JP3460160B2 - Manufacturing method of mold for continuous casting - Google Patents

Manufacturing method of mold for continuous casting

Info

Publication number
JP3460160B2
JP3460160B2 JP24225294A JP24225294A JP3460160B2 JP 3460160 B2 JP3460160 B2 JP 3460160B2 JP 24225294 A JP24225294 A JP 24225294A JP 24225294 A JP24225294 A JP 24225294A JP 3460160 B2 JP3460160 B2 JP 3460160B2
Authority
JP
Japan
Prior art keywords
copper
thermal
mold
substrate
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24225294A
Other languages
Japanese (ja)
Other versions
JPH0871705A (en
Inventor
邦夫 中島
良一 石金
孝行 田中
賢三 山本
正博 足立
良治 三木
健男 大割
徹 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUETSU METAL CO., LTD.
Nippon Welding Rod Co Ltd
Original Assignee
CHUETSU METAL CO., LTD.
Nippon Welding Rod Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUETSU METAL CO., LTD., Nippon Welding Rod Co Ltd filed Critical CHUETSU METAL CO., LTD.
Priority to JP24225294A priority Critical patent/JP3460160B2/en
Priority to US08/418,513 priority patent/US5499672A/en
Publication of JPH0871705A publication Critical patent/JPH0871705A/en
Application granted granted Critical
Publication of JP3460160B2 publication Critical patent/JP3460160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性溶射皮膜を形
成した連続鋳造用鋳型の製造方法に関する。
The present invention relates to a casting mold manufacturing method for continuous casting of forming a thermal sprayed wear resistant coating.

【0002】[0002]

【従来の技術】鋼などの連続鋳造用鋳型は、その使命か
ら、耐摩耗性,高熱伝導性及び高強度が要求され、特
に、耐摩耗性の面からは、従来よりCrメッキ,Niメ
ッキ,或いはNi合金メッキ皮膜が用いられている。近
年、更に、耐摩耗性を向上させる目的で、Niメッキ等
の上に、Ni−Cr系自溶性合金などを溶射し、溶射
後、加熱処理を行なって溶射皮膜を形成した鋳型が提案
されている。
2. Description of the Related Art A casting mold for continuous casting of steel or the like is required to have wear resistance, high thermal conductivity and high strength from its mission. Particularly, from the viewpoint of wear resistance, Cr plating, Ni plating, Alternatively, a Ni alloy plating film is used. In recent years, for the purpose of further improving wear resistance, a mold has been proposed in which a Ni—Cr-based self-fluxing alloy or the like is sprayed on Ni plating or the like, and after spraying, heat treatment is performed to form a sprayed coating. There is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
連続鋳造用鋳型における溶射皮膜の形成は、超高速フレ
ーム溶射(HVOF)と呼ばれる溶射ガンの作動圧力が
0.5MPa(メガパスカル)以下の溶射法であって、
溶射フレームの熱により溶射材料が全体的に溶融してし
まうため、銅または銅合金基体(以下、略して「銅基
体」とする)への強力な食い込みがほとんど得られず、
そのため、基体と溶射皮膜との密着強度が低く、溶射の
ままの状態では使用出来ないものであった。
However, the formation of the sprayed coating in the conventional continuous casting mold is performed by a spraying method called an ultra-high speed flame spraying (HVOF) in which the working pressure of the spraying gun is 0.5 MPa (megapascal) or less. And
Since the thermal spray material is wholly melted by the heat of the thermal spray frame, a strong bite into the copper or copper alloy substrate (hereinafter abbreviated as "copper substrate") is hardly obtained,
Therefore, the adhesion strength between the substrate and the thermal spray coating was low, and it could not be used in the state of thermal spraying.

【0004】このため、従来の溶射法では、溶射後にお
いて、より緻密な皮膜形成と、溶射皮膜と基体(Cu又
は〔Cu+メッキ〕)との拡散層の生成による密着強度
の向上を目的として、約900〜1000℃の高温加熱
処理(フュージング処理)を行なうことが必須であっ
た。
Therefore, in the conventional thermal spraying method, after thermal spraying, for the purpose of forming a denser coating and improving the adhesion strength by forming a diffusion layer between the thermal sprayed coating and the substrate (Cu or [Cu + plating]). It was essential to perform a high temperature heat treatment (fusing treatment) at about 900 to 1000 ° C.

【0005】ところが、銅基体が非析出硬化型材料(脱
酸銅など純銅系)である場合、溶射後に約900〜10
00℃の高温加熱処理を行なうと、銅基体として具備す
べき材料強度が著しく低下してしまう欠点があった。即
ち、冷間加工歪で材料強度を高くしている非析出硬化型
基体は、再結晶によって材料強度が著しく低下し、鋳型
材としては使用不可能になるという、材料面での致命的
な問題があった。従って、従来は、加熱処理により鋳型
材としての強度を回復させることが可能な析出硬化型基
体の使用によらなければならなかった。
However, when the copper substrate is a non-precipitation hardening type material (pure copper system such as deoxidized copper), it is about 900 to 10 after thermal spraying.
When the high temperature heat treatment at 00 ° C. is performed, there is a drawback that the material strength to be provided as a copper substrate is significantly reduced. That is, a non-precipitation hardening type substrate whose material strength is increased by cold working strain is remarkably deteriorated in material strength by recrystallization and cannot be used as a mold material, which is a fatal problem in terms of materials. was there. Therefore, conventionally, it has been necessary to use a precipitation hardening type substrate capable of recovering the strength as a mold material by heat treatment.

【0006】そこで、銅基体に析出硬化型材料を使用し
た場合も、従来法では、やはり前記した理由により、溶
射後において、加熱処理として約900〜1000℃の
高温加熱処理をなし、その後急冷し、約400℃で析出
硬化処理としての加熱処理を行なう必要があった。しか
しながら、銅基体の材料強度回復のための溶体化処理
で、本来行なわれるべき急冷(水冷)は、溶射皮膜と銅
基体との熱膨張係数の差が大きく、溶射皮膜の剥離、あ
るいは溶射皮膜に割れが生ずるなどの問題のため、急冷
は不可能であり、充分な熱処理が行なわれなかった。そ
のため、やはり、銅基体の材料強度が得られないという
鋳型として致命的な問題があった。
Therefore, even when a precipitation hardening type material is used for the copper substrate, in the conventional method, a high temperature heat treatment of about 900 to 1000 ° C. is performed as a heat treatment after the thermal spraying, and then it is rapidly cooled for the above-mentioned reason. It was necessary to perform a heat treatment as a precipitation hardening treatment at about 400 ° C. However, in the solution treatment for recovering the material strength of the copper base, the rapid cooling (water cooling) that should be originally performed has a large difference in the coefficient of thermal expansion between the thermal spray coating and the copper base, resulting in peeling of the thermal spray coating, or in the thermal spray coating. Due to problems such as cracking, rapid cooling was impossible and sufficient heat treatment was not performed. Therefore, there is also a fatal problem as a mold that the material strength of the copper substrate cannot be obtained.

【0007】さらに加えて、従来の溶射法では、溶射前
に、アルミナなどのグリッド材を高速度で吹き付け、銅
基体表面の汚れやCuOなどの酸化皮膜の除去と、基
体表面の粗面化(凹凸を付ける)を行なういわゆるブラ
スト処理を行なう必要があった。
In addition, in the conventional thermal spraying method, a grid material such as alumina is sprayed at a high speed before the thermal spraying to remove stains on the copper substrate surface and oxide films such as Cu 2 O, and to roughen the substrate surface. It was necessary to perform a so-called blasting process for making the surface more uneven (making unevenness).

【0008】このように従来の溶射法では、溶射前のブ
ラスト処理、溶射後の加熱処理など、作業工程が多く、
その作業内容も複雑で、結果としてコスト高となる欠点
があった。また、耐摩耗性を持続するには溶射皮膜の厚
さは厚くする方が良いが、従来の超高速フレーム溶射法
では、溶射皮膜の厚さは最大0.5〜1mm程度であ
り、それ以上に厚くすると皮膜にクラックが発生するな
どの問題があった。
As described above, in the conventional thermal spraying method, there are many working steps such as blast treatment before thermal spraying and heat treatment after thermal spraying.
The work content is also complicated, and as a result, there is a drawback that the cost becomes high. Also, in order to maintain wear resistance, it is better to increase the thickness of the thermal spray coating, but in the conventional ultra-high speed flame thermal spraying method, the thickness of the thermal spray coating is about 0.5 to 1 mm at maximum, and more If it is too thick, there is a problem such as cracks in the film.

【0009】本発明は、上記実情に鑑みなされたもの
で、溶射前のブラスト処理と溶射後の加熱処理が不要で
あり、緻密で、且つ、アンカー効果による優れた密着強
度を有し、耐摩耗性の持続に優れた連続鋳造用鋳型の製
造方法を提供することを目的としている。
The present invention has been made in view of the above circumstances and requires no blast treatment before thermal spraying and heat treatment after thermal spraying, is dense, has excellent adhesion strength due to the anchor effect, and is resistant to wear. and its object is to provide a manufacturing <br/> method for producing superior type cast for continuous casting in a sustained sex.

【0010】[0010]

【課題を解決するための手段】即ち、本発明の連続鋳造
用鋳型の製造方法は、銅または銅合金を基体とする鋳型
の内面に溶射皮膜を形成する連続鋳造用鋳型の製造方法
において、銅基体鋳型の内面に、溶射ガンの作動圧力が
0.55MPa〜1.04MPaである高圧・超高速フ
レーム溶射法により、皮膜厚さ0.01〜6mmの溶射
皮膜を少なくとも上記銅基体表面に食い込む第一層とし
て、1種または2種以上のタングステン・カーバイト系
耐摩耗性材料で形成し、溶射前のブラスト処理及び溶射
後の加熱処理を行なわないことを特徴とする。
That is, the method for producing a casting mold for continuous casting according to the present invention is a method for producing a casting mold for continuous casting, wherein a sprayed coating is formed on the inner surface of a casting mold having copper or a copper alloy as a base. By injecting a sprayed coating having a coating thickness of 0.01 to 6 mm on at least the copper substrate surface by a high pressure / ultra high speed flame spraying method in which the working pressure of the spray gun is 0.55 MPa to 1.04 MPa on the inner surface of the substrate mold. As one layer, it is characterized in that it is formed of one or more kinds of tungsten-carbide-based wear resistant materials, and that blast treatment before thermal spraying and heat treatment after thermal spraying are not performed.

【0011】また、溶射皮膜と上記銅基体との間に、N
iメッキまたはNi−Feメッキのメッキ層を介在さ
せ、溶射ガンの作動圧力が0.55MPa〜1.04M
Paである高圧・超高速フレーム溶射法により、皮膜厚
さ0.01〜6mmの溶射皮膜を少なくとも上記メッキ
層表面に食い込む第一層として、1種または2種以上の
タングステン・カーバイト系耐摩耗性材料で形成し、溶
射前のブラスト処理及び溶射後の加熱処理を行なわない
ことを特徴とする。
Further, between the thermal spray coating and the copper substrate, N
The operating pressure of the spray gun is 0.55MPa to 1.04M with an i-plated or Ni-Fe plated layer interposed.
1 or 2 or more types of tungsten / carbide-based wear resistance as a first layer that penetrates at least the surface of the plating layer with a sprayed coating having a coating thickness of 0.01 to 6 mm by a high pressure / ultra high speed flame spraying method of Pa It is characterized in that it is made of a conductive material and is not subjected to blast treatment before thermal spraying and heat treatment after thermal spraying.

【0012】そして、タングステン・カーバイト系耐摩
耗性材料は、直径5〜53μmの粉末で、マイクロビッ
カース硬さ(荷重300g)HV0.3が1000〜1
400であることが望ましい。
The tungsten-carbide wear-resistant material is a powder having a diameter of 5 to 53 μm and a micro Vickers hardness (load 300 g) HV 0.3 of 1000 to 1.
It is preferably 400.

【0013】ここで、高圧・超高速フレーム溶射法と
は、溶射ガンの作動圧力を0.55MPa以上にするこ
とにより、溶射材料が被溶射基体の表面に食い込んで密
着性に優れ、しかも緻密な溶射皮膜を形成する溶射法で
ある。
Here, the high pressure / ultra high speed flame spraying method means that when the working pressure of the spraying gun is set to 0.55 MPa or more, the spraying material digs into the surface of the sprayed substrate and has excellent adhesion and is precise. This is a thermal spraying method for forming a thermal spray coating.

【0014】従来の超高速フレーム溶射(HVOF)と
本発明に係る高圧・超高速フレーム溶射(HP/HVO
F)の差異は、上記した溶射ガンの作動圧力ばかりでな
く、粒子速度、ジェツトのマッハ、そして、燃料供給圧
及び酸素供給圧のいずれも高圧・超高速フレーム溶射の
方が高く、その反面、ジェト温度は低いことである(表
2参照)。これによって、高圧・超高速フレーム溶射法
は、溶射フレームの熱により全体的に溶融することが無
く、基体に食い込み得る硬さを維持した半溶融状態の粒
子が、超高速で基体に溶射され、優れた密着強度を得る
ことができるのである。
Conventional super high speed flame spraying (HVOF) and high pressure / super high speed flame spraying (HP / HVO) according to the present invention
The difference in F) is that not only the operating pressure of the spray gun described above, but also the particle velocity, the jet Mach, and the fuel supply pressure and the oxygen supply pressure are higher in high-pressure / ultra-high-speed flame spraying. The jet temperature is low (see Table 2). As a result, in the high-pressure / ultra-high-speed flame spraying method, particles in a semi-molten state in which the hardness that can penetrate into the base material is maintained without being melted entirely by the heat of the spraying flame are sprayed onto the base material at an ultra-high speed, It is possible to obtain excellent adhesion strength.

【0015】高圧・超高速フレーム溶射法の溶射ガンの
作動圧力は、理論的には、0.55MPa以上である
が、好ましくは0.55MPa〜1.04MPaであ
る。0.55MPa以下では、溶射材料に充分な運動エ
ネルギーを与えることができない。一方、1.04MP
a以上になると、基体表面への食い込みが作動圧力の増
加の割には増加しないばかりか、かえって基体表面に大
きな残留応力を残したりする恐れがある。
The operating pressure of the thermal spray gun of the high pressure / ultra high speed flame spraying method is theoretically 0.55 MPa or more, but preferably 0.55 MPa to 1.04 MPa. At 0.55 MPa or less, sufficient kinetic energy cannot be given to the thermal spray material. On the other hand, 1.04MP
If it is a or more, the bite into the surface of the substrate does not increase in spite of the increase in the operating pressure, and on the contrary, a large residual stress may remain on the surface of the substrate.

【0016】また、銅基体または上記したメッキ層に食
い込み得る硬さを有する(アンカー効果を発揮する)少
なくとも第一層目の耐摩耗性材料としては、上記した好
ましい溶射ガン作動圧力範囲0.55MPa〜1.04
MPaでは、タングステン・カーバイト(以下「WC」
と略する)系耐摩耗性材料を挙げることができ、その粉
末を用いる場合で、マイクロビッカース硬さ(荷重30
0g)HV0.3:1000〜1400が好ましく、粉
末の直径は5〜53μmが好ましい。
Further, as a wear-resistant material of at least the first layer having a hardness capable of digging into the copper substrate or the above-mentioned plating layer (exhibiting the anchor effect), the above-mentioned preferable spray gun operating pressure range 0.55 MPa. ~ 1.04
At MPa, tungsten carbide (hereinafter "WC")
Abbreviation) -based wear-resistant material, and when its powder is used, the micro Vickers hardness (load 30
0 g) HV 0.3 : 1000 to 1400 is preferable, and the diameter of the powder is preferably 5 to 53 μm.

【0017】粉末の直径が5μmより小さくなると、上
記運動エネルギーが充分得られなく、基体に粉末が完全
に密着しない。また、粉末の直径が53μmより大きく
なると、基体への食い込みが浅くなり、密着強度が低下
する。
If the diameter of the powder is smaller than 5 μm, the above kinetic energy cannot be obtained sufficiently and the powder does not completely adhere to the substrate. Further, if the diameter of the powder is larger than 53 μm, the penetration into the substrate becomes shallow and the adhesion strength decreases.

【0018】粉末の硬さが、HV0.3:1000より
低くなると、粉末の食い込みが浅くなり、HV0.3
1400より高くなると、溶射皮膜内に発生する歪が大
きくなるという問題が生じる。なお、この粉末の好まし
い直径は、粉末の材質や形状によって異なってくるのは
勿論である。
When the hardness of the powder becomes lower than HV 0.3 : 1000, the bite of the powder becomes shallow, and HV 0.3 :
If it is higher than 1400, there is a problem that the strain generated in the thermal spray coating becomes large. Needless to say, the preferable diameter of this powder depends on the material and shape of the powder.

【0019】第一層目のWC系耐摩耗性材料としては、
WC−12Co(12重量%のCoを含むWC)または
WC−27NiCr(Ni及びCrを27重量%(Ni
とCrの配合比率は4:1)を含むWC)などを挙げる
ことができる。
As the first layer of WC-based wear resistant material,
WC-12Co (WC with 12 wt% Co) or WC-27NiCr (27 wt% Ni and Cr (Ni
The WC) containing 4: 1) and the compounding ratio of Cr and Cr can be mentioned.

【0020】また、上記第一層目の表面に第二層目の耐
摩耗性溶射皮膜を形成するときは、第二層目の溶射材料
としてNi基自溶性合金を使用することができる。Ni
基自溶性合金とは、Ni−Cr−Si−B系合金にF
e,Cu,C,Moなどを添加したものであり、好まし
い組成は、Siが1.25〜5.50重量%,Bが2.
00〜4.50重量%,Crが8.0〜18.0重量
%,Cが0.30〜1.00重量%,Feが1.25〜
5.50重量%,Cuが0〜5重量%,Moが0〜5重
量%,Niが残りのものである。また、順次使用状態に
よって、組成を変化させ、第三層目以降を形成しても良
い。
When the second layer wear-resistant thermal spray coating is formed on the surface of the first layer, a Ni-based self-fluxing alloy can be used as the second layer thermal spray material. Ni
Base self-fluxing alloys are Ni-Cr-Si-B based alloys with F
e, Cu, C, Mo, etc. are added, and the preferable composition is Si of 1.25 to 5.50% by weight and B of 2.
00 to 4.50 wt%, Cr 8.0 to 18.0 wt%, C 0.30 to 1.00 wt%, Fe 1.25 to
5.50% by weight, Cu is 0 to 5% by weight, Mo is 0 to 5% by weight, and Ni is the rest. Further, the composition may be sequentially changed to form the third and subsequent layers.

【0021】更に、上記第二層目に加えて、第三層目の
耐摩耗性溶射皮膜を形成するときは、第三層目の耐摩耗
性溶射材料として、Co基自溶性合金を使用することも
できるが、前記Ni基自溶性合金と同様、第二層目以降
の耐摩耗性溶射材料として使用しても良い。Co基自溶
性合金とは、Co−Cr−Si−B系合金にFe,C,
Ni,Mo,Wなどを添加したものであり、好ましい組
成は、Siが1.5〜4.5重量%,Bが1.5〜4.
0重量%,Crが16.0〜24.0重量%,Cが0.
25〜1.50重量%,Feが1.25〜5.00重量
%,Moが0〜7.00重量%,Niが0〜30重量
%,Wが4〜15重量%,残りがCoである。
In addition to the above second layer, when a third layer wear-resistant thermal spray coating is formed, a Co-based self-fluxing alloy is used as the third layer wear-resistant thermal spray material. However, like the Ni-based self-fluxing alloy, it may be used as the wear-resistant thermal spraying material for the second and subsequent layers. The Co-based self-fluxing alloy is a Co-Cr-Si-B based alloy containing Fe, C,
Ni, Mo, W, etc. are added, and the preferable composition is 1.5 to 4.5% by weight of Si and 1.5 to 4.
0 wt%, Cr 16.0 to 24.0 wt%, C 0.
25 to 1.50% by weight, Fe 1.25 to 5.00% by weight, Mo 0 to 7.00% by weight, Ni 0 to 30% by weight, W 4 to 15% by weight, and the balance Co. is there.

【0022】高圧・超高速フレーム溶射法によって銅基
体表面または上記したメッキ層表面に形成される溶射皮
膜の膜厚は、0.01mm以下では鋳型内面において耐
摩耗性を維持するには不充分である。耐摩耗性を維持す
るには、膜厚を厚くする方が好ましいが、6mm以上に
厚みを増すことは、皮膜の熱伝導の低下により、鋳型の
使命である抜熱効果の阻害、あるいは皮膜内の歪により
クラックを生ずる危険がある等の不都合がある。従っ
て、膜厚は0.01〜6mmとされる。
If the thickness of the sprayed coating formed on the surface of the copper substrate or the surface of the above-mentioned plating layer by the high pressure / ultra high speed flame spraying method is 0.01 mm or less, it is not sufficient to maintain the wear resistance on the inner surface of the mold. is there. In order to maintain abrasion resistance, it is preferable to increase the film thickness, but increasing the thickness to 6 mm or more impairs the heat removal effect which is the mission of the mold due to the decrease in heat conduction of the film, or There is an inconvenience such that there is a risk of cracking due to the strain. Therefore, the film thickness is 0.01 to 6 mm.

【0023】[0023]

【作 用】本発明で用いる少なくとも第一層を形成する
上記した耐摩耗性材料は、溶射フレームの熱によって全
体的に溶融することがなく、しかも、基体に食い込み得
る硬さを有するものである。そして、高圧・超高速フレ
ーム溶射法(HP/HVOFなど)で用いる溶射ガンの
作動圧力は、上記の食い込みを生じさせる圧力であっ
て、従来の超高速フレーム溶射法(HVOF)で用いる
溶射ガンの作動圧力より大きい。そのため、高圧・超高
速フレーム溶射法により噴射された耐摩耗性材料の粉末
は、基体に食い込んでしっかりと固定(密着)される。
その際この溶射皮膜の形成に当り、同時に基体表面の汚
れ(手垢,各種マーキングなど)或いはCuOなどの
酸化皮膜も除去される。
[Operation] The above-mentioned wear-resistant material forming at least the first layer used in the present invention does not melt entirely by the heat of the thermal spraying frame, and has a hardness capable of biting into the substrate. . The operating pressure of the spray gun used in the high-pressure / high-speed flame spraying method (HP / HVOF, etc.) is the pressure that causes the above-mentioned bite, and is the pressure of the spray gun used in the conventional ultra-high-speed flame spraying method (HVOF). Greater than operating pressure. Therefore, the powder of the wear resistant material sprayed by the high pressure / ultra high speed flame spraying method bites into the substrate and is firmly fixed (adhered).
At the same time, when forming this sprayed coating, dirt (hand marks, various markings, etc.) on the surface of the substrate or an oxide coating such as Cu 2 O is also removed.

【0024】従って、従来法のような溶射前処理として
の基体のブラスト処理などを行なわなくても、基体表面
の酸化皮膜の除去と良好な密着強度が得られる。また、
大きな作動圧力により、粉末に大きな運動エネルギーを
与えることができ、非常に緻密で、しかも膜厚の厚い溶
射皮膜を形成することが可能となる。そのため、従来法
で行なわれていた溶射皮膜の密着性や皮膜品質の改善の
ための、そして銅基体の材料特性回復のための加熱処理
は、全く不要となる。
Therefore, the oxide film on the surface of the substrate can be removed and good adhesion strength can be obtained without performing the blasting of the substrate as the pretreatment for thermal spraying unlike the conventional method. Also,
A large operating pressure can give a large kinetic energy to the powder, and it becomes possible to form a very dense and thick sprayed coating. Therefore, the heat treatment for improving the adhesiveness and coating quality of the thermal spray coating and for recovering the material characteristics of the copper substrate, which has been performed by the conventional method, is completely unnecessary.

【0025】[0025]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0026】図1は、本発明実施例鋳型の短辺側銅板の
要部を拡大した縦断面を示しており、図2は、他の実施
例の短辺側銅板の要部を拡大した縦断面を示している。
これらの図において、1は銅または銅合金で形成された
鋳型本体(基体)であり、その内壁面上に耐摩耗性材料
から成る溶射皮膜2あるいはメッキ層3が形成されてい
る。
FIG. 1 shows an enlarged vertical cross section of a short side copper plate of a mold of the present invention, and FIG. 2 shows an enlarged vertical section of a short side copper plate of another embodiment. Showing the face.
In these figures, reference numeral 1 denotes a mold body (base body) made of copper or a copper alloy, and a sprayed coating 2 or a plating layer 3 made of a wear resistant material is formed on the inner wall surface of the mold body.

【0027】図1の実施例では、溶射フレームの熱によ
って全体的に溶融することが無く、しかも基体1の内壁
面に食い込み得る硬さを有する耐摩耗性材料を用いて、
高圧・超高速フレーム溶射法により基体の内壁面に直接
溶射された溶射皮膜2が形成されている。4はその食い
込み層である。
In the embodiment shown in FIG. 1, a wear-resistant material that does not melt entirely due to the heat of the thermal spray frame and has a hardness that allows it to dig into the inner wall surface of the substrate 1 is used.
A thermal spray coating 2 directly formed on the inner wall surface of the substrate is formed by a high pressure / ultra high speed flame spraying method. Reference numeral 4 is the bite layer.

【0028】一方、図2の実施例では、銅基体1の表面
に0.01mm厚さのNiメッキ層3が形成されてお
り、その上に高圧・超高速フレーム溶射法によりメッキ
層3に食い込み得る耐摩耗性材料が溶射され、溶射皮膜
2が形成されている。そして、メッキ層3と溶射皮膜2
との間に食い込み層4が生じている。
On the other hand, in the embodiment shown in FIG. 2, a Ni plating layer 3 having a thickness of 0.01 mm is formed on the surface of the copper substrate 1, and the Ni plating layer 3 is cut into the plating layer 3 by a high pressure / ultra high speed flame spraying method. The obtained wear resistant material is sprayed to form the sprayed coating 2. Then, the plating layer 3 and the thermal spray coating 2
A biting layer 4 is formed between and.

【0029】次に、上記図1の実施例構造の鋳型材につ
いて、銅または銅合金に溶射した溶射皮膜の密着性、割
れ感受性、及び銅基体への熱影響を調べるために、図3
に示す試験片を作成して熱衝撃試験を行なった。図3に
おいて、1aは銅または銅合金の基体であり、2aは溶
射皮膜、5は取付け穴である。
Next, in order to examine the adhesion, cracking susceptibility, and thermal effect on the copper substrate of the sprayed coating sprayed on copper or copper alloy, the mold material of the embodiment structure of FIG.
A test piece shown in (1) was prepared and a thermal shock test was conducted. In FIG. 3, 1a is a copper or copper alloy substrate, 2a is a thermal spray coating, and 5 is a mounting hole.

【0030】試験片の基体を構成する銅及び銅合金の組
成及び種類は、表1に示す通りである。また、試験に使
用した高圧・超高速フレーム溶射法(HP/HVOF)
及び従来例の超高速溶射フレーム法(HVOF)を実行
するプロセス(設備)の詳細は表2に示す通りである。
The compositions and types of copper and copper alloys constituting the substrate of the test piece are as shown in Table 1. In addition, the high-pressure / high-speed flame spraying method (HP / HVOF) used for the test
Table 2 shows the details of the process (equipment) for performing the conventional ultra high-speed spray flame method (HVOF).

【表1】 [Table 1]

【表2】 [Table 2]

【0031】なお、表2中の「ガンの作動圧力」とは、
溶射ガンの燃焼室内の圧力を圧力センサーにより測定し
た値である。また、「ジェット温度」とは、各燃料によ
るフレームの温度の計算値であり、「ジェットのマッ
ハ」とは、フレームの速度が音速を超えるときに発生す
る衝撃波によるダイヤモンドパターンショックの角度に
より計算されたフレーム速度である。更に、「粒子速
度」とは、溶射ガンの噴射口のフレーム内粒子をレーザ
ードプラー粒速計によって測定した値である。
The "gun operating pressure" in Table 2 means
It is a value obtained by measuring the pressure in the combustion chamber of the spray gun with a pressure sensor. In addition, "jet temperature" is a calculated value of the temperature of the flame due to each fuel, and "jet mach" is calculated from the angle of the diamond pattern shock due to the shock wave generated when the velocity of the flame exceeds the speed of sound. Frame rate. Further, the "particle velocity" is a value obtained by measuring the particles in the flame of the spray gun injection port with a laser Doppler particle velocity meter.

【0032】表1に示した組成及び種類の銅または銅合
金からなる基体1aの表面に、表2に示す溶射条件で耐
摩耗性溶射皮膜2aを形成した。その際、第一層目の耐
摩耗性溶射材料には、Coを12重量%或いはNi及び
Crを27重量%含むタングステン・カーバイト粉末を
使用し、約0.8mm厚の溶射皮膜を形成した。試験例
に使用した溶射材料の粉末の組成,粒度(粉末の直径)
及び硬さは、表3に示す通りである。
A wear-resistant thermal spray coating 2a was formed on the surface of a substrate 1a made of copper or a copper alloy having the composition and type shown in Table 1 under the thermal spray conditions shown in Table 2. At this time, a tungsten carbide powder containing 12% by weight of Co or 27% by weight of Ni and Cr was used as the wear-resistant thermal spray material of the first layer to form a thermal spray coating having a thickness of about 0.8 mm. . Powder composition and particle size (powder diameter) of the thermal spray material used in the test examples
And hardness are as shown in Table 3.

【表3】 [Table 3]

【0033】熱衝撃試験は、先ず、図3に示す試験片の
両端四箇所の取付け穴5に四本のボルトを挿入し、所定
の固定ブロックに締付トルク1000kgf・cmのト
ルクでしっかりと締付け固定した。その後、試験片を環
状式電気炉内で300℃になるまで加熱し、300℃に
達した後、直ちに、100℃まで水による急冷を行なう
ことを1回の加熱冷却サイクルとして、この加熱冷却サ
イクルを500回繰り返した。加熱冷却サイクルを50
0回行なった後に、溶射皮膜2aからなる保護層の表面
割れを観察し、その後溶射皮膜2aを切断して、その断
面から溶射皮膜2aの剥離及び割れの発生有無を観察し
た。
In the thermal shock test, first, four bolts are inserted into the mounting holes 5 at four positions on both ends of the test piece shown in FIG. 3, and it is securely fastened to a predetermined fixed block with a tightening torque of 1000 kgf · cm. Fixed After that, the test piece is heated in an annular electric furnace to 300 ° C., and immediately after reaching 300 ° C., rapid cooling with water to 100 ° C. is performed as one heating / cooling cycle. Was repeated 500 times. 50 heating / cooling cycles
After 0 times, the surface cracks of the protective layer made of the sprayed coating 2a were observed, and then the sprayed coating 2a was cut, and the presence or absence of peeling and cracking of the sprayed coating 2a was observed from the cross section.

【0034】〔試験例1〕 表4は、非析出硬化型材料の代表例として表1に示した
純銅を使用し、その基体に、所定の試験片製造方法のも
とで溶射皮膜を形成し、溶射後の加熱処理による基体の
材料強度(硬さ)への影響の有無、及び溶射皮膜の密着
強度、並びに熱衝撃試験による溶射皮膜の評価を示した
ものである。
[Test Example 1] In Table 4, pure copper shown in Table 1 is used as a typical example of the non-precipitation hardening type material, and a spray coating is formed on the substrate under a predetermined test piece manufacturing method. The presence or absence of the influence of the heat treatment after thermal spraying on the material strength (hardness) of the substrate, the adhesion strength of the thermal spray coating, and the evaluation of the thermal spray coating by the thermal shock test are shown.

【表4】 [Table 4]

【0035】表4の結果から、従来法の超高速フレーム
溶射法(HVOF)により、純銅の基体にブラスト処理
及び溶射後の加熱処理を行なって溶射皮膜を形成した場
合は、基体の材料強度(硬さ)が著しく低下し、約1/
2以下になっている。この材料強度の低下により、従来
は、溶射皮膜用の基体として純銅(非析出硬化型材料)
を使用することができなかったわけである。一方、溶射
後の加熱処理を行なわなければ、基体の硬さ低下はない
が、溶射皮膜の密着強度は、約1.5kgf/mm2
あり、本発明の実施例に比べ約1/10である。また、
仮りにブラスト処理と溶射後の加熱処理を行なったとし
ても、その密着強度は本発明実施例の約1/2にすぎな
い。このことは、従来法の超高速フレーム溶射法により
溶射材料を溶射しても、溶射ガンの作動圧力が低く、基
体への食い込みが不充分であることを示している。
From the results shown in Table 4, when the pure copper substrate was subjected to the blasting treatment and the post-spraying heat treatment by the conventional ultra-high speed flame spraying method (HVOF) to form the sprayed coating, the material strength of the substrate ( Hardness) is significantly reduced,
It is less than 2. Due to this decrease in material strength, pure copper (non-precipitation hardening type material) has traditionally been used as a substrate for thermal spray coatings.
Could not be used. On the other hand, if the heat treatment after thermal spraying is not performed, the hardness of the substrate does not decrease, but the adhesion strength of the thermal spray coating is about 1.5 kgf / mm 2, which is about 1/10 of that of the examples of the present invention. is there. Also,
Even if the blasting treatment and the heat treatment after the thermal spraying are performed, the adhesion strength is only about ½ of that of the embodiment of the present invention. This indicates that even when the thermal spray material is sprayed by the conventional ultra-high speed flame spraying method, the operating pressure of the spray gun is low and the bite into the substrate is insufficient.

【0036】図4はそのことを写真及び図で示したもの
で、従来法の超高速フレーム溶射法により、WC−Ni
Cr系溶射材料を溶射し、その溶射皮膜と基体との界面
における断面のミクロの金属組織を示した写真及び説明
図である。ミクロ組織からも分かるように、溶射材料の
食い込みが極めて不充分であることが分かる。
FIG. 4 is a photograph and a diagram showing this fact. WC-Ni was formed by the conventional ultra-high speed flame spraying method.
FIG. 3 is a photograph and an explanatory view showing a microscopic metallographic structure of a cross section at the interface between the thermal spray coating and the substrate after thermal spraying of a Cr-based thermal spray material. As can be seen from the microstructure, the bite of the thermal spray material is extremely insufficient.

【0037】一方、図5は、高圧・超高速フレーム溶射
法により本発明を実施した場合のもので、WC−NiC
r系溶射材料を溶射した時の鋳型の溶射皮膜と基体との
界面における断面のミクロの金属組織を示した写真及び
説明図である。このミクロ組織からも分かるように、基
体への食い込みが充分であることが分かる。なお、図5
は、第1層目がWC−NiCr系溶射材料であり、第2
層目は、Ni基自溶性合金である。
On the other hand, FIG. 5 shows a case where the present invention is carried out by a high pressure / ultra high speed flame spraying method, and is WC-NiC.
FIG. 3 is a photograph and an explanatory view showing a microscopic metal structure of a cross section at the interface between the sprayed coating of the mold and the substrate when the r-based sprayed material is sprayed. As can be seen from this microstructure, it is understood that the bite into the substrate is sufficient. Note that FIG.
The first layer is a WC-NiCr-based thermal spray material, and the second layer is
The layer is a Ni-based self-fluxing alloy.

【0038】〔試験例2〕 表5は、析出硬化型材料の代表例として、Cr−Zr−
Cuの基体に、溶射皮膜を形成し、従来法と対比して溶
射皮膜評価を行なったものである。
Test Example 2 Table 5 shows Cr-Zr- as a typical example of the precipitation hardening type material.
A thermal spray coating was formed on a Cu substrate, and the thermal spray coating was evaluated in comparison with the conventional method.

【表5】 [Table 5]

【0039】表4の結果と表5の結果を比較すれば分か
るように、純銅の場合と同様に、本発明実施例による溶
射皮膜の密着強度及び熱衝撃試験の評価は、従来例に比
らべ、著しく優れている。また、表4と表5の結果か
ら、基体が析出硬化型材料であるCr−Zr−Cuの方
が、純銅の場合より、溶射皮膜と基体との密着強度は高
く、溶射皮膜を形成する基体として好ましいことが分か
る。また、図6に示したように、従来例では溶射皮膜に
表面割れを生じたが、本発明実施例ではこのような割れ
状態は全く生じなかった。
As can be seen by comparing the results of Table 4 and the results of Table 5, as in the case of pure copper, the adhesion strength of the thermal spray coating according to the example of the present invention and the thermal shock test were evaluated in comparison with the conventional example. It is extremely excellent. Further, from the results of Tables 4 and 5, the adhesion strength between the thermal spray coating and the substrate is higher when the substrate is a precipitation hardening material, Cr-Zr-Cu, than in the case of pure copper. It turns out that it is preferable as. Further, as shown in FIG. 6, surface cracks occurred in the thermal spray coating in the conventional example, but no such cracked state occurred in the examples of the present invention.

【0040】〔試験例3〕 表6は、WC−12Coを基体への第一層目に溶射する
ことをベースとし、その上に第二層目の溶射皮膜として
Ni基自溶性合金を溶射した例を加えて、熱衝撃試験を
行なうことにより、「皮膜の厚さと皮膜の割れ感受性と
の関係」を示したものである。
[Test Example 3] Table 6 is based on the fact that WC-12Co is sprayed on the first layer as a base, and a Ni-based self-fluxing alloy is sprayed thereon as a sprayed coating for the second layer. By adding an example and performing a thermal shock test, the "relationship between film thickness and film cracking susceptibility" is shown.

【表6】 [Table 6]

【0041】表6によれば、溶射皮膜が厚くなるに従っ
て、皮膜の表面割れが生ずるようになり、基体が純銅の
場合は、総皮膜厚が5mmになると表面割れが生ずるよ
うになる。また、析出硬化型材料の基体、即ちCr−Z
r−Cu基体の場合は、硬さの高いWC−12Co単層
で7mm厚の皮膜を形成したときに表面割れがやや認め
られた。しかし、第一層目を0.05mm厚のWC−1
2Coとし、第二層目を5.95mm厚のNi基自溶性
合金とした総皮膜厚さ6mmの場合は、割れは認められ
なかった。
According to Table 6, as the thermal spray coating becomes thicker, surface cracking of the coating occurs, and when the substrate is pure copper, surface cracking occurs when the total coating thickness becomes 5 mm. Also, the base of the precipitation hardening type material, namely Cr-Z
In the case of the r-Cu substrate, surface cracking was slightly observed when a 7 mm-thick coating was formed from a WC-12Co single layer having high hardness. However, the first layer is WC-1 with a thickness of 0.05 mm.
No cracks were observed in the case of 2Co and the total film thickness of the second layer was a 5.95 mm thick Ni-based self-fluxing alloy having a thickness of 6 mm.

【0042】従って、皮膜厚は、耐摩耗性を持続するに
は厚くする方が良いが、耐摩耗性材料の構成によって
は、4mm以上に厚みを増すとクラックを生ずる可能性
がある。また、皮膜厚は、0.01mm以上であれば、
耐摩耗性の皮膜として作用するが、基体の表面の凹凸状
態などから、耐摩耗性を維持するには、0.015mm
以上が必要である。このことから、好ましい皮膜厚は、
0.015〜4mmと言える。
Therefore, it is better to increase the thickness of the coating to maintain the abrasion resistance, but cracks may occur if the thickness is increased to 4 mm or more depending on the constitution of the abrasion resistant material. If the film thickness is 0.01 mm or more,
It acts as a wear resistant film, but 0.015 mm is required to maintain wear resistance due to the unevenness of the surface of the substrate.
The above is necessary. From this, the preferable film thickness is
It can be said to be 0.015 to 4 mm.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
溶射前処理としてのブラスト処理をしなくても、溶射皮
膜の形成と同時に、基体表面の汚れ或いはCuOなど
の酸化皮膜を除去できる。また同時に、基体への溶射材
料の充分な食い込み(アンカー効果)により、密着強度
が高く、しかも緻密な溶射皮膜を形成できる。このため
従来例でなされていた基体材料特性の改善等のための溶
射後の加熱処理が不要となるという優れた効果が得られ
る。
As described above, according to the present invention,
It is possible to remove dirt on the surface of the substrate or an oxide film such as Cu 2 O at the same time when the sprayed film is formed without performing a blasting process as a pre-spraying process. At the same time, due to the sufficient penetration of the thermal spray material into the substrate (anchor effect), a dense thermal spray coating with high adhesion strength can be formed. Therefore, it is possible to obtain an excellent effect that the heat treatment after the thermal spraying for improving the characteristics of the base material, which has been performed in the conventional example, becomes unnecessary.

【0044】一方、従来例では溶射後の加熱処理は必須
であり、そのため非析出硬化型材料料(純銅系)の鋳型
にあっては材料強度低下となり、溶射基体としては使用
上大きな欠点であった。しかし、本発明の実施により、
非析出硬化型材料料(純銅系)の鋳型にあっても、その
内面に溶射皮膜の適用が可能となったものである。
On the other hand, in the conventional example, the heat treatment after the thermal spraying is indispensable. Therefore, the material strength of the non-precipitation hardening type material (pure copper type) mold is lowered, which is a major drawback in the use as a thermal spray substrate. It was However, due to the practice of the invention,
Even in the case of a non-precipitation hardening type material (pure copper type), a sprayed coating can be applied to the inner surface of the mold.

【0045】従来の超高速フレーム溶射法の溶射皮膜厚
さは、最大0.5〜1mmであり、それ以上に厚くする
と皮膜にクラックが発生するなどの問題があった。しか
し、本発明では従来法に比べ、膜厚を最大6mmまでに
厚くすることが可能となり、耐摩耗性持続を著しく向上
させることができた。
The thickness of the thermal spray coating of the conventional ultra-high speed flame spraying method is 0.5 to 1 mm at maximum, and there is a problem that cracks are generated in the coating if it is thicker than that. However, in the present invention, the film thickness can be increased to a maximum of 6 mm as compared with the conventional method, and the abrasion resistance can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例鋳型の短辺側銅板の要部拡大縦断
面図。
FIG. 1 is an enlarged vertical cross-sectional view of a main part of a copper plate on a short side of a mold according to an embodiment of the present invention.

【図2】他の実施例鋳型の短辺側銅板の要部拡大縦断面
図。
FIG. 2 is an enlarged vertical cross-sectional view of a main part of a copper plate on the short side of another embodiment of the mold.

【図3】熱衝撃試験用試験片の説明図で、図3(a)は
その平面図、図3(b)はその正面図。
FIG. 3 is an explanatory view of a test piece for a thermal shock test, FIG. 3 (a) is a plan view thereof, and FIG. 3 (b) is a front view thereof.

【図4】従来例鋳型の溶射皮膜と基体との界面における
断面のミクロの金属組織を示した写真及び図で、図4
(a)はその写真(倍率150)、図4(b)はそれを
図形化した説明図。
FIG. 4 is a photograph and a diagram showing a microscopic metallographic structure of a cross section at an interface between a sprayed coating of a conventional example mold and a substrate.
(A) is the photograph (magnification: 150), and FIG. 4 (b) is an explanatory diagram showing it in a graphic form.

【図5】本発明実施例鋳型の溶射皮膜と基体との界面に
おける断面のミクロの金属組織を示した写真及び図で、
図5(a)はその写真(倍率150)、図5(b)はそ
れを図形化した説明図。
FIG. 5 is a photograph and a diagram showing a microscopic metallographic structure of a cross section at an interface between a sprayed coating of a mold of an example of the present invention and a substrate,
FIG. 5 (a) is the photograph (magnification 150), and FIG. 5 (b) is an explanatory diagram illustrating it.

【図6】従来例鋳型における溶射皮膜表面の状態を1.
2倍に拡大して説明した図。
FIG. 6 shows the condition of the surface of the sprayed coating in the conventional mold as 1.
The figure which expanded and demonstrated 2 times.

【符号の説明】[Explanation of symbols]

1,1a 銅基体 2,2a 溶射皮膜 3 メッキ層 4 食い込み層 5 取付け穴 1,1a Copper base 2,2a Thermal spray coating 3 plating layer 4 bite layer 5 mounting holes

フロントページの続き (72)発明者 田中 孝行 富山県中新川郡立山町西芦原新1番地の 1 中越合金鋳工株式会社内 (72)発明者 山本 賢三 富山県中新川郡立山町西芦原新1番地の 1 中越合金鋳工株式会社内 (72)発明者 足立 正博 東京都中央区銀座1丁目13番8号 日本 ウエルディング・ロッド株式会社内 (72)発明者 三木 良治 東京都中央区銀座1丁目13番8号 日本 ウエルディング・ロッド株式会社内 (72)発明者 大割 健男 千葉県柏市つくしが丘2−7−2 (72)発明者 森下 徹 東京都板橋区高島平8−25−1−206 (56)参考文献 特開 平1−186245(JP,A) 特開 平1−233047(JP,A) 特開 平4−325668(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/059 110 C23C 4/06 Front page continuation (72) Inventor Takayuki Tanaka 1 in Nishi-Ashihara, Tateyama-machi, Nakashinkawa-gun, Toyama Prefecture 1 Chuetsu Alloy Foundry Co., Ltd. Address 1 Chuetsu Alloy Casting Co., Ltd. (72) Inventor Masahiro Adachi 1-13-8 Ginza, Chuo-ku, Tokyo Inside Welding Rod Co., Ltd. (72) Ryoji Miki 1-chome, Ginza, Chuo-ku, Tokyo No. 13-8 Japan Welding Rod Co., Ltd. (72) Inventor Takeo Owari 2-7-2 Tsukushigaoka, Kashiwa-shi, Chiba (72) Inventor Toru Morishita 8-25-1-206, Takashimadaira, Itabashi-ku, Tokyo ( 56) References JP-A 1-186245 (JP, A) JP-A 1-233047 (JP, A) JP-A 4-325668 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/059 110 C23C 4/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅または銅合金を基体とする鋳型の内面
に溶射皮膜を形成する連続鋳造用鋳型の製造方法におい
て、銅基体鋳型の内面に、溶射ガンの作動圧力が0.5
5MPa〜1.04MPaである高圧・超高速フレーム
溶射法により、皮膜厚さ0.01〜6mmの溶射皮膜を
少なくとも上記銅基体表面に食い込む第一層として、1
種または2種以上のタングステン・カーバイト系耐摩耗
性材料で形成し、溶射前のブラスト処理及び溶射後の加
熱処理を行なわないことを特徴とする連続鋳造用鋳型の
製造方法。
1. A method for producing a casting mold for continuous casting, comprising forming a thermal spray coating on the inner surface of a copper or copper alloy base mold, wherein the operating pressure of the thermal spray gun is 0.5 on the inner surface of the copper base mold.
By a high pressure / ultra high speed flame spraying method of 5 MPa to 1.04 MPa, a sprayed coating having a coating thickness of 0.01 to 6 mm is at least formed as the first layer that digs into the surface of the copper substrate.
1. A method for producing a continuous casting mold, which is characterized in that it is formed of one or more kinds of tungsten / carbite-based wear-resistant materials and is not subjected to a blast treatment before thermal spraying and a heat treatment after thermal spraying.
【請求項2】 銅または銅合金を基体とする鋳型の内面
に溶射皮膜を形成する連続鋳造用鋳型の製造方法におい
て、溶射皮膜と上記銅基体との間に、Niメッキまたは
Ni−Feメッキのメッキ層を介在させ、溶射ガンの作
動圧力が0.55MPa〜1.04MPaである高圧・
超高速フレーム溶射法により、皮膜厚さ0.01〜6m
mの溶射皮膜を少なくとも上記メッキ層表面に食い込む
第一層として、1種または2種以上のタングステン・カ
ーバイト系耐摩耗性材料で形成し、溶射前のブラスト処
理及び溶射後の加熱処理を行なわないことを特徴とする
連続鋳造用鋳型の製造方法。
2. A method of producing a casting mold for continuous casting, comprising forming a sprayed coating on the inner surface of a mold having copper or a copper alloy as a base, wherein Ni plating or Ni-Fe plating is performed between the sprayed coating and the copper base . High pressure that the operating pressure of the spray gun is 0.55 MPa to 1.04 MPa with the plating layer interposed.
Ultra-high speed flame spraying method, coating thickness 0.01-6m
The thermal sprayed coating of m is formed of at least one type of tungsten / carbide-based wear-resistant material as a first layer that bites at least the surface of the plating layer, and blasting is performed before thermal spraying and heat treatment is performed after thermal spraying. A method for producing a continuous casting mold, which is characterized in that it does not exist.
【請求項3】 タングステン・カーバイト系耐摩耗性材
料が、直径5〜53μmの粉末で、マイクロビッカース
硬さ(荷重300g)HV0.3が1000〜1400
であることを特徴とする請求項1または請求項2記載の
連続鋳造用鋳型の製造方法。
3. A tungsten / carbite-based wear-resistant material is a powder having a diameter of 5 to 53 μm, and a micro Vickers hardness (load 300 g) HV 0.3 of 1000 to 1400.
The method for producing a continuous casting mold according to claim 1 or 2, wherein
JP24225294A 1994-06-01 1994-09-09 Manufacturing method of mold for continuous casting Expired - Fee Related JP3460160B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24225294A JP3460160B2 (en) 1994-09-09 1994-09-09 Manufacturing method of mold for continuous casting
US08/418,513 US5499672A (en) 1994-06-01 1995-04-07 Mold for continuous casting which comprises a flame sprayed coating layer of a tungsten carbide-based wear-resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24225294A JP3460160B2 (en) 1994-09-09 1994-09-09 Manufacturing method of mold for continuous casting

Publications (2)

Publication Number Publication Date
JPH0871705A JPH0871705A (en) 1996-03-19
JP3460160B2 true JP3460160B2 (en) 2003-10-27

Family

ID=17086512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24225294A Expired - Fee Related JP3460160B2 (en) 1994-06-01 1994-09-09 Manufacturing method of mold for continuous casting

Country Status (1)

Country Link
JP (1) JP3460160B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468238B (en) * 2012-08-22 2015-01-11 China Steel Corp Casting mold and heat-treating method of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179764B2 (en) * 2001-05-31 2008-11-12 新日本製鐵株式会社 Manufacturing method of high strength copper base alloy
CN112779489B (en) * 2020-12-24 2022-11-11 广东省科学院新材料研究所 Inner hole sizing sleeve and processing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468238B (en) * 2012-08-22 2015-01-11 China Steel Corp Casting mold and heat-treating method of the same

Also Published As

Publication number Publication date
JPH0871705A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
US9849532B2 (en) Composite wear pad and methods of making the same
US7645493B2 (en) Composite wires for coating substrates and methods of use
Lu et al. Wear behavior of brazed WC/NiCrBSi (Co) composite coatings
Cinca et al. Study of stellite-6 deposition by cold gas spraying
US20110014495A1 (en) Metal material for parts of casting machine, molten aluminum alloy-contact member and method for producing them
US5499672A (en) Mold for continuous casting which comprises a flame sprayed coating layer of a tungsten carbide-based wear-resistant material
JP4109567B2 (en) Continuous casting mold and manufacturing method thereof
CN108048784A (en) A kind of method that plasma thermal sprayed prepares nitride enhancing high-entropy alloy coating
WO2018093265A1 (en) Nickel-base alloy, coating of such an alloy, and method for manufacturing such a coating
JP3460160B2 (en) Manufacturing method of mold for continuous casting
US6156443A (en) Method of producing improved erosion resistant coatings and the coatings produced thereby
JP3896478B2 (en) Materials for building up and composite tools with excellent corrosion resistance, wear resistance and seizure resistance
JP2002194477A (en) Member for molten nonferrous metal
JP3373937B2 (en) Continuous casting mold and method of manufacturing the same
JP3042966B2 (en) Damping alloy steel member having wear resistance and method of manufacturing the same
JP2931384B2 (en) Continuous casting roll with excellent heat crack resistance
JPH09228071A (en) Method for thermal spraying to casting mold for continuous casting and casting mold for continuous casting
JP2785139B2 (en) Composite roll for rolling and manufacturing method thereof
EP0513238B1 (en) Arc spraying of rapidly solidified aluminum base alloys
US20230150016A1 (en) Shrink-fitting process for making an erosion and wear resistant shot chamber for die casting applications
JP2569614B2 (en) Energizing roll
JP2003126944A (en) Mold for continuous casting and manufacturing method therefor
JPH08225917A (en) Thermal spraying method onto mold for continuous casting
JPH07155909A (en) Water-cooled mold and continuous casting excellent in erosion resistance
JP2942695B2 (en) Continuous casting mold and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees