JP2006255733A - Mold copper plate for continuous casting - Google Patents

Mold copper plate for continuous casting Download PDF

Info

Publication number
JP2006255733A
JP2006255733A JP2005074208A JP2005074208A JP2006255733A JP 2006255733 A JP2006255733 A JP 2006255733A JP 2005074208 A JP2005074208 A JP 2005074208A JP 2005074208 A JP2005074208 A JP 2005074208A JP 2006255733 A JP2006255733 A JP 2006255733A
Authority
JP
Japan
Prior art keywords
copper plate
mold
mold copper
tin
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005074208A
Other languages
Japanese (ja)
Inventor
Seiji Itoyama
誓司 糸山
Hiroyasu Morioka
宏泰 森岡
Nozomi Tamura
望 田村
Original Assignee
Jfe Steel Kk
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Kk, Jfeスチール株式会社 filed Critical Jfe Steel Kk
Priority to JP2005074208A priority Critical patent/JP2006255733A/en
Publication of JP2006255733A publication Critical patent/JP2006255733A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold copper plate for continuous casting, having a surface coated layer excellent in wear resistance even under condition of quick casting speed. <P>SOLUTION: In this mold copper plate 1 for continuous casting, the coated layer 5 composed of mainly nitride of Ti is formed on the copper plate surface at the side in contact with solidified shell and the ratio (XTi/XTiN) of X-ray diffraction strength of Ti and X-ray diffraction strength of TiN in the coated layer, is 0.05-0.8. Wherein, XTiN indicates the maximum value (CPS) in the X-ray peak strength group of the TiN and XTi indicates the maximum value (CPS) in the X-ray peak strength group of the Ti. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶融金属、特に溶鋼の連続鋳造に使用される鋳型の構成部材として好適な鋳型銅板に関するものであり、詳しくは、その表面に被覆層が形成された耐摩耗性に優れる鋳型銅板に関するものである。   The present invention relates to a mold copper plate suitable as a constituent member of a mold used for continuous casting of molten metal, particularly molten steel, and more particularly to a mold copper plate excellent in wear resistance having a coating layer formed on the surface thereof. Is.
近年、溶融金属、とりわけ溶鋼の連続鋳造においては、鋳造速度の高速化による生産性の向上が図られている。また、それとともに、多数の品種及びサイズの鋳片を効率良く製造することも要求されている。   In recent years, in continuous casting of molten metal, especially molten steel, productivity has been improved by increasing the casting speed. At the same time, it is also required to efficiently produce slabs of many varieties and sizes.
一般に、溶融金属の連続鋳造は、鋳造方向の上流側及び下流側が開放された水冷式の鋳型が用いられる。即ち、この鋳型内に上方から溶融金属を注入し、溶融金属から鋳型への抜熱によって溶融金属を凝固させつつ、鋳造された鋳片を下流方向に引き抜く鋳造方式が採用されている。その際に、鋳型は固定されているか、または鋳造方向に沿って反復振動しているが、何れの場合であっても、鋳片と鋳型との間には摩擦が発生する。また、鋳型の鋳片と接する面は絶えず高温に曝されるため、特にその表面において大きな熱負荷を受ける。   In general, molten metal continuous casting uses a water-cooled mold in which the upstream side and the downstream side in the casting direction are opened. That is, a casting method is adopted in which molten metal is poured into the mold from above, and the cast metal is drawn in the downstream direction while solidifying the molten metal by extracting heat from the molten metal to the mold. At this time, the mold is fixed or repeatedly vibrates along the casting direction. In any case, friction occurs between the slab and the mold. In addition, the surface of the mold in contact with the slab is constantly exposed to high temperatures, and therefore receives a large heat load on the surface.
従って、鋳型と鋳片との潤滑、並びに、溶融金属表面の保温及び酸化防止のために、酸化物を主な成分とするモールドパウダーが使用されている。しかし、特に高速の連続鋳造の場合には、鋳片と鋳型との相対速度が増大するので鋳型の受ける摩擦力が著しく増大する。しかも、鋳造速度の高速化によって単位時間当たりの抜熱量が増加するため、鋳型の受ける熱負荷も著しく増大する。その結果、鋳型表面には使用回数の増加につれてクラックが発生し易くなる。   Therefore, a mold powder containing oxide as a main component is used for lubrication of the mold and slab, as well as for keeping the molten metal surface warm and preventing oxidation. However, especially in the case of high-speed continuous casting, since the relative speed between the slab and the mold increases, the frictional force that the mold receives significantly increases. In addition, since the amount of heat removed per unit time increases as the casting speed increases, the heat load received by the mold also increases significantly. As a result, cracks are likely to occur on the mold surface as the number of uses increases.
また、スラブ鋳片の連続鋳造にあっては、効率的な鋳造を行うために、鋳造中に鋳片幅の変更を行うことが多い。この場合も鋳型と鋳片との間には、定常状態における鋳込み時に比べると、著しく大きな摩擦力が発生する。更に、熱間強度が高いステンレス鋼や高炭素鋼のような高強度鋼の連続鋳造を行う場合には、凝固シェルの硬さが普通鋼よりも高いために、鋳型表面の摩耗が顕著となる。   In continuous casting of slab slabs, the slab width is often changed during casting in order to perform efficient casting. In this case, a remarkably large frictional force is generated between the mold and the slab as compared with casting in a steady state. Furthermore, when continuously casting high strength steel such as stainless steel and high carbon steel with high hot strength, the solidified shell is harder than ordinary steel, so the wear on the mold surface becomes significant. .
そこで、従来から鋳型の耐久性を向上させるために、種々の研究・開発が行われてきた。連続鋳造用鋳型は、通常、鋳片の冷却効率を高めるために、鋳片と接する側に銅板を構成部材として配置する。この鋳型銅板には、銅板の寿命延長並びに高温に耐える材料強度を確保するために、析出硬化型の銅合金材料が主に採用されている。更に、一般にこの鋳型銅板の表面には、耐磨耗性を高めるために、湿式めっき法や溶射法などにより、Ni、Cr、Ni−Cr、Fe−Ni、Co−Niなどが被覆されている。   Therefore, various researches and developments have been conducted to improve the durability of the mold. In order to increase the cooling efficiency of the slab, the continuous casting mold usually has a copper plate as a constituent member on the side in contact with the slab. For this mold copper plate, precipitation hardening type copper alloy material is mainly adopted in order to ensure the long life of the copper plate and the material strength that can withstand high temperatures. Further, in general, the surface of the mold copper plate is coated with Ni, Cr, Ni—Cr, Fe—Ni, Co—Ni or the like by a wet plating method or a thermal spraying method in order to enhance wear resistance. .
しかしながら、たとえ、上記のような析出硬化型の銅合金材料の基材表面に、上記した湿式めっき法や溶射法で被覆層を施したとしても、ステンレス鋼や高炭素鋼の連続鋳造に使用した場合の鋳型銅板寿命は、普通鋼の連続鋳造に使用した場合と同程度か、それよりも低下することがあった。従って、ステンレス鋼や高炭素鋼などの高強度鋼の連続鋳造に使用する鋳型銅板の寿命延長を図るためには、今までにない新しい被覆層の開発が不可欠である。   However, even if the above-mentioned wet plating method or thermal spraying method was applied to the surface of the base material of the precipitation hardening type copper alloy material as described above, it was used for continuous casting of stainless steel and high carbon steel. In some cases, the mold copper plate life was about the same as or lower than that used for continuous casting of ordinary steel. Therefore, in order to extend the life of the mold copper plate used for continuous casting of high-strength steel such as stainless steel and high carbon steel, it is indispensable to develop an unprecedented new coating layer.
このような観点から、特許文献1では、鋳型銅板の表面を、Al、4A族元素(Ti、Zrなど)、5A族元素(V、Nb、Taなど)、6A族元素(Cr,Mo,Wなど)及びFeのうちの1種以上の金属の窒化物で被覆することを提案している。このような窒化物は極めて硬度が高いため、鋳型銅板の耐摩耗性の向上が期待できるからである。   From this point of view, in Patent Document 1, the surface of the mold copper plate is made of Al, 4A group elements (Ti, Zr, etc.), 5A group elements (V, Nb, Ta, etc.), and 6A group elements (Cr, Mo, W). Etc.) and a nitride of one or more metals of Fe. This is because such a nitride has an extremely high hardness, so that improvement of the wear resistance of the mold copper plate can be expected.
また、特許文献2では、鋳型銅板の表面を、Ti、Cr、Ni、B、Si及びAlのうちの1種以上の金属からなる最内層と、最内層の上に形成させた、前記金属群のうちの1種以上の金属の窒化物、炭化物または炭・窒化物からなる層と前記金属群のうちの1種以上の金属からなる層とが、交互に1組以上積層された中間層と、中間層の上に形成させた、前記金属群のうちの1種以上の金属の窒化物、炭化物または炭・窒化物からなる最外層とからなる3層の被覆層を形成することを提案している。
特開平9−314288号公報 特開2004−1073号公報
In Patent Document 2, the surface of the mold copper plate is formed on the innermost layer made of one or more metals of Ti, Cr, Ni, B, Si and Al, and the metal group formed on the innermost layer. An intermediate layer in which one or more metal nitride, carbide or charcoal / nitride layers and one or more metal layers of the metal group are alternately stacked. Proposing to form a three-layer coating layer comprising an outermost layer made of nitride, carbide or charcoal / nitride of at least one metal of the metal group formed on the intermediate layer. ing.
JP 9-314288 A JP 2004-1073 A
特許文献1によれば、実験室的な試験ではあるが、耐クラック性や耐摩耗性に好成績を得られたことが報告されている。しかしながら、本発明者等が、連続鋳造機において実際の連続鋳造に供したところ、被覆した窒化物層の剥離及び磨耗が発生し、長期間の連続使用は不可能であることが判明した。   According to Patent Document 1, although it is a laboratory test, it has been reported that good results have been obtained in crack resistance and wear resistance. However, when the present inventors used actual continuous casting in a continuous casting machine, it was found that the coated nitride layer was peeled off and worn, and continuous use for a long time was impossible.
また、本発明者等の提案した特許文献2では、鋳造速度が1.3m/分以下の範囲では効果が発揮されているが、それ以上の鋳造速度においては耐磨耗性に劣る場合があった。   Further, in Patent Document 2 proposed by the present inventors, the effect is exhibited when the casting speed is in the range of 1.3 m / min or less, but at higher casting speeds, the wear resistance may be inferior. It was.
本発明は、上記の実状に鑑みてなされたもので、その目的とするところは、鋳造速度が速い条件においても耐摩耗性に優れる表面被覆層を有する連続鋳造用鋳型銅板を提案することである。   The present invention has been made in view of the above circumstances, and its object is to propose a continuous casting mold copper plate having a surface coating layer that is excellent in wear resistance even under conditions where the casting speed is high. .
本発明者等は、上記課題を達成すべく、高硬度で耐磨耗性に優れる各種金属の窒化物や炭化物が被覆された鋳型銅板を前提として、鋳造速度が速い連続鋳造環境での長期間の使用下であっても耐磨耗性を維持させることについて、鋭意検討を行った。   In order to achieve the above-mentioned problems, the present inventors presuppose a mold copper plate coated with nitrides and carbides of various metals having high hardness and excellent wear resistance. In order to maintain the wear resistance even under the use of, an intensive study was conducted.
その結果、乾式めっき法、中でもイオン化率に優れ、しかも高速成膜が可能なPVD(Physical Vapor Deposition )法、特に好ましくはアーク放電法を用いて、TiN蒸着膜中のTi量とTiN量との比率を最適化することにより、耐磨耗性が向上することを新たに見出した。   As a result, the dry plating method, in particular, the PVD (Physical Vapor Deposition) method, which is excellent in ionization rate and enables high-speed film formation, particularly preferably the arc discharge method, is used to determine the amount of Ti and TiN in the TiN deposited film. It was newly found that the wear resistance is improved by optimizing the ratio.
本発明は、上記知見に基づいてなされたものであり、本発明に係る連続鋳造用鋳型銅板は、凝固シェルと接触する側の銅板表面に、主にTiの窒化物からなる被覆層が形成され、当該被覆層におけるTiのX線回折強度とTiNのX線回折強度との比(XTi/XTiN)が0.05〜0.8であることを特徴とするものである。ここで、XTiNは、TiNのX線ピーク強度群の中での最大値(CPS)を指し、XTiは、TiのX線ピーク強度群の中での最大値(CPS)を指す。   The present invention has been made on the basis of the above knowledge, and the continuous casting mold copper plate according to the present invention has a coating layer mainly made of a nitride of Ti formed on the surface of the copper plate in contact with the solidified shell. The ratio of the X-ray diffraction intensity of Ti and the X-ray diffraction intensity of TiN (XTi / XTiN) in the coating layer is 0.05 to 0.8. Here, XTiN indicates the maximum value (CPS) in the X-ray peak intensity group of TiN, and XTi indicates the maximum value (CPS) in the X-ray peak intensity group of Ti.
本発明によれば、連続鋳造鋳型銅板の凝固シェルと接触する側の表面に、主にTiの窒化物からなる被覆層を形成し、且つこの被覆層におけるTiのX線回折強度とTiNのX線回折強度との比(XTi/XTiN)を0.05〜0.8とするので、高速鋳造条件下の鋳型銅板の耐磨耗性を飛躍的に向上させることができる。その結果、鋳型銅板の寿命が飛躍的に向上し、安定した高速鋳造ができると同時に長期間の連続使用が達成されるなど、工業上有益な効果がもたらされる。   According to the present invention, a coating layer mainly made of a nitride of Ti is formed on the surface of the continuous casting mold copper plate on the side in contact with the solidified shell, and the X-ray diffraction intensity of Ti and X of TiN in the coating layer are formed. Since the ratio (XTi / XTiN) to the line diffraction intensity is 0.05 to 0.8, the wear resistance of the mold copper plate under high-speed casting conditions can be dramatically improved. As a result, the service life of the mold copper plate is dramatically improved, and stable high speed casting can be achieved, and at the same time, continuous use for a long period of time can be achieved.
以下、本発明を具体的に説明する。   The present invention will be specifically described below.
銅板基材の表面に、表面処理層として、0.3mm厚みのNi電着メッキ或いは0.5mm厚みのNi−Cr溶射を施し、この表面処理層の表面に、第1層の金属層として0.5μm〜1.5μm厚みのTi金属被膜を、また、第1層の上に第2層のセラミック層として2μm〜3μm厚みのTiN被膜を、窒素ガス流量及びバイアス電圧の条件を種々に変化させてマルチアークイオンプレーティング法によって形成し、このようにして作製した鋳型銅板の耐磨耗性を実験室的に調査した。   The surface of the copper plate substrate is subjected to 0.3 mm thick Ni electrodeposition plating or 0.5 mm thick Ni-Cr thermal spraying as the surface treatment layer, and the surface of the surface treatment layer is coated with 0 as the first metal layer. .5 μm to 1.5 μm thick Ti metal film, and 2 μm to 3 μm thick TiN film as the second ceramic layer on the first layer, with various conditions of nitrogen gas flow rate and bias voltage changed The mold copper plate formed by the multi-arc ion plating method was examined in the laboratory for wear resistance.
作製した鋳型銅板の断面模式図を図1に示す。図1において、1は鋳型銅板、2は銅板基材、3は表面処理層、4は第1層としてのTi金属被膜、5は第2層のセラミック層としてのTiN被膜である。表面処理層3は、Ni電着メッキ層またはNi−Cr溶射層である。ここで、図1(A)は、厚み全体の模式図、図1(B)は、図1(A)のA部拡大図である。   A schematic cross-sectional view of the produced mold copper plate is shown in FIG. In FIG. 1, 1 is a mold copper plate, 2 is a copper plate substrate, 3 is a surface treatment layer, 4 is a Ti metal coating as a first layer, and 5 is a TiN coating as a second ceramic layer. The surface treatment layer 3 is a Ni electrodeposition plating layer or a Ni—Cr sprayed layer. Here, FIG. 1 (A) is a schematic diagram of the entire thickness, and FIG. 1 (B) is an enlarged view of a portion A in FIG. 1 (A).
また、このような構成の鋳型銅板1との磨耗性を比較するために、従来の鋳型銅板の耐磨耗性も実験室的に把握する必要があることから、表面処理層3の上に50μm厚みのCrメッキを施したもの、及び、Ni−Cr溶射の表面処理層3が形成されたままのものも準備した。比較用鋳型銅板のうちのCrメッキを施したものの断面模式図を図2に示す。図2において、6はCrメッキ層である。   Further, in order to compare the wear resistance with the mold copper plate 1 having such a configuration, it is necessary to also experimentally grasp the wear resistance of the conventional mold copper plate. Those having a thickness of Cr plating and those having the Ni-Cr sprayed surface treatment layer 3 formed thereon were also prepared. FIG. 2 shows a schematic cross-sectional view of a comparative cast copper plate to which Cr plating is applied. In FIG. 2, 6 is a Cr plating layer.
このようにして作製した鋳型銅板1から、耐磨耗試験用サンプルとして35mm角×10mm厚(表面処理面:35mm×35mm面)に切り出し、300℃において、SS400のパイプ(外径25mm、内径20mm)の断面を、耐磨耗試験用サンプルに5kgf/cm2 の面圧で押し付けながら、周速4.2m/分で2時間回転試験を実施し、平均の摩擦係数(=面押し付け力/回転力)及び耐磨耗試験用サンプルの磨耗量(試験前後の重量減少量)を測定した。また、耐磨耗試験用サンプルの一部を切り出し、磨耗していない表面処理面をX線回折した。 From the mold copper plate 1 thus produced, a 35 mm square × 10 mm thickness (surface treated surface: 35 mm × 35 mm surface) was cut out as a sample for wear resistance test, and an SS400 pipe (outer diameter 25 mm, inner diameter 20 mm) at 300 ° C. ) Was pressed against the sample for wear resistance test at a surface pressure of 5 kgf / cm 2, and a rotation test was conducted at a peripheral speed of 4.2 m / min for 2 hours to obtain an average friction coefficient (= surface pressing force / rotation). Force) and the wear amount (weight loss before and after the test) of the sample for wear resistance test. Further, a part of the sample for abrasion resistance test was cut out, and the surface treated surface which was not worn was subjected to X-ray diffraction.
以上の結果を鋭利解析したところ、図3に示すように、鋳型銅板1の耐磨耗性は、TiのX線回折強度とTiNのX線回折強度との比(XTi/XTiN)によって大きく変化することが見出された。ここで、XTiNは、TiNのX線ピーク強度群の中での最大値(CPS)を指し、XTiは、TiのX線ピーク強度群の中での最大値(CPS)を指す。また、図3中の縦軸の比磨耗量W(g/kgf・m)は、単位荷重、単位摺動距離当たりの磨耗量を意味する。図3には、従来の鋳型銅板の被覆層であるCrメッキ層及びNi−Cr溶射層の被覆層を有する鋳型銅板の結果も示している。   As a result of a sharp analysis of the above results, as shown in FIG. 3, the wear resistance of the mold copper plate 1 greatly varies depending on the ratio of X-ray diffraction intensity of Ti and X-ray diffraction intensity of TiN (XTi / XTiN). It was found to be. Here, XTiN indicates the maximum value (CPS) in the X-ray peak intensity group of TiN, and XTi indicates the maximum value (CPS) in the X-ray peak intensity group of Ti. Further, the specific wear amount W (g / kgf · m) on the vertical axis in FIG. 3 means the wear amount per unit load and unit sliding distance. FIG. 3 also shows the results of a mold copper plate having a Cr plating layer and a Ni—Cr sprayed coating layer, which are the coating layers of a conventional mold copper plate.
また、図4に示すように、鋳型銅板1の摩擦係数μで評価するとX線回折強度の比(XTi/XTiN)の影響がより鮮明に整理できることが分かった。図4には、従来の鋳型銅板の被覆層であるCrメッキ層及びNi−Cr溶射層の被覆層を有する鋳型銅板の結果も示している。また、図4からも明らかなように、摩擦係数μは、従来の被覆材として使用している表面処理材(Crメッキ及びNiCr溶射材)に比較して、X線回折強度の比(XTi/XTiN)が0.05〜0.8の間で小さくなり、耐磨耗性が向上することが分かった。これは、第2層のTiN被膜5と下地との密着力が向上したことによると考えられる。   Moreover, as shown in FIG. 4, when it evaluated by the friction coefficient (micro | micron | mu) of the mold copper plate 1, it turned out that the influence of ratio (XTi / XTiN) of X-ray diffraction intensity can be arranged more clearly. FIG. 4 also shows the results of a mold copper plate having a coating layer of a Cr plating layer and a Ni—Cr sprayed layer, which is a coating layer of a conventional mold copper plate. Further, as is clear from FIG. 4, the friction coefficient μ is a ratio of X-ray diffraction intensity (XTi / P) as compared with a surface treatment material (Cr plating and NiCr sprayed material) used as a conventional coating material. XTiN) was reduced between 0.05 and 0.8, and it was found that the wear resistance was improved. This is considered to be due to the improved adhesion between the TiN coating 5 of the second layer and the base.
この結果に基づき、本発明に係る鋳型銅板1は、凝固シェルと接触する側の銅板基材2の最表面に、主にTiの窒化物からなるTiN被膜5を形成し、このTiN被膜5におけるTiのX線回折強度とTiNのX線回折強度との比(XTi/XTiN)を0.05〜0.8とすることを必須条件とした。   Based on this result, the mold copper plate 1 according to the present invention forms a TiN coating 5 mainly made of a nitride of Ti on the outermost surface of the copper plate base 2 on the side in contact with the solidified shell. It was an essential condition that the ratio (XTi / XTiN) of the X-ray diffraction intensity of Ti and the X-ray diffraction intensity of TiN was 0.05 to 0.8.
このTiN被膜5を形成するには、例えば、表面処理層3の形成されていない銅板基材2、或いはNi電着メッキ層またはNi−Cr溶射層などが表面処理層3として形成された銅板基材2を準備し、この銅板基材2にマルチアークイオンプレーティング法によってTi金属被膜4を形成し、形成したTi金属被膜4の上に、更にマルチアークイオンプレーティング法によってTiN被膜5を形成することによって得ることができる。   In order to form this TiN coating 5, for example, a copper plate base 2 on which the surface treatment layer 3 is not formed, or a copper plate base on which a Ni electrodeposition plating layer or a Ni—Cr sprayed layer is formed as the surface treatment layer 3. A material 2 is prepared, a Ti metal film 4 is formed on the copper plate base material 2 by a multi-arc ion plating method, and a TiN film 5 is further formed on the formed Ti metal film 4 by a multi-arc ion plating method. Can be obtained.
TiN被膜5におけるTiのX線回折強度とTiNのX線回折強度との比(XTi/XTiN)の調整は、マルチアークイオンプレーティング法によってTiN被膜5を蒸着する際に真空チャンバー内へ導入する窒素ガスの流量を制御することで可能であり、本発明で使用した装置の場合には、TiN被膜5におけるTiのX線回折強度とTiNのX線回折強度との比(XTi/XTiN)を0.05〜0.8とするためには20〜200NmL/分が窒素ガスの流量として最適であった。導入する窒素ガスの流量が少な過ぎるとTiNが形成されなくなり、また多すぎるとTi量が少なくなり過ぎる。勿論、ここで言う最適の流量や後述する電圧(表1)は一つの目安であり、蒸着装置や蒸着させる銅板基材2の大きさ、形状によって当然最適範囲は変化する。また、鋳型銅板1の材質劣化防止のために、真空蒸着時の銅板基材2の温度は400℃以下である必要がある。   Adjustment of the ratio of X-ray diffraction intensity of Ti and X-ray diffraction intensity of TiN (XTi / XTiN) in the TiN film 5 is introduced into the vacuum chamber when the TiN film 5 is deposited by the multi-arc ion plating method. This is possible by controlling the flow rate of nitrogen gas. In the case of the apparatus used in the present invention, the ratio (XTi / XTiN) of the X-ray diffraction intensity of Ti and the X-ray diffraction intensity of TiN in the TiN coating 5 is set. In order to make 0.05-0.8, 20-200 NmL / min was the optimal flow rate of nitrogen gas. If the flow rate of the introduced nitrogen gas is too small, TiN will not be formed, and if it is too large, the Ti amount will be too small. Needless to say, the optimum flow rate and the voltage (Table 1) described later are only one standard, and the optimum range naturally varies depending on the size and shape of the vapor deposition apparatus and the copper plate base material 2 to be vapor deposited. Moreover, in order to prevent material deterioration of the mold copper plate 1, the temperature of the copper plate substrate 2 during vacuum deposition needs to be 400 ° C. or less.
本発明の鋳型銅板1において、上記特性を有するTiN被膜5を形成する範囲は、鋳型銅板1の凝固シェルと接触する側の表面全体とする必要はなく、磨耗の激しい箇所にのみ形成してもよい。具体的には磨耗の特に激しい鋳型銅板1の下部側半分とするなどしてもよい。但し、TiN被膜5と非被膜部との耐磨耗性に差が大きい場合は、その境界部に鋳型使用に伴って段差が生じる場合があるので、鋳型表面全体を被服することが好ましい。鋳型銅板1としては、長辺銅板と短辺銅板とがあるが、その何れかまたは両者に上記特性を有するTiN被膜5を設置する。   In the mold copper plate 1 of the present invention, the range for forming the TiN film 5 having the above characteristics does not have to be the entire surface of the mold copper plate 1 on the side in contact with the solidified shell. Good. Specifically, it may be the lower half of the mold copper plate 1 that is particularly worn. However, when there is a large difference in wear resistance between the TiN coating 5 and the non-coating portion, there may be a step at the boundary portion as the mold is used, so it is preferable to cover the entire mold surface. The mold copper plate 1 includes a long side copper plate and a short side copper plate, and a TiN coating 5 having the above characteristics is provided on either or both of them.
以上説明したように、本発明に係る連続鋳造用の鋳型銅板1は、高速鋳造条件下の耐磨耗性を飛躍的に向上させることができ、その結果、鋳型銅板1の寿命が飛躍的に向上し、安定した高速鋳造ができると同時に長期間の連続使用が達成される。   As explained above, the mold copper plate 1 for continuous casting according to the present invention can dramatically improve the wear resistance under high-speed casting conditions, and as a result, the life of the mold copper plate 1 is dramatically increased. Improved, stable high-speed casting can be achieved, and at the same time continuous use for a long time is achieved.
銅板基材(Cr:1.0mass%、Zr:0.1mass%、残部:Cu、銅板厚み40mm)に、0.3mm厚みのNi電着メッキまたは0.5mm厚みのNi−Cr溶射を施した後、この表面処理層の表面に、マルチアークイオンプレーティング法によってTi金属被膜(厚み:0.5μm〜1.0μm)を形成した後、TiのX線回折強度とTiNのX線回折強度との比(XTi/XTiN)が0〜1.0と大きく異なるTiN被膜(厚み:1μm〜3μm)をマルチアークイオンプレーティング法によって積層し、総厚みが2μm〜4μmの被膜層を有する鋳型銅板を作製した。   A copper plate base material (Cr: 1.0 mass%, Zr: 0.1 mass%, balance: Cu, copper plate thickness 40 mm) was subjected to 0.3 mm thickness Ni electrodeposition plating or 0.5 mm thickness Ni-Cr thermal spraying. After forming a Ti metal film (thickness: 0.5 μm to 1.0 μm) on the surface of this surface treatment layer by a multi-arc ion plating method, the X-ray diffraction intensity of Ti and the X-ray diffraction intensity of TiN A TiN film (thickness: 1 μm to 3 μm) having a ratio of (XTi / XTiN) significantly different from 0 to 1.0 is laminated by a multi-arc ion plating method, and a mold copper plate having a coating layer with a total thickness of 2 μm to 4 μm Produced.
X線回折条件は以下のとおりとした。使用したX線回折装置は、理学電機(株)製のRU−300であり、Cu−kαのX線を使用し、印加電圧:55kV、印加電流:250mA、スキャンスピード:4°/分、2θ:5〜70°、サンプリング幅:0.02°、D.Sスリット:1°、R.Sスリット:0.15mm、S.Sスリット:1°の条件で実施した。   The X-ray diffraction conditions were as follows. The X-ray diffractometer used was RU-300 manufactured by Rigaku Corporation, using Cu-kα X-ray, applied voltage: 55 kV, applied current: 250 mA, scan speed: 4 ° / min, 2θ. : 5-70 °, sampling width: 0.02 °, D.E. S slit: 1 °, R.S. S slit: 0.15 mm; S slit: performed at 1 °.
また、比較のために、0.3mm厚みのNi電着メッキ層の上に50μm厚みのCrメッキを施した鋳型銅板、0.5mm厚みのNi−Cr溶射を施したままの鋳型銅板、表面処理層の表面にマルチアークイオンプレーティング法によってTi金属被膜を形成した後、形成したTi金属被膜の上にマルチアークイオンプレーティング法によってTiAlN被膜を積層した鋳型銅板も準備した。   Further, for comparison, a mold copper plate obtained by applying a 50 μm thick Cr plating on a 0.3 mm thick Ni electrodeposition plating layer, a 0.5 mm thick Ni-Cr thermal sprayed mold copper plate, and a surface treatment After forming a Ti metal film on the surface of the layer by a multi-arc ion plating method, a mold copper plate was also prepared in which a TiAlN film was laminated on the formed Ti metal film by a multi-arc ion plating method.
これらの鋳型銅板を、磨耗が特に激しい鋳型の短辺側に用いて、スラブ連続鋳造機による連続鋳造を行った。   These mold copper plates were used on the short side of the mold where the wear was particularly severe, and continuous casting was performed by a slab continuous casting machine.
鋳造した鋼種はJISに規定される低炭素鋼(SPCC)である。連続鋳造機は垂直曲げ型であり、鋳型のサイズは、厚みが220mm、幅が1300mm〜1550mm、長さが900mmである。鋳造速度は、1.5〜2.3m/分で実施した。使用したモールドパウダーの物性は、凝固温度が980℃、1300℃における粘度が0.9poise 、塩基度(CaO/SiO2)が1.05である。鋳型銅板の短辺テーパーは1.3%/m、長辺テーパーは0.9%/mに設定した。 The cast steel type is low carbon steel (SPCC) specified by JIS. The continuous casting machine is a vertical bending die, and the mold size is 220 mm in thickness, 1300 mm to 1550 mm in width, and 900 mm in length. The casting speed was 1.5 to 2.3 m / min. The physical properties of the mold powder used are a solidification temperature of 980 ° C., a viscosity at 1300 ° C. of 0.9 poise, and a basicity (CaO / SiO 2 ) of 1.05. The short side taper of the mold copper plate was set to 1.3% / m, and the long side taper was set to 0.9% / m.
各鋳型について、1ヒートが250トンの溶鋼を合計500ヒート鋳造後、鋳型銅板の表面被膜の摩耗状況を調査した。磨耗調査は図5に示すように、鋳型銅板の下部中央部では最も磨耗の激しい部位を下部磨耗長さ(L1)とし、コーナー部では磨耗の激しい方をコーナー磨耗長さ(L2)として評価した。図5において、7は健全部、8は磨耗部である。得られた結果を表1に示す。   For each mold, after a total of 500 heat castings of 250 tons of molten steel, the state of wear of the surface coating on the mold copper plate was investigated. As shown in FIG. 5, in the wear investigation, the part with the most wear at the lower center part of the mold copper plate was evaluated as the lower wear length (L1), and the corner part was evaluated as the corner wear length (L2). . In FIG. 5, 7 is a healthy part and 8 is a wear part. The obtained results are shown in Table 1.
表1から明らかなように、本発明例は何れも、下部磨耗長さ(L1)及びコーナー磨耗長さ(L2)がともに100mm未満であり、比較例よりも磨耗が軽減される効果が確認された。   As is apparent from Table 1, both the lower wear length (L1) and the corner wear length (L2) are both less than 100 mm in each of the inventive examples, confirming the effect of reducing wear compared to the comparative example. It was.
尚、上記の実施例では、本発明の鋳型銅板を鋳型の短辺側に適用した場合について説明したが、鋳型のテーパーが短辺よりも緩やかな長辺側に適用した場合も同様の効果が得られることは言うまでもない。   In the above-described embodiment, the case where the mold copper plate of the present invention is applied to the short side of the mold has been described. However, the same effect can be obtained when the taper of the mold is applied to the long side which is gentler than the short side. It goes without saying that it is obtained.
本発明に係る鋳型銅板の断面模式図である。It is a cross-sectional schematic diagram of the casting copper plate which concerns on this invention. 比較用の鋳型銅板の断面模式図である。It is a cross-sectional schematic diagram of the casting mold copper plate for a comparison. 磨耗量に及ぼすTiのX線回折強度とTiNのX線回折強度との比の影響を示す図である。It is a figure which shows the influence of ratio of the X-ray diffraction intensity of Ti and the X-ray diffraction intensity of TiN which has on the amount of wear. 摩擦係数に及ぼすTiのX線回折強度とTiNのX線回折強度との比の影響を示す図である。It is a figure which shows the influence of ratio of the X-ray diffraction intensity of Ti and the X-ray diffraction intensity of TiN which exerts on a friction coefficient. 短辺銅板の磨耗状況を示す模式図である。It is a schematic diagram which shows the abrasion condition of a short side copper plate.
符号の説明Explanation of symbols
1 鋳型銅板
2 銅板基材
3 表面処理層
4 Ti金属被膜
5 TiN被膜
6 Crメッキ層
7 健全部
8 磨耗部
DESCRIPTION OF SYMBOLS 1 Mold copper plate 2 Copper plate base material 3 Surface treatment layer 4 Ti metal coating 5 TiN coating 6 Cr plating layer 7 Healthy part 8 Wear part

Claims (1)

  1. 凝固シェルと接触する側の銅板表面に、主にTiの窒化物からなる被覆層が形成され、当該被覆層におけるTiのX線回折強度とTiNのX線回折強度との比(XTi/XTiN)が0.05〜0.8であることを特徴とする連続鋳造用鋳型銅板。   A coating layer mainly made of a nitride of Ti is formed on the surface of the copper plate in contact with the solidified shell, and the ratio of the X-ray diffraction intensity of Ti and the X-ray diffraction intensity of TiN in the coating layer (XTi / XTiN) The continuous casting mold copper plate is characterized by having a thickness of 0.05 to 0.8.
JP2005074208A 2005-03-16 2005-03-16 Mold copper plate for continuous casting Pending JP2006255733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074208A JP2006255733A (en) 2005-03-16 2005-03-16 Mold copper plate for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074208A JP2006255733A (en) 2005-03-16 2005-03-16 Mold copper plate for continuous casting

Publications (1)

Publication Number Publication Date
JP2006255733A true JP2006255733A (en) 2006-09-28

Family

ID=37095502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074208A Pending JP2006255733A (en) 2005-03-16 2005-03-16 Mold copper plate for continuous casting

Country Status (1)

Country Link
JP (1) JP2006255733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101551A1 (en) * 2007-02-20 2008-08-28 Siemens Aktiengesellschaft Component, device for controlling the wear and tear for a component and method for the maintenance of a component
JP5640179B1 (en) * 2014-03-20 2014-12-10 三島光産株式会社 Continuous casting mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101551A1 (en) * 2007-02-20 2008-08-28 Siemens Aktiengesellschaft Component, device for controlling the wear and tear for a component and method for the maintenance of a component
JP5640179B1 (en) * 2014-03-20 2014-12-10 三島光産株式会社 Continuous casting mold
WO2015140991A1 (en) * 2014-03-20 2015-09-24 三島光産株式会社 Mold for continuous casting
TWI617375B (en) * 2014-03-20 2018-03-11 三島光產股份有限公司 Continuous casting mold

Similar Documents

Publication Publication Date Title
US8104530B2 (en) Component of a steelworks, such as a continuous casting installation or a rolling mill, method for producing such a component and installation for creating or processing semifinished metallic products
JP2014193487A (en) Thermal spray coated work roll
JP2006051510A (en) Member for casting
US20120282480A1 (en) High-temperature material transferring member
RU2563912C2 (en) Production of piston ring with embedded particles
KR100623012B1 (en) Mold copper sheet for continuous casting manufacturing same
JP2005298839A (en) Roll for continuous hot-dip metal plating
US7028748B2 (en) Cast-rolling plant
JP2006255733A (en) Mold copper plate for continuous casting
JP4122984B2 (en) Molded copper plate for continuous casting and manufacturing method thereof
JP3916388B2 (en) Manufacturing method of continuous casting mold
JP2003531727A (en) Mold walls of continuous casting molds for steel, especially wide side walls
JP4009255B2 (en) In-furnace roll with cermet powder and excellent build-up and oxidation resistance
JP5400789B2 (en) Continuous casting roll
JP4093688B2 (en) Continuous casting mold
JP2000345313A (en) Production of roll used for continuous casting improved in heat resistance, corrosion resistance and wear resistance of surface of base material of roll barrel part applied with repeated thermal impact and sliding wear
KR100857287B1 (en) self-fluxing alloy powders and roll having spraying coating layer
JP4055522B2 (en) Molded copper plate for continuous casting mold and manufacturing method thereof
JPH09316621A (en) Sprayed coating suitable for sliding wear resistant member subjected to repeated thermal impact
JP2004001070A (en) Wc cermet-sprayed roll excellent in wear resistance
RU53193U1 (en) CONTINUOUS CASTING MACHINE CRYSTALIZER
JP4694227B2 (en) Continuous casting mold
RU2055682C1 (en) Crystallizer
JPH0718395A (en) Roll bearing
KR20080034871A (en) Self-fluxing alloy powders and roll having spraying coating layer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921