JPH08225917A - Thermal spraying method onto mold for continuous casting - Google Patents

Thermal spraying method onto mold for continuous casting

Info

Publication number
JPH08225917A
JPH08225917A JP7154933A JP15493395A JPH08225917A JP H08225917 A JPH08225917 A JP H08225917A JP 7154933 A JP7154933 A JP 7154933A JP 15493395 A JP15493395 A JP 15493395A JP H08225917 A JPH08225917 A JP H08225917A
Authority
JP
Japan
Prior art keywords
mold
thermal spraying
thickness
spraying
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7154933A
Other languages
Japanese (ja)
Inventor
Hideki Hamaya
秀樹 浜谷
Yasutomo Ichiyama
靖友 一山
Saburo Kitaguchi
三郎 北口
Masahiro Obara
昌弘 小原
Nobutaka Yurioka
信孝 百合岡
Masatsugu Kuroki
雅嗣 黒木
Tetsuo Shima
哲男 嶋
Yoshinori Kasai
義則 笠井
Hitoshi Tanno
仁 丹野
Tokuhachirou Sakamoto
徳八郎 坂本
Mitsumasa Sasaki
光正 佐々木
Masahiro Nakagawa
政宏 仲川
Makoto Ishida
真 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI METEKO KK
Nippon Steel Corp
Original Assignee
DAIICHI METEKO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP24284994 priority Critical
Priority to JP6-314543 priority
Priority to JP6-242849 priority
Priority to JP31454394 priority
Application filed by DAIICHI METEKO KK, Nippon Steel Corp filed Critical DAIICHI METEKO KK
Priority to JP7154933A priority patent/JPH08225917A/en
Publication of JPH08225917A publication Critical patent/JPH08225917A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Abstract

PURPOSE: To provide the thermal spraying technique to a mold for continuous casting, particularly to the long sides thereof, in which even if fusing treatment after the thermal spraying is not executed, the high adhesion is obtained without exfoliating the film. CONSTITUTION: After forming Ni-electroplating having 0.1-2mm thickness to a part or the whole of the mold surface composed of copper or copper alloy, blast treatment is executed onto this plated surface so as to become 2-8 Ra roughness. Successively, after heating the mold at 50-100 deg.C, the thermal spraying of an Ni base self-fluxing alloy composed of (1) 60-80% Ni, 15-25% Cr, 1.5-5% B, 2-6% Si, 0.5-1% C, 3-4% Fe or (2) 5-10% Cr, 1.5-3.0% B, 2-4% Si, 0.09-0.60% C, 1.5-3.5% Fe and the balance Ni, and having 10-60μm grain diameter, is executed by using oxygen/hydrogen flame at 1300-2300m/s flame speed and thereafter, the film surface is finished to 1.6-6.3S Rmax.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶鋼を鋳造するための連
続鋳造用鋳型への溶射方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for spraying a continuous casting mold for casting molten steel.

【0002】[0002]

【従来の技術】従来から連続鋳造用鋳型(以降、鋳型と
略す)には銅または銅合金が使用されている。スラブを
鋳造する場合の鋳型は2組の幅1.5m以上の長辺と幅
0.5m以下の短辺によって構成されている。
2. Description of the Related Art Conventionally, copper or a copper alloy has been used for a continuous casting mold (hereinafter referred to as a mold). When casting a slab, the mold is composed of two sets of long sides having a width of 1.5 m or more and short sides having a width of 0.5 m or less.

【0003】この鋳型の主成分はCuであるが硬度を上
げるためにCrやZrがそれぞれ0.5〜1.5%、
0.08〜0.30%程度添加されている。しかし、鋳
型表面は鋳片やパウダーによって摩耗を受けるため長辺
ではCr系メッキやNi系メッキが形成されている。ま
た、更に摩耗を低下させるために特開昭63−3576
2号公報では、メッキの代わりにNi基自溶性合金の溶
射皮膜を使用している。自溶性合金の溶射は一般的に銅
鋳型表面にNi電気メッキを施した後に行い、次いでメ
ッキ表面にブラスト処理を行い(例えば“溶射工学”養
賢堂1968年発行P38〜)、次いでこの表面にNi
基自溶性合金の溶射皮膜を形成し、次いで鋳型全体を1
000℃程度に昇温するフュージング処理を行っている
(例えば“溶射工学”養賢堂1968年発行P88
〜)。
The main component of this mold is Cu, but in order to increase hardness, Cr and Zr are each 0.5 to 1.5%,
About 0.08 to 0.30% is added. However, since the surface of the mold is worn by the slab and powder, Cr-based plating and Ni-based plating are formed on the long side. Further, in order to further reduce wear, JP-A-63-3576
In JP-A-2, a spray coating of a Ni-based self-fluxing alloy is used instead of plating. Thermal spraying of self-fluxing alloy is generally performed after Ni electroplating on the copper mold surface, then blasting treatment on the plated surface (for example, "thermal spraying engineering" Yokendo 1968 issue P38-), and then on this surface. Ni
Form a thermal spray coating of base self-fluxing alloy, then
Fusing treatment to raise the temperature to about 000 ° C is performed (for example, "Spraying Engineering" Yokendo 1968, P88
~).

【0004】このフュージング処理は皮膜を再溶融さ
せ、溶射において常に問題となっている密着強度と皮膜
強度を向上させるために行う。フュージング処理を容易
にするため、即ち溶射膜の融点を下げるためにCr,
C,B,Si,Feなどが添加されている。また、これ
らの添加物は皮膜硬度を増して摩耗特性を向上させる効
果もある。
This fusing treatment is carried out in order to remelt the coating and improve the adhesion strength and coating strength, which are always problems in thermal spraying. In order to facilitate the fusing treatment, that is, to lower the melting point of the sprayed film, Cr,
C, B, Si, Fe, etc. are added. Further, these additives also have the effect of increasing the hardness of the film and improving the wear characteristics.

【0005】また、ここでの溶射法はプラズマ溶射や高
速フレーム溶射がある。プラズマ溶射はアルゴン、水
素、ヘリウム、窒素の少なくとも一種以上の混合したプ
ラズマによって粒子を完全に溶融させて溶射する方法で
ある。一方、高速フレーム溶射では酸素とプロパンやプ
ロピレンなどの燃焼ガスによって高速の燃焼フレームを
形成し、粒子を溶融させずに(半溶融、溶融する場合も
ある)、粒子の衝突時の運動エネルギーによって粒子を
結合させて皮膜を形成する。最近では燃焼ガスに酸素/
水素(第一メテコ社DJ−2600ハイブリッド溶射パ
ンフレット1992年10月発行)や酸素/灯油を利用
するフレーム溶射も開発されている。
Further, the thermal spraying method used here includes plasma spraying and high speed flame spraying. Plasma spraying is a method in which particles are completely melted by a mixed plasma of at least one kind of argon, hydrogen, helium, and nitrogen and then sprayed. On the other hand, in high-velocity flame spraying, a high-speed combustion flame is formed by combustion gas such as oxygen and propane or propylene, and the particles are not melted (sometimes semi-melted or melted) Are combined to form a film. Recently, oxygen /
Flame spraying utilizing hydrogen (Daiichi Meteco Ltd. DJ-2600 hybrid spray pamphlet issued October 1992) and oxygen / kerosene has also been developed.

【0006】[0006]

【発明が解決しようとする課題】従来のフュージング処
理を行うNi基合金の溶射技術では、鋳型の温度を10
00℃程度に昇温するため鋳型に熱変形が生じる。従っ
て実際にはこの技術は鋳型短辺に限られ、長辺には適用
されていない。
In the conventional Ni-based alloy thermal spraying technique for fusing treatment, the mold temperature is set to 10
Since the temperature rises to about 00 ° C, thermal deformation occurs in the mold. Therefore, in practice, this technique is limited to the short side of the mold and is not applied to the long side.

【0007】一方、フュージング処理を行わないと密着
強度は高々60MPa 以下と低いために、溶射中あるいは
後に鋳型から皮膜の剥離が生じる。この理由はプラズマ
溶射の場合、粒子を溶融するために粒子表面に酸化物を
形成しやすいためである。一方、フレーム溶射では粒子
の速度が不十分であるためである。
On the other hand, if the fusing treatment is not carried out, the adhesion strength is as low as 60 MPa or less at most, so that the film peels off from the mold during or after the thermal spraying. The reason for this is that in the case of plasma spraying, oxides are easily formed on the surface of the particles in order to melt the particles. On the other hand, in flame spraying, the particle velocity is insufficient.

【0008】従って、本発明の目的は溶射後のフュージ
ング処理を行わなくても密着性が高く、皮膜が剥離しな
い連続鋳造用の鋳型、特に長辺への溶射方法を提供する
ことである。
Therefore, an object of the present invention is to provide a casting mold for continuous casting, which has high adhesion and does not peel off the coating even if the fusing treatment after the thermal spraying is not carried out, in particular, a method for spraying the long side.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、次の通りである。 (1)銅または銅合金からなる鋳型表面の一部或いは全
部に厚み0.1〜2mmのNi電気メッキを形成した後、
前記Ni電気メッキ表面に粗度がRa=2〜4のブラス
ト処理を行い、次いで鋳型を50〜100℃まで加熱し
た後、厚み0.1〜0.6mmでNi=60〜80%(重
量%、以下同じ)、Cr=15〜25%、B=1.5〜
5%、Si=2〜6%、C=0.5〜1%、Fe=3〜
4%および残部不純物からなるNi基自溶性合金を溶射
ガンと前記Ni電気メッキ表面との距離が180〜30
0mmにてフレーム速度が1300〜2300m/s の酸素
/水素フレームで溶射することを特徴とする連続鋳造用
の鋳型への溶射方法。
The gist of the present invention is as follows. (1) After Ni electroplating having a thickness of 0.1 to 2 mm is formed on a part or all of the surface of the mold made of copper or copper alloy,
The Ni electroplated surface is blasted with a roughness of Ra = 2 to 4, and then the mold is heated to 50 to 100 ° C., after which the thickness is 0.1 to 0.6 mm and Ni = 60 to 80% (% by weight). , The same hereinafter), Cr = 15 to 25%, B = 1.5 to
5%, Si = 2 to 6%, C = 0.5 to 1%, Fe = 3 to
A Ni-based self-fluxing alloy consisting of 4% and the remaining impurities was used for the distance between the spray gun and the Ni electroplating surface being 180 to 30.
A method of thermal spraying to a mold for continuous casting, characterized in that thermal spraying is performed with an oxygen / hydrogen flame having a flame velocity of 1300 to 2300 m / s at 0 mm.

【0010】(2)銅または銅合金からなる鋳型表面の
一部或いは全部に厚み0.1〜2mmのNi電気メッキを
形成した後、前記Ni電気メッキ表面に粗度がRa=2
〜4のブラスト処理を行い、次いで鋳型を50〜100
℃まで加熱した後、厚み0.1〜0.6mmでCr=5.
0〜10.0%、B=1.5〜3.0%、Si=2.0
〜4.0%、C=0.09〜0.60%、Fe=1.5
〜3.5%と残部Niおよび不可避不純物からなるNi
基自溶性合金を、溶射ガンと前記Ni電気メッキ表面と
の距離が180〜300mmにてフレーム速度が1300
〜2300m/s の酸素/水素フレームで溶射することを
特徴とする連続鋳造用の鋳型への溶射方法。
(2) After Ni electroplating having a thickness of 0.1 to 2 mm is formed on a part or all of the surface of a mold made of copper or copper alloy, the Ni electroplated surface has a roughness Ra = 2.
~ 4 blasting, then mold 50-100
After heating to 0 ° C., the thickness is 0.1 to 0.6 mm and Cr = 5.
0-10.0%, B = 1.5-3.0%, Si = 2.0
~ 4.0%, C = 0.09-0.60%, Fe = 1.5
Ni consisting of ~ 3.5% and the balance Ni and unavoidable impurities
A base self-fluxing alloy is used, the distance between the thermal spray gun and the Ni electroplating surface is 180 to 300 mm, and the frame speed is 1300.
A method of thermal spraying to a mold for continuous casting, characterized in that thermal spraying is performed with an oxygen / hydrogen flame of up to 2300 m / s.

【0011】(3)銅または銅合金からなる鋳型表面の
一部或いは全部に厚み0.1〜2mmのNi電気メッキを
形成した後、前記Ni電気メッキ表面に粗度がRa=4
〜8のブラスト処理を行い、次いで鋳型を50〜100
℃まで加熱した後、厚み0.1〜0.6mmでCr=5.
0〜10.0%、B=1.5〜3.0%、Si=2.0
〜4.0%、C=0.09〜0.60%、Fe=1.5
〜3.5%と残部Niおよび不可避不純物からなる粒径
10〜60μmのNi基自溶性合金を溶射ガンと前記N
i電気メッキ表面との距離が180〜300mmにてフレ
ーム速度が1300〜2300m/s の酸素/水素フレー
ムで溶射することを特徴とする連続鋳造用鋳型への溶射
方法。
(3) After Ni electroplating having a thickness of 0.1 to 2 mm is formed on a part or all of the surface of a mold made of copper or copper alloy, the Ni electroplating surface has a roughness Ra = 4.
~ 8 blasting, then mold 50-100
After heating to 0 ° C., the thickness is 0.1 to 0.6 mm and Cr = 5.
0-10.0%, B = 1.5-3.0%, Si = 2.0
~ 4.0%, C = 0.09-0.60%, Fe = 1.5
Ni-based self-fluxing alloy having a particle size of 10 to 60 μm and consisting of ˜3.5% and the balance Ni and unavoidable impurities and the N
i A thermal spraying method for a continuous casting mold, characterized in that thermal spraying is performed with an oxygen / hydrogen flame having a frame speed of 1300 to 2300 m / s and a distance from the electroplating surface of 180 to 300 mm.

【0012】(4)溶射した後、溶射膜表面をRmax =
1.6S〜6.3Sに仕上げることを特徴とする前記
(1)、(2)または(3)記載の連続鋳造用鋳型への
溶射方法。
(4) After the thermal spraying, Rmax =
The method for thermal spraying onto a continuous casting mold according to the above (1), (2) or (3), characterized by finishing to 1.6S to 6.3S.

【0013】[0013]

【作用】鋳型表面へ溶射を行う場合、先ずNi電気メッ
キは鋳型表面を10%HClにて酸洗した後、速やかに
メッキ浴中に鋳型を入れ、鋳型に通電して行う。メッキ
厚みは使用環境に準じて決定されるが0.1mm〜2mmに
する。下限はメッキ後のブラスト処理によってメッキの
一部が削り取られても銅が表面に露出させないため、ま
た上限は経済的な理由による。
When spraying the surface of the mold, first, Ni electroplating is performed by pickling the surface of the mold with 10% HCl, then immediately putting the mold in the plating bath and energizing the mold. The plating thickness is determined according to the operating environment, but is 0.1 mm to 2 mm. The lower limit is because copper is not exposed on the surface even if part of the plating is scraped off by blasting after plating, and the upper limit is for economic reasons.

【0014】次いで、溶射前にブラスト処理を行う。請
求項1に係わる発明(以下、第一発明という)でのブラ
ストではSiC、アルミナ、鉄などのグリッドを100
MPa程度の圧力でメッキ表面に吹き付けるが、如何なる
グリッドの種類や圧力であっても最終的にメッキ表面に
粗度Ra=2〜4μmの凹凸を形成すればよい。この凹
凸によって皮膜とメッキの接触面積が広くなるためにア
ンカリング効果=機械的結合が強化される。ここで粗度
Raが2より低いとアンカリング効果が不十分であるた
めに密着強度が低下し、Raが4より高いと粒子がメッ
キ凹部の底に粉末が十分に入らずメッキと皮膜に未接合
部が形成されるために、粗度はRa=2〜4μmにす
る。
Next, a blast treatment is performed before the thermal spraying. In the blast in the invention according to claim 1 (hereinafter referred to as the first invention), 100 grids of SiC, alumina, iron, etc. are used.
Although it is sprayed onto the plating surface with a pressure of about MPa, irregularities having a roughness Ra of 2 to 4 μm may be finally formed on the plating surface regardless of the type and pressure of any grid. Due to the unevenness, the contact area between the coating and the plating is widened, so that the anchoring effect = mechanical bonding is strengthened. If the roughness Ra is lower than 2, the anchoring effect will be insufficient and the adhesion strength will be reduced. If the roughness Ra is higher than 4, the particles will not sufficiently fill the bottom of the plating recess with the powder and the particles will not form on the plating and the coating. The roughness is Ra = 2 to 4 μm in order to form a joint.

【0015】前記のNi電気メッキの後、Ra=2〜4
μmのブラスト処理の代わりに、請求項3に係わる発明
(第三発明)でのブラストでメッキ表面に粗度Ra=4
〜8μmの凹凸を形成してもよい。これは第三発明での
成分の溶射材料では、粗度Raが4より低いとアンカリ
ング効果が不十分であるために密着強度が低下し、Ra
が8より高いと粒子がメッキ凹部の底に粉末が十分に入
らずメッキと皮膜に未接合部が形成されるために、粗度
はRa=4〜8μmにする。
After the above Ni electroplating, Ra = 2-4
Roughness Ra = 4 on the plating surface by blasting according to the invention (third invention) according to claim 3 instead of the blasting treatment of μm.
Concavities and convexities of up to 8 μm may be formed. This is because in the thermal spray material of the component of the third invention, when the roughness Ra is lower than 4, the anchoring effect is insufficient and the adhesion strength is lowered.
Is higher than 8, particles do not sufficiently enter the bottom of the plating recess and an unbonded portion is formed between the plating and the coating. Therefore, the roughness is Ra = 4 to 8 μm.

【0016】このようなブラスト処理をした後、皮膜の
厚みが0.1〜0.6mmのNi基自溶性合金を鋳型温度
を50〜100℃に加熱した後に溶射する。鋳型加熱温
度は溶射の燃焼ガスに水素を使用しているので結露の発
生を防ぐために50℃以上に、また鋳型の熱変形や鋳型
の損傷(例えばパッキング)を防ぐために100℃以下
にする必要がある。皮膜の厚みは耐摩耗効果を得るため
には0.1mm以上に、また溶射中の剥離や鋳造時の熱応
力による剥離をさせないために0.6mm以下にすること
が必要である。
After such blasting treatment, a Ni-based self-fluxing alloy having a coating thickness of 0.1 to 0.6 mm is heated to a mold temperature of 50 to 100 ° C. and then sprayed. Since hydrogen is used as the combustion gas for thermal spraying, the mold heating temperature must be 50 ° C or higher to prevent condensation, and 100 ° C or lower to prevent thermal deformation of the mold and damage to the mold (eg packing). is there. The thickness of the coating is required to be 0.1 mm or more in order to obtain the wear resistance effect, and to be 0.6 mm or less in order to prevent peeling during thermal spraying or peeling due to thermal stress during casting.

【0017】また、溶射材料としては熱処理なしに緻密
な皮膜を得るために融点の低いNi基自溶性合金を用い
る。Niは他の成分を固溶し、炭化物などの化合物との
ヌレ性に優れ、強靭な母相になる。
As the thermal spray material, a Ni-based self-fluxing alloy having a low melting point is used in order to obtain a dense coating without heat treatment. Ni is a solid solution with other components, has excellent wettability with compounds such as carbides, and becomes a tough matrix.

【0018】第一発明ではNiが60%未満では脆性が
急激に落ち、また、80%超では硬度が落ちるためNi
の組成は60〜80%にすることが必要である。このN
i母相にCr,B,Si,Fe,Cを添加する。
In the first invention, if the Ni content is less than 60%, the brittleness drops sharply, and if it exceeds 80%, the hardness decreases, so Ni is Ni.
The composition must be 60-80%. This N
Cr, B, Si, Fe, C are added to the i mother phase.

【0019】以下、第一発明のNi基自溶性合金の成分
の限定理由について説明する。CはCr(Cr3 2
Cr7 3 ),B(B4 C),Si(SiC),Fe
(Fe3 Cなど)の炭化物を形成し、硬度を向上させ
る。0.5%未満では硬度が低く、1%超では脆性が低
下するためCの量は0.5〜1%にする。
The reasons for limiting the components of the Ni-based self-fluxing alloy of the first invention will be described below. C is Cr (Cr 3 C 2 ,
Cr 7 C 3 ), B (B 4 C), Si (SiC), Fe
It forms carbides (such as Fe 3 C) and improves hardness. If it is less than 0.5%, the hardness is low, and if it exceeds 1%, the brittleness decreases, so the amount of C is made 0.5 to 1%.

【0020】Bは酸化物(B2 3 )を形成し、皮膜表
面をきれいにし、母相の融点を下げる。また硬質粒子で
ある炭化物を形成し耐摩耗性を向上させる。1.5%未
満では酸化物の生成が多く硬度が不十分である。また、
5%超では脆性が低下するためBの量は1.5〜5%に
する。
B forms an oxide (B 2 O 3 ), cleans the film surface and lowers the melting point of the parent phase. It also forms carbides that are hard particles and improves wear resistance. If it is less than 1.5%, a large amount of oxide is generated and the hardness is insufficient. Also,
If it exceeds 5%, the brittleness decreases, so the amount of B is made 1.5 to 5%.

【0021】SiはBと同様に酸化物(SiO2 )を形
成し、皮膜表面をきれいにし、母相の融点を下げ、炭化
物は耐摩耗性を向上させる。2%未満では溶融時の流動
性が落ち、フュージング後に皮膜内に気孔が残留する
(但し、本発明の場合はフュージング処理を行わない、
融点を下げる効果にのみ必要である)。また、6%超で
は脆性が低下するためSiの量は2〜6%にする。
Similar to B, Si forms an oxide (SiO 2 ), cleans the surface of the film, lowers the melting point of the parent phase, and carbide improves wear resistance. If it is less than 2%, the fluidity at the time of melting is deteriorated, and pores remain in the film after fusing (however, in the case of the present invention, the fusing treatment is not performed,
Required only for the effect of lowering the melting point). If it exceeds 6%, the brittleness decreases, so the amount of Si is set to 2 to 6%.

【0022】Feは固溶体炭化物を形成し、耐摩耗性を
向上させる。3%未満では硬度が低く、4%超では脆性
を低下するためFeの量は3〜4%にする。
Fe forms a solid solution carbide and improves wear resistance. If it is less than 3%, the hardness is low, and if it exceeds 4%, the brittleness is lowered, so the amount of Fe is set to 3 to 4%.

【0023】CrはNiに固溶し、且つ表面に酸化物
(Cr2 3 )を形成し耐蝕性を向上させる。また、高
温での摩耗性に優れた炭化物を形成する。Crの量は2
5%超では靭性が落ち、また、15%未満では硬度が低
下するために15〜25%にする。
Cr dissolves in Ni and forms an oxide (Cr 2 O 3 ) on the surface to improve the corrosion resistance. Further, it forms a carbide having excellent wear properties at high temperatures. The amount of Cr is 2
If it exceeds 5%, the toughness is lowered, and if it is less than 15%, the hardness is lowered, so the content is made 15 to 25%.

【0024】上記以外の粉末製造時に混入する酸素など
の不純物は、脆性の低下を防ぐため0.02%未満にす
ることが好ましい。
Impurities other than those mentioned above, such as oxygen, which are mixed in during powder production are preferably less than 0.02% in order to prevent deterioration of brittleness.

【0025】次に、請求項2に係わる発明(以下、第二
発明という)のNi基自溶性合金の成分の限定理由につ
いて説明する。CはCr(Cr3 2 ,Cr7 3 ),
B(B4 C),Si(SiC),Fe(Fe3 Cなど)
の炭化物を形成し、硬度を向上させる。0.09%未満
では硬度が低く、0.6%超では脆性が低下するためC
の量は0.09〜0.6%にする。
Next, the reasons for limiting the components of the Ni-based self-fluxing alloy of the invention according to claim 2 (hereinafter referred to as the second invention) will be described. C is Cr (Cr 3 C 2 , Cr 7 C 3 ),
B (B 4 C), Si (SiC), Fe (Fe 3 C, etc.)
Form carbides and improve hardness. If it is less than 0.09%, the hardness is low, and if it exceeds 0.6%, the brittleness decreases, so C
Is 0.09-0.6%.

【0026】Bは酸化物(B2 3 )を形成し、皮膜表
面をきれいにし、母相の融点を下げる。また硬質粒子で
ある炭化物を形成し耐摩耗性を向上させる。1.5%未
満では酸化物の生成が多く硬度が不十分である。また、
3.0%超では脆性が低下するためBの量は1.5〜
3.0%にする。
B forms an oxide (B 2 O 3 ), cleans the surface of the film and lowers the melting point of the parent phase. It also forms carbides that are hard particles and improves wear resistance. If it is less than 1.5%, a large amount of oxide is generated and the hardness is insufficient. Also,
If it exceeds 3.0%, the brittleness decreases, so the amount of B is 1.5 to
3.0%.

【0027】SiはBと同様に酸化物(SiO2 )を形
成し、皮膜表面をきれいにし、母相の融点を下げ、炭化
物は耐摩耗性を向上させる。2.0%未満では溶融時の
流動性が落ち、フュージング後に皮膜内に気孔が残留す
る(但し、本発明の場合はフュージング処理を行わな
い、融点を下げる効果にのみ必要である)。また、4.
0%超では脆性が低下するためSiの量は2.0〜4.
0%にする。
Similar to B, Si forms an oxide (SiO 2 ), cleans the surface of the film, lowers the melting point of the parent phase, and carbide improves wear resistance. If it is less than 2.0%, the fluidity at the time of melting is deteriorated, and pores remain in the film after fusing (however, in the case of the present invention, no fusing treatment is performed and it is necessary only for the effect of lowering the melting point). Also, 4.
If it exceeds 0%, the brittleness decreases, so the amount of Si is 2.0 to 4.
Set to 0%.

【0028】Feは固溶体炭化物を形成し、耐摩耗性を
向上させる。1.5%未満では硬度が低く、3.5%超
では脆性を低下するためFeの量は1.5〜3.5%に
する。
Fe forms solid solution carbides and improves wear resistance. If it is less than 1.5%, the hardness is low, and if it exceeds 3.5%, the brittleness decreases, so the amount of Fe is made 1.5 to 3.5%.

【0029】CrはNiに固溶し、且つ表面に酸化物
(Cr2 3 )を形成し耐蝕性を向上させる。また、高
温での摩耗性に優れた炭化物を形成する。Crの量は1
0.0%超では炭化物の析出が多くなり靭性が落ち、ま
た、5%未満では硬度が低下するために5〜10%にす
る。
Cr dissolves in Ni and forms an oxide (Cr 2 O 3 ) on the surface to improve the corrosion resistance. Further, it forms a carbide having excellent wear properties at high temperatures. The amount of Cr is 1
If it exceeds 0.0%, the precipitation of carbides increases and the toughness decreases, and if it is less than 5%, the hardness decreases, so it is made 5 to 10%.

【0030】第二発明の成分範囲の溶射皮膜は第一発明
の成分の溶射皮膜に比べて、融点が高いため、皮膜の結
晶性が高く、モールド表面に使用した場合にも結晶性が
変わることが無く、体積収縮量が低くなり発生する応力
が低下し、割れにくい。言い替えると第一発明の成分の
溶射皮膜は融点が低いので溶射直後の皮膜にアモルファ
スライクであり、これをモールドに使用して高温(30
0℃以上)にさらすと結晶化する。この時体積収縮が生
じ、皮膜に割れが発生する。また、融点が高いため第二
発明の材料では鋳鉄と溶射皮膜の耐焼き付き性が高くな
る。
The thermal sprayed coating of the component range of the second invention has a higher melting point than the thermal sprayed coating of the component of the first invention, so that the crystallinity of the coating is high and the crystallinity changes even when used on the mold surface. , The volume shrinkage is low, the stress generated is low, and it is difficult to crack. In other words, the thermal sprayed coating of the component of the first invention has a low melting point, so the coating immediately after thermal spraying is amorphous-like, and it is used at a high temperature (30
Crystallize when exposed to 0 ° C or higher). At this time, volume contraction occurs and cracks occur in the film. Further, since the material of the second invention has a high melting point, the seizure resistance of the cast iron and the thermal spray coating becomes high.

【0031】上記以外の粉末製造時に混入する酸素など
の不純物は、脆性の低下を防ぐため0.02%未満にす
ることが好ましい。
Impurities other than those mentioned above, such as oxygen, which are mixed in during powder production are preferably less than 0.02% in order to prevent deterioration of brittleness.

【0032】第一発明及び第二発明のNi基自溶性合金
の粒径については、60μm超では溶射中の粒子温度が
低く、緻密な皮膜が形成しにくくなり、また、10μm
以下では溶射材料の供給性が低下し、連続溶射が難しく
なるため、粒径は10〜60μmにすることが好まし
い。
Regarding the particle size of the Ni-based self-fluxing alloys of the first and second inventions, if the particle size exceeds 60 μm, the particle temperature during thermal spraying is low, and it becomes difficult to form a dense coating.
In the following, since the supply property of the thermal spraying material is lowered and continuous thermal spraying becomes difficult, the particle size is preferably 10 to 60 μm.

【0033】第三発明における溶射材料の粒径について
は、粒径が10μm未満では粉末の供給時に凝集などに
よって安定した粉末の供給が困難となる。また、60μ
m超では粉末の温度が上がらず、十分な変形ができない
ため皮膜内部に気孔が残留し、皮膜強度が劣化する。従
って、粒径は10μm〜60μmにする必要がある。更
に、10〜30μmと粒径を小さくしたほうが気孔率が
更に減少し、皮膜の強度も向上する。但し、この場合、
粉末製造コストが高くなる。
Regarding the particle size of the thermal spray material in the third invention, if the particle size is less than 10 μm, it becomes difficult to stably supply the powder due to agglomeration or the like during the powder supply. Also, 60μ
If it exceeds m, the temperature of the powder does not rise and the powder cannot be sufficiently deformed, so that pores remain inside the film and the film strength deteriorates. Therefore, the particle size must be 10 μm to 60 μm. Further, when the particle size is reduced to 10 to 30 μm, the porosity is further reduced and the strength of the film is improved. However, in this case,
The powder manufacturing cost is high.

【0034】溶射中のガス条件としては酸素ガスを圧力
9〜13bar 、流量200〜240LPM に、水素ガスを
圧力8〜11bar 、流量600〜750LPM 、空気ガス
を圧力5〜7bar 、流量300〜500LPM にする。こ
れらの範囲は酸素ガスと水素ガスの流量比は燃焼効率が
最適な酸素:水素=1:2.0〜2.6(標準状態に換
算した場合)になるようにする。この比が2.0未満で
は反応しない酸素量が多くなり溶射皮膜に酸化物が生成
し皮膜の劣化が生じ、また、2.6超では反応しない水
素量が多くなりコストが高くなる。
The gas conditions during spraying are as follows: oxygen gas at a pressure of 9 to 13 bar and a flow rate of 200 to 240 LPM, hydrogen gas at a pressure of 8 to 11 bar, a flow rate of 600 to 750 LPM, and air gas at a pressure of 5 to 7 bar and a flow rate of 300 to 500 LPM. To do. These ranges are set so that the flow rate ratio of oxygen gas and hydrogen gas is oxygen: hydrogen = 1: 2.0 to 2.6 (when converted to the standard state) where the combustion efficiency is optimum. If this ratio is less than 2.0, the amount of unreacted oxygen increases, and oxides are generated in the sprayed coating, resulting in deterioration of the coating. If it exceeds 2.6, the amount of unreacted hydrogen increases and the cost increases.

【0035】酸素と水素ガスの総流量はフレームの速度
が1300m/s 〜2300m/s にするために上記のよう
になる。水素を燃焼ガスとして用いると酸素/水素の反
応によって生成するエネルギーが、酸素/プロパンや酸
素/アセチレンの反応生成エネルギーより高いためにフ
レームの温度が高くなる(酸素/水素では3000℃、
酸素/プロパンでは2200℃)。従って、ガスの体積
膨張も大きくなるためにフレームの速度も2割程度高く
なる(この速度は燃焼ガス種だけでなく、溶射ガンの構
造、燃焼ガス流量、ガンの冷却用空気或いは窒素ガス流
量などにも大きく依存する。従って、燃焼ガス種によっ
て一義的に速度は決まらない)。フレームの速度が上が
ると溶射粒子の速度も上がり、基板との衝突時に粒子の
基板への噛み込み、言い替えるとアンカリング効果が高
くなるために密着性が上昇する。また、粒子の速度が高
いと衝突時に運動エネルギーから変換される熱エネルギ
ーが増加し、基板側の最表面を溶融させるために密着性
が向上する。この密着性を確保するのに必要なフレーム
速度は1300m/s 以上である。一方、現状の装置の構
造上からフレームの最高速度は2300m/s と制限され
る。また、空気の量は溶射ガンを冷却するために酸素と
水素の総流量の20%以上に、また、フレーム温度を下
げないために同様に30%以下にすることが好ましい。
The total flow rate of oxygen and hydrogen gas is as described above so that the velocity of the flame is 1300 m / s to 2300 m / s. When hydrogen is used as a combustion gas, the energy generated by the reaction of oxygen / hydrogen is higher than the reaction production energy of oxygen / propane or oxygen / acetylene, so the flame temperature becomes higher (3000 ° C for oxygen / hydrogen,
2200 ° C for oxygen / propane). Therefore, since the volume expansion of gas also increases, the speed of the flame also increases by about 20% (this speed is not only the type of combustion gas, but also the structure of the spray gun, combustion gas flow rate, gun cooling air or nitrogen gas flow rate, etc. Therefore, the velocity is not uniquely determined by the combustion gas species). When the speed of the frame increases, the speed of the spray particles also increases, and the particles are caught in the substrate when colliding with the substrate, in other words, the anchoring effect is increased, so that the adhesion is increased. Further, if the velocity of the particles is high, the thermal energy converted from the kinetic energy at the time of collision increases, and the outermost surface on the substrate side is melted, so that the adhesion is improved. The frame speed required to secure this adhesion is 1300 m / s or more. On the other hand, the maximum speed of the frame is limited to 2300 m / s due to the structure of the current device. Further, the amount of air is preferably 20% or more of the total flow rate of oxygen and hydrogen for cooling the spray gun, and likewise 30% or less in order not to lower the flame temperature.

【0036】この時の溶射距離(溶射ガンと基板の距
離)は180〜300mmにする。この理由は180mm未
満では粉末が加速、加熱されず、また、300mm超では
一旦加速、加熱された粉末の温度、速度が低下するから
である。
At this time, the spraying distance (distance between spraying gun and substrate) is set to 180 to 300 mm. The reason for this is that if the thickness is less than 180 mm, the powder is not accelerated and heated, and if it exceeds 300 mm, the temperature and speed of the powder once accelerated and heated are lowered.

【0037】溶射後の表面粗度は必要に応じ従来の短辺
と同様にRmax =1.6S〜6.3Sに仕上げ加工す
る。Raが6.3S超では鋳片に傷がつきやすく、1.
6S未満ではコストが高くなる。
If necessary, the surface roughness after thermal spraying is finished to Rmax = 1.6S to 6.3S like the conventional short side. If Ra exceeds 6.3S, the cast piece is easily scratched.
If it is less than 6S, the cost is high.

【0038】[0038]

【実施例】【Example】

[実施例1]幅2600mm×高さ900mmの長辺鋳型
(材質=Zr添加銅合金)の下端部(高さ300mm)へ
の溶射条件を以下に記す。
[Example 1] The conditions for thermal spraying to the lower end portion (height 300 mm) of a long side mold (material = Zr-added copper alloy) having a width of 2600 mm and a height of 900 mm are described below.

【0039】・Ni電気メッキ:従来の手法と同様に鋳
型表面を10%HClで酸洗した後、速やかに下端部
(下端から高さ300mmまで)をメッキ浴中に浸し、鋳
型に通電し平均厚み0.8mmのNiメッキを形成する。 ・ブラスト処理:アルミナグリッド(#30)を圧力7
0MPa で先のNiメッキ表面に吹き付ける。ブラスト処
理後のメッキ表面の粗度はRa=2.36〜3.84で
あった。 ・予備加熱:鋳型の水箱に100℃のスチームを入れ、
鋳型を100℃に加熱する。 ・溶射: ガス 酸素 圧力=12bar 、流量=220LPM 水素 圧力=10bar 、流量=680LPM 空気 圧力= 6bar 、流量=350LPM フレーム速度 2100m/s 溶射距離 220mm 溶射材料 溶射材料の成分(表1)
Ni electroplating: The surface of the mold is pickled with 10% HCl as in the conventional method, and then the lower end (from the lower end to a height of 300 mm) is immediately immersed in the plating bath, and the mold is energized to average. Ni plating with a thickness of 0.8 mm is formed.・ Blasting: Alumina grid (# 30) pressure 7
Spray it on the Ni-plated surface at 0 MPa. The roughness of the plated surface after the blast treatment was Ra = 2.36 to 3.84.・ Preheating: Put 100 ° C steam in the mold water box,
Heat the mold to 100 ° C.・ Spraying: Gas oxygen pressure = 12 bar, flow rate = 220 LPM hydrogen pressure = 10 bar, flow rate = 680 LPM air pressure = 6 bar, flow rate = 350 LPM Flame velocity 2100 m / s Spraying distance 220 mm Spraying material Components of spraying material (Table 1)

【表1】 皮膜厚み 0.6mm ・仕上げ加工:研磨にてRmax =1.6S〜6.3Sで
皮膜厚み0.5mmに仕上げる。 ・溶射後の熱変形量:幅2600mmでの変形量は100
μm以下であった。尚、変形量は鋳型の両端を結んだ直
線に対する中心部のたわみ量の変化で定義した。
[Table 1] Coating thickness 0.6 mm-Finishing: Finishing to a coating thickness of 0.5 mm with Rmax = 1.6S to 6.3S by polishing.・ The amount of thermal deformation after spraying: The amount of deformation at a width of 2600 mm is 100
It was less than μm. The amount of deformation was defined as the change in the amount of deflection of the central part with respect to the straight line connecting both ends of the mold.

【0040】以上の条件で作製した溶射鋳型を実際の鋳
型として用い、150トンの鋳造を400チャージ行
い、従来の鋳型表面に厚さ30μmのCrメッキを施し
ている鋳型と摩耗量を比較した。その結果、下端部の最
大摩耗深さは従来品では0.68mmで本発明品では0.
17mmであった。
Using the thermal spraying mold produced under the above conditions as an actual mold, casting of 150 tons was performed for 400 charges, and the amount of wear was compared with the conventional mold in which the surface of the mold is Cr-plated with a thickness of 30 μm. As a result, the maximum wear depth at the lower end is 0.68 mm in the conventional product, and is 0.2 in the product of the present invention.
It was 17 mm.

【0041】[実施例2]表2に成分を示す溶射材料を
表3の溶射条件で形成し、皮膜の硬度、強度、伸び量を
測定した。
Example 2 A thermal spray material having the components shown in Table 2 was formed under the thermal spray conditions shown in Table 3, and the hardness, strength and elongation of the coating were measured.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】図1〜図3は上記皮膜の硬度、強度、伸び
量を炭素量で整理した結果である。このことから硬度は
[C]量が0.5%以下で急激に低下し、伸びは[C]
量が0.61%以上で急激に低下、強度は[C]に線形
的に変化する傾向が示された。従って、先ず溶射材料を
鋳型に使用するには皮膜に伸びが重要であることから
[C]量は0.6%以下にする必要があることになる。
この時、特に硬度が重要なときは0.5%以上にする必
要がある。
FIGS. 1 to 3 show the results of arranging the hardness, strength and elongation of the above-mentioned film by the amount of carbon. From this, the hardness decreases sharply when the [C] amount is 0.5% or less, and the elongation is [C].
When the amount was 0.61% or more, it rapidly decreased, and the strength tended to change linearly to [C]. Therefore, first, the amount of [C] needs to be 0.6% or less because the elongation of the coating is important for using the thermal spray material in the mold.
At this time, especially when hardness is important, it is necessary to set it to 0.5% or more.

【0045】[実施例3]幅2600mm×高さ900mm
の長辺鋳型(材質=Zr添加銅合金)の下端部(高さ3
00mm)への溶射条件を以下に記す。
[Example 3] Width 2600 mm x height 900 mm
Long side mold (material = Zr-added copper alloy) lower end (height 3
The conditions for thermal spraying to (00 mm) are described below.

【0046】・Ni電気メッキ:従来の手法と同様に鋳
型表面を10%HClで酸洗した後、速やかに下端部
(下端から高さ300mmまで)をメッキ浴中に浸し、鋳
型に通電し平均厚み0.8mmのNiメッキを形成する。 ・ブラスト処理:アルミナグリッド(#30)を圧力7
0MPa で先のNiメッキ表面に吹き付ける。ブラスト処
理後のメッキ表面の粗度はRa=2.36〜3.84で
あった。 ・予備加熱:鋳型の水箱に100℃のスチームを入れ、
鋳型を100℃に加熱する。 ・溶射: ガス 酸素 圧力=12bar 、流量=220LPM 水素 圧力=10bar 、流量=680LPM 空気 圧力= 6bar 、流量=350LPM フレーム速度 2100m/s 溶射距離 220mm 溶射材料 溶射材料の成分(表4)
Ni electroplating: As in the conventional method, the surface of the mold is pickled with 10% HCl, then the lower end (from the lower end to a height of 300 mm) is immediately immersed in the plating bath, and the mold is energized to average. Ni plating with a thickness of 0.8 mm is formed.・ Blasting: Alumina grid (# 30) pressure 7
Spray it on the Ni-plated surface at 0 MPa. The roughness of the plated surface after the blast treatment was Ra = 2.36 to 3.84.・ Preheating: Put 100 ° C steam in the mold water box,
Heat the mold to 100 ° C.・ Spraying: Gas oxygen pressure = 12 bar, flow rate = 220 LPM hydrogen pressure = 10 bar, flow rate = 680 LPM air pressure = 6 bar, flow rate = 350 LPM flame velocity 2100 m / s spraying distance 220 mm spraying material composition of the spraying material (Table 4)

【表4】 皮膜厚み 0.6mm ・仕上げ加工:研磨にてRmax =1.6S〜6.3Sで
皮膜厚み0.5mmに仕上げる。 ・溶射後の熱変形量:幅2600mmでの変形量は100
μm以下であった。尚、変形量は鋳型の両端を結んだ直
線に対する中心部のたわみ量の変化で定義した。
[Table 4] Coating thickness 0.6 mm-Finishing: Finishing to a coating thickness of 0.5 mm with Rmax = 1.6S to 6.3S by polishing.・ The amount of thermal deformation after spraying: The amount of deformation at a width of 2600 mm is 100
It was less than μm. The amount of deformation was defined as the change in the amount of deflection of the central part with respect to the straight line connecting both ends of the mold.

【0047】以上の条件で作製した溶射鋳型を実際の鋳
型として用い、150トンの鋳造を400チャージ行
い、従来の鋳型表面に厚さ30μmのCrメッキを施し
ている鋳型と摩耗量を比較した。その結果、下端部での
皮膜でクラックは発生せず、最大摩耗深さは従来品では
0.68mmで本発明品では0.08mmであった。
Using the thermal spray mold produced under the above conditions as an actual mold, casting of 150 tons was performed for 400 charges, and the amount of wear was compared with a conventional mold in which the surface of the mold is Cr-plated with a thickness of 30 μm. As a result, cracks did not occur in the film at the lower end, and the maximum wear depth was 0.68 mm in the conventional product and 0.08 mm in the product of the present invention.

【0048】[実施例4]表5に成分を示す溶射材料を
表6の溶射条件、特にNiメッキ表面の粗度と溶射材料
の粒径を変え皮膜を形成した場合の素材と皮膜の密着強
度を測定した。
[Example 4] Adhesion strength between material and coating when the coating was formed by changing the thermal spraying material having the components shown in Table 5 to the thermal spraying conditions shown in Table 6, especially the roughness of the Ni plating surface and the particle size of the thermal spraying material. Was measured.

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【表6】 [Table 6]

【0051】図4、図5は表面粗度および粒径と密着強
度の関係をしめした結果である。このことから密着強度
を高めるための表面粗度および粒径は、粗度がRa=5
〜8μm(平均粗度Ra=6μm)、粒径は10〜30
ないしは10〜60μmにする必要があることがわか
る。
FIGS. 4 and 5 show the results of the relationship between the surface roughness and the grain size and the adhesion strength. From this, the surface roughness and particle size for increasing the adhesion strength are Ra = 5.
-8 μm (average roughness Ra = 6 μm), particle size 10-30
It is understood that it is necessary to set the thickness to 10 to 60 μm.

【0052】[0052]

【発明の効果】本発明により熱変形はなく耐摩耗性の優
れた鋳型の製造が可能となり、従来の鋳型よりも寿命が
延びたことから鋳型の維持に要するコストの大幅な削減
が可能となった。
According to the present invention, it is possible to manufacture a mold having no heat deformation and excellent wear resistance, and the life is extended as compared with the conventional mold, so that the cost required for maintaining the mold can be greatly reduced. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】C量と皮膜硬度の関係を示す図。FIG. 1 is a diagram showing a relationship between a C content and a film hardness.

【図2】C量と皮膜強度の関係を示す図。FIG. 2 is a diagram showing the relationship between the amount of C and the film strength.

【図3】C量と皮膜伸び量の関係を示す図。FIG. 3 is a diagram showing the relationship between the C content and the film elongation.

【図4】表面粗度と密着強度の関係を示す図。FIG. 4 is a diagram showing a relationship between surface roughness and adhesion strength.

【図5】粒径と密着強度の関係を示す図。FIG. 5 is a graph showing the relationship between particle size and adhesion strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北口 三郎 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 小原 昌弘 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 百合岡 信孝 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 黒木 雅嗣 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 嶋 哲男 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 笠井 義則 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 丹野 仁 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 坂本 徳八郎 東京都千代田区二番町11番19号 第一メテ コ株式会社内 (72)発明者 佐々木 光正 東京都千代田区二番町11番19号 第一メテ コ株式会社内 (72)発明者 仲川 政宏 東京都千代田区二番町11番19号 第一メテ コ株式会社内 (72)発明者 石田 真 東京都千代田区二番町11番19号 第一メテ コ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Saburo Kitaguchi 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Masahiro Ohara 20-1 Shintomi, Futtsu City, Chiba Prefecture Iron & Steel Co., Ltd.Technology Development Headquarters (72) Inventor Nobutaka Yurioka 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Co., Ltd. Technical Development Headquarters (72) Inventor Masatsugu Kuroki 1 Kimitsu, Kimitsu, Chiba Prefecture Inside the Kimitsu Steel Co., Ltd. (72) Inventor Tetsuo Shima 1 Kimitsu, Kimitsu City, Chiba Shin Nippon Steel Co., Ltd. Inside the Kimitsu Steel Co., Ltd. (72) Yoshinori Kasai 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Stock Company Technology Development Headquarters (72) Inventor Hitoshi Tanno 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Headquarters (72) Inventor Sakamoto Tokuhachiro Tokyo 11-19 Nibancho, Chiyoda-ku, Daiichi Metco Co., Ltd. (72) Inventor Mitsumasa Sasaki 11-11, Nibancho, Chiyoda-ku, Daiichi Metco Co., Ltd. (72) Inventor, Masahiro Nakagawa Tokyo 11-19 Nibancho, Chiyoda-ku, Daiichi Metco Co., Ltd. (72) Inventor, Makoto Ishida 11-11, Nibancho, Chiyoda-ku, Tokyo Daiichi Metco Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 銅または銅合金からなる鋳型表面の一部
或いは全部に厚み0.1〜2mmのNi電気メッキを形成
した後、前記Ni電気メッキ表面に粗度がRa=2〜4
のブラスト処理を行い、次いで鋳型を50〜100℃ま
で加熱した後、厚み0.1〜0.6mmでNi=60〜8
0%、Cr=15〜25%、B=1.5〜5%、Si=
2〜6%、C=0.5〜1%、Fe=3〜4%および残
部不純物からなるNi基自溶性合金を溶射ガンと前記N
i電気メッキ表面との距離が180〜300mmにてフレ
ーム速度が1300〜2300m/s の酸素/水素フレー
ムで溶射することを特徴とする連続鋳造用鋳型への溶射
方法。
1. A Ni electroplating layer having a thickness of 0.1 to 2 mm is formed on a part or all of the surface of a mold made of copper or copper alloy, and the Ni electroplating surface has a roughness of Ra = 2 to 4
Blast treatment is performed, and then the mold is heated to 50 to 100 ° C., and Ni = 60 to 8 with a thickness of 0.1 to 0.6 mm.
0%, Cr = 15 to 25%, B = 1.5 to 5%, Si =
2 to 6%, C = 0.5 to 1%, Fe = 3 to 4%, and a Ni-based self-fluxing alloy consisting of the balance impurities and the N
i A thermal spraying method for a continuous casting mold, characterized in that thermal spraying is performed with an oxygen / hydrogen flame having a frame speed of 1300 to 2300 m / s and a distance from the electroplating surface of 180 to 300 mm.
【請求項2】 銅または銅合金からなる鋳型表面の一部
或いは全部に厚み0.1〜2mmのNi電気メッキを形成
した後、前記Ni電気メッキ表面に粗度がRa=2〜4
のブラスト処理を行い、次いで鋳型を50〜100℃ま
で加熱した後、厚み0.1〜0.6mmでCr=5.0〜
10.0%、B=1.5〜3.0%、Si=2.0〜
4.0%、C=0.09〜0.60%、Fe=1.5〜
3.5%と残部Niおよび不可避不純物からなるNi基
自溶性合金を溶射ガンと前記Ni電気メッキ表面との距
離が180〜300mmにてフレーム速度が1300〜2
300m/s の酸素/水素フレームで溶射することを特徴
とする連続鋳造用鋳型への溶射方法。
2. After Ni electroplating having a thickness of 0.1 to 2 mm is formed on a part or all of the surface of a mold made of copper or copper alloy, the Ni electroplated surface has a roughness Ra of 2 to 4.
Blast treatment, and then heating the mold to 50 to 100 ° C., and then with a thickness of 0.1 to 0.6 mm and Cr = 5.0 to
10.0%, B = 1.5-3.0%, Si = 2.0-
4.0%, C = 0.09-0.60%, Fe = 1.5-
A Ni-based self-fluxing alloy consisting of 3.5% and the balance Ni and inevitable impurities was sprayed at a distance of 180 to 300 mm between the spray gun and the Ni electroplating surface, and a frame speed of 1300 to 2
A method for spraying a continuous casting mold, which comprises spraying with an oxygen / hydrogen flame of 300 m / s.
【請求項3】 銅または銅合金からなる鋳型表面の一部
或いは全部に厚み0.1〜2mmのNi電気メッキを形成
した後、前記Ni電気メッキ表面に粗度がRa=4〜8
のブラスト処理を行い、次いで鋳型を50〜100℃ま
で加熱した後、厚み0.1〜0.6mmでCr=5.0〜
10.0%、B=1.5〜3.0%、Si=2.0〜
4.0%、C=0.09〜0.60%、Fe=1.5〜
3.5%と残部Niおよび不可避不純物からなる粒径1
0〜60μmのNi基自溶性合金を溶射ガンと前記Ni
電気メッキ表面との距離が180〜300mmにてフレー
ム速度が1300〜2300m/s の酸素/水素フレーム
で溶射することを特徴とする連続鋳造用鋳型への溶射方
法。
3. A Ni electroplating layer having a thickness of 0.1 to 2 mm is formed on a part or the whole of the surface of a mold made of copper or a copper alloy, and the Ni electroplating surface has a roughness Ra = 4 to 8.
Blast treatment, and then heating the mold to 50 to 100 ° C., and then with a thickness of 0.1 to 0.6 mm and Cr = 5.0 to
10.0%, B = 1.5-3.0%, Si = 2.0-
4.0%, C = 0.09-0.60%, Fe = 1.5-
Particle size 1 consisting of 3.5% and balance Ni and inevitable impurities 1
A Ni-based self-fluxing alloy having a thickness of 0 to 60 μm and a Ni
A thermal spraying method for a continuous casting mold, characterized in that thermal spraying is performed with an oxygen / hydrogen flame having a flame velocity of 1300 to 2300 m / s and a distance from the electroplating surface of 180 to 300 mm.
【請求項4】 溶射した後、溶射皮膜表面をRmax =
1.6S〜6.3Sに仕上げることを特徴とする請求項
1、2または3記載の連続鋳造用鋳型への溶射方法。
4. After thermal spraying, the surface of the thermal spray coating has Rmax =
The method of thermal spraying onto a continuous casting mold according to claim 1, 2 or 3, wherein the finish is made to 1.6S to 6.3S.
JP7154933A 1994-10-06 1995-06-21 Thermal spraying method onto mold for continuous casting Withdrawn JPH08225917A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24284994 1994-10-06
JP6-314543 1994-12-19
JP6-242849 1994-12-19
JP31454394 1994-12-19
JP7154933A JPH08225917A (en) 1994-10-06 1995-06-21 Thermal spraying method onto mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7154933A JPH08225917A (en) 1994-10-06 1995-06-21 Thermal spraying method onto mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH08225917A true JPH08225917A (en) 1996-09-03

Family

ID=27320748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7154933A Withdrawn JPH08225917A (en) 1994-10-06 1995-06-21 Thermal spraying method onto mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH08225917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326063B1 (en) 1998-01-29 2001-12-04 Tocalo Co., Ltd. Method of production of self-fusing alloy spray coating member
JP2006181599A (en) * 2004-12-27 2006-07-13 Mishima Kosan Co Ltd Method for producing mold for continuous casting
JP2008137057A (en) * 2006-12-05 2008-06-19 Mishima Kosan Co Ltd Continuous casting mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326063B1 (en) 1998-01-29 2001-12-04 Tocalo Co., Ltd. Method of production of self-fusing alloy spray coating member
JP2006181599A (en) * 2004-12-27 2006-07-13 Mishima Kosan Co Ltd Method for producing mold for continuous casting
JP2008137057A (en) * 2006-12-05 2008-06-19 Mishima Kosan Co Ltd Continuous casting mold

Similar Documents

Publication Publication Date Title
CN110117788A (en) A kind of preparation method of CoCrFeMnNi high-entropy alloy cladding layer
CN104195362B (en) A kind of high boron wear-resisting erosion alloy preparation method
CN107042370A (en) A kind of high-Cr Ni-base high-temperature alloy welding wire and preparation technology
CN101613852B (en) Composite structure coating and spraying method thereof
CN108048784A (en) A kind of method that plasma thermal sprayed prepares nitride enhancing high-entropy alloy coating
CN103966477B (en) A kind of making method of surface strengthen layer of wear resisting cast ball production mould and there is its mould
CN106191621A (en) Prepared by cement rotary kiln support roller surface high-entropy alloy powder body, preparation and coating thereof
CN103774135A (en) Process for manufacturing novel hearth roll collar with laser clad composite coating
EP1390549B1 (en) Metal-zirconia composite coating
JPH08225917A (en) Thermal spraying method onto mold for continuous casting
KR100529064B1 (en) Manufacturing method of wear resistant process roll in cold rolling plant
JPH07300642A (en) Coating material and metal bath immersion member coated with this material
JP4360971B2 (en) Water-cooled steel pipe structure excellent in high-temperature corrosion resistance, high-temperature wear resistance, dew condensation corrosion resistance and film peeling resistance, and method for producing the same
CN101637806B (en) Manufacturing method of metal ceramic coating crystallizer copper plate
KR100665531B1 (en) The Continuous Casting Mold
CN101116900A (en) Method for preparing strengthened coatings on the continuance casting crystallizer surface
CN110004372B (en) High-temperature-resistant, oxidation-resistant and wear-resistant metallurgical roller and preparation method thereof
JP4751260B2 (en) Continuous casting mold and manufacturing method thereof
JPH0872110A (en) Component for injection molding machine, screw for injection molding machine, and production of the screw
CN110306143A (en) A kind of corrosion-and high-temp-resistant sinking roller and its manufacturing method
JPH09228071A (en) Method for thermal spraying to casting mold for continuous casting and casting mold for continuous casting
JPH0881750A (en) Thermal spraying method to casting mold for continuous casting
JPH09285844A (en) Mold for continuous casting and thermal spray method onto the same
JP2931384B2 (en) Continuous casting roll with excellent heat crack resistance
JP3460160B2 (en) Manufacturing method of mold for continuous casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903