JP4694227B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP4694227B2
JP4694227B2 JP2005069385A JP2005069385A JP4694227B2 JP 4694227 B2 JP4694227 B2 JP 4694227B2 JP 2005069385 A JP2005069385 A JP 2005069385A JP 2005069385 A JP2005069385 A JP 2005069385A JP 4694227 B2 JP4694227 B2 JP 4694227B2
Authority
JP
Japan
Prior art keywords
mass
cooling plate
less
continuous casting
thermal spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005069385A
Other languages
Japanese (ja)
Other versions
JP2006247722A (en
Inventor
祐登 梅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2005069385A priority Critical patent/JP4694227B2/en
Publication of JP2006247722A publication Critical patent/JP2006247722A/en
Application granted granted Critical
Publication of JP4694227B2 publication Critical patent/JP4694227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐溶着性に優れた連続鋳造用鋳型に関する。 The present invention relates to a continuous casting mold having excellent welding resistance.

従来、連続鋳造設備に使用される連続鋳造用鋳型(以下、単に鋳型ともいう)は、一対の幅狭冷却部材である短片部材(短辺部材ともいう)と、この短片部材を挟み込むように配置される一対の幅広冷却部材である長片部材(長辺部材ともいう)とを備え、この向かい合う長片部材の両端部にそれぞれボルトを取付け、ばねを介してナットで短片部材を固定した構造となっている。図5に示すように、長片部材90は、熱伝導性の良好な銅又は銅合金で構成される冷却板91と、この冷却板91の裏面側にボルトによって固定されるバックプレート(冷却箱ともいう)92とを有している。なお、短片部材も、その幅が異なること以外は、長片部材と略同様の構成となっており、長片部材及び短片部材の各冷却板で鋳型本体が構成されている。
鋳造に際しては、この鋳型に高温の溶鋼93(例えば、1600℃程度)を注入しながら冷却して、連続的に鋳片を製造している。
Conventionally, a continuous casting mold (hereinafter also simply referred to as a mold) used in a continuous casting facility is arranged so as to sandwich a short piece member (also referred to as a short side member) which is a pair of narrow cooling members. A pair of wide cooling members (also referred to as long side members), bolts attached to both ends of the opposing long piece members, and the short piece members fixed with nuts via springs, It has become. As shown in FIG. 5, the long piece member 90 includes a cooling plate 91 made of copper or a copper alloy having good thermal conductivity, and a back plate (cooling box) fixed to the back side of the cooling plate 91 with a bolt. 92). The short piece member also has substantially the same configuration as the long piece member except that the width thereof is different, and the mold body is constituted by the cooling plates of the long piece member and the short piece member.
At the time of casting, the molten steel 93 (for example, about 1600 ° C.) is cooled while being poured into the mold, and the slab is continuously manufactured.

このとき、冷却板91の上部表面の湯面レベル近傍95では、高温の溶鋼93が溶融パウダー(潤滑剤)94を介して冷却板91の表面に接触するため、鋳造中、冷却板91の表面温度が300〜350℃程度に達する。一方、冷却板91の下部表面では、高温でしかも半凝固状態にある凝固シェル96が、冷却板91と機械的に接触しながら引き抜かれるので、冷却板91の表面に摩耗損傷が発生して冷却板寿命を短くしている。このため、冷却板には、耐熱性及び耐摩耗性が要求されている。
そこで、冷却板の表面側に溶射機を用いて溶射皮膜を形成し、冷却板の耐熱性及び耐摩耗性を向上させ、鋳型の寿命向上を図っている(例えば、特許文献1参照)。
At this time, in the vicinity of the molten metal surface level 95 on the upper surface of the cooling plate 91, the hot molten steel 93 comes into contact with the surface of the cooling plate 91 via the molten powder (lubricant) 94. The temperature reaches about 300-350 ° C. On the other hand, on the lower surface of the cooling plate 91, the solidified shell 96 that is at a high temperature and in a semi-solid state is pulled out while being in mechanical contact with the cooling plate 91. The plate life is shortened. For this reason, the cooling plate is required to have heat resistance and wear resistance.
In view of this, a thermal spray coating is formed on the surface side of the cooling plate using a thermal sprayer to improve the heat resistance and wear resistance of the cooling plate to improve the life of the mold (for example, see Patent Document 1).

特開平8−187554号公報JP-A-8-187554

しかしながら、冷却板の表面側に溶射皮膜を形成することで、溶鋼と冷却板の間の熱伝導率が低下し、溶射皮膜の表面温度が上がるという問題があった。特に、冷却板の表面温度は、鋳造速度の高速化に伴って現状よりも更に高くなる傾向にあり、例えば、操業異常(例えば、ブレークアウト又はパウダー切れ)が発生した場合には、溶鋼が溶射皮膜に直接接触して溶着する。この場合、鋳片がそのまま鋳型本体から引き抜かれることで、冷却板の表面側から溶射皮膜が剥離し、鋳型を使用できなくなるという問題があった。
また、鋳型から引き抜かれた鋳片は、鋳型下方に配置される冷却水用スプレーから噴出される冷却水によって冷却されるため、発生した蒸気が鋳型内に侵入して、冷却板の下端部に腐食が発生する問題もあった。
However, by forming a thermal spray coating on the surface side of the cooling plate, there has been a problem that the thermal conductivity between the molten steel and the cooling plate is lowered and the surface temperature of the thermal spray coating is increased. In particular, the surface temperature of the cooling plate tends to be higher than the current level as the casting speed increases. For example, when an operation abnormality (for example, breakout or powder breakage) occurs, the molten steel is sprayed. Direct contact with the film and welding. In this case, there is a problem that the thermal spray coating peels off from the surface side of the cooling plate and the mold cannot be used because the slab is pulled out from the mold body as it is.
In addition, the slab drawn from the mold is cooled by cooling water ejected from a cooling water spray disposed below the mold, so that the generated steam enters the mold and enters the lower end of the cooling plate. There was also a problem of corrosion.

本発明はかかる事情に鑑みてなされたもので、鋳型本体を構成する冷却板の表面への溶鋼の溶着及び冷却板の腐食発生を抑制でき、長寿命化を図ることが可能な連続鋳造用鋳型を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is a continuous casting mold that can suppress the welding of molten steel to the surface of the cooling plate constituting the mold body and the occurrence of corrosion of the cooling plate, and can extend the service life. The purpose is to provide.

前記目的に沿う発明に係る連続鋳造用鋳型は、鋳型本体を構成する冷却板の表面に溶射皮膜が形成された連続鋳造用鋳型において、
前記溶射皮膜は、金属マトリックスと5質量%以上80質量%以下のサーメットとを有し、
しかも前記金属マトリックスは、Ni:5質量%以上30質量%以下、Si:1.0質量以上4.0質量%以下、B:0.5質量%以上3.0質量%以下、残部Cuからなる自溶合金であり、
前記サーメットは、耐摩耗性硬質セラミックスと、Co、Ni、Cr、Fe、これらの合金、及び耐食性ニッケル合金のいずれか一種以上とを含む。
The continuous casting mold according to the present invention that meets the above-mentioned object is a continuous casting mold in which a sprayed coating is formed on the surface of a cooling plate constituting the mold body.
The sprayed coating has a metal matrix and 5% by mass to 80% by mass of cermet,
And the said metal matrix consists of Ni: 5 mass% or more and 30 mass% or less, Si: 1.0 mass or more and 4.0 mass% or less, B: 0.5 mass% or more and 3.0 mass% or less, and remainder Cu. A self-fluxing alloy,
The cermet includes wear-resistant hard ceramics and any one or more of Co, Ni, Cr, Fe, alloys thereof, and corrosion-resistant nickel alloys.

ここで、発明に係る連続鋳造用鋳型において、耐摩耗性硬質セラミックスは、炭化物、酸化物、硼化物、窒化物、及びケイ化物のいずれか1又は2以上であることが好ましい。 Here, in the continuous casting mold according to the present invention, the wear-resistant hard ceramic is preferably one or more of carbides, oxides, borides, nitrides, and silicides.

また、発明に係る連続鋳造用鋳型において、溶射皮膜は、Ni又はNiを主体とする合金のめっき層を介して、鋳型本体の表面に形成されていることが好ましい。 In the continuous casting mold according to the present invention, it is preferable that the thermal spray coating is formed on the surface of the mold body through a plating layer of Ni or an alloy mainly composed of Ni.

そして、発明に係る連続鋳造用鋳型において、前記冷却板の表面に形成された前記溶射皮膜には、900℃以上1100℃以下の熱処理が行われていることが好ましい。 In the continuous casting mold according to the present invention, it is preferable that the thermal spray coating formed on the surface of the cooling plate is subjected to a heat treatment of 900 ° C. or higher and 1100 ° C. or lower.

請求項1及びこれに従属する請求項2〜4記載の連続鋳造用鋳型は、溶射皮膜を形成する金属マトリックスとして、Cuを主成分とする自溶合金を使用するので、溶射皮膜の熱伝導率を上昇でき、冷却板の表面への溶鋼の溶着を従来よりも抑制できる。また、サーメットに耐摩耗性硬質セラミックスを使用することで、溶射皮膜の耐摩耗性を向上できる。特に、サーメットに耐食性ニッケル合金を使用する場合は、他の金属を使用する場合よりも、溶射皮膜の耐食性を向上できる。
これにより、冷却板の冷却が十分に行われない場合でも、半凝固状態となった溶鋼を、溶射皮膜に溶着させることなく鋳型から容易に引き抜くことができる。このとき、半凝固状態となった溶鋼が溶射皮膜と接触しながら引き抜かれても、耐摩耗性を向上させた溶射皮膜によって鋳型から容易に引き抜くことが可能となる。また、鋳型下方から侵入する蒸気の影響も受けにくい。
このため、連続鋳造用鋳型の長寿命化を図ることが可能となる。
Since the continuous casting mold according to claim 1 and claims 2 to 4 dependent thereon uses a self-fluxing alloy containing Cu as a main component as a metal matrix for forming the sprayed coating, the thermal conductivity of the sprayed coating. And the welding of the molten steel to the surface of the cooling plate can be suppressed more than before. In addition, the wear resistance of the thermal spray coating can be improved by using hard wear-resistant ceramics for the cermet. In particular, when a corrosion-resistant nickel alloy is used for the cermet, the corrosion resistance of the sprayed coating can be improved as compared with the case of using other metals.
Thereby, even when the cooling plate is not sufficiently cooled, the molten steel in a semi-solid state can be easily pulled out from the mold without being deposited on the sprayed coating. At this time, even if the molten steel in a semi-solid state is pulled out while being in contact with the thermal spray coating, it can be easily pulled out from the mold by the thermal spray coating with improved wear resistance. In addition, it is not easily affected by steam entering from below the mold.
For this reason, it is possible to extend the life of the continuous casting mold.

請求項記載の連続鋳造用鋳型は、溶射皮膜とめっき層が共にNiを含むので、冷却板の表層部の酸化を抑制、更には防止できる。このため、溶射皮膜を熱処理する場合には、溶射皮膜とめっき層との間で相互拡散が生じ易くなるので、冷却板に対する溶射皮膜の密着状態を良好にできる。これにより、冷却板の表面から溶射皮膜が剥離しにくくなるため、鋳型の製品品質を向上できる。 In the continuous casting mold according to claim 3, since both the sprayed coating and the plating layer contain Ni, oxidation of the surface layer portion of the cooling plate can be suppressed and further prevented. For this reason, when heat-treating a thermal spray coating, since it becomes easy to produce mutual diffusion between a thermal spray coating and a plating layer, the adhesion state of the thermal spray coating with respect to a cooling plate can be made favorable. This makes it difficult for the sprayed coating to peel off from the surface of the cooling plate, thereby improving the product quality of the mold.

請求項記載の連続鋳造用鋳型は、溶射皮膜を熱処理するので、溶射皮膜と冷却板の表層部との相互拡散を生じさせ、冷却板に対する溶射皮膜の密着力を向上できる。また、溶射皮膜内の金属マトリックスとサーメットも相互拡散するので、溶射皮膜の強度を向上できる。これにより、鋳型の製品品質を向上できる。 The continuous casting mold according to claim 4 heat-treats the thermal spray coating, thereby causing mutual diffusion between the thermal spray coating and the surface layer portion of the cooling plate, thereby improving the adhesion of the thermal spray coating to the cooling plate. Moreover, since the metal matrix and cermet in the thermal spray coating also diffuse together, the strength of the thermal spray coating can be improved. Thereby, the product quality of the mold can be improved.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1(A)、(B)に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)は、一対の短片(短辺)部材(図示しない)と、この短片部材を挟み込むように配置される一対の長片(長辺)部材10とを有するものであり、この長片部材10を構成する冷却板11の表面に溶射皮膜(被膜)12を形成することで、冷却板11の表面への溶鋼の溶着及び冷却板11の腐食発生を抑制するものである。なお、長片部材10の冷却板11と短片部材の冷却板とで鋳型本体が構成される。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1A and 1B, a continuous casting mold (hereinafter also simply referred to as a mold) according to an embodiment of the present invention includes a pair of short pieces (short sides) members (not shown). And a pair of long pieces (long side) members 10 arranged so as to sandwich the short piece member, and a sprayed coating (coating film) 12 is formed on the surface of the cooling plate 11 constituting the long piece member 10. By doing so, the welding of the molten steel to the surface of the cooling plate 11 and the corrosion occurrence of the cooling plate 11 are suppressed. The cooling plate 11 of the long piece member 10 and the cooling plate of the short piece member constitute a mold body. This will be described in detail below.

長片部材10の冷却板11は、銅又は銅合金で構成され、その全表面が均等に研削されている。この冷却板11の裏面側には、バックプレート(水箱)13が取付けられ、冷却板11の裏面側に上下方向に指向して多数形成される導水溝(図示しない)への冷却水の供給と排出を連続的に行っている。なお、冷却板は、図2(A)に示す第1変形例のように、下側から上側に沿って溶射皮膜15を徐々に薄く(傾斜皮膜)できるように、冷却板14の厚みを傾斜して研削してもよい。また、冷却板は、図2(B)に示す第2変形例のように、下側部が上側部よりも厚い溶射皮膜17を形成できるように、冷却板16の下側、例えば冷却板16の下端から2/3以下、更には1/2以下に相当する範囲を、部分的(部分皮膜)に前加工してもよい。 The cooling plate 11 of the long piece member 10 is made of copper or a copper alloy, and the entire surface thereof is uniformly ground. A back plate (water box) 13 is attached to the back surface side of the cooling plate 11, and cooling water is supplied to a water guide groove (not shown) formed in the back surface side of the cooling plate 11 in the vertical direction. The discharge is continuously performed. In addition, the thickness of the cooling plate 14 is inclined so that the sprayed coating 15 can be gradually thinned (inclined coating) from the lower side to the upper side as in the first modification shown in FIG. And may be ground. In addition, the cooling plate is provided on the lower side of the cooling plate 16, for example, the cooling plate 16, so that the thermal spray coating 17 can be formed on the lower side portion that is thicker than the upper side portion, as in the second modification shown in FIG. A range corresponding to 2/3 or less, further 1/2 or less from the lower end of the film may be partially processed (partial coating).

このように準備した冷却板11の加工面に、例えば0を超え0.2mm以下程度の厚みRを有するNi又はNi合金めっきを施してめっき層18が形成されている。これにより、冷却板11の内側表面(表層部)の酸化を防止することが可能となる。
このめっき層18の表面には、Cuを主成分とする自溶合金の金属マトリックスと、サーメットとで構成される溶射皮膜12が形成されている。
この溶射皮膜12を構成する金属マトリックスの化学成分及びその数値範囲は、Ni:5質量%以上30質量%以下、Si:1.0質量以上4.0質量%以下、B:0.5質量%以上3.0質量%以下、残部Cuである。これは、表1に示すニッケル基自溶合金(JIS H 8303に規定されているニッケル基自溶合金の1〜5種:SFNi1〜SFNi5)の例えば靱性又は熱伝導率の諸条件を考慮し、Cuを主成分としても自溶合金として使用可能(溶射粉末として使用可能)となるように決定したものである。
The plated surface 18 is formed by applying Ni or Ni alloy plating having a thickness R of, for example, more than 0 and about 0.2 mm or less to the processed surface of the cooling plate 11 thus prepared. Thereby, it becomes possible to prevent oxidation of the inner surface (surface layer portion) of the cooling plate 11.
On the surface of the plating layer 18, a thermal spray coating 12 composed of a metal matrix of a self-fluxing alloy containing Cu as a main component and cermet is formed.
The chemical components of the metal matrix constituting the sprayed coating 12 and the numerical ranges thereof are: Ni: 5% by mass to 30% by mass, Si: 1.0% by mass to 4.0% by mass, B: 0.5% by mass It is 3.0 mass% or less and remainder Cu. This takes into account various conditions such as toughness or thermal conductivity of the nickel-based self-fluxing alloys shown in Table 1 (1-5 types of nickel-based self-fluxing alloys defined in JIS H 8303: SFNi1-SFNi5), It is determined so that Cu as a main component can be used as a self-fluxing alloy (can be used as a spray powder).

Figure 0004694227
Figure 0004694227

なお、金属マトリックスとしては、Cuを主成分とする自溶合金の代わりに、表1に示すニッケル基自溶合金の例えば靱性又は熱伝導率の諸条件を考慮して決定したニッケル基自溶合金を使用することも可能である。
このニッケル基自溶合金からなる金属マトリックスの化学成分及びその数値範囲は、Cr:0又は0を超え8質量%以下、B:1.0質量%以上4.5質量%以下、Si:1.5質量%以上5.0質量%以下、C:1.1質量%以下、Fe:5.0質量%以下、Co:1.0質量%以下、Mo:4.0質量%以下、Cu:4.0質量%以下、残部Niである。
As the metal matrix, a nickel-based self-fluxing alloy determined in consideration of, for example, toughness or thermal conductivity conditions of the nickel-based self-fluxing alloy shown in Table 1 instead of a self-fluxing alloy containing Cu as a main component. Can also be used.
The chemical composition of the metal matrix made of this nickel-based self-fluxing alloy and the numerical range thereof are Cr: 0 or more than 0 and 8% by mass or less, B: 1.0% by mass to 4.5% by mass, Si: 1. 5 mass% or more and 5.0 mass% or less, C: 1.1 mass% or less, Fe: 5.0 mass% or less, Co: 1.0 mass% or less, Mo: 4.0 mass% or less, Cu: 4 0.0 mass% or less and the balance is Ni.

また、溶射皮膜12中には、サーメットが5質量%以上80質量%以下含まれている。
ここで、サーメットの含有割合が5質量%未満の場合、溶射皮膜が耐摩耗性を発揮するために充分な量でない。一方、含有割合が80質量%を超える場合、溶射皮膜の硬度が高くなり、鋳型を繰返し使用することで溶射皮膜にクラックが入る可能性がある。このため、溶射皮膜中のサーメットの含有割合の下限値を5質量%、好ましくは10質量%、更に好ましくは15質量%とし、上限値を80質量%、好ましくは70質量%、更には好ましくは50質量%とした。
Further, the thermal spray coating 12 contains 5% by mass or more and 80% by mass or less of cermet.
Here, when the content rate of cermet is less than 5 mass%, it is not sufficient quantity for a sprayed coating to exhibit abrasion resistance. On the other hand, when the content ratio exceeds 80% by mass, the hardness of the thermal spray coating becomes high, and cracks may occur in the thermal spray coating by repeatedly using the mold. For this reason, the lower limit of the content of cermet in the thermal spray coating is 5% by mass, preferably 10% by mass, more preferably 15% by mass, and the upper limit is 80% by mass, preferably 70% by mass, and more preferably. It was 50 mass%.

このサーメットは、10質量%以上90質量%以下の耐摩耗性硬質セラミックスと、残部にCo、Ni、Cr、Fe、これらの合金、及び耐食性ニッケル合金のいずれか一種以上を含んでいる。このサーメットとしては、各化学成分を調整して製造することも、また市販のものを使用することもできる。
ここで、耐摩耗性硬質セラミックスが10質量%未満の場合、サーメット中の骨材量が不足し、充分な強度が得られない。一方、耐摩耗性硬質セラミックスが90質量%を超える場合、耐摩耗性硬質セラミックス量が過剰になり、その接合性が悪くなる。
This cermet contains 10% by mass or more and 90% by mass or less of wear-resistant hard ceramics, and the balance contains any one or more of Co, Ni, Cr, Fe, alloys thereof, and corrosion-resistant nickel alloys. As this cermet, it can manufacture by adjusting each chemical component, and can also use a commercially available thing.
Here, if the wear-resistant hard ceramic is less than 10% by mass, the amount of aggregate in the cermet is insufficient and sufficient strength cannot be obtained. On the other hand, if the wear-resistant hard ceramic exceeds 90% by mass, the amount of the wear-resistant hard ceramic becomes excessive, and the bondability is deteriorated.

このサーメット中の耐摩耗性硬質セラミックスには、炭化物、酸化物、硼化物、窒化物、及びケイ化物のいずれか1又は2以上を使用できる。ここで、炭化物としては、例えば、WC、CrC、NbC、TiC、ZrC、HfC、VC、又はMoCがある。また、酸化物としては、例えば、アルミナ(Al23)、ジルコニア(ZrO2)、又はチタニア(TiO2)がある。そして、硼化物としては、例えば、超高圧法によって合成されたBN(立方晶窒化ほう素)がある。窒化物としては、例えば、Si34、AlN、又はTiNのように窒素を非金属構成元素として含む化合物がある。更に、ケイ化物としては、例えば、SiCがある。 Any one or more of carbides, oxides, borides, nitrides, and silicides can be used for the wear-resistant hard ceramics in the cermet. Here, examples of the carbide include WC, CrC, NbC, TiC, ZrC, HfC, VC, and MoC. Examples of the oxide include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), and titania (TiO 2 ). An example of the boride is BN (cubic boron nitride) synthesized by an ultrahigh pressure method. Examples of the nitride include a compound containing nitrogen as a nonmetallic constituent element such as Si 3 N 4 , AlN, or TiN. Further, as a silicide, for example, there is SiC.

また、サーメットに使用する耐食性ニッケル合金としては、例えば、Ni−Mo系、Ni−Cr系、Ni−Mo−Cr系、Ni−Mo−Cr−Fe系、又はNi−Si系の合金を使用できる。
このように、サーメット中に耐食性ニッケル合金を使用した場合、例えば、鋳造作業の際に、鋳型下方から鋳型内へ侵入する蒸気による溶射皮膜の腐食を抑制でき、鋳型の更なる長寿命化に寄与できる。
なお、金属マトリックスとしてニッケル基自溶合金を使用する場合は、サーメットに耐摩耗性硬質セラミックスと耐食性ニッケル合金を使用する。
Moreover, as a corrosion-resistant nickel alloy used for a cermet, for example, a Ni-Mo, Ni-Cr, Ni-Mo-Cr, Ni-Mo-Cr-Fe, or Ni-Si alloy can be used. .
In this way, when a corrosion-resistant nickel alloy is used in the cermet, for example, during casting operations, corrosion of the sprayed coating due to vapor entering the mold from the bottom of the mold can be suppressed, contributing to a longer life of the mold. it can.
When a nickel-based self-fluxing alloy is used as the metal matrix, a wear-resistant hard ceramic and a corrosion-resistant nickel alloy are used for the cermet.

溶射皮膜12の形成に際しては、前記した構成の溶射粉末を、従来公知の例えば、プラズマ溶射、フレーム(火炎)溶射、又は高速フレーム溶射(火炎の噴出速度が例えば、2000m/秒以上2700m/秒以下)により、前記しためっき層13の上面に吹付けて行う。
ここで、使用する金属マトリックスとサーメットの溶射粉末の粒径は、10μm以上100μm以下の範囲で選定することが好ましい。
粒径が10μm未満の場合、製造価格が高騰すると共に、溶射時に受ける運動量が小さくなって気流に流され易く、均一な厚みの溶射皮膜を形成できなくなる。一方、粒径が100μmを超える場合、溶射皮膜が粗くなって溶射皮膜の実質的強度が落ちる。
このように、溶射皮膜を形成した後は、その表面を研削して仕上げる。
In forming the thermal spray coating 12, the thermal spray powder having the above-described configuration is applied to a conventionally known plasma spray, flame (flame) spray, or high-speed flame spray (flame ejection speed is, for example, 2000 m / second or more and 2700 m / second or less). ) And spraying on the upper surface of the plating layer 13 described above.
Here, it is preferable to select the particle size of the sprayed powder of the metal matrix and cermet to be used in the range of 10 μm to 100 μm.
When the particle diameter is less than 10 μm, the manufacturing price increases, and the momentum received during spraying becomes small and easily flows in the air stream, making it impossible to form a sprayed coating having a uniform thickness. On the other hand, when the particle diameter exceeds 100 μm, the thermal spray coating becomes coarse and the substantial strength of the thermal spray coating decreases.
Thus, after forming a thermal spray coating, the surface is ground and finished.

溶射皮膜12の厚みTは、例えば、0.3mm以上1.5mm以下とする。また、図2(A)に示す第1変形例においては、溶射皮膜15の厚みを、冷却板14の上端で0.1mm以上1.0mm以下(ここでは0.3mm)とし、冷却板14の下端ヘ向かって連続的に厚くし、下端で1.0mm以上2.0mm以下(ここでは1.5mm)とする。そして、図2(B)に示す第2変形例においては、溶射皮膜17の厚みを、冷却板16の上部で0.1mm以上1.0mm以下(ここでは0.3mm)とし、冷却板16の下部で0.5mm以上2.0mm以下(ここでは1.5mm)とする。
なお、溶射皮膜12、15、17及び冷却板11、14、16は、それぞれ形状のみが異なったものであるため、以降の説明は溶射皮膜12と冷却板11についてのみ説明する。
The thickness T of the thermal spray coating 12 is, for example, not less than 0.3 mm and not more than 1.5 mm. Further, in the first modification shown in FIG. 2A, the thickness of the thermal spray coating 15 is set to 0.1 mm or more and 1.0 mm or less (here 0.3 mm) at the upper end of the cooling plate 14, and The thickness is continuously increased toward the lower end, and 1.0 mm or more and 2.0 mm or less (here 1.5 mm) at the lower end. In the second modification shown in FIG. 2B, the thickness of the thermal spray coating 17 is set to 0.1 mm or more and 1.0 mm or less (here 0.3 mm) above the cooling plate 16, and the cooling plate 16 It is set to 0.5 mm or more and 2.0 mm or less (here 1.5 mm) in the lower part.
Since the thermal spray coatings 12, 15, and 17 and the cooling plates 11, 14, and 16 are different only in shape, the following description will be made only on the thermal spray coating 12 and the cooling plate 11.

冷却板11の内側表面に溶射皮膜12を形成した後は、溶射皮膜12を900℃以上1100℃以下で熱処理(フュージング)する。なお、この熱処理は無酸素雰囲気中、又は例えば窒素ガスを充満させた不活性雰囲気中で、例えば10分以上30分以下程度行うことが好ましい。
このように、熱処理を900℃以上で実施することで、溶射皮膜とめっき層との境界面近傍の拡散が開始し、めっき層への溶射皮膜の密着力が向上する。また、溶射皮膜内の金属マトリックスとサーメットも互いに拡散して皮膜強度が向上する。一方、熱処理を1100℃以下としたのは、溶射皮膜の融点が約1100℃であることに起因する。これにより、溶射皮膜の熱処理温度の下限値を900℃、好ましくは950℃、更に好ましくは1000℃とし、上限値を1100℃、好ましくは1050℃とした。
After the thermal spray coating 12 is formed on the inner surface of the cooling plate 11, the thermal spray coating 12 is heat-treated (fused) at 900 ° C. or higher and 1100 ° C. or lower. In addition, it is preferable to perform this heat processing for about 10 minutes or more and about 30 minutes or less in an oxygen-free atmosphere or the inert atmosphere filled with nitrogen gas, for example.
Thus, by performing heat processing at 900 degreeC or more, the spreading | diffusion of the boundary surface vicinity of a thermal spray coating and a plating layer starts, and the adhesive force of the thermal spray coating to a plating layer improves. In addition, the metal matrix and cermet in the thermal spray coating also diffuse to each other and the coating strength is improved. On the other hand, the heat treatment was set to 1100 ° C. or lower because the melting point of the thermal spray coating was about 1100 ° C. Thereby, the lower limit of the heat treatment temperature of the thermal spray coating was 900 ° C., preferably 950 ° C., more preferably 1000 ° C., and the upper limit was 1100 ° C., preferably 1050 ° C.

なお、この熱処理は、鋳型品質を均一にするという観点から、加熱炉を用いて炉内で行うことが好ましいが、例えば、バーナー又はレーザーを用いて熱処理することも可能である。
この冷却板11をバックプレート13に取付けて一対の長片部材10を製造し、これと一対の短片部材と組み合わせて製造した連続鋳造用鋳型を使用して鋳造を行う。
なお、短片部材としては、冷却板の表面に溶射皮膜を形成したもの、また形成しないもののいずれも使用できる。
This heat treatment is preferably performed in a furnace using a heating furnace from the viewpoint of making the mold quality uniform. For example, the heat treatment can also be performed using a burner or a laser.
The cooling plate 11 is attached to the back plate 13 to produce a pair of long piece members 10, and casting is performed using a continuous casting mold produced in combination with this pair of short piece members.
In addition, as a short piece member, both what formed the sprayed coating on the surface of the cooling plate, and what does not form can be used.

本発明に係る連続鋳造用鋳型の一部を使用し、溶射皮膜の耐溶着性試験及び耐腐食性試験をそれぞれ行った結果について説明する。なお、各試験に使用した比較例の溶射皮膜は、表1に示したニッケル基自溶合金の4種(SFNi4)で構成されるものである。また、実施例1の溶射皮膜は、金属マトリックスがニッケル基自溶合金(Cr:0又は0を超え8質量%以下、B:1.0質量%以上4.5質量%以下、Si:1.5質量%以上5.0質量%以下、C:1.1質量%以下、Fe:5.0質量%以下、Co:1.0質量%以下、Mo:4.0質量%以下、Cu:4.0質量%以下、残部Ni)で、サーメットがCr23(耐摩耗性硬質セラミックスの一例)とNiCrで構成されるものである。そして、実施例2の溶射皮膜は、金属マトリックスがCuを主成分とする自溶合金(Ni:5質量%以上30質量%以下、Si:1.0質量以上4.0質量%以下、B:0.5質量%以上3.0質量%以下、残部Cu)で、サーメットがCr23(耐摩耗性硬質セラミックスの一例)と耐食性ニッケル合金(Ni:60質量%以上85質量%以下、Mo:10質量%以上30質量%以下、Cr:0又は0を超え25質量%以下、W:0又は0を超え5質量%以下、Fe:3質量%以上20質量%以下)で構成されるものである。 The results of performing the welding resistance test and the corrosion resistance test of the sprayed coating using a part of the continuous casting mold according to the present invention will be described. In addition, the thermal spray coating of the comparative example used for each test is comprised by 4 types (SFNi4) of the nickel base self-fluxing alloy shown in Table 1. In addition, in the thermal spray coating of Example 1, the metal matrix has a nickel-based self-fluxing alloy (Cr: 0 or more than 0 and 8 mass% or less, B: 1.0 mass% or more and 4.5 mass% or less, Si: 1. 5 mass% or more and 5.0 mass% or less, C: 1.1 mass% or less, Fe: 5.0 mass% or less, Co: 1.0 mass% or less, Mo: 4.0 mass% or less, Cu: 4 0.0 mass% or less, balance Ni), and the cermet is composed of Cr 2 C 3 (an example of a wear-resistant hard ceramic) and NiCr. And the thermal spray coating of Example 2 is a self-fluxing alloy (Ni: 5 mass% to 30 mass%, Si: 1.0 mass to 4.0 mass%, B: The cermet is Cr 2 C 3 (an example of a wear-resistant hard ceramic) and a corrosion-resistant nickel alloy (Ni: 60% to 85% by mass, Mo: 0.5% to 3.0% by mass, balance Cu) : 10 mass% or more and 30 mass% or less, Cr: 0 or more than 0 and 25 mass% or less, W: 0 or more than 0 and 5 mass% or less, Fe: 3 mass% or more and 20 mass% or less) It is.

耐溶着性試験は、一辺が50mmの正方形で、厚みが30mmの直方体の銅塊の表面に、厚みが0.5mmの溶射皮膜を形成したものを使用して実施した。耐溶着性の評価は、溶射皮膜上に溶解温度1650℃の溶鋼を流すことで、溶射皮膜側の銅塊の表層温度を計測し、更に溶射皮膜への溶鋼の溶着状態を確認して行った。
図3に示すように、溶鋼の溶着が開始する銅塊の表層温度は、比較例の場合で約400℃程度であったが、実施例1の場合で約700℃程度まで上昇でき、実施例2の場合で更に約800℃程度まで上昇できた。
このことから、実施例1、2の溶射皮膜は、比較例と比較して耐溶着性が良好であることを確認できた。
The welding resistance test was carried out by using a thermal spray coating having a thickness of 0.5 mm on the surface of a rectangular copper block having a side of 50 mm and a thickness of 30 mm. The evaluation of the welding resistance was carried out by flowing the molten steel having a melting temperature of 1650 ° C. over the sprayed coating, measuring the surface temperature of the copper mass on the sprayed coating side, and further confirming the welded state of the molten steel on the sprayed coating. .
As shown in FIG. 3, the surface temperature of the copper ingot at which the welding of the molten steel starts was about 400 ° C. in the case of the comparative example, but it can be increased to about 700 ° C. in the case of Example 1. In the case of 2, the temperature could be further increased to about 800 ° C.
From this, it was confirmed that the thermal spray coatings of Examples 1 and 2 had better welding resistance than the comparative examples.

また、耐腐食性は、従来行われている電気化学的計測(例えば、ターフェル外挿法又は分極抵抗法)により、各溶射皮膜の腐食速度を測定して評価した。
図4に示すように、溶射皮膜の腐食速度は、比較例の場合で5.2mm/年程度であったが、実施例1の場合で約3.5mm/年まで遅くでき、実施例2の場合で更に1.9mm/年程度まで遅くできた。
このことから、実施例1、2の溶射皮膜は、比較例と比較して耐腐食性が良好であることを確認できた。
なお、実施例1の溶射皮膜については、比較例の溶射皮膜と比較して、耐クラック性及び耐摩耗性も優れていることが確認された。
Further, the corrosion resistance was evaluated by measuring the corrosion rate of each sprayed coating by a conventional electrochemical measurement (for example, Tafel extrapolation method or polarization resistance method).
As shown in FIG. 4, the corrosion rate of the sprayed coating was about 5.2 mm / year in the case of the comparative example, but can be slowed down to about 3.5 mm / year in the case of Example 1. In some cases, it could be further slowed down to about 1.9 mm / year.
From this, it was confirmed that the thermal spray coatings of Examples 1 and 2 had better corrosion resistance than the comparative example.
In addition, about the sprayed coating of Example 1, it was confirmed that the crack resistance and abrasion resistance are also excellent compared with the sprayed coating of the comparative example.

以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
また、連続鋳造用鋳型は、例えば、使用環境又は使用頻度を考慮して、熱処理を行うことなく使用することも可能である。
そして、冷却板の表面にめっき層を介することなく、溶射皮膜を形成することも可能である。この場合、溶射皮膜を熱処理することで、溶射皮膜と冷却板の境界面近傍の拡散が生じる。
As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
In addition, the continuous casting mold can be used without performing heat treatment in consideration of, for example, the use environment or use frequency.
It is also possible to form a sprayed coating on the surface of the cooling plate without using a plating layer. In this case, the heat treatment of the thermal spray coating causes diffusion in the vicinity of the interface between the thermal spray coating and the cooling plate.

(A)、(B)はそれぞれ本発明の一実施の形態に係る連続鋳造用鋳型の長片部材の斜視図、要部平断面図である。(A), (B) is the perspective view of the long piece member of the casting mold for continuous casting which concerns on one embodiment of this invention, respectively, and principal part plane sectional drawing. (A)、(B)はそれぞれ同連続鋳造用鋳型の第1変形例、第2変形例に係る長片部材の説明図である。(A), (B) is explanatory drawing of the long piece member which concerns on the 1st modification of the same casting mold, and a 2nd modification, respectively. 耐溶着性の試験結果の説明図である。It is explanatory drawing of the test result of welding resistance. 耐腐食性の試験結果の説明図である。It is explanatory drawing of the test result of corrosion resistance. 連続鋳造用鋳型による鋳造及び鋳型表面の温度分布を示す説明図である。It is explanatory drawing which shows the temperature distribution of casting by the casting mold for continuous casting, and a mold surface.

10:長片部材、11:冷却板、12:溶射皮膜、13:バックプレート、14:冷却板、15:溶射皮膜、16:冷却板、17:溶射皮膜、18:めっき層 10: long piece member, 11: cooling plate, 12: sprayed coating, 13: back plate, 14: cooling plate, 15: sprayed coating, 16: cooling plate, 17: sprayed coating, 18: plating layer

Claims (4)

鋳型本体を構成する冷却板の表面に溶射皮膜が形成された連続鋳造用鋳型において、
前記溶射皮膜は、金属マトリックスと5質量%以上80質量%以下のサーメットとを有し、
しかも前記金属マトリックスは、Ni:5質量%以上30質量%以下、Si:1.0質量以上4.0質量%以下、B:0.5質量%以上3.0質量%以下、残部Cuからなる自溶合金であり、
前記サーメットは、耐摩耗性硬質セラミックスと、Co、Ni、Cr、Fe、これらの合金、及び耐食性ニッケル合金のいずれか一種以上とを含むことを特徴とする連続鋳造用鋳型。
In a continuous casting mold in which a sprayed coating is formed on the surface of the cooling plate constituting the mold body,
The sprayed coating has a metal matrix and 5% by mass to 80% by mass of cermet,
And the said metal matrix consists of Ni: 5 mass% or more and 30 mass% or less, Si: 1.0 mass or more and 4.0 mass% or less, B: 0.5 mass% or more and 3.0 mass% or less, and remainder Cu. A self-fluxing alloy,
The cermet contains a wear-resistant hard ceramic and one or more of Co, Ni, Cr, Fe, alloys thereof, and a corrosion-resistant nickel alloy.
請求項記載の連続鋳造用鋳型において、前記耐摩耗性硬質セラミックスは、炭化物、酸化物、硼化物、窒化物、及びケイ化物のいずれか1又は2以上であることを特徴とする連続鋳造用鋳型。 2. The mold for continuous casting according to claim 1 , wherein the wear-resistant hard ceramic is one or more of carbide, oxide, boride, nitride, and silicide. template. 請求項1又は2記載の連続鋳造用鋳型において、前記溶射皮膜は、Ni又はNiを主体とする合金のめっき層を介して、前記冷却板の表面に形成されていることを特徴とする連続鋳造用鋳型。 3. The continuous casting mold according to claim 1 , wherein the sprayed coating is formed on a surface of the cooling plate through a plating layer of Ni or an alloy mainly containing Ni. 4. Mold. 請求項1〜3のいずれか1項に記載の連続鋳造用鋳型において、前記冷却板の表面に形成された前記溶射皮膜には、900℃以上1100℃以下の熱処理が行われていることを特徴とする連続鋳造用鋳型。 4. The continuous casting mold according to claim 1 , wherein the thermal spray coating formed on the surface of the cooling plate is subjected to a heat treatment of 900 ° C. or more and 1100 ° C. or less. A continuous casting mold.
JP2005069385A 2005-03-11 2005-03-11 Continuous casting mold Active JP4694227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005069385A JP4694227B2 (en) 2005-03-11 2005-03-11 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005069385A JP4694227B2 (en) 2005-03-11 2005-03-11 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2006247722A JP2006247722A (en) 2006-09-21
JP4694227B2 true JP4694227B2 (en) 2011-06-08

Family

ID=37088733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069385A Active JP4694227B2 (en) 2005-03-11 2005-03-11 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4694227B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511298B2 (en) * 2014-12-12 2022-11-29 Oerlikon Metco (Us) Inc. Corrosion protection for plasma gun nozzles and method of protecting gun nozzles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497131A (en) * 1972-05-12 1974-01-22
JPS6039453B2 (en) * 1980-06-14 1985-09-06 三島光産株式会社 Manufacturing method of continuous casting mold
JPH0852535A (en) * 1994-08-10 1996-02-27 Tocalo Co Ltd Surface treatment method of mold for continuous casting and mold for continuous casting
JPH0996320A (en) * 1995-09-29 1997-04-08 Aisin Seiki Co Ltd Pressure plate for friction clutch
JP2002086248A (en) * 2000-09-14 2002-03-26 Mishima Kosan Co Ltd Die for continuous casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497131A (en) * 1972-05-12 1974-01-22
JPS6039453B2 (en) * 1980-06-14 1985-09-06 三島光産株式会社 Manufacturing method of continuous casting mold
JPH0852535A (en) * 1994-08-10 1996-02-27 Tocalo Co Ltd Surface treatment method of mold for continuous casting and mold for continuous casting
JPH0996320A (en) * 1995-09-29 1997-04-08 Aisin Seiki Co Ltd Pressure plate for friction clutch
JP2002086248A (en) * 2000-09-14 2002-03-26 Mishima Kosan Co Ltd Die for continuous casting

Also Published As

Publication number Publication date
JP2006247722A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US11193195B2 (en) Component for hot-dip metal plating bath
TWI302949B (en)
KR20080089388A (en) Components of a steelworks, such as a continuous casting installation or a rolling mill, method for producing such a component and installation for creating or processing semifinished metallic products
CN104831270A (en) Preparation method of iron-base nickel-wrapped tungsten carbide laser cladding material
JP7013823B2 (en) Manufacturing method of mold for continuous casting
JP3916388B2 (en) Manufacturing method of continuous casting mold
JP4694227B2 (en) Continuous casting mold
WO2021240696A1 (en) Continuous casting mold and method for manufacturing continuous casting mold
JP5096899B2 (en) Continuous casting mold and W-based self-fluxing alloy
JP6242616B2 (en) Resistance welding electrode
JP5222567B2 (en) Continuous casting mold
JP2006255733A (en) Mold copper plate for continuous casting
WO2018193982A1 (en) Spray coating, laminated pipe, and method for manufacturing spray coating
JP2000345313A (en) Production of roll used for continuous casting improved in heat resistance, corrosion resistance and wear resistance of surface of base material of roll barrel part applied with repeated thermal impact and sliding wear
JP2023144716A (en) Casting mold for continuous casting
KR100857287B1 (en) self-fluxing alloy powders and roll having spraying coating layer
JP2005059034A (en) Continuous casting mold having functionality
JP4408649B2 (en) Dipping member for hot metal plating baths with excellent dross resistance
JP3651819B2 (en) Method for modifying copper or copper alloy surface
JP6193651B2 (en) Resistance welding electrode
JP3150291B2 (en) Copper alloy mold for casting Al or Al alloy
JP2007118012A (en) Vertical upward welding method
JP3460160B2 (en) Manufacturing method of mold for continuous casting
JP2006263807A (en) Roll for continuous casting having excellent wear resistance
JPH09316621A (en) Sprayed coating suitable for sliding wear resistant member subjected to repeated thermal impact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250