは一台当たりの負荷率が67%以下になると一台停止させるというように、吸込絞り機の運転台数に応じた一台当たりの負荷率に基づく停止制御を、圧力に基づき簡易に行うことができる。
請求項に記載の発明は、前記台数制御器には、各吸込絞り機の上限圧力と下限圧力とがそれぞれ予め設定されており、前記台数制御器は、運転中の吸込絞り機について、上限圧力の平均値としての平均上限圧力と、下限圧力の平均値としての平均下限圧力とを求め、前記数式中、上限圧力として平均上限圧力を用いると共に、下限圧力として平均下限圧力を用いて、前記数式により前記台数減少用圧力が設定されることを特徴とする請求項に記載の圧縮機台数制御システムである。
請求項に記載の発明によれば、運転中の吸込み絞り機の平均上限圧力と平均下限圧力の他、運転台数から、台数減少用圧力を求めて、簡易に制御することができる。
請求項に記載の発明は、吐出容量の異なる吸込絞り機が含まれる場合、運転中の各吸込絞り機について、その吸込絞り機の吐出容量を次停止予定機の吐出容量で除した値としての比台数を求め、運転中の吸込絞り機について、各吸込絞り機の上限圧力にその比台数を乗じた値の総和を求めると共に、これを比台数の総和で除した値として前記平均上限圧力を求め、運転中の吸込絞り機について、各吸込絞り機の下限圧力にその比台数を乗じた値の総和を求めると共に、これを比台数の総和で除した値として前記平均下限圧力を求め、前記台数減少用圧力は、運転中の圧縮機の比台数の総和に基づき、次式により設定されることを特徴とする請求項に記載の圧縮機台数制御システムである。
台数減少用圧力={(平均上限圧力−平均下限圧力)/(運転中の圧縮機の比台数の総和)}+平均下限圧力
請求項に記載の発明によれば、吐出容量の異なる圧縮機が含まれる場合でも、次停止予定機を基準の吐出容量として、運転中の各圧縮機の吐出容量を除した値である比台数という概念を用いて、台数減少用圧力を求めて制御することができる。
請求項に記載の発明は、前記第一設定時間としての一台停止ロード時間は、次式により設定されることを特徴とする請求項に記載の圧縮機台数制御システムである。但し、P0は大気圧[kPa]、Qはレシーバタンクの容量[m]、QCは次停止予定機の吐出容量[m/min]、PHはロードアンロード機の上限圧力[kPa]、PLはロードアンロード機の下限圧力[kPa]、Kは空気の水分、温度および配管容量を考慮した数である。
一台停止ロード時間[秒]=(60/P0)・K・(Q/QC)・{(PH+P0)/(PL+P0)−1}・(PL+P0)
請求項に記載の発明によれば、圧縮空気の生産流量と消費流量との差が次停止予定機の吐出流量よりも多ければ、圧縮機を一台停止する制御を簡易に行うことができる。
請求項に記載の発明は、前記第二設定時間としての一台停止アンロード時間は、次式により設定されることを特徴とする請求項または請求項に記載の圧縮機台数制御システムである。但し、P0は大気圧[kPa]、Qはレシーバタンクの容量[m]、QCは次停止予定機の吐出容量[m/min]、PHはロードアンロード機の上限圧力[kPa]、PLはロードアンロード機の下限圧力[kPa]、nは次停止予定機の吐出容量に換算した運転台数、Kは空気の水分、温度および配管容量を考慮した数である。
一台停止アンロード時間[秒]=(60/P0)・K・[Q/{(n−1)・QC}]・{(PH+P0)/(PL+P0)−1}・(PL+P0)
請求項に記載の発明によれば、圧縮空気の消費流量が次停止予定機を停止した場合の圧縮空気の生産流量よりも少なければ、圧縮機を一台停止する制御を簡易に行うことができる。
さらに、請求項に記載の発明は、前記台数制御器は、前記圧力センサの検出圧力が台数増加用圧力以下になると前記圧縮機を一台起動させ、前記台数増加用圧力は、前記圧力センサの検出圧力の圧力変化率がマイナス側へ大きくなるほど高圧になるよう設定され、前記圧力センサの検出圧力が前記台数増加用圧力以下になると、前記圧縮機を一台起動させ、それでも台数増加用圧力以下を維持する場合、所定の連続起動防止時間を経過するごとに前記圧縮機を一台起動させるが、圧力変化率の絶対値が設定値以上の領域では、前記台数増加用圧力よりも低圧で設定された即時増加用圧力以下になれば、前記連続起動防止時間の経過を待つことなくさらに一台起動させることを特徴とする請求項1〜のいずれか1項に記載の圧縮機台数制御システムである。
請求項に記載の発明によれば、圧力センサの検出圧力が台数増加用圧力以下になると圧縮機を一台起動させ、それでも台数増加用圧力以下を維持する場合、所定時間(連続起動防止時間)を経過するごとに圧縮機を一台起動させるが、圧力変化率の絶対値が設定値以上の領域では、圧力センサの検出圧力が即時増加用圧力以下になれば、所定時間の経過を待つことなく一台起動させる。このように、圧力変化率が設定値以上に大きく、しかも目標圧力範囲から大きく離れようとした場合には、所定時間の経過を待つことなく、即時増加用圧力以下で一台起動するので、圧縮機の吐出量と圧縮空気利用機器の使用量との差を迅速に是正することができる。
本発明によれば、吸込絞り機とロードアンロード機とが混在した圧縮機群でも、圧縮空気の使用負荷に応じて適切な運転台数を維持することができる。
本発明の圧縮機台数制御システムの一実施例を示す概略図である。 すべての圧縮機が吸込絞り機からなる場合における台数制御方法の一例を示す図であり、運転中の各圧縮機の吐出圧力、レシーバタンク内の圧力、運転台数増減表を示している。 すべての圧縮機がロードアンロード機からなる場合において、運転中の各圧縮機の吐出側の圧力変化を示す概略図である。 台数制御器のタッチスクリーンの設定画面の一例を示す図である。 吸込絞り機とロードアンロード機とが混在したシステムにおけるレシーバタンク内の圧力と、使用空気量の静特性の一例を示す概略図である。
以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の圧縮機台数制御システムの一実施例を示す概略図である。本実施例の圧縮機台数制御システム1は、複数台の圧縮機2,2,…と、これら圧縮機2から圧縮空気が供給されるレシーバタンク3と、このレシーバタンク3内の圧力を検出する圧力センサ4と、この圧力センサ4の検出圧力などに基づき前記各圧縮機2を制御する台数制御器5とを備える。
各圧縮機2は、外気を吸入し圧縮して吐出する。各圧縮機2からの圧縮空気は、共通のレシーバタンク3を介して、一または複数の各種の圧縮空気利用機器(図示省略)へ送られる。
圧縮機2として、本実施例では、一または複数の吸込絞り機と、一または複数のロードアンロード機とを備える。
吸込絞り機は、運転と停止とが切り替えられる他、運転中には容量制御される。この容量制御は、本実施例では、吸込絞り機の吸込側に設けた容量調整弁(図示省略)の開度を調整することでなされる。
容量調整弁は、吸込絞り機の吐出側の圧力を所望に維持するように、自力で開度を調整する。つまり、吸込絞り機の吐出側の圧力が上昇するのに伴い、容量調整弁は開度を絞って吸入量を減少させ、これにより吸込絞り機は吐出量を減少させる一方、吸込絞り機の吐出側の圧力が低下するのに伴い、容量調整弁は開度を拡げて吸入量を増加させ、これにより吸込絞り機は吐出量を増加させる。
より具体的には、容量調整弁は、図2において、圧縮機(吸込絞り機)の吐出側の圧力を、下限圧力PLと上限圧力PHとの間に維持するように開度を調整する。この場合、容量調整弁は、吸込絞り機の吐出側の圧力が下限圧力PL以下になると全開される一方、上限圧力PH以上になると全閉される。また、下限圧力PLと上限圧力PHとの間では、下限圧力PLから上限圧力PHへ行くに従って比例的に開度が絞られる。このように、下限圧力PLと上限圧力PHとの圧力範囲が、容量調整弁の制御範囲とされる。つまり、吸込絞り機は、容量調整弁により、規定の調整範囲PL〜PHで、吐出圧力と吐出流量とが逆比例のリニアな特性を有する。言い換えれば、吐出圧力と吸込絞り機の負荷率とは一次関数になっている。なお、万一、圧縮機2の吐出側の圧力が所定の停止圧力PSを超えると、圧縮機2は強制停止される。
ロードアンロード機は、運転と停止とが切り替えられる他、運転中には、吐出側の圧力に基づき、ロード運転とアンロード運転とが切り替えられる。本実施例では、台数制御器5により発停が制御され、運転中には、圧縮機(ロードアンロード機)に付属の圧力センサで吐出側の圧力を検知して、ロードアンロード機に付属の制御回路にて、ロード運転(全負荷運転)とアンロード運転(無負荷運転)とを切り替える。具体的には、ロードアンロード機は、吐出側の圧力が上限圧力PHを上回るとアンロード運転に切り替える一方、下限圧力PLを下回るとロード運転に切り替える。
各圧縮機2は、典型的には互いに同一の吐出容量とされるが、後述するように異なる吐出容量であってもよい。また、各吸込絞り機は、上限圧力PH同士が互いに同一とされ、下限圧力PL同士が互いに同一とされるのが好ましいが、後述するように互いに異なってもよい。同様に、各ロードアンロード機は、上限圧力PH同士が互いに同一とされ、下限圧力PL同士が互いに同一とされるのが好ましいが、後述するように互いに異なってもよい。但し、ロードアンロード機の上限圧力PHは、吸込絞り機の上限圧力PHと同じかそれ以上に設定される。言い換えれば、ロードアンロード機の内、最も低い上限圧力PHは、吸込絞り機の内、最も高い上限圧力PHと同じかそれより高く設定される。
なお、吸込絞り機またはロードアンロード機のいずれの場合でも、各圧縮機2の上限圧力PHや下限圧力PLなどを予め台数制御器5に設定しておき、台数制御器5が、運転中の圧縮機2について、上限圧力PHの平均値としての平均上限圧力と、下限圧力PLの平均値としての平均下限圧力とを求めて、これら平均値を用いて制御するようにしてもよい。たとえば、吸込絞り機についての台数減少制御に、後述するように適用されるが、その他の制御にも同様に適用可能である。
レシーバタンク3は、各圧縮機2から圧縮空気が供給される一方、一または複数の圧縮空気利用機器へ圧縮空気を供給する中空容器である。レシーバタンク3内の圧力を検出可能に、圧力センサ4が設けられる。
台数制御器5は、各圧縮機2および圧力センサ4に接続され、圧力センサ4による検出圧力や経過時間などに基づき、各圧縮機2を制御する。言い換えれば、圧力センサ4による検出圧力や経過時間などに基づき、各圧縮機2の運転の有無を切り替えて、運転台数を変更する。
本実施例の圧縮機台数制御システム1では、吸込絞り機についての制御と、ロードアンロード機についての制御とを切り替えて実行する。つまり、複数台の圧縮機2が運転中、吸込絞り機のみが運転中か、ロードアンロード機のみが運転中か、吸込絞り機とロードアンロード機との双方が運転中かを監視して、それに基づき、吸込絞り機についての制御と、ロードアンロード機についての制御とを切り替えて実行する。
そこで、まずは前提として、《(a)吸込絞り機についての制御》と、《(b)ロードアンロード機についての制御》とを順に説明した後、《(c)本実施例の制御》について説明する。なお、これら各制御においては、圧縮機2の運転台数の増加制御と減少制御とを実行するが、運転台数の増加制御については、いずれの制御においても共通する。そこで、圧縮機2の運転台数の増加制御については、《(a)吸込絞り機についての制御》において説明し、その他の制御においては説明を省略する。
《(a)吸込絞り機についての制御》
図2は、すべての圧縮機2が吸込絞り機からなる場合における台数制御方法の一例を示す図であり、運転中の各圧縮機2の吐出圧力と、レシーバタンク3内の圧力(つまり圧力センサ4の検出圧力)と、運転台数増減表とを示している。
運転台数増減表は、図2の中央に表形式で示すように、運転台数を増やすための起動表と、図2の右側に棒グラフ状に示すように、運転台数を減らすための停止表とに分けられる。起動表は、レシーバタンク3内の圧力Pとその変化率ΔPとに基づき、圧縮機2を如何に起動するか、言い換えれば運転台数を如何に増加させるかを示している。一方、停止表は、レシーバタンク3内の圧力Pと、現在実際に運転中の台数とに基づき、圧縮機2を如何に停止するか、言い換えれば運転台数を如何に減少させるかを示している。これらの制御は、圧力センサ4の検出圧力Pと圧力変化率ΔPとをそれぞれ所定周期で求め、それに基づき行われる。
圧力変化率ΔPとは、所定時間当たりの変動圧力である。圧力変化率ΔPがマイナスの場合、レシーバタンク3内の圧力は減少傾向にあり、圧力変化率ΔPがプラスの場合、レシーバタンク3内の圧力は増加傾向にある。圧縮空気利用機器による圧縮空気の使用量が、圧縮機2による圧縮空気の吐出量よりも多い場合、レシーバタンク3内の圧力は減少し、逆に、圧縮機2による圧縮空気の吐出量が、圧縮空気利用機器による圧縮空気の使用量よりも多い場合、レシーバタンク3内の圧力は増加する。
圧縮機2からレシーバタンク3への配管の圧力損失により、レシーバタンク3内の圧力は、圧縮機2の吐出圧力よりも若干低圧になる。そのため、図2において若干傾きのある破線で結んで示すように、レシーバタンク3内の圧力PL1,PL2は、それぞれ、圧縮機2の吐出圧力PL1´,PL2´と対応する。なお、停止表から明らかなとおり、レシーバタンク3内の圧力が容量調整弁の制御範囲の上限圧力PHになるときは、すべての圧縮機2が停止され、空気流量は0になるので、上限圧力PHに関しては、圧縮機吐出圧力とレシーバタンク圧力とは同一になる。
台数制御器5は、圧力センサ4の検出圧力と、予め設定した圧力値とを比較して、圧縮機2の運転台数を増減する。この際、運転台数を増加させる圧力値は、前記起動表に示すように、圧力センサ4の検出圧力Pの圧力変化率ΔPに基づき異なるよう設定される。つまり、台数制御器5は、圧力センサ4の検出圧力Pが台数増加用圧力A以下になると圧縮機2を一台起動させるが、運転台数を増加させるか否かの境界値としての台数増加用圧力Aは、圧力変化率ΔPがマイナス側へ大きくなるほど段階的に高圧になるよう設定される。
運転台数を増加させる場合、台数制御器5は、圧力センサ4の検出圧力Pが台数増加用圧力A以下の状態を維持する場合、所定時間(連続起動防止時間)を経過するごとに前記圧縮機2を一台起動させるが、圧力変化率ΔPが設定値(−ΔP1)以下の領域(つまりΔP≦−ΔP1)では、圧力センサ4の検出圧力Pが即時増加用圧力B以下になれば、前記所定時間の経過を待つことなくさらに一台起動させる。なお、即時増加用圧力Bは、圧力変化率ΔPの絶対値が大きいほど高圧に設定されるのがよい。
一方、運転台数を減少させる圧力値は、前記停止表に示すように、現在実際に運転中の圧縮機2の運転台数に基づき異なるよう設定される。つまり、台数制御器5は、圧力センサ4の検出圧力Pが台数減少用圧力C以上になると圧縮機2を一台停止させるが、運転台数を減少させるか否かの境界値としての台数減少用圧力Cは、運転台数が増すほど段階的に低圧になるよう設定される。
台数減少用圧力Cは、各圧縮機2の負荷率を考慮して決定するのがよい。すなわち、停止時(上限圧力PH以上)を負荷率0%、全負荷時(下限圧力PL以下)を負荷率100%とした場合に、運転中の圧縮機2の一台当たりの負荷率が次式により求められる停止負荷率以下になると、運転中の一台を停止させる。
Figure 0006111674
台数制御器5は、運転中の台数に応じた停止負荷率で一台を停止させるために、運転中の台数に基づき台数減少用圧力Cを次式により求め、これに基づき運転台数を適宜減少させる。
Figure 0006111674
この数式2は、前記数式1を用いて、次のように書き換えることができる。
Figure 0006111674
このように、運転台数に応じて台数減少用圧力Cを規定することができる。なお、数式2および数式3にいう上限圧力PHおよび下限圧力PLは、前述したように容量調整弁の制御範囲を規定する圧縮機吐出圧力であるが、実際の停止制御は本実施例ではレシーバタンク3に設けた圧力センサ4の検出圧力に基づきなされるので、圧縮機2とレシーバタンク3との間の圧力損失を考慮して補正した値を用いるのが好ましい。但し、上限圧力PHについては、前述したように、圧縮機吐出圧力とレシーバタンク圧力とは同一になる。従って、下限圧力PLについて、レシーバタンク圧力に換算した値を用いるのが好ましい。あるいは、数式2および数式3で導出される台数減少用圧力Cは厳密には圧縮機吐出圧力であるので、これをレシーバタンク圧力に換算して制御するのが好ましい。
以下、具体的制御について、図2に基づき説明する。なお、第一下限圧力PL1よりも低圧で第二下限圧力PL2が設定され、第一下限圧力PL1および第二下限圧力PL2は、容量調整弁の制御範囲下限値PLよりも低圧に設定される。また、第一設定値ΔP1,第二設定値ΔP2は、圧縮機一台分の全負荷運転時の吐出容量を考慮して設定される。
《(a1)圧縮機2の運転台数の増加制御》
《(a1−1)圧力変化率ΔPの絶対値が第一設定値ΔP1未満である場合。具体的には、−ΔP1<ΔP<+ΔP1である場合。》
圧力センサ4の検出圧力Pが台数増加用圧力Aとしての第二下限圧力PL2以下になると一台起動させる。これにより通常は圧力が第二下限圧力PL2を上回るが、この間も圧縮空気の使用負荷が増加し続けると、圧力が第二下限圧力PL2以下を維持する場合がある。その場合、所定の連続起動防止時間を経過するごとに圧縮機2を一台起動させる。つまり、圧力センサ4の検出圧力Pが図2における「1台起動」領域に留まる場合には、停止中の圧縮機2がある限り、連続起動防止時間を経過するごとに一台ずつ起動させる。
《(a1−2)圧力変化率ΔPの絶対値が第一設定値ΔP1以上であるが第二設定値ΔP2未満である場合。具体的には、−ΔP2<ΔP≦−ΔP1である場合。》
圧力センサ4の検出圧力Pが台数増加用圧力Aとしての第一下限圧力PL1以下になると一台起動させる。この場合も、一台起動させても第一下限圧力PL1以下を維持する場合、所定の連続起動防止時間を経過するごとに一台起動させるが、即時増加用圧力Bとしての第二下限圧力PL2以下になれば、連続起動防止時間の経過を待つことなくさらにもう一台起動させる。
つまり、図2において、「1台起動」領域に入ることで一台を起動させても、なおその領域に留まる場合には、停止中の圧縮機2がある限り、連続起動防止時間ごとに一台ずつ圧縮機2を起動させる。また、その間、「さらに1台起動」領域に入れば、連続起動防止時間を経過しないでも、さらに一台を起動させる。
《(a1−3)圧力変化率ΔPの絶対値が第二設定値ΔP2以上である場合。具体的には、ΔP≦−ΔP2である場合。》
圧力センサ4の検出圧力Pが台数増加用圧力Aとしての上限圧力PH以下になると一台起動させる。この場合も、一台起動させても上限圧力PH以下を維持する場合、所定の連続起動防止時間を経過するごとに一台起動させるが、即時増加用圧力Bとしての第一下限圧力PL1以下になれば、連続起動防止時間の経過を待つことなくさらにもう一台起動させる。
つまり、図2において、「1台起動」領域に入ることで一台を起動させても、なおその領域に留まる場合には、停止中の圧縮機2がある限り、連続起動防止時間ごとに一台ずつ圧縮機2を起動させる。また、その間、「さらに1台起動」領域に入れば、連続起動防止時間を経過しないでも、さらに一台を起動させる。
《(a2)圧縮機2の運転台数の減少制御》
圧力センサ4により空気圧力を監視して、たとえば、二台運転している場合には、一台当たりの負荷率が50%以下になると一台停止させ、三台運転している場合には、一台当たりの負荷率が67%以下になると一台停止させ、四台運転している場合には、一台あたりの負荷率が75%以下になると一台停止させるというように、前述した数式1による停止負荷率を考慮して、圧縮機2の運転台数を減少させる。
これにより、一台だけ運転している場合には、負荷率が0〜100%で運転され、二台運転している場合には、一台当たりの負荷率が50〜100%で運転され、三台運転している場合には、一台当たりの負荷率が67〜100%で運転されるというように、台数が増すほど高負荷で運転される。
圧力に基づく制御を行うには、前述した数式3(または数式2)により求められる運転台数に応じた台数減少用圧力C以上になれば、一台停止させればよい。たとえば、二台運転している場合には、「{(上限圧力PH−下限圧力PL)/2)}+下限圧力PL」以上になると、圧縮機2を一台停止させる。また、三台運転している場合には、「{(上限圧力PH−下限圧力PL)/3}+下限圧力PL」以上になると、圧縮機2を一台停止させるというように、運転中の台数に基づき数式3により台数減少用圧力Cが設定される。
ここで、圧力センサ4による検出圧力Pが台数減少用圧力C以上の状態を設定時間継続後に、圧縮機2の運転台数を減少させるのが好ましい。これにより、一台を停止させた後に次の一台を停止させるまでに規定の時間を要し、次々と過剰に停止させるおそれがない。
ところで、以上では、各圧縮機2の容量調整弁は、上限圧力PHが互いに同一に設定されると共に、下限圧力PLが互いに同一に設定された例について説明した。しかしながら、各圧縮機2の容量調整弁の上限圧力PH同士および下限圧力PL同士を互いに同一に設定するのは困難であり、許容範囲内(たとえば10kPa以内)に収めるとしても、作業には熟練と時間を要する。そして、すべての圧縮機2を同一の容量調整範囲に設定できない場合、個々の圧縮機2の負荷率にバラツキを生じることになる。
そこで、台数制御器5は、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとがそれぞれ予め設定値として入力され、運転中の圧縮機2の前記設定値に基づいて台数減少用圧力Cを求め、圧力センサ4の検出圧力がこの台数減少用圧力C以上になると圧縮機2の運転台数を減少させるのがよい。つまり、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiを台数制御器5に設定し、この設定値を用いて、台数制御器5は、圧縮機2の運転台数を減少させる停止負荷率になる台数減少用圧力Cを演算し、この台数減少用圧力C以上になると圧縮機2を一台停止させるのがよい。ここで、上限圧力PHiとは、複数台の圧縮機2の内、i号機の容量調整弁の上限圧力を示し、下限圧力PLiとは、i号機の容量調整弁の下限圧力を示している。
より具体的に説明すると、まず事前に、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを試験により求めておく。たとえば、各圧縮機2を一台ずつ運転して、圧縮機2の吐出側の圧力と圧縮機2の負荷電流との関係から、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを求めることができる。そして、このようにして求めた各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを、台数制御器5に入力して設定しておく。
いま、各圧縮機2の吐出容量(定格時の吐出空気量)が同じであるとする。また、n号機からm台の圧縮機2が運転しているとする。つまり、n号機から(n+m−1)号機までが運転しているとする。なお、nおよびmは、正の整数(1,2,3,…のいずれかの数値)である。
この場合、台数制御器5は、運転中の圧縮機2の前記設定値(PHi,PLi)に基づいて、台数減少用圧力Cを求め、圧力センサ4の検出圧力が台数減少用圧力C以上になると、運転中の圧縮機2を一台停止させる。つまり、運転中の圧縮機2について、上限圧力の平均値としての平均上限圧力と、下限圧力の平均値としての平均下限圧力とを求め、これら平均上限圧力と平均下限圧力とを用いて前記数式3により台数減少用圧力Cを求め、圧力センサ4の検出圧力が台数減少用圧力C以上になると、運転中の圧縮機2を一台停止させる。
より詳細には、台数制御器5は、運転中の圧縮機2について、下記数式4により平均上限圧力を求めると共に、下記数式5により平均下限圧力を求める。さらに、台数制御器5は、下記数式6により台数減少用圧力Cを求め、圧力センサ4の検出圧力がこの台数減少用圧力C以上になると、運転中の圧縮機2を一台停止させる。
Figure 0006111674
Figure 0006111674
Figure 0006111674
このような構成の場合、各圧縮機2の容量調整弁の上限圧力PHiを互いに同一にしたり、下限圧力PLiを互いに同一にしたりする必要がなく、また許容範囲内に収めるとしても、その許容範囲を大きくとることができる。さらに、必ずしも、各圧縮機2の容量調整範囲を互いに同一または許容範囲内に収まるように調整する必要もない。つまり、個々の圧縮機2の容量調整弁の実際の上限圧力PHiと下限圧力PLiを台数制御器5に設定すればよく、それにより簡易に精度の高い台数制御が可能となる。
たとえば、五台運転中に、五台分の総合負荷率が4/5(すなわち80%)以下になると、運転台数を四台に減少させるが、運転している圧縮機2の容量調整弁の実際の上限圧力PHiと下限圧力PLiとを用いて、総合負荷率80%相当の台数減少用圧力Cを算出するので、精度のよい台数制御が可能となる。ここで、総合負荷率とは、運転中の各圧縮機2の上限圧力PHi同士および下限圧力PLi同士が互いに異なり、言い換えれば各圧縮機2の負荷率が互いに異なるので、それを考慮して、運転中のすべての圧縮機2全体でみた場合の負荷率という意である。
さて、上述の説明では、各圧縮機2の吐出容量は同じであるとしたが、吐出容量の異なる圧縮機2が含まれる場合、次のように制御すればよい。
この場合も、まず事前に、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを調べておく。そして、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを、台数制御器5に入力して設定しておく。さらに、各圧縮機2の吐出容量についても、台数制御器5に入力して設定しておく。
いま、n号機からm台の圧縮機2が運転しているとする。つまり、n号機から(n+m−1)号機までが運転しているとする。この場合、台数制御器5は、下記数式7を用いて、運転中の各圧縮機2について、その圧縮機2の吐出容量を次停止予定機の吐出容量で除した値としての比台数Niを求める。この比台数Niの総和は実質的な運転台数に相当するので、前記数式1を用いて、停止負荷率を求めることができる。
Figure 0006111674
たとえば、2号機(75kW機)と3号機(37kW機)とを運転中、次に停止させる圧縮機(次停止予定機)が3号機である場合、3号機の比台数は1となり、2号機の比台数は2となり、比台数の総和は3となる。よって、次停止予定機の3号機は、その負荷が前記数式1(式中、運転台数とは比台数の総和に相当)に基づき、2/3(負荷率67%)以下になれば停止される。
また、2号機(75kW機)と3号機(37kW機)とを運転中、次に停止させる圧縮機(次停止予定機)が2号機である場合、2号機の比台数は1となり、3号機の比台数は0.5となり、比台数の総和は1.5となる。よって、次停止予定機の2号機は、その負荷が前記数式1(式中、運転台数とは比台数の総和に相当)に基づき、1/3(負荷率33%)以下になれば停止される。
より簡易に圧力制御するには、下記数式8により、運転中の圧縮機2について、その上限圧力PHiに比台数Niを乗じた値の総和を求めると共に、これを比台数Niの総和で除した値として平均上限圧力を求める。また、下記数式9により、運転中の圧縮機2について、その下限圧力PLiに比台数Niを乗じた値の総和を求めると共に、これを比台数Niの総和で除した値として平均下限圧力を求める。そして、このようにして求められた平均上限圧力と平均下限圧力の他、運転中の圧縮機2の比台数の総和に基づき、下記数式10により、台数減少用圧力Cを求めることができる。そして、台数制御器5は、圧力センサ4の検出圧力が台数減少用圧力C以上になれば、次停止予定機の運転を停止すればよい。
Figure 0006111674
Figure 0006111674
Figure 0006111674
《(b)ロードアンロード機についての制御》
図3は、すべての圧縮機2がロードアンロード機からなる場合において、運転中の各圧縮機2の吐出側の圧力変化を示す概略図である。
すべての圧縮機2がロードアンロード機からなる場合、台数制御器5は、下限圧力PLから上限圧力PHまでの昇圧時間TUが第一設定時間よりも短ければ、圧縮機2を一台停止させる。この第一設定時間は、適宜に設定されるが、後述する数式17(または数式18)の右辺で求められる一台停止ロード時間[秒]とするのが好ましい。
また、すべての圧縮機2がロードアンロード機からなる場合、台数制御器5は、上限圧力PHから下限圧力PLまでの降圧時間TDが第二設定時間よりも長ければ、圧縮機2を一台停止させるようにしてもよい。この第二設定時間は、適宜に設定されるが、後述する数式21(または数式22)の右辺で求められる一台停止アンロード時間[秒]とするのが好ましい。
ここで、下限圧力PLから上限圧力PHまでの昇圧時間TUや、上限圧力PHから下限圧力PLまでの降圧時間TDは、各圧縮機2からレシーバタンク3までの配管の圧力損失が正確に分からないことを考慮して、つまり各圧縮機2の吐出側の圧力が上限圧力PHや下限圧力PLになる時のレシーバタンク3の圧力が正確に把握できないことを考慮し、次のようにして求めるのが好ましい。つまり、レシーバタンク3内の圧力を圧力センサ4で監視し、その圧力が下降から上昇に転じた時から、上昇から下降に転じた時までの時間を、タイマで計測して昇圧時間TUとする。また、同様に、レシーバタンク3内の圧力が上昇から下降に転じた時から、下降から上昇に転じた時までの時間を、タイマで計測して降圧時間TDとする。
以下、図3に基づき具体的に説明すると、ロードアンロード機からなる圧縮機2を台数制御する場合、通常、運転中の圧縮機2は、全部がロード運転するか、全部がアンロード運転するように、運転状態を切り替えられる。そして、ロード運転中はレシーバタンク3内の圧力が上昇し、アンロード運転中はレシーバタンク3内の圧力が下降する。このときの圧力の変化時間は下記のようになる。
運転中の圧縮機2のロード運転時の吐出量をX[m/sec]、圧縮空気利用機器の消費空気量をY[m/sec]とし、レシーバタンク3の容量をQ[m]、下限圧力(ロード圧力)をPL[kPa]、上限圧力(アンロード圧力)をPH[kPa]とすると、ボイルの法則PV=Cを用いて、以下のとおりとなる。なお、大気圧をP0とする。
《(b1)ロード運転中の関係式》
ロード運転時、下限圧力PLから上限圧力PHまでの昇圧時間TU[秒]を用いて、次式が導かれる。
[数11] (PL+P0)・{Q+TU(X−Y)}=(PH+P0)・Q
この数式11を変形すると、次式が導かれる。
[数12] TU=Q・{(PH+P0)/(PL+P0)−1}/(X−Y)
《(b2)アンロード運転中の関係式》
アンロード運転時、上限圧力PHから下限圧力PLまでの降圧時間TD[秒]を用いて、次式が導かれる。
[数13] (PH+P0)・Q=(PL+P0)・(Q+TD・Y)
この数式13を変形すると、次式が導かれる。
[数14] TD=Q・{(PH+P0)/(PL+P0)−1}/Y
ここで、圧縮機2の吐出量Xは既知、圧縮機2の下限圧力PLや上限圧力PHも既知である。一方、レシーバタンクの容量Qは、それ自体は既知であるが、実際には配管や圧力損失を考慮する必要がある。また、昇圧時間TUや降圧時間TDは、測定可能な値である。従って、下記のとおり、前述した一台停止ロード時間や一台停止アンロード時間を求めることができる。
《(b3)一台停止ロード時間》
数式12より、次式が導かれる。
[数15] X−Y=Q・{(PH+P0)/(PL+P0)−1}/TU
さて、圧縮空気の生産流量と消費流量との差、つまり、運転中の圧縮機2の吐出量Xと圧縮空気利用機器での消費空気量Yとの差(X−Y)が、次停止予定機の吐出空気量よりも多ければ、一台(次停止予定機)を停止することができることになる。そこで、次停止予定機の吐出容量をQC[m/min]とすると、次式が導かれる。
[数16] Q・{(PH+P0)/(PL+P0)−1}/TU>(QC/60)・P0/(PL+P0)
なお、圧縮機2の吐出容量は、圧縮機2からの吐出空気量ではなく、圧縮機2への吸込空気量で表すのが標準であるから、右辺において吐出容量について圧力換算を行っている。つまり、圧縮機2は、ロード運転に切り替えると、QC/60[m/sec]の空気を吸入して圧縮し、大気圧P0より高圧(PL+P0)の空間に吐出することを考慮した換算を行っている。
数式16より、次式が導かれ、その右辺が一台停止ロード時間である。なお、Kは、空気の水分、温度および配管容量を考慮した数(1〜2)である。
[数17] TU<(60/P0)・K・(Q/QC)・{(PH+P0)/(PL+P0)−1}・(PL+P0)
大気圧P0を101[kPa]とした場合には、次式のとおりとなる。
[数18] TU<0.6K・(Q/QC)・{(PH+101)/(PL+101)−1}・(PL+101)
《(b4)一台停止アンロード時間》
数式14より、次式が導かれる。
[数19] Y=Q・{(PH+P0)/(PL+P0)−1}/TD
さて、圧縮空気の消費流量が、次停止予定機を停止した場合の圧縮空気の生産流量よりも少なければ、つまり、圧縮空気利用機器での消費空気量Yが、次停止予定機を停止した場合の残りの圧縮機2による吐出空気量よりも少なければ、一台(次停止予定機)を停止することができることになる。そこで、次停止予定機の吐出容量をQC[m/min]とすると、次式が導かれる。
[数20] Q・{(PH+P0)/(PL+P0)−1}/TD<(n−1)・(QC/60)・P0/(PL+P0)
ここで、nは次停止予定機の吐出容量に換算した運転台数である。運転中の圧縮機2の吐出容量が互いに同じ場合、nは運転台数となる。一方、運転中の圧縮機2に吐出容量が異なる圧縮機2が含まれる場合、運転中の圧縮機2について、その圧縮機2の吐出容量を次停止予定機の吐出容量で除した値としての比台数を求め(i号機の比台数Ni=i号機の吐出容量/次停止予定機の吐出容量)、この比台数の総和がnとなる。たとえば、次停止予定機と、この次停止予定機の二倍の吐出容量の圧縮機との、合計二台の圧縮機2が運転しているとすると、比台数の総和「n」は「3」であり、「n−1」は「2」となる。
数式20より、次式が導かれ、その右辺が一台停止アンロード時間である。なお、Kは、空気の水分、温度および配管容量を考慮した数(1〜2)である。
[数21] TD>(60/P0)・K・[Q/{(n−1)・QC}]・{(PH+P0)/(PL+P0)−1}・(PL+P0)
大気圧P0を101[kPa]とした場合には、次式のとおりとなる。
[数22] TD>0.6K・[Q/{(n−1)・QC}]・{(PH+101)/(PL+101)−1}・(PL+101)
数式17(または数式18)および数式21(または数式22)を満足していれば一台停止することができるが、各圧縮機2の上限圧力PH同士や下限圧力PL同士は、必ずしも全機において同一の値ではないので、ロード運転からアンロード運転に切り替わるときに全台が切り替わるわけではなく、一方の数式が満足できていても、他方の数式を満足できないおそれがある。そこで、ロード運転時に、数式17(または数式18)の右辺で求められる時間よりも短ければ一台停止させ、これに代えてまたはこれに加えて、アンロード運転時に、数式21(または数式22)の右辺で求められる時間より長ければ一台停止させればよい。但し、このような条件が連続して規定の時間満足している場合に、一台停止させることにより運転台数を制御するのが好ましい。
《(c)本実施例の制御》
本実施例の圧縮機台数制御システム1は、容量調整弁により上限圧力PHと下限圧力PLとの範囲で容量制御される一または複数の吸込絞り機と、上限圧力PHを上回るとアンロード運転に切り替える一方で下限圧力PLを下回るとロード運転に切り替える一または複数のロードアンロード機とを備える。
台数制御器5には、各圧縮機について、吸込絞り機であるかロードアンロード機であるかの区別の他、吐出容量、下限圧力PLおよび上限圧力PHが設定される。たとえば、図4は、台数制御器5のタッチスクリーンの設定画面の一例を示す図であるが、この図に示すように、各圧縮機2の吐出容量、種類(吸込絞り機であるかロードアンロード機であるかの区別)、下限圧力PLおよび上限圧力PHが台数制御器5に設定される。なお、この例では、圧縮機台数制御システム1は、1号機から5号機まで、5台の圧縮機2を備えた例を示しているが、圧縮機2の台数は適宜変更可能なことは言うまでもない。前述したように、ロードアンロード機の上限圧力PHは、吸込絞り機の上限圧力PHと同じかそれ以上に設定されている。
図5は、吸込絞り機とロードアンロード機とが混在したシステムにおけるレシーバタンク3内の圧力(個々の圧縮機2の吐出側圧力)と、使用空気量の静特性の一例を示す概略図である。この図において、右肩下がりの各線は、吸込絞り機のアンロード時の圧力特性を示し、実線は運転中(ロード運転中)のロードアンロード機がない場合、一点鎖線は運転中(ロード運転中)のロードアンロード機が一台の場合、二点鎖線は運転中(ロード運転中)のロードアンロード機が二台の場合を示している。たとえば、線aは、一台の吸込絞り機が運転中の場合を示し、線bは、二台の吸込み絞り機が運転中の場合を示し、線cは、一台のロードアンロード機がロード運転しつつ残り一台が吸込絞り機である場合を示している。
台数制御器5は、運転中の吸込絞り機の台数とロードアンロード機の台数とを把握して、それに基づき、下記のとおり制御する。
《(c1)吸込絞り機とロードアンロード機との双方が運転中、または吸込絞り機のみが複数台運転中》
吸込絞り機とロードアンロード機との双方が運転中、台数制御器5は、吸込絞り機の運転台数に基づき設定した台数減少用圧力C以上に圧力センサ4の検出圧力がなると、圧縮機2を一台停止させる。たとえば、吸込絞り機が2台運転中であると共に、ロードアンロード機が1台運転中しており、合計3台運転中の場合でも、吸込絞り機の2台だけを考えて、台数減少用圧力Cを演算して制御する。また、吸込絞り機のみが複数台運転中、台数制御器5は、吸込絞り機の運転台数に基づき設定した台数減少用圧力C以上に圧力センサ4の検出圧力がなると、圧縮機2を一台停止させる。
いずれの場合も、どの圧縮機2を停止させるかは、適宜に設定される。たとえば、予め設定された順序でなされる。吸込絞り機とロードアンロード機との双方が運転中、運転中の圧縮機2の内、吸込絞り機を停止させてもよいし、ロードアンロード機を停止させてもよい。たとえば、ロードアンロード機を優先的に停止させて、最後の一台を吸込絞り機とすれば、圧力変動に対処しやすい。あるいは、吸込絞り機を優先的に停止させて、ロードアンロード機を残せば、省エネルギーを図ることができる。
ここで、台数減少用圧力Cは、運転中の吸込絞り機の上限圧力PH、下限圧力PLおよび運転台数に基づき、前述した数式3により設定される。つまり、次のとおりである。
台数減少用圧力={(上限圧力−下限圧力)/運転台数}+下限圧力
図4に示すように、各吸込絞り機の上限圧力PHと下限圧力PLとを台数制御器5に予め設定している場合には、台数制御器5は、運転中の吸込絞り機について、上限圧力PHの平均値としての平均上限圧力と、下限圧力PLの平均値としての平均下限圧力とを求め、これらを用いて、前記数式6により台数減少用圧力Cが設定される。つまり、次のとおりである。
台数減少用圧力={(平均上限圧力−平均下限圧力)/運転台数}+平均下限圧力
また、吐出容量の異なる吸込絞り機が含まれる場合、図4に示すように、台数制御器5に各圧縮機2の吐出容量を予め設定しておき、それに基づいて制御することができる。つまり、前記数式7により、運転中の各吸込絞り機について、その吐出容量を次停止予定機の吐出容量で除した値としての比台数Niを求める。また、前記数式8により、運転中の吸込絞り機について、その上限圧力PHiに比台数Niを乗じた値の総和を求めると共に、これを比台数Niの総和で除した値として平均上限圧力を求める。さらに、前記数式9により、運転中の吸込絞り機について、その下限圧力PLiに比台数Niを乗じた値の総和を求めると共に、これを比台数Niの総和で除した値として平均下限圧力を求める。そして、このようにして求められた運転中の吸込み絞り機の平均上限圧力と平均下限圧力の他、比台数Niの総和に基づき、前記数式10により設定される。つまり、次のとおりである。
台数減少用圧力={(平均上限圧力−平均下限圧力)/(運転中の圧縮機の比台数の総和)}+平均下限圧力
このように、ロードアンロード機の上限圧力PHを吸込絞り機の上限圧力PHと同じかそれより高く設定しておくことで、吸込絞り機とロードアンロード機との双方が運転中には、ロードアンロード機を基本的にロード運転に維持して、吸込絞り機についての台数制御方法で制御することができる。よって、吸込絞り機のみが運転中は勿論、吸込絞り機とロードアンロード機との双方が運転中であっても、吸込絞り機の運転台数に基づき設定した台数減少用圧力C以上になると、圧縮機2を一台停止させればよい。
《(c2)ロードアンロード機のみが運転中》
ロードアンロード機のみが運転中、台数制御器5は、ロードアンロード機の下限圧力PLから上限圧力PHまでの昇圧時間が第一設定時間よりも短いか、および/または、上限圧力PHから下限圧力PLまでの降圧時間が第二設定時間よりも長ければ、前記圧縮機2を一台停止させる。
第一設定時間としての一台停止ロード時間は、前記数式17(または数式18)により設定される。つまり、次のとおりである。但し、P0は大気圧[kPa]、Qはレシーバタンクの容量[m]、QCは次停止予定機の吐出容量[m/min]、PHはロードアンロード機の上限圧力[kPa]、PLはロードアンロード機の下限圧力[kPa]、Kは空気の水分、温度および配管容量を考慮した数である。
一台停止ロード時間[秒]=(60/P0)・K・(Q/QC)・{(PH+P0)/(PL+P0)−1}・(PL+P0)
第二設定時間としての一台停止アンロード時間は、前記数式21(または数式22)により設定される。つまり、次のとおりである。但し、P0は大気圧[kPa]、Qはレシーバタンクの容量[m]、QCは次停止予定機の吐出容量[m/min]、PHはロードアンロード機の上限圧力[kPa]、PLはロードアンロード機の下限圧力[kPa]、nは次停止予定機の吐出容量に換算した運転台数、Kは空気の水分、温度および配管容量を考慮した数である。
一台停止アンロード時間[秒]=(60/P0)・K・[Q/{(n−1)・QC}]・{(PH+P0)/(PL+P0)−1}・(PL+P0)
なお、運転中のロードアンロード機の上限圧力PH同士や下限圧力PL同士などが互いに異なる場合、前述した吸込絞り機についての制御と同様にして、平均上限圧力や平均下限圧力を求めて制御することができる。
以上では、圧縮機2の運転台数を減少させる制御について述べたが、圧縮機2の運転台数を増加させる制御については、《(a)吸込絞り機についての制御》で述べたものと同様であるため説明は省略する。圧縮機2を増加させる際、どの圧縮機2を新たに起動させるかは、適宜に設定される。たとえば、予め設定された順序でなされる。その際、吸込絞り機とロードアンロード機との内、いずれを起動するかも適宜に設定される。
本実施例の圧縮機台数制御システム1によれば、吸込絞り機とロードアンロード機とが混在した圧縮機群がどのような組合せで運転しても、圧縮空気の使用負荷に応じて適切な運転台数を維持することができる。圧縮機2の運転台数を必要最少台数として制御することで、消費電力を抑えて省エネルギーを図ることができる。
本発明の圧縮機台数制御システム1は、前記実施例(変形例を含む)の構成に限らず適宜変更可能である。特に、吸込絞り機とロードアンロード機との双方が運転中、運転中の吸込絞り機の運転台数に基づき設定した台数減少用圧力C以上になると、運転中の圧縮機2の内の一台を停止させる構成であれば、その他の構成は適宜に変更可能である。
1 圧縮機台数制御システム
2 圧縮機
3 レシーバタンク
4 圧力センサ
5 台数制御器
A 台数増加用圧力
B 即時増加用圧力
C 台数減少用圧力

Claims (7)

  1. 複数台の圧縮機と、
    これら圧縮機から圧縮空気が供給されると共に圧縮空気利用機器へ圧縮空気を送るレシーバタンクに設けられ、圧縮空気の圧力を検出する圧力センサと、
    前記圧縮機の運転台数を変更する台数制御器とを備え、
    前記圧縮機として、容量調整弁により上限圧力と下限圧力との範囲で容量制御される一または複数の吸込絞り機と、上限圧力を上回るとアンロード運転に切り替える一方で下限圧力を下回るとロード運転に切り替える一または複数のロードアンロード機とを備え、
    ロードアンロード機の上限圧力は、吸込絞り機の上限圧力と同じかそれ以上に設定されており、
    (a)吸込絞り機とロードアンロード機との双方が運転中、前記台数制御器は、吸込絞り機の運転台数に基づき設定した台数減少用圧力以上に前記圧力センサの検出圧力がなると、前記圧縮機を一台停止させ
    (b)吸込絞り機のみが複数台運転中、前記台数制御器は、吸込絞り機の運転台数に基づき設定した台数減少用圧力以上に前記圧力センサの検出圧力がなると、前記圧縮機を一台停止させ、
    (c)ロードアンロード機のみが運転中、前記台数制御器は、(i)前記圧力センサの検出圧力が下降から上昇に転じた時から、上昇から下降に転じた時までの時間をタイマで計測して昇圧時間TUとし、この昇圧時間TUが第一設定時間よりも短いか、および/または、(ii)前記検出圧力が上昇から下降に転じた時から、下降から上昇に転じた時までの時間をタイマで計測して降圧時間TDとし、この降圧時間TDが第二設定時間よりも長ければ、前記圧縮機を一台停止させる
    ことを特徴とする圧縮機台数制御システム。
  2. 前記台数減少用圧力は、運転中の吸込絞り機の上限圧力、下限圧力および運転台数に基づき、次式により設定される
    ことを特徴とする請求項に記載の圧縮機台数制御システム。
    台数減少用圧力={(上限圧力−下限圧力)/運転台数}+下限圧力
  3. 前記台数制御器には、各吸込絞り機の上限圧力と下限圧力とがそれぞれ予め設定されており、
    前記台数制御器は、運転中の吸込絞り機について、上限圧力の平均値としての平均上限圧力と、下限圧力の平均値としての平均下限圧力とを求め、
    前記数式中、上限圧力として平均上限圧力を用いると共に、下限圧力として平均下限圧力を用いて、前記数式により前記台数減少用圧力が設定される
    ことを特徴とする請求項に記載の圧縮機台数制御システム。
  4. 吐出容量の異なる吸込絞り機が含まれる場合、運転中の各吸込絞り機について、その吸込絞り機の吐出容量を次停止予定機の吐出容量で除した値としての比台数を求め、
    運転中の吸込絞り機について、各吸込絞り機の上限圧力にその比台数を乗じた値の総和を求めると共に、これを比台数の総和で除した値として前記平均上限圧力を求め、
    運転中の吸込絞り機について、各吸込絞り機の下限圧力にその比台数を乗じた値の総和を求めると共に、これを比台数の総和で除した値として前記平均下限圧力を求め、
    前記台数減少用圧力は、運転中の圧縮機の比台数の総和に基づき、次式により設定される
    ことを特徴とする請求項に記載の圧縮機台数制御システム。
    台数減少用圧力={(平均上限圧力−平均下限圧力)/(運転中の圧縮機の比台数の総和)}+平均下限圧力
  5. 前記第一設定時間としての一台停止ロード時間は、次式により設定される
    ことを特徴とする請求項に記載の圧縮機台数制御システム。
    一台停止ロード時間[秒]=(60/P0)・K・(Q/QC)・{(PH+P0)/(PL+P0)−1}・(PL+P0)
    但し、P0は大気圧[kPa]、Qはレシーバタンクの容量[m]、QCは次停止予定機の吐出容量[m/min]、PHはロードアンロード機の上限圧力[kPa]、PLはロードアンロード機の下限圧力[kPa]、Kは空気の水分、温度および配管容量を考慮した数である。
  6. 前記第二設定時間としての一台停止アンロード時間は、次式により設定される
    ことを特徴とする請求項または請求項に記載の圧縮機台数制御システム。
    一台停止アンロード時間[秒]=(60/P0)・K・[Q/{(n−1)・QC}]・{(PH+P0)/(PL+P0)−1}・(PL+P0)
    但し、P0は大気圧[kPa]、Qはレシーバタンクの容量[m]、QCは次停止予定機の吐出容量[m/min]、PHはロードアンロード機の上限圧力[kPa]、PLはロードアンロード機の下限圧力[kPa]、nは次停止予定機の吐出容量に換算した運転台数、Kは空気の水分、温度および配管容量を考慮した数である。
  7. 前記台数制御器は、前記圧力センサの検出圧力が台数増加用圧力以下になると前記圧縮機を一台起動させ、
    前記台数増加用圧力は、前記圧力センサの検出圧力の圧力変化率がマイナス側へ大きくなるほど高圧になるよう設定され、
    前記圧力センサの検出圧力が前記台数増加用圧力以下になると、前記圧縮機を一台起動させ、それでも台数増加用圧力以下を維持する場合、所定の連続起動防止時間を経過するごとに前記圧縮機を一台起動させるが、圧力変化率の絶対値が設定値以上の領域では、前記台数増加用圧力よりも低圧で設定された即時増加用圧力以下になれば、前記連続起動防止時間の経過を待つことなくさらに一台起動させる
    ことを特徴とする請求項1〜のいずれか1項に記載の圧縮機台数制御システム。
JP2013002672A 2013-01-10 2013-01-10 圧縮機台数制御システム Active JP6111674B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002672A JP6111674B2 (ja) 2013-01-10 2013-01-10 圧縮機台数制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002672A JP6111674B2 (ja) 2013-01-10 2013-01-10 圧縮機台数制御システム

Publications (2)

Publication Number Publication Date
JP2014134146A JP2014134146A (ja) 2014-07-24
JP6111674B2 true JP6111674B2 (ja) 2017-04-12

Family

ID=51412604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002672A Active JP6111674B2 (ja) 2013-01-10 2013-01-10 圧縮機台数制御システム

Country Status (1)

Country Link
JP (1) JP6111674B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112302919B (zh) * 2020-10-29 2022-09-27 新奥数能科技有限公司 一种基于云计算的多台空压机寻优控制方法及系统
CN114352511B (zh) * 2021-12-28 2024-02-23 南京尚爱机械制造有限公司 一种在空压机多机运行中减少空压机空载的方法
CN115390948B (zh) * 2022-10-28 2022-12-27 蘑菇物联技术(深圳)有限公司 确定空压站的空久停车时间的方法、计算设备和介质
CN115977955A (zh) * 2022-11-30 2023-04-18 山东豪迈机械制造有限公司 压缩机站房压力控制方法、装置、存储介质及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187706U (ja) * 1975-01-10 1976-07-14
JP2000120583A (ja) * 1998-10-14 2000-04-25 Kobe Steel Ltd 圧縮機制御方法及びその装置
JP4248077B2 (ja) * 1999-04-14 2009-04-02 株式会社日立産機システム 圧縮機装置
JP4897414B2 (ja) * 2005-09-30 2012-03-14 株式会社日立産機システム 空気圧縮装置の制御装置
JP4924855B1 (ja) * 2011-07-22 2012-04-25 三浦工業株式会社 圧縮機台数制御システム

Also Published As

Publication number Publication date
JP2014134146A (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
KR101167556B1 (ko) 압축기 대수 제어 시스템
JP6111674B2 (ja) 圧縮機台数制御システム
JP4924855B1 (ja) 圧縮機台数制御システム
US9097255B2 (en) Compressed gas supply unit
WO2021008146A1 (zh) 空调系统中水泵的控制方法、装置以及空调系统
JP2011085044A (ja) 油圧システムにおける油圧ポンプの運転装置及び方法
JP5374188B2 (ja) 圧縮機台数制御システム
JP2014152698A (ja) 流体圧縮システム
JP6537703B2 (ja) ヒートポンプ給湯機
KR20160017960A (ko) 인버터 부스터 펌프 최적제어방법
JP2005048755A (ja) コンプレッサの台数制御システム
JP5091787B2 (ja) 圧縮空気製造設備
JP5915931B2 (ja) 圧縮機台数制御システム
JP6343459B2 (ja) 給水装置
JP6176518B2 (ja) 圧縮機台数制御システム
WO2014196222A1 (ja) 圧縮空気製造設備
JP5915932B2 (ja) 圧縮機台数制御システム
JPH11324963A (ja) スクリュー圧縮機の圧力制御方法
JP5672551B2 (ja) 圧縮機台数制御システム
JP3403968B2 (ja) 圧縮気体供給装置およびコンプレッサの並列運転制御方法
KR20160002957A (ko) 펌프 장치
JP4122451B2 (ja) 圧縮空気製造システム
JP5444264B2 (ja) 気体圧縮装置の制御装置
JP3002118B2 (ja) 圧縮機の運転方法
JP4399655B2 (ja) 圧縮空気製造設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6111674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250