JP6109106B2 - Manufacturing method of continuous casting mold - Google Patents

Manufacturing method of continuous casting mold Download PDF

Info

Publication number
JP6109106B2
JP6109106B2 JP2014058334A JP2014058334A JP6109106B2 JP 6109106 B2 JP6109106 B2 JP 6109106B2 JP 2014058334 A JP2014058334 A JP 2014058334A JP 2014058334 A JP2014058334 A JP 2014058334A JP 6109106 B2 JP6109106 B2 JP 6109106B2
Authority
JP
Japan
Prior art keywords
mass
alloy
continuous casting
casting mold
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014058334A
Other languages
Japanese (ja)
Other versions
JP2015183203A (en
Inventor
祐登 梅山
祐登 梅山
圭祐 山本
圭祐 山本
浩郁 森園
浩郁 森園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2014058334A priority Critical patent/JP6109106B2/en
Publication of JP2015183203A publication Critical patent/JP2015183203A/en
Application granted granted Critical
Publication of JP6109106B2 publication Critical patent/JP6109106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Continuous Casting (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、鉄鋼等の製造に使用する連続鋳造用鋳型の製造方法に係り、更に詳細には、耐熱、耐食、及び耐摩耗性に優れる連続鋳造用鋳型の製造方法に関する。 The present invention relates to a method of manufacturing a mold casting for continuous casting used in the production of such steel, more particularly, heat, corrosion, and a method of manufacturing a mold casting for continuous casting which is excellent in wear resistance.

従来、内面を溶射処理して耐摩耗性を高めた連続鋳造用鋳型としては、例えば、特許文献1に開示された鋳型がある。この鋳型の製造に際しては、析出硬化型銅合金からなる母材(以下、母材銅板ともいう)表面に、Ni等の下地めっきを施し、その上にNi−Cr系の自溶性合金を溶射した後、これを約1000℃に加熱している。これにより、母材銅板と下地Niめっき層との間、及び下地Niめっき層と溶射皮膜との間に、それぞれ拡散層を形成して冶金的に結合させ、母材銅板の上に強固な耐摩耗性を有する溶射皮膜を形成させている。   Conventionally, as a casting mold for continuous casting whose inner surface is thermally sprayed to improve wear resistance, for example, there is a mold disclosed in Patent Document 1. In the production of this mold, the surface of a base material made of a precipitation hardening type copper alloy (hereinafter also referred to as a base material copper plate) was subjected to base plating such as Ni, and a Ni—Cr based self-fluxing alloy was sprayed thereon. Thereafter, it is heated to about 1000 ° C. As a result, a diffusion layer is formed between the base copper plate and the base Ni plating layer and between the base Ni plating layer and the sprayed coating, and is bonded metallurgically, thereby providing a strong resistance on the base copper plate. A thermally sprayed coating having wear properties is formed.

しかし、上記したように、溶射後の母材銅板を1000℃程度に加熱する場合、母材銅板が変形する。このため、母材銅板の歪取り作業を行う必要があるが、歪取りを行っても連続鋳造用鋳型のバックフレームに組込めないことがあり、また仮にバックフレームに組込めても、母材銅板の平坦精度が劣るという問題がある。
更に、母材銅板の強度回復のため時効硬化熱処理を行う必要があり、その製造工程が極めて複雑多岐にわたるという問題がある。ここで、Ni−Cr系の自溶性合金を溶射した後、熱処理をしないことも考えられるが、この場合、母材銅板との密着力が0.20〜0.29MPa(2〜3kg/mm)と小さく、長期の使用が困難であるという問題がある。
However, as described above, when the base copper plate after thermal spraying is heated to about 1000 ° C., the base copper plate is deformed. For this reason, it is necessary to perform a strain relief operation on the base copper plate, but even if the strain relief is performed, it may not be incorporated into the back frame of the continuous casting mold. There is a problem that the flatness of the copper plate is inferior.
Furthermore, it is necessary to perform an age hardening heat treatment to recover the strength of the base copper plate, and there is a problem that the manufacturing process is extremely complicated and diverse. Here, it is conceivable that heat treatment is not performed after thermal spraying of a Ni—Cr self-fluxing alloy. In this case, the adhesion with the base copper plate is 0.20 to 0.29 MPa ( 2 to 3 kg / mm 2). ) And is difficult to use for a long time.

このため、本発明者は、特許文献2に示すような、熱処理を行うことなく製造可能な連続鋳造用鋳型を、先に出願した。
具体的には、溶射皮膜を、10〜90質量%のNi系合金材料と、耐摩耗性セラミックスを含み、Ni系合金材料の割合に対応して90〜10質量%のサーメット材料からなり、しかも、Ni系合金材料とサーメット材料とを、それぞれ独立の火炎溶射機を用いて、同時に同一箇所に溶射して形成した鋳型である。
しかし、上記特許文献2に記載の鋳型では、靱性や耐熱衝撃性に起因した溶射皮膜の剥離が発生し、鋳型の更なる長寿命化が図れなかった。
For this reason, the inventor previously applied for a continuous casting mold that can be manufactured without performing heat treatment, as shown in Patent Document 2.
Specifically, the thermal spray coating includes 10 to 90% by mass of a Ni-based alloy material and wear-resistant ceramics, and is composed of 90 to 10% by mass of a cermet material corresponding to the proportion of the Ni-based alloy material. The mold was formed by simultaneously spraying the Ni-based alloy material and the cermet material at the same location using independent flame sprayers.
However, in the mold described in Patent Document 2, peeling of the sprayed coating due to toughness and thermal shock resistance occurred, and the life of the mold could not be further extended.

そこで、本発明者は更に、特許文献3に示す連続鋳造用鋳型を出願した。
具体的には、溶射皮膜を、Cr:10〜30質量%、Ni:5〜15質量%、及び残部WCからなる粒状のサーメット材料Aと、Ni又はNi系合金からなる粒状の材料Bとを混合して形成し、しかも全体の5〜30質量%を材料Bとした溶射粒子を火炎溶射機で溶射して形成した鋳型である。
この鋳型により、現在のニーズに見合った耐熱衝撃性を備えることができ、鋳型の長寿命化が図れる。
Therefore, the present inventor further applied for a continuous casting mold shown in Patent Document 3.
Specifically, the thermal spray coating is made of a granular cermet material A composed of Cr 3 C 2 : 10 to 30% by mass, Ni: 5 to 15% by mass, and the balance WC, and a granular material composed of Ni or a Ni-based alloy. B is a mold formed by mixing with B and sprayed with 5 to 30% by mass of the material B as a material B with a flame sprayer.
With this mold, it is possible to provide thermal shock resistance that meets the current needs, and to extend the service life of the mold.

特公昭61−15782号公報Japanese Examined Patent Publication No. 61-15758 特開平10−71454号公報JP-A-10-71454 特開2011−31247号公報Japanese Patent Application Laid-Open No. 2011-31247

しかしながら、上記特許文献3では、溶射皮膜の材料Bとして、Niを使用しているが、腐食、特にS(硫黄)系の腐食環境では、Niの耐食性(耐腐食性)が非常に弱いことから、腐食律速で鋳型の寿命が短くなる場合があった。つまり、上記鋳型では、現在のニーズに見合った耐熱衝撃性と耐腐食性の両立が図れず、鋳型の寿命が短くなる場合があった。   However, in the above-mentioned Patent Document 3, Ni is used as the material B of the thermal spray coating. However, in corrosion, particularly in an S (sulfur) -based corrosive environment, the corrosion resistance (corrosion resistance) of Ni is very weak. In some cases, the life of the mold may be shortened due to corrosion rate control. In other words, the above molds may not be able to achieve both thermal shock resistance and corrosion resistance that meet current needs, and the mold life may be shortened.

本発明はかかる事情に鑑みてなされたもので、靱性の向上が図れて耐熱衝撃性の更なる向上が図れ、かつ、耐腐食性も図れ、その結果、鋳型の長寿命化が図れる連続鋳造用鋳型の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances. For continuous casting, the toughness can be improved, the thermal shock resistance can be further improved, and the corrosion resistance can be improved. As a result, the life of the mold can be extended. and to provide a casting mold manufacturing method of.

前記目的に沿う発明に係る連続鋳造用鋳型の製造方法は、溶鋼接触面側に、粗面化処理が行われた下地めっき層と溶射皮膜を順次形成する連続鋳造用鋳型の製造方法において、
Co:5質量%以上15質量%以下、Cr:2質量%以上6質量%以下、及び残部WCからなる粒状のサーメット材料と、0を超え8質量%以下のAlを含有する粒状のNi−Al合金とを、混合して形成され、しかも、全体の20質量%以上60質量%以下を前記Ni−Al合金とした溶射粒子を火炎溶射機で溶射し、前記サーメット材料の粒界に前記Ni−Al合金を存在させた前記溶射皮膜を形成する。
A method for producing a continuous casting mold according to the present invention that meets the above-described object is a method for producing a continuous casting mold in which a surface plating layer and a sprayed coating are sequentially formed on the molten steel contact surface side,
Co: 5% by mass or more and 15% by mass or less, Cr: 2% by mass or more and 6% by mass or less, and a granular cermet material composed of the balance WC, and granular Ni—Al containing Al in excess of 0 and 8% by mass or less The thermal spraying particles formed by mixing the alloy with the Ni-Al alloy at 20% by mass or more and 60% by mass or less of the whole are sprayed by a flame spraying machine, and the Ni-- is applied to the grain boundaries of the cermet material. The sprayed coating in which an Al alloy is present is formed.

発明に係る連続鋳造用鋳型の製造方法において、前記下地めっき層は、Ni、Co、Fe、又はこれらのいずれか1又は2以上を基材とする合金からなって、該下地めっき層に前記粗面化処理を行って、表面の粗度(Rz)を50μm以上150μm以下とした後、前記溶射皮膜を形成するのがよい。
発明に係る連続鋳造用鋳型の製造方法において、前記火炎溶射機に高速火炎溶射機を使用し、前記溶射粒子の速度を600m/秒以上にするのがよい。
本発明に係る連続鋳造用鋳型の製造方法において、前記溶射皮膜の厚みは0.05mm以上1mm以下であるのがよい。
In the method for producing a casting mold for continuous casting according to the present invention, the base plating layer is made of Ni, Co, Fe, or an alloy based on any one or two of these, and the base plating layer includes the above-described base plating layer. After the surface roughening treatment is performed to make the surface roughness (Rz) 50 μm or more and 150 μm or less, the sprayed coating is preferably formed.
In the method for producing a continuous casting mold according to the present invention, a high-speed flame sprayer may be used as the flame sprayer, and the velocity of the spray particles may be 600 m / second or more.
In the method for manufacturing a continuous casting mold according to the present invention, the thickness of the sprayed coating may be 0.05 mm or more and 1 mm or less.

本発明に係る連続鋳造用鋳型の製造方法は、溶射皮膜を、所定の割合に調整したCo、Cr、及び残部WCからなる粒状のサーメット材料と、所定量のAlを含有する粒状のNi−Al合金とを混合して形成され、しかも全体の20質量%以上60質量%以下をNi−Al合金とした溶射粒子を火炎溶射機で溶射し、サーメット材料の粒界にNi−Al合金を存在させて形成するので、従来よりも靱性を向上でき、耐熱衝撃性の向上が図れ、かつ、耐腐食性(特に、硫黄に対する耐腐食性)も図れる。従って、形成する溶射皮膜の剥離と腐食を抑制でき、鋳型の更なる長寿命化が図れる。 Method for producing a mold casting for continuous casting according to the present invention, a thermal spray coating, Co adjusted to a predetermined ratio, Cr, and particulate consisting balance WC and cermet materials, particulate containing a predetermined amount of Al Ni- The sprayed particles, which are formed by mixing with an Al alloy and the Ni-Al alloy is 20% by mass or more and 60% by mass or less of the whole, are sprayed by a flame sprayer, and the Ni-Al alloy is present at the grain boundary of the cermet material. Therefore, the toughness can be improved as compared with the prior art, the thermal shock resistance can be improved, and the corrosion resistance (particularly, the corrosion resistance against sulfur) can be improved. Therefore, peeling and corrosion of the sprayed coating to be formed can be suppressed, and the life of the mold can be further extended.

また、下地めっき層が、Ni、Co、Fe、又はこれらのいずれか1又は2以上を基材とする合金からなる場合、火炎溶射機で溶射される溶射粒子の一部が、下地めっき層の表層に入り込み、溶射粒子の噛み込みの保持力を確保できる。ここで、更に、粗面化処理を行っているので、溶射皮膜の付着強度を向上できる。なお、この粗面化処理は、粗度が50μm以上150μm以下であるため、溶射皮膜の厚みのばらつきを抑制しながら、溶射皮膜の密着力を高めることができる。   Further, when the base plating layer is made of Ni, Co, Fe, or an alloy based on any one or more of these, a part of the sprayed particles sprayed by the flame spraying machine is It can penetrate into the surface layer and secure the retention force of the spray particles. Here, since the roughening treatment is further performed, the adhesion strength of the sprayed coating can be improved. In addition, since this roughening process has a roughness of 50 μm or more and 150 μm or less, the adhesion of the sprayed coating can be enhanced while suppressing variations in the thickness of the sprayed coating.

そして、溶射皮膜の厚みを0.05mm以上1mm以下とする場合、溶射皮膜の厚みを、溶射皮膜の剥離を抑制して、鋳型の更なる長寿命化が図れる最適な厚みとすることができる。
更に、火炎溶射機が、溶射粒子の速度を600m/秒以上にする高速火炎溶射機である場合、溶射皮膜の下地めっき層への密着力を更に高めることができる。
When the thickness of the thermal spray coating is 0.05 mm or more and 1 mm or less, the thickness of the thermal spray coating can be set to an optimum thickness that can suppress the peeling of the thermal spray coating and further extend the life of the mold.
Furthermore, when the flame sprayer is a high-speed flame sprayer that makes the speed of the spray particles 600 m / sec or more, the adhesion of the sprayed coating to the underlying plating layer can be further increased.

本発明の一実施の形態に係る連続鋳造用鋳型の製造方法における溶射状況を示す説明図である。It is explanatory drawing which shows the thermal spraying condition in the manufacturing method of the casting mold for continuous casting which concerns on one embodiment of this invention. (A)は同連続鋳造用鋳型の溶射皮膜の部分拡大模式図、(B)はサーメット材料のみで形成した溶射皮膜の部分拡大模式図である。(A) is the partial expansion schematic diagram of the thermal spray coating of the same casting mold, (B) is the partial expansion schematic diagram of the thermal spray coating formed only with the cermet material. 耐熱衝撃性の評価方法の説明図である。It is explanatory drawing of the evaluation method of a thermal shock resistance.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1、図2(A)に示すように、本発明の一実施の形態に係る製造方法によって製造された連続鋳造用鋳型は、上下方向に貫通する空間部が形成された冷却部材10を有し、この空間部に溶鋼を供給して冷却しながら鋳片を製造するものである。なお、冷却部材10は、銅又は銅合金(例えば、Cu−Cr−Zr等)からなる母材11を有し、その溶鋼接触面側に、下地めっき層12と溶射皮膜13が、順次形成されている。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 and 2A, a continuous casting mold manufactured by a manufacturing method according to an embodiment of the present invention has a cooling member 10 in which a space portion penetrating in the vertical direction is formed. Then, molten steel is supplied to the space and the slab is manufactured while cooling. The cooling member 10 includes a base material 11 made of copper or a copper alloy (for example, Cu—Cr—Zr), and a base plating layer 12 and a thermal spray coating 13 are sequentially formed on the molten steel contact surface side. ing. This will be described in detail below.

図1に示すように、母材11の溶鋼接触面側には、粗面化処理が行われた下地めっき層12が形成されている。下地めっき層12は、溶射の密着の原理であるアンカー効果が、銅又は銅合金からなる柔らかい母材よりも得られるものであり、特に、Ni、Co、Fe、又はこれらのいずれか1又は2以上を基材とする合金からなることが好ましい。
この下地めっき層12に行われる粗面化処理は、下地めっき層12の表面の粗度(Rz)を、50μm以上150μm以下(好ましくは、下限を70μm、上限を120μm、更には100μm)とするのが好ましい。ここで、粗度が50μm以上150μm以下の範囲を外れると、下地めっき層への溶射皮膜の密着力が98MPa(10kg/mm)未満となって、溶射皮膜が下地めっき層から剥離し易くなる。
As shown in FIG. 1, a base plating layer 12 that has been subjected to a roughening treatment is formed on the molten steel contact surface side of the base material 11. The base plating layer 12 has an anchor effect, which is the principle of adhesion of thermal spraying, obtained from a soft base material made of copper or a copper alloy, and in particular, Ni, Co, Fe, or any one or two of these It is preferable to consist of an alloy having the above as a base material.
In the roughening treatment performed on the base plating layer 12, the surface roughness (Rz) of the base plating layer 12 is 50 μm or more and 150 μm or less (preferably, the lower limit is 70 μm, the upper limit is 120 μm, and further 100 μm). Is preferred. Here, when the roughness is out of the range of 50 μm or more and 150 μm or less, the adhesion of the thermal spray coating to the base plating layer becomes less than 98 MPa (10 kg / mm 2 ), and the thermal spray coating is easily peeled from the base plating layer. .

下地めっき層12上には、溶射皮膜13が形成されている。
溶射皮膜13は、Co、Cr、及び残部WCからなる粒状のサーメット材料と、所定量のAlを含有する粒状のNi−Al合金とを混合して形成した溶射粒子を、火炎溶射機14で溶射して形成している。
なお、溶射粒子として、Ni−Al合金を選択したのは、Alが酸化物となり易く(不動態化し易く)、しかも、このAlと合金化し易いのがNiであることによる。なお、Ni−Al合金には、不可避的不純物が含まれていてもよい。
A thermal spray coating 13 is formed on the base plating layer 12.
The thermal spray coating 13 is formed by spraying a thermal spray particle formed by mixing a granular cermet material made of Co, Cr, and the balance WC and a granular Ni-Al alloy containing a predetermined amount of Al with a flame sprayer 14. And formed.
The reason why the Ni—Al alloy was selected as the spray particles is that Al tends to be an oxide (easily passivated), and Ni is easily alloyed with Al. The Ni—Al alloy may contain inevitable impurities.

この溶射皮膜13の厚みは、0.05mm以上1mm以下の範囲で密に(充填率が90%以上、更には95%以上で)形成されていることが好ましい。
ここで、溶射皮膜の厚みが0.05mm未満の場合、溶射皮膜の厚みが薄過ぎて、鋳型の耐用年数が短くなり過ぎる。一方、溶射皮膜の厚みが1mmを超える場合、溶射皮膜が厚過ぎて、溶射皮膜が冷却部材から剥がれ易くなる。
以上のことから、形成する溶射皮膜13の厚みは、0.05mm以上1mm以下とすることが好ましいが、下限を0.1mm、更には0.2mm、上限を0.7mmとするのが更に好ましい。
The thermal spray coating 13 is preferably formed densely (with a filling rate of 90% or more, more preferably 95% or more) in a range of 0.05 mm to 1 mm.
Here, when the thickness of the thermal spray coating is less than 0.05 mm, the thickness of the thermal spray coating is too thin and the service life of the mold becomes too short. On the other hand, when the thickness of the thermal spray coating exceeds 1 mm, the thermal spray coating is too thick and the thermal spray coating is easily peeled off from the cooling member.
From the above, the thickness of the sprayed coating 13 to be formed is preferably 0.05 mm or more and 1 mm or less, but it is more preferable that the lower limit is 0.1 mm, further 0.2 mm, and the upper limit is 0.7 mm. .

溶射粒子は、粒状のサーメット材料と粒状のNi−Al合金(溶射粒子全体の20質量%以上60質量%以下をNi−Al合金としている)を混合して形成されている。この溶射粒子を溶射して形成される溶射皮膜の拡大模式図を図2(A)に、また、粒状のサーメット材料のみを溶射して形成した溶射皮膜の拡大模式図を図2(B)に、それぞれ示す。なお、図2(A)、(B)に示す各溶射皮膜は、下地めっき層上に形成されている。
図2(A)に示すように、粒状のサーメット材料とNi−Al合金とを混合した溶射粒子により、溶射皮膜を形成することで、サーメット材料の粒界にNi−Al合金が存在する。このため、図2(B)に示すサーメット材料のみで溶射皮膜を形成した場合と比較して、溶射皮膜の脆さを低減でき、靱性の向上が図れる。
The spray particles are formed by mixing a granular cermet material and a granular Ni—Al alloy (20 mass% or more and 60 mass% or less of the entire spray particles are Ni—Al alloy). FIG. 2 (A) shows an enlarged schematic view of a sprayed coating formed by spraying the sprayed particles, and FIG. 2 (B) shows an enlarged schematic view of a sprayed coating formed by spraying only a granular cermet material. , Respectively. 2A and 2B are each formed on a base plating layer.
As shown in FIG. 2A, a Ni—Al alloy is present at the grain boundary of the cermet material by forming a thermal spray coating with thermal spray particles obtained by mixing granular cermet material and Ni—Al alloy. For this reason, compared with the case where a sprayed coating is formed only by the cermet material shown in FIG. 2 (B), the brittleness of the sprayed coating can be reduced and the toughness can be improved.

即ち、溶射粒子中のNi−Al合金の量が20質量%未満の場合、サーメット材料の粒界に存在するNi−Al合金の量が少な過ぎて、靱性の改善効果が得られなり、かつ、耐腐食性が悪くなる。一方、溶射粒子中のNi−Al合金の量が60質量%を超える場合、溶射皮膜中に含まれるサーメット材料の量が少な過ぎ、溶射皮膜の硬度の低下や、体積摩耗率の上昇を招く。なお、Ni−Al合金は、サーメット材料の全ての粒界に存在することが好ましいが、部分的であってもよい。
以上のことから、溶射粒子中のNi−Al合金の量を20質量%以上60質量%以下としたが、下限を25質量%、更には30質量%(更に好ましくは30質量%超)、上限を55質量%、更には50質量%とすることが好ましい。
That is, when the amount of Ni—Al alloy in the spray particles is less than 20% by mass, the amount of Ni—Al alloy present at the grain boundary of the cermet material is too small, and the effect of improving toughness is obtained, and Corrosion resistance deteriorates. On the other hand, when the amount of the Ni—Al alloy in the spray particles exceeds 60% by mass, the amount of the cermet material contained in the spray coating is too small, resulting in a decrease in the hardness of the spray coating and an increase in the volume wear rate. The Ni—Al alloy is preferably present at all grain boundaries of the cermet material, but may be partial.
From the above, the amount of Ni—Al alloy in the spray particles is set to 20% by mass or more and 60% by mass or less, but the lower limit is 25% by mass, further 30% by mass (more preferably more than 30% by mass), and the upper limit. Is preferably 55 mass%, more preferably 50 mass%.

サーメット材料は、Co:5質量%以上15質量%以下(好ましくは、下限を6質量%、更には7質量%、上限を14質量%、更には13質量%)、Cr:2質量%以上6質量%以下(好ましくは、下限を3質量%、上限を5質量%)、残部WCで構成されている。なお、サーメット材料には、不可避的不純物として、例えば、Fe等が含まれていてもよい。
サーメット材料を、上記した構成にすることで、耐摩耗用材料として一般的に使用されているWC/12%Coと比較して、硬度を同程度に、高温での耐熱衝撃性を5〜7倍程度に向上できる。従って、溶射皮膜13の耐クラック性の向上も図れる。
The cermet material is Co: 5% by mass or more and 15% by mass or less (preferably, lower limit is 6% by mass, further 7% by mass, upper limit is 14% by mass, further 13% by mass), Cr: 2% by mass or more 6 It is composed of not more than mass% (preferably, the lower limit is 3 mass%, the upper limit is 5 mass%) and the balance WC. The cermet material may contain, for example, Fe as an unavoidable impurity.
By making the cermet material as described above, the hardness is comparable and the thermal shock resistance at a high temperature is 5-7 compared with WC / 12% Co which is generally used as a wear-resistant material. Can be doubled. Therefore, the crack resistance of the thermal spray coating 13 can be improved.

また、Ni−Al合金は、Al含有量を0を超え8質量%以下としている。
Al含有量が0質量%の場合(Alが含まれていない場合)、Niのみとなるため、前記したように、耐腐食性が悪くなる。一方、Al含有量が8質量%を超える場合、NiがAlを固溶できなくなり(Alの固溶限:8質量%程度)、金属間化合物が形成されて、溶射皮膜の耐熱衝撃性が低下するおそれがある。
以上のことから、Ni−Al合金のAl含有量を0を超え8質量%以下としたが、下限を3質量%、更には4質量%、上限を7質量%、更には6質量%とすることが好ましい。
In addition, the Ni-Al alloy has an Al content exceeding 0 and not more than 8% by mass.
When the Al content is 0% by mass (when Al is not included), since only Ni is obtained, the corrosion resistance is deteriorated as described above. On the other hand, when the Al content exceeds 8% by mass, Ni cannot dissolve Al (Al solid solubility limit: about 8% by mass), an intermetallic compound is formed, and the thermal shock resistance of the sprayed coating is reduced. There is a risk.
From the above, the Al content of the Ni-Al alloy is set to be more than 0 and 8% by mass or less, but the lower limit is 3% by mass, further 4% by mass, and the upper limit is 7% by mass, and further 6% by mass. It is preferable.

以上に示した溶射皮膜13は、火炎溶射機14で溶射粒子を溶射して形成される。
この火炎溶射機14は、溶射粒子の速度を600m/秒(好ましくは、700m/秒)以上にする高速火炎溶射機であるが、通常使用されている火炎溶射機を使用することもできる。なお、高速火炎溶射機を用いた場合には、溶射皮膜13の下地めっき層12への密着力を更に高めることができる。
上記した理由により、溶射粒子の速度の上限については規定していないが、現実的には、例えば、1000m/秒程度である。
The thermal spray coating 13 shown above is formed by spraying thermal spray particles with a flame sprayer 14.
The flame sprayer 14 is a high-speed flame sprayer that makes the velocity of spray particles 600 m / second (preferably 700 m / second) or more, but a flame sprayer that is usually used can also be used. In addition, when a high-speed flame sprayer is used, the adhesive force of the thermal spray coating 13 to the base plating layer 12 can be further increased.
For the reasons described above, the upper limit of the velocity of the spray particles is not defined, but in reality, for example, it is about 1000 m / second.

次に、本発明の一実施の形態に係る連続鋳造用鋳型の製造方法について説明する。
まず、図1に示すように、連続鋳造用鋳型を構成する母材11の溶鋼接触面側内面に、厚みが100μm程度の下地めっきを行って、下地めっき層12を形成する。
この場合の電解液としては、1リットル中に、S−Ni(スルファミン酸ニッケル)を350g、塩化ニッケルを5g、硼酸を30g溶かした溶液を使用し、めっき液の温度を45〜60℃、電流密度を3A/dmとする。ここでは、下地めっき層をNiで形成したが、例えば、Co又はFeで形成してもよく、また、Ni、Co、及びFeのいずれか1又は2以上を基材とする合金で形成してもよい。
Next, the manufacturing method of the casting mold for continuous casting which concerns on one embodiment of this invention is demonstrated.
First, as shown in FIG. 1, a base plating layer 12 is formed by performing base plating having a thickness of about 100 μm on the inner surface of the molten steel contact surface side of the base material 11 constituting the continuous casting mold.
As an electrolytic solution in this case, a solution in which 350 g of S-Ni (nickel sulfamate), 5 g of nickel chloride, and 30 g of boric acid are dissolved in 1 liter is used. the density 3A / dm 2. Here, the base plating layer is formed of Ni, but may be formed of, for example, Co or Fe, or may be formed of an alloy based on any one or more of Ni, Co, and Fe. Also good.

この下地めっき層12には、粗面化処理が行われ、下地めっき層12の表面の粗度を50μm以上150μm以下としている。
ここで、粗面化処理は、アルミナやスティールグリットを使用したブラスト処理により行う。なお、使用するアルミナとしては、例えば、粒度#24のグリッドのアルミナを使用でき、ブラスト処理の際の空気圧を約0.49MPa(5kg/cm)にする。また、スティールグリットを使用する場合は、粒度#50のグリッドのスティールグリットを使用でき、ブラスト処理の際の空気圧を約0.49MPa(5kg/cm)にする。
そして、粗面化処理された下地めっき層12上に、Co、Cr、及び残部WCからなる粒状のサーメット材料と、粒状のNi−Al合金とを混合して形成され、しかも全体の20質量%以上60質量%以下をNi−Al合金とした溶射粒子を、火炎溶射機14で溶射する。
The underlying plating layer 12 is subjected to a roughening treatment, and the roughness of the surface of the underlying plating layer 12 is set to 50 μm or more and 150 μm or less.
Here, the roughening treatment is performed by blasting using alumina or steel grit. In addition, as an alumina to be used, for example, alumina having a grid size of # 24 can be used, and the air pressure at the time of blasting is set to about 0.49 MPa (5 kg / cm 2 ). When steel grit is used, steel grit having a particle size of # 50 can be used, and the air pressure during blasting is about 0.49 MPa (5 kg / cm 2 ).
And it forms by mixing the granular cermet material which consists of Co, Cr, and the remainder WC, and granular Ni-Al alloy on the base plating layer 12 by which the roughening process was carried out, and also 20 mass% of the whole Thermal spray particles having a Ni—Al alloy content of 60 mass% or less are sprayed by the flame sprayer 14.

ここで、サーメット材料とNi−Al合金の各粒径分布は、形成する溶射皮膜の強度を考慮すれば、例えば、5μm以上60μm以下(好ましくは、下限を10μm、上限を55μm)程度である。なお、溶射前のサーメット材料とNi−Al合金の各粒径分布は、同じでもよく、異なってもよい。
この溶射粒子は、サーメット材料とNi−Al合金を個別に購入し、これを上記した割合に混合して使用できるが、予め混合されたものを購入して使用することもできる。
Here, each particle size distribution of the cermet material and the Ni—Al alloy is, for example, about 5 μm to 60 μm (preferably, the lower limit is 10 μm and the upper limit is 55 μm) in consideration of the strength of the sprayed coating to be formed. Note that the particle size distributions of the cermet material and the Ni—Al alloy before thermal spraying may be the same or different.
As the spray particles, a cermet material and a Ni—Al alloy can be purchased separately and mixed in the above-described proportions. Alternatively, premixed particles can be purchased and used.

そして、溶射粒子を溶射する火炎溶射機14には、溶射粒子の速度を600m/秒(好ましくは、700m/秒)以上にする高速火炎溶射機を使用するが、従来公知の火炎溶射機を使用することもできる。
これにより、図2(A)に示すように、サーメット材料の粒界に、Ni−Al合金を存在させた溶射皮膜13を形成することができる。この溶射皮膜13の厚みは、特に限定しないが、0.05mm以上1mm以下の範囲で密に形成されていることが好ましい。
このように形成した溶射皮膜13の表面側を、必要に応じて仕上げ加工した後、連続鋳造用鋳型として使用する。
As the flame sprayer 14 for spraying the sprayed particles, a high-speed flame sprayer that makes the speed of the sprayed particles 600 m / second (preferably 700 m / second) or more is used, but a conventionally known flame sprayer is used. You can also
Thereby, as shown in FIG. 2A, the thermal spray coating 13 in which the Ni—Al alloy is present can be formed at the grain boundary of the cermet material. The thickness of the sprayed coating 13 is not particularly limited, but is preferably formed densely in the range of 0.05 mm to 1 mm.
The surface side of the sprayed coating 13 formed in this way is finished as necessary, and then used as a continuous casting mold.

次に、本発明の作用効果を確認するために行った実施例について説明する。
まず、前記実施の形態で示した方法により、Cu−Cr−Zrからなる母材の表面に、Niからなる下地めっき層を形成した。この粗面化処理は、スティールグリットを使用し、そのときの空気圧を約0.49MPaとした。
そして、この下地めっき層上に、高速火炎溶射機を用いて、厚みが0.8mm程度の溶射皮膜を形成した。この溶射皮膜を構成する材料の種類とその割合を、表1に示す。
Next, examples carried out for confirming the effects of the present invention will be described.
First, an underlying plating layer made of Ni was formed on the surface of a base material made of Cu—Cr—Zr by the method described in the above embodiment. In this roughening treatment, steel grit was used, and the air pressure at that time was about 0.49 MPa.
Then, a sprayed coating having a thickness of about 0.8 mm was formed on the base plating layer using a high-speed flame spraying machine. Table 1 shows the types and ratios of materials constituting the thermal spray coating.

Figure 0006109106
Figure 0006109106

なお、表1に記載の参考例は、サーメット材料として、耐摩耗用材料として一般的に使用されているWC/12%Coを使用した(配合金属は不使用)。
また、比較例1〜4は、耐熱衝撃性を向上させた前記した特許文献3(特開2011−31247号公報)に記載の溶射粒子であり、サーメット材料としてWC/Cr/Niを、配合金属としてNi又はNi−Cr合金を、それぞれ使用した。
そして、実施例1〜4は、サーメット材料としてWC/Co/Crを、配合金属としてAl含有量が5質量%のNi−Al合金を、それぞれ使用した。
In the reference examples shown in Table 1, WC / 12% Co, which is generally used as a wear-resistant material, was used as the cermet material (the compound metal was not used).
Comparative Examples 1 to 4 are the thermal spray particles described in Patent Document 3 (Japanese Patent Laid-Open No. 2011-314747) with improved thermal shock resistance, and WC / Cr 3 C 2 / Ni is used as a cermet material. Ni or Ni-Cr alloy was used as a compound metal.
In Examples 1 to 4, WC / Co / Cr was used as the cermet material, and a Ni—Al alloy having an Al content of 5 mass% was used as the compound metal.

また、表1中の耐熱衝撃性は、図3に示すように、形成した溶射皮膜の表面側に、プラズマ溶射機を一定速度で移動させ、溶射皮膜にクラックが発生する回数で評価した。具体的には、比較例1〜4と実施例1〜4の各クラック発生回数を、参考例のクラック発生回数で除し、その逆数を耐熱衝撃性として、表1に示した。この比較例1〜4と実施例1〜4の各耐熱衝撃性は、参考例の耐熱衝撃性を1.0とした場合の比率となる。
更に、表1中の鋳型寿命の延長の度合いは、実際に使用した鋳型の使用時間を測定し、参考例の時間を1.0として、比較例1〜4と実施例1〜4の比率を求めた。
Further, as shown in FIG. 3, the thermal shock resistance in Table 1 was evaluated based on the number of times the plasma spraying machine was moved at a constant speed to the surface side of the formed sprayed coating, and cracks were generated in the sprayed coating. Specifically, the number of occurrences of cracks in Comparative Examples 1 to 4 and Examples 1 to 4 was divided by the number of occurrences of cracks in the reference example, and the reciprocal number is shown in Table 1 as thermal shock resistance. The thermal shock resistances of Comparative Examples 1 to 4 and Examples 1 to 4 are ratios when the thermal shock resistance of the reference example is 1.0.
Furthermore, the degree of extension of the mold life in Table 1 is determined by measuring the use time of the actually used mold, setting the time of the reference example to 1.0, and the ratio of Comparative Examples 1 to 4 and Examples 1 to 4 Asked.

表1から明らかなように、実施例1〜4の耐熱衝撃性は、参考例の耐熱衝撃性の5倍以上(最大で8倍程度)に上昇させることができ、また、耐熱衝撃性を向上させた比較例1〜4と同等以上に上昇させることができた。
従って、耐熱衝撃性に起因する鋳型寿命については、比較例1〜4と同等以上に延長できることを確認できた。
As is clear from Table 1, the thermal shock resistance of Examples 1 to 4 can be increased to 5 times or more (up to about 8 times) of the thermal shock resistance of the reference example, and the thermal shock resistance is improved. It was possible to raise it to be equal to or higher than those of Comparative Examples 1 to 4.
Therefore, it has been confirmed that the mold life resulting from the thermal shock resistance can be extended to be equal to or greater than that of Comparative Examples 1 to 4.

続いて、上記した比較例1と実施例1の各溶射粒子を用い、前記した方法で溶射皮膜を形成した試験片を使用し、耐腐食性について調査した。
まず、上記した試験片を炉内に配置した後、この炉内に、HS(硫化水素)ガス:2%、Arガス:98%、に調整した混合ガスを、流量:200(ミリリットル/分)で供給した。そして、炉内を、250℃/時間の昇温速度で500℃まで昇温し、この温度を16時間保持した後、100℃/時間の降温速度で冷却した。
なお、炉内を室温まで冷却した後は、炉内への混合ガスの供給を停止し、炉内から試験片を取り出して切断した後、その断面をEPMAで観察して、溶射皮膜の厚み方向の腐食状況を確認した。
Subsequently, each of the sprayed particles of Comparative Example 1 and Example 1 described above was used to investigate the corrosion resistance using a test piece on which a sprayed coating was formed by the method described above.
First, after placing the above-described test piece in a furnace, a mixed gas adjusted to H 2 S (hydrogen sulfide) gas: 2% and Ar gas: 98% was flowed into the furnace at a flow rate of 200 (milliliter / Min). Then, the furnace was heated to 500 ° C. at a rate of temperature increase of 250 ° C./hour, held at this temperature for 16 hours, and then cooled at a temperature decrease rate of 100 ° C./hour.
After cooling the inside of the furnace to room temperature, the supply of the mixed gas to the furnace is stopped, the test piece is taken out from the furnace and cut, and then the cross section is observed with EPMA, and the thickness direction of the thermal spray coating is observed. The corrosion status of was confirmed.

その結果、硫黄による腐食厚み(硫化反応層の厚み)は、実施例1の場合、溶射皮膜の表面から19.8μmまでの範囲に渡っていたが、比較例1の場合、溶射皮膜の表面から80.0μmまでの範囲に渡っており、実施例1と比較して4倍程度の深さまで、腐食が進行していたことが分った。
従って、耐腐食性は、比較例1と比較して、大幅に向上できることを確認できた。つまり、耐腐食性に起因する鋳型寿命については、比較例1より大幅に延長できることを確認できた。また、他の実施例2〜4についても、実施例1と同様の傾向を示した。
As a result, the corrosion thickness due to sulfur (the thickness of the sulfurization reaction layer) ranged from the surface of the thermal spray coating to 19.8 μm in the case of Example 1, but in the case of Comparative Example 1, the thickness from the surface of the thermal spray coating. It was found that the corrosion had progressed to a depth of about 4 times compared to Example 1 over a range of up to 80.0 μm.
Therefore, it was confirmed that the corrosion resistance can be significantly improved as compared with Comparative Example 1. That is, it was confirmed that the mold life caused by the corrosion resistance can be significantly extended from that of Comparative Example 1. In addition, the other Examples 2 to 4 showed the same tendency as Example 1.

なお、上記した比較例1と実施例1の各溶射粒子を用いて溶射皮膜を形成した試験片を使用し、耐摩耗性(ビッカース硬度)についても調査した結果、比較例1は726であったが、実施例1は941であった。
従って、耐磨耗性についても、比較例1と比較して、向上できることを確認できた。
In addition, as a result of investigating about abrasion resistance (Vickers hardness) using the test piece which formed the thermal spray coating using each thermal spray particle of above-mentioned comparative example 1 and Example 1, the comparative example 1 was 726. However, Example 1 was 941.
Therefore, it was confirmed that the wear resistance can be improved as compared with Comparative Example 1.

以上のことから、本発明の連続鋳造用鋳型の製造方法を使用することで、靱性の向上が図れて耐熱衝撃性の更なる向上が図れ、かつ、耐腐食性も図れ、その結果、鋳型の長寿命化が図れることを確認できた。 From the above, by using the method of the type cast for continuous casting production present invention, Hakare is a further improvement in thermal shock resistance model improves toughness, and Hakare also corrosion resistance, as a result, the mold It has been confirmed that the service life can be extended.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型の製造方法を構成する場合も本発明の権利範囲に含まれる。
前記実施の形態で示した溶射皮膜及び下地めっき層は、少なくとも、硫黄による腐食が発生し易い冷却部材の下側(鋳造方向下流側)の溶鋼接触面側に形成すればよいが、冷却部材の溶鋼接触面側の全体に渡って形成してもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, when a part or the method of type casting for continuous casting production combination present invention all of the respective embodiments and modified example is also included in the scope of the present invention.
The thermal spray coating and the base plating layer shown in the above embodiment may be formed at least on the molten steel contact surface side on the lower side (downstream in the casting direction) of the cooling member where corrosion due to sulfur is likely to occur. You may form over the molten steel contact surface side.

また、本発明を適用する溶射皮膜を形成する冷却部材には、一対の短辺と一対の長辺とで構成される4つ組みしたものがあるが、これに限定されるものではなく、例えば、ビレット(例えば、幅及び厚みが100〜200mm程度)又はブルーム(例えば、幅及び厚みが200〜400mm程度)を製造するチューブ状のものでもよい。従って、鋳型の構成についても、例えば、スラブ、ビレット、ブルーム、又はビームブランク(H型鋼用に使用)を製造する鋳型、更には、鍛造又は鍛造した銅ブロックに導水孔を穿孔したブロック鋳型に、本願発明を適用することも勿論可能である。   In addition, the cooling member for forming the thermal spray coating to which the present invention is applied includes a combination of four composed of a pair of short sides and a pair of long sides, but is not limited thereto. The tube-shaped thing which manufactures a billet (for example, width and thickness is about 100-200 mm) or a bloom (for example, width and thickness is about 200-400 mm) may be sufficient. Therefore, as for the mold configuration, for example, a mold for producing a slab, billet, bloom, or beam blank (used for H-shaped steel), and further, a block mold in which water conduction holes are drilled in a forged or forged copper block, Of course, it is possible to apply the present invention.

10:冷却部材、11:母材、12:下地めっき層、13:溶射皮膜、14:火炎溶射機 10: Cooling member, 11: Base material, 12: Undercoat layer, 13: Thermal spray coating, 14: Flame sprayer

Claims (4)

溶鋼接触面側に、粗面化処理が行われた下地めっき層と溶射皮膜を順次形成する連続鋳造用鋳型の製造方法において、
Co:5質量%以上15質量%以下、Cr:2質量%以上6質量%以下、及び残部WCからなる粒状のサーメット材料と、0を超え8質量%以下のAlを含有する粒状のNi−Al合金とを、混合して形成され、しかも、全体の20質量%以上60質量%以下を前記Ni−Al合金とした溶射粒子を火炎溶射機で溶射し、前記サーメット材料の粒界に前記Ni−Al合金を存在させた前記溶射皮膜を形成することを特徴とする連続鋳造用鋳型の製造方法。
In the method for producing a casting mold for continuous casting, in which a base plating layer and a sprayed coating that have been roughened are sequentially formed on the molten steel contact surface side,
Co: 5% by mass or more and 15% by mass or less, Cr: 2% by mass or more and 6% by mass or less, and a granular cermet material composed of the balance WC, and granular Ni—Al containing Al in excess of 0 and 8% by mass or less The thermal spraying particles formed by mixing the alloy with the Ni-Al alloy at 20% by mass or more and 60% by mass or less of the whole are sprayed by a flame spraying machine, and the Ni-- is applied to the grain boundaries of the cermet material. A method for producing a casting mold for continuous casting, comprising forming the sprayed coating in which an Al alloy is present.
請求項記載の連続鋳造用鋳型の製造方法において、前記下地めっき層は、Ni、Co、Fe、又はこれらのいずれか1又は2以上を基材とする合金からなって、該下地めっき層に前記粗面化処理を行って、表面の粗度(Rz)を50μm以上150μm以下とした後、前記溶射皮膜を形成することを特徴とする連続鋳造用鋳型の製造方法。 The method for manufacturing a casting mold for continuous casting according to claim 1 , wherein the base plating layer is made of Ni, Co, Fe, or an alloy based on any one or more of these, and the base plating layer A method for producing a casting mold for continuous casting, wherein the thermal spray coating is formed after the surface roughening treatment is performed to set the surface roughness (Rz) to 50 μm or more and 150 μm or less. 請求項1又は2記載の連続鋳造用鋳型の製造方法において、前記火炎溶射機に高速火炎溶射機を使用し、前記溶射粒子の速度を600m/秒以上にすることを特徴とする連続鋳造用鋳型の製造方法。 3. The continuous casting mold according to claim 1 , wherein a high-speed flame sprayer is used as the flame sprayer, and the velocity of the spray particles is 600 m / second or more. Manufacturing method. 請求項1〜3のいずれか1項に記載の連続鋳造用鋳型の製造方法において、前記溶射皮膜の厚みは0.05mm以上1mm以下であることを特徴とする連続鋳造用鋳型の製造方法。   The method for manufacturing a continuous casting mold according to any one of claims 1 to 3, wherein the sprayed coating has a thickness of 0.05 mm to 1 mm.
JP2014058334A 2014-03-20 2014-03-20 Manufacturing method of continuous casting mold Active JP6109106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014058334A JP6109106B2 (en) 2014-03-20 2014-03-20 Manufacturing method of continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014058334A JP6109106B2 (en) 2014-03-20 2014-03-20 Manufacturing method of continuous casting mold

Publications (2)

Publication Number Publication Date
JP2015183203A JP2015183203A (en) 2015-10-22
JP6109106B2 true JP6109106B2 (en) 2017-04-05

Family

ID=54350105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014058334A Active JP6109106B2 (en) 2014-03-20 2014-03-20 Manufacturing method of continuous casting mold

Country Status (1)

Country Link
JP (1) JP6109106B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686656A (en) * 1979-12-17 1981-07-14 Mitsubishi Heavy Ind Ltd Mold for continuous casting
JPS577360A (en) * 1980-06-14 1982-01-14 Mishima Kosan Co Ltd Mold for continuous casting
JPS5925058A (en) * 1982-08-04 1984-02-08 Toyota Motor Corp Cylinder for internal combustion engine
JPS5964765A (en) * 1982-10-06 1984-04-12 Showa Denko Kk Ni-al type plasma spraying powder material
JPH1071454A (en) * 1996-08-27 1998-03-17 Mishima Kosan Co Ltd Mold for continuous casting
JP2000355752A (en) * 1999-06-16 2000-12-26 Nippon Steel Hardfacing Co Ltd Sprayed ceramic coating applied on surface of movable parts
JP3952252B2 (en) * 2001-01-25 2007-08-01 株式会社フジミインコーポレーテッド Powder for thermal spraying and high-speed flame spraying method using the same
JP2003035090A (en) * 2001-07-25 2003-02-07 Fujimi Inc Cutter bit for excavation
JP2003293113A (en) * 2002-04-03 2003-10-15 Aisan Ind Co Ltd Molding die and manufacturing method therefor
JP2004300528A (en) * 2003-03-31 2004-10-28 Taiheiyo Cement Corp Sliding parts and brake disc rotor
JP4399248B2 (en) * 2003-12-25 2010-01-13 株式会社フジミインコーポレーテッド Thermal spray powder
JP5185894B2 (en) * 2009-07-29 2013-04-17 三島光産株式会社 Manufacturing method of continuous casting mold

Also Published As

Publication number Publication date
JP2015183203A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
KR102393772B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
CN102794417A (en) Metal ceramic coating on surface of copper plate of continuous casting mold and manufacturing process for metal ceramic coating
JP5894721B2 (en) Surface-treated metal plate and method for producing molded product using the surface-treated metal plate
CN104195546A (en) High-hardness cobalt-based alloy powder for laser cladding and preparation technology of high-hardness cobalt-based alloy powder for laser cladding
JP2018164925A (en) Method for manufacturing forged product
KR20120135214A (en) Modular extrusion die
JP5185894B2 (en) Manufacturing method of continuous casting mold
CN115637400B (en) Titanium alloy blade with high-bonding-force wear-resistant protective coating and preparation method thereof
JP7022266B2 (en) Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it
JP2019044959A (en) Slide bearing and manufacturing method thereof
JP7013823B2 (en) Manufacturing method of mold for continuous casting
CN108950543A (en) The thermally conductive wear-resisting endurance mold of one kind and its manufacturing process
JP6109106B2 (en) Manufacturing method of continuous casting mold
CN103834896A (en) Continuous casting crystallizer long-side copper plate coating thermal spraying method
JP7020147B2 (en) Manufacturing method of mold for continuous casting
CN104178764A (en) High-hardness nickel-based alloy powder for laser cladding and preparation process thereof
JP7010008B2 (en) Manufacturing method of mold for continuous casting
JP5222567B2 (en) Continuous casting mold
JP5019948B2 (en) Roll with excellent pressure resistance
JP4579706B2 (en) Articles with improved zinc erosion resistance
JPWO2013084323A1 (en) Casting member and manufacturing method thereof
JP6781922B2 (en) How to regenerate the mold
JP2016203188A (en) Hot-forging metal mold
JP5161842B2 (en) Continuous casting mold
JP4694227B2 (en) Continuous casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6109106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250