JP2002086248A - Die for continuous casting - Google Patents

Die for continuous casting

Info

Publication number
JP2002086248A
JP2002086248A JP2000279824A JP2000279824A JP2002086248A JP 2002086248 A JP2002086248 A JP 2002086248A JP 2000279824 A JP2000279824 A JP 2000279824A JP 2000279824 A JP2000279824 A JP 2000279824A JP 2002086248 A JP2002086248 A JP 2002086248A
Authority
JP
Japan
Prior art keywords
mass
thermal spray
spray coating
continuous casting
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000279824A
Other languages
Japanese (ja)
Other versions
JP3916388B2 (en
Inventor
Suketaka Umeyama
祐登 梅山
Keisuke Yamamoto
圭祐 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2000279824A priority Critical patent/JP3916388B2/en
Publication of JP2002086248A publication Critical patent/JP2002086248A/en
Application granted granted Critical
Publication of JP3916388B2 publication Critical patent/JP3916388B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a die for continuous casting whose inside surface is coated with a film having excellent crack resistance, welding resistance and wear resistance. SOLUTION: In this die for continuous casting whose inside surface is coated with a thermal spray coating 12, the fine powder forming the thermal spray coating 12 is composed of a metallic matrix of a nickel based self-fluxing alloy composed of, by mass, 0 or >0 to <=8% Cr, 1.0 to 4.5% B, 1.5 to 5.0% Si, <=1.1% C, <=5.0% Fe, <=1.0% Co, <=4.0% Mo and <=4.0% Cu, and the balance Ni and the fine particles of wear resistant hard ceramics, where 5 to 50% wear resistant hard ceramics are contained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳型本体の内側表
面に溶射皮膜を形成することで、耐溶着性、耐クラック
性、耐摩耗性を改善した長期寿命を有する連続鋳造用鋳
型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting mold having a long life and improved welding resistance, crack resistance and wear resistance by forming a thermal spray coating on the inner surface of a mold body.

【0002】[0002]

【従来の技術】従来、連続鋳造用鋳型(以下、鋳型とも
言う)は、1対の長辺鋳型部(長辺鋳型の一片)と、1
対の短辺鋳型部(短辺鋳型の一片)とを、例えば4つ組
みにより接合して製造されたものである。そして、図8
に示すように、この長辺鋳型部を構成する鋳型本体50
は、熱伝導性の良好な銅又は銅合金材料が用いられた銅
板51と、銅板51の背面に備えることで銅板51を冷
却するバックフレーム52と呼ばれる冷却水箱剛体とを
有している。従って、鋳造は、この鋳型に高温の溶鋼5
3(例えば、1600℃程度)を注入することで実施し
ている。しかし、高温の溶鋼53が溶融パウダー(潤滑
剤)54を介して銅板51の表面に接触する上部の溶鋼
レベル近傍55では、鋳造中、銅板51の表面温度が3
00〜350℃程度に達する。一方、銅板51の下部表
面では、高温でしかも半凝固状態にある凝固シェル56
が、銅板51と機械的に接触しながら引抜かれるので、
銅板51の表面に摩耗損傷が発生して銅板寿命を短くし
ている。従って、銅板51の下部には耐摩耗性が要求さ
れている。そこで、銅板51の表面に溶射機(図示しな
い)を用いて溶射皮膜(皮膜とも言う)を形成し、銅板
の耐摩耗性を向上させ、これにより、鋳型の寿命が大幅
に向上している。
2. Description of the Related Art Conventionally, a continuous casting mold (hereinafter, also referred to as a mold) has a pair of long side mold parts (one piece of a long side mold) and one
It is manufactured by joining a pair of short side mold parts (one piece of the short side mold) by, for example, a quadruple set. And FIG.
As shown in FIG.
Has a copper plate 51 made of copper or a copper alloy material having good heat conductivity, and a rigid cooling water box called a back frame 52 that is provided on the back surface of the copper plate 51 to cool the copper plate 51. Therefore, the casting is performed by adding a high temperature molten steel 5 to this mold.
3 (for example, about 1600 ° C.). However, in the vicinity 55 of the upper molten steel level where the high-temperature molten steel 53 contacts the surface of the copper plate 51 via the molten powder (lubricant) 54, the surface temperature of the copper plate 51 becomes 3 during casting.
It reaches about 00 to 350 ° C. On the other hand, on the lower surface of the copper plate 51, the solidified shell 56 at a high temperature and in a semi-solid state is formed.
Is pulled out while being in mechanical contact with the copper plate 51,
Abrasion damage occurs on the surface of the copper plate 51 to shorten the life of the copper plate. Therefore, the lower part of the copper plate 51 is required to have wear resistance. Therefore, a thermal spray coating (also referred to as a coating) is formed on the surface of the copper plate 51 by using a thermal spraying machine (not shown) to improve the wear resistance of the copper plate, thereby greatly improving the life of the mold.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記し
た鋳型には、使用環境の苛酷化(例えば、鋳造時のトラ
ブル発生による鋳型本体50の冷却不足等)により、以
下の問題があった。銅板51の表面に溶射皮膜を形成す
ることで、溶鋼53と銅板51との間の熱伝導率が低下
し、溶射皮膜の表面温度が上がるという問題があった。
また、銅板51の表面温度は操業の高速化に伴い更に高
くなる傾向にあり、操業異常(例えば、ブレークアウ
ト、パウダー切れ等)で溶鋼53が直接溶射皮膜と接触
すると、溶鋼と溶射皮膜とが溶着を起こし、鋳片がその
まま鋳型本体50から引抜かれることがある。この場
合、銅板51の表面から溶射皮膜が剥離し、鋳型を使用
できなくなるという問題もあった。そして、溶射皮膜の
靱性の低下から溶射皮膜にクラック(き裂)が発生し、
このクラックが原因で溶射皮膜が鋳型本体50の内側表
面から剥離する現象が発生して、鋳型を使用できなくな
る問題があった。本発明はかかる事情に鑑みてなされた
もので、鋳型本体の内側表面に、優れた耐クラック性、
耐溶着性、耐摩耗性を有する皮膜を形成した連続鋳造用
鋳型を提供することを目的とする。
However, the above-described mold has the following problems due to severe use environment (for example, insufficient cooling of the mold body 50 due to trouble during casting). By forming the thermal spray coating on the surface of the copper plate 51, there is a problem that the thermal conductivity between the molten steel 53 and the copper plate 51 decreases, and the surface temperature of the thermal spray coating increases.
In addition, the surface temperature of the copper plate 51 tends to be higher as the operation speeds up, and when the molten steel 53 comes into direct contact with the sprayed coating due to an operation abnormality (for example, breakout, powder breakage, etc.), the molten steel and the sprayed coating become separated. Welding may occur and the slab may be pulled out of the mold body 50 as it is. In this case, there is also a problem that the sprayed coating is peeled off from the surface of the copper plate 51 and the mold cannot be used. Then, a crack (crack) occurs in the sprayed coating due to a decrease in the toughness of the sprayed coating,
Due to this crack, a phenomenon occurs in which the sprayed coating peels off from the inner surface of the mold body 50, and there is a problem that the mold cannot be used. The present invention has been made in view of such circumstances, and has excellent crack resistance on the inner surface of the mold body.
An object of the present invention is to provide a casting mold for continuous casting in which a film having welding resistance and wear resistance is formed.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う第1の発
明に係る連続鋳造用鋳型は、鋳型本体の内側表面に溶射
皮膜が形成された連続鋳造用鋳型において、溶射皮膜を
形成する微粉末は、Cr:0又は0を超え8質量%以
下、B:1.0〜4.5質量%、Si:1.5〜5.0
質量%、C:1.1質量%以下、Fe:5.0質量%以
下、Co:1.0質量%以下、Mo:4.0質量%以
下、Cu:4.0質量%以下、残部Niからなるニッケ
ル基自溶合金の金属マトリックスと、耐摩耗性硬質セラ
ミックスの微粉末とからなって耐摩耗性硬質セラミック
スを5〜50質量%含む。このような、ニッケル基自溶
合金の金属マトリックスを使用することで、溶射皮膜の
靱性、熱伝導率等が向上するため、溶射皮膜に対する連
続鋳造用鋳型に鋳込む溶鋼の耐クラック性及び耐溶着性
を改善することが可能となる。また、耐摩耗性硬質セラ
ミックスの微粉末を使用することで、溶射皮膜の耐摩耗
性を向上させることが可能となる。
According to a first aspect of the present invention, there is provided a continuous casting mold in which a sprayed coating is formed on an inner surface of a mold body. Is Cr: more than 0 or 0 to 8% by mass or less, B: 1.0 to 4.5% by mass, Si: 1.5 to 5.0%
Mass%, C: 1.1 mass% or less, Fe: 5.0 mass% or less, Co: 1.0 mass% or less, Mo: 4.0 mass% or less, Cu: 4.0 mass% or less, balance Ni And 5 to 50% by mass of wear-resistant hard ceramics comprising a metal matrix of a nickel-based self-fluxing alloy and fine powder of wear-resistant hard ceramics. By using such a metal matrix of a nickel-based self-fluxing alloy, the toughness and thermal conductivity of the thermal spray coating are improved, so that the crack resistance and welding resistance of the molten steel cast into the continuous casting mold for the thermal spray coating are improved. It is possible to improve the performance. Further, by using fine powder of wear-resistant hard ceramics, it becomes possible to improve the wear resistance of the sprayed coating.

【0005】前記目的に沿う第2の発明に係る連続鋳造
用鋳型は、鋳型本体の内側表面に溶射皮膜が形成された
連続鋳造用鋳型において、溶射皮膜を形成する微粉末
は、Cr:0又は0を超え8質量%以下、B:1.0〜
4.5質量%、Si:1.5〜5.0質量%、C:1.
1質量%以下、Fe:5.0質量%以下、Co:1.0
質量%以下、Mo:4.0質量%以下、Cu:4.0質
量%以下、残部Niからなるニッケル基自溶合金の金属
マトリックスと、耐摩耗性硬質セラミックスの微粉末と
Co、Ni、Cr、Fe又はこれらの合金のいずれか一
種以上を含むサーメットからなって、サーメットを5〜
50質量%含む。このような、ニッケル基自溶合金の金
属マトリックスを使用することで、溶射皮膜の靱性、熱
伝導率等が向上するため、溶射皮膜に対する連続鋳造用
鋳型に鋳込む溶鋼の耐クラック性及び耐溶着性を改善す
ることが可能となる。また、市販のサーメットを使用し
て、溶射皮膜の耐摩耗性を向上させることが可能とな
る。
In a continuous casting mold according to a second aspect of the present invention, the sprayed coating is formed on the inner surface of the mold body, and the fine powder forming the sprayed coating is Cr: 0 or 0 to 8% by mass, B: 1.0 to
4.5% by mass, Si: 1.5 to 5.0% by mass, C: 1.
1 mass% or less, Fe: 5.0 mass% or less, Co: 1.0
% By mass, Mo: 4.0% by mass or less, Cu: 4.0% by mass or less, a nickel-based self-fluxing alloy metal matrix composed of the balance of Ni, fine powder of wear-resistant hard ceramics, Co, Ni, and Cr , Fe or a cermet containing at least one of these alloys,
Contains 50% by mass. By using such a metal matrix of a nickel-based self-fluxing alloy, the toughness and thermal conductivity of the thermal spray coating are improved, so that the crack resistance and welding resistance of the molten steel cast into the continuous casting mold for the thermal spray coating are improved. It is possible to improve the performance. In addition, it is possible to improve the wear resistance of the thermal spray coating by using a commercially available cermet.

【0006】ここで、第1、第2の発明に係る連続鋳造
用鋳型において、耐摩耗性硬質セラミックスは、炭化
物、酸化物、硼化物、窒化物、ケイ化物のいずれか1又
は2以上であることが好ましい。これにより、溶射皮膜
の耐摩耗性を更に向上させることが可能となる。また、
第1、第2の発明に係る連続鋳造用鋳型において、溶射
皮膜は、Ni又はNiを主体とする合金のめっき層を介
して、鋳型本体の内側表面に形成されていることが好ま
しい。このように、溶射皮膜及びめっき層共にNiを含
んでいることで、鋳型本体の内側表層部の酸化を防止す
ることが可能となり、例えば900〜1100℃で熱処
理する時に、溶射皮膜とめっき層との間で相互拡散が生
じ易くなるので、鋳型本体に対する溶射皮膜の密着強度
を安定させることが可能となる。そして、第1、第2の
発明に係る連続鋳造用鋳型において、鋳型本体の内側表
面に溶射皮膜を形成した後、溶射皮膜を900〜110
0℃で熱処理することが好ましい。これにより、溶射皮
膜と鋳型本体の内側表層部との拡散が開始し、鋳型本体
に対する溶射皮膜の密着力を向上させることが可能とな
る。そして、溶射皮膜内の金属マトリックスと耐摩耗性
硬質セラミックスの微粉末、また金属マトリックスとサ
ーメットの微粉末も互いに拡散して溶射皮膜の強度も向
上させることが可能となる。
Here, in the continuous casting mold according to the first and second aspects of the present invention, the wear-resistant hard ceramic is at least one of carbide, oxide, boride, nitride, and silicide. Is preferred. This makes it possible to further improve the wear resistance of the thermal spray coating. Also,
In the continuous casting mold according to the first and second aspects of the present invention, it is preferable that the thermal spray coating is formed on an inner surface of the mold body via a plating layer of Ni or an alloy mainly composed of Ni. In this way, by including Ni in both the thermal spray coating and the plating layer, it is possible to prevent oxidation of the inner surface layer of the mold main body. For example, when heat treatment is performed at 900 to 1100 ° C., the thermal spray coating and the plating layer Therefore, mutual diffusion easily occurs between the molds, so that the adhesion strength of the thermal spray coating to the mold body can be stabilized. Then, in the continuous casting mold according to the first and second aspects of the present invention, after forming the thermal spray coating on the inner surface of the mold main body, the thermal spray coating is applied to 900 to 110.
Heat treatment at 0 ° C. is preferred. As a result, diffusion between the sprayed coating and the inner surface layer of the mold main body starts, and the adhesion of the sprayed coating to the mold main body can be improved. Then, the metal matrix and the fine powder of the wear-resistant hard ceramic, and the fine powder of the metal matrix and the cermet in the thermal spray coating are also diffused with each other, so that the strength of the thermal spray coating can be improved.

【0007】[0007]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の第1の実施
の形態に係る連続鋳造用鋳型の長辺鋳型部の要部平断面
図、図2(A)、(B)、(C)はそれぞれ同連続鋳造
用鋳型の長辺鋳型部の斜視図、同連続鋳造用鋳型に傾斜
した溶射皮膜を施工する場合の説明図、同連続鋳造用鋳
型に部分的な溶射皮膜を施工する場合の説明図、図3は
耐クラック性試験の試験方法の説明図、図4は耐クラッ
ク性試験の試験結果の説明図、図5は耐溶着試験の試験
結果の説明図、図6は耐摩耗試験の試験方法の説明図、
図7は耐摩耗試験の試験結果の説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is a plan cross-sectional view of a main part of a long side mold portion of a continuous casting mold according to a first embodiment of the present invention, and FIGS. A perspective view of the long side mold portion of the casting mold, an explanatory diagram in which an inclined spray coating is applied to the continuous casting mold, an explanatory diagram in which a partial spray coating is applied to the continuous casting mold, FIG. 3 is an explanatory view of a test method of a crack resistance test, FIG. 4 is an explanatory view of a test result of a crack resistance test, FIG. 5 is an explanatory view of a test result of a welding resistance test, and FIG. 6 is a test method of a wear resistance test. Explanatory diagram,
FIG. 7 is an explanatory diagram of test results of the wear resistance test.

【0008】図1、図2(A)に示すように、本発明の
第1の実施の形態に係る連続鋳造用鋳型は、1対の長辺
鋳型部(長辺鋳型の一片)と、1対の短辺鋳型部(図示
しない)とを、例えば4つ組みして製造されたものであ
る。そして、この長辺鋳型部を構成する鋳型本体11の
内側表面には、溶射皮膜12が形成されている。この溶
射皮膜12を形成する微粉末は、Cr:0又は0を超え
8質量%以下、B:1.0〜4.5質量%、Si:1.
5〜5.0質量%、C:1.1質量%以下、Fe:5.
0質量%以下、Co:1.0質量%以下、Mo:4.0
質量%以下、Cu:4.0質量%以下、残部Niからな
るニッケル基自溶合金の金属マトリックスと、耐摩耗性
硬質セラミックス(例えば、炭化物、酸化物、硼化物、
窒化物、ケイ化物のいずれか1又は2以上)の微粉末と
からなっており、耐摩耗性硬質セラミックスを5〜50
質量%含むものである。なお、溶射皮膜12は、Ni又
はNiを主体とする合金のめっき層13を介して、鋳型
本体11の内側表面に形成されている。以下、詳しく説
明する。
As shown in FIGS. 1 and 2A, a continuous casting mold according to a first embodiment of the present invention includes a pair of long-side mold parts (one piece of a long-side mold) and one pair of long-side mold parts. It is manufactured by, for example, assembling four pairs of short side mold parts (not shown). A thermal spray coating 12 is formed on the inner surface of the mold main body 11 constituting the long side mold portion. The fine powder that forms the thermal spray coating 12 includes Cr: 0 or more than 0 and not more than 8% by mass, B: 1.0 to 4.5% by mass, Si: 1.
5 to 5.0% by mass, C: 1.1% by mass or less, Fe: 5.0% by mass.
0 mass% or less, Co: 1.0 mass% or less, Mo: 4.0
Mass% or less, Cu: 4.0 mass% or less, a metal matrix of a nickel-based self-fluxing alloy consisting of a balance of Ni, and a wear-resistant hard ceramic (for example, carbide, oxide, boride,
A fine powder of at least one of a nitride and a silicide).
% By mass. The thermal spray coating 12 is formed on the inner surface of the mold body 11 via a plating layer 13 of Ni or an alloy mainly composed of Ni. The details will be described below.

【0009】図2(A)に示すように、鋳型本体11
は、銅又は銅合金材料が用いられた銅板14と、この銅
板14を冷却するため銅板14の外側面に備えられたバ
ックプレート(水箱)15とを有している。この銅板1
4の内側全面は、均等に研削することも可能であるが、
図2(B)、(C)に示す第1、第2変形例のように、
銅板16の下側から上側に向かって(沿って)溶射皮膜
18を薄くできるよう(傾斜皮膜)に、或いは銅板17
の下側が銅板17の上側よりも厚い溶射皮膜19を形成
するように、銅板17の下側、例えば全体の高さの1/
3〜2/3に相当する範囲を部分的(部分皮膜)にそれ
ぞれ前加工することが好ましい。このように準備した加
工面に対し、例えば0を超え0.2mm以下程度の厚み
Rを有するNi又はNi合金めっきを施して、銅板14
の内側にめっき層13を形成する。これにより、鋳型本
体11の内側表面(表層部)の酸化を防止することが可
能となるため、鋳型本体11に対する溶射皮膜12の密
着強度を安定させることが可能となる。
[0009] As shown in FIG.
Has a copper plate 14 made of copper or a copper alloy material, and a back plate (water box) 15 provided on an outer surface of the copper plate 14 for cooling the copper plate 14. This copper plate 1
The entire inner surface of 4 can be ground evenly,
As in the first and second modifications shown in FIGS. 2B and 2C,
The thermal spray coating 18 can be thinned (inclined coating) from the lower side to the upper side (along) of the copper plate 16 or the copper plate 17
Is formed on the lower side of the copper plate 17, for example, 1 / th of the entire height, so that the lower side forms a thermal spray coating 19 thicker than the upper side of the copper plate 17.
It is preferable to preprocess a range corresponding to 3 to 2/3 partially (partially). The processed surface prepared in this way is plated with Ni or a Ni alloy having a thickness R of, for example, more than 0 and about 0.2 mm or less, and a copper plate 14 is formed.
The plating layer 13 is formed inside the substrate. This makes it possible to prevent oxidation of the inner surface (surface layer portion) of the mold body 11, so that the adhesion strength of the thermal spray coating 12 to the mold body 11 can be stabilized.

【0010】次に、ニッケル基自溶合金の金属マトリッ
クスの微粉末と、5〜50質量%の耐摩耗性硬質セラミ
ックスの微粉末とを均一に混合し、溶射皮膜12を形成
する微粉末を作製する。ここで、金属マトリックスの化
学成分及びその数値範囲は、ニッケル基自溶合金(JI
S H 8303に規定されているニッケル基自溶合金
(表1参照)の1〜5種(SFNi1〜SFNi5))
の靱性や熱伝導率等の諸条件を考慮し決定した。
Next, a fine powder of a metal matrix of a nickel-based self-fluxing alloy and a fine powder of a wear-resistant hard ceramic of 5 to 50% by mass are uniformly mixed to produce a fine powder for forming a thermal sprayed coating 12. I do. Here, the chemical composition of the metal matrix and its numerical range are based on nickel-based self-fluxing alloy (JI
1 to 5 kinds of nickel-based self-fluxing alloys (see Table 1) specified in SH8303 (SFNi1 to SFNi5)
It was determined in consideration of various conditions such as toughness and thermal conductivity.

【0011】[0011]

【表1】 [Table 1]

【0012】また、溶射皮膜12を形成する耐摩耗性硬
質セラミックスには、例えばWC、CrC、NbC、T
iC、ZrC、HfC、VC、MoC等の炭化物、例え
ばアルミナ(Al23 )、ジルコニア(ZrO2 )、
チタニア(TiO2 )等の酸化物、例えば超高圧法によ
って合成されたBN(立方晶窒化ほう素)等の硼化物、
例えばSi34 、AlN、TiN等のように窒素を非
金属構成元素として含む化合物である窒化物、更にはケ
イ化物を使用することが好ましい。そして、耐摩耗性硬
質セラミックスの含有割合を5〜50質量%としたの
は、5質量%未満では、溶射皮膜12が耐摩耗性を発揮
するために充分な量でなく、一方、50質量%を超える
と、溶射皮膜12の硬度が高くなり過ぎ、鋳型を繰返し
使用することで溶射皮膜12にクラックが入る可能性が
あるためである。従って、溶射皮膜12にクラックが入
ることなく、溶射皮膜12が耐摩耗性を発揮し、しかも
必要な硬度を得るには、10〜40質量%、更には15
〜40質量%とすることが好ましい。更に、溶射皮膜1
2を形成する金属マトリックス及び耐摩耗性硬質セラミ
ックスの微粉末の粒径は、10〜100μmの範囲で選
定することが好ましい。粒径が10μm未満の場合に
は、製造価格が高騰すると共に、溶射時に受ける運動量
が小さくなって気流に流され易く、一方、粒径が100
μmを超えると溶射皮膜12が粗くなって溶射皮膜12
の実質的強度が落ちるため、粒径を10〜100μmの
範囲で選定した。
The wear-resistant hard ceramics forming the thermal spray coating 12 include, for example, WC, CrC, NbC,
carbides such as iC, ZrC, HfC, VC, MoC, for example, alumina (Al 2 O 3 ), zirconia (ZrO 2 ),
Oxides such as titania (TiO 2 ), for example, borides such as BN (cubic boron nitride) synthesized by an ultra-high pressure method;
For example, it is preferable to use a nitride, which is a compound containing nitrogen as a nonmetal constituent element, such as Si 3 N 4 , AlN, or TiN, or a silicide. The reason why the content ratio of the wear-resistant hard ceramic is set to 5 to 50% by mass is that when the content is less than 5% by mass, the thermal sprayed coating 12 is not sufficient to exhibit the wear resistance. If the temperature exceeds the above, the hardness of the thermal spray coating 12 becomes too high, and the thermal spray coating 12 may be cracked by repeatedly using the mold. Therefore, in order for the thermal sprayed coating 12 to exhibit abrasion resistance without cracking in the thermal sprayed coating 12 and to obtain the required hardness, 10 to 40% by mass, and more preferably 15 to 40% by mass.
It is preferable to set it to 40 mass%. Furthermore, thermal spray coating 1
It is preferable that the particle diameter of the fine powder of the metal matrix and the wear-resistant hard ceramics forming the second material is selected in the range of 10 to 100 μm. When the particle size is less than 10 μm, the production cost rises, and the momentum received during thermal spraying becomes small, so that the particle size is easily flown into the air stream.
If it exceeds μm, the thermal spray coating 12 becomes coarse and the thermal spray coating 12
The particle size was selected in the range of 10 to 100 μm because of the substantial strength of

【0013】この微粉末を、プラズマ溶射、フレーム溶
射、高速フレーム溶射等の方法を用いて前記しためっき
層13の上面に溶射し、この溶射皮膜12の表面を研削
して仕上げる。ここで、プラズマ溶射とは、プラズマ溶
射ガンのプラズマジェットで粉末状の溶射材料を加熱、
溶融又はそれに近い状態にし加速して、溶射の対象面に
吹き付け溶射皮膜を形成する方法である。このプラズマ
溶射には, 作動ガスにアルゴン、ヘリウム、窒素、水素
などを用いる方式と、水の分解によって生ずる酸素及び
水素を用いる水プラズマ溶射とがある。また、フレーム
(火炎)溶射とは、酸素と可燃性ガスとの燃焼炎を用い
て粉末状の溶射材料を加熱し、溶融又はそれに近い状態
にして、溶射の対象面に吹き付けて溶射皮膜を形成する
方法である。なお、溶射する微粉末の加速には、圧縮ガ
スのジェットを用いる場合がある。そして、高速フレー
ム溶射は、通常の溶射と比較してフレームの速度を3倍
以上の速さ(具体例としては、2000〜2700m/
秒)にして溶射皮膜を形成する方法である。
The fine powder is sprayed on the upper surface of the plating layer 13 by using a method such as plasma spraying, flame spraying or high-speed flame spraying, and the surface of the sprayed film 12 is finished by grinding. Here, the plasma spraying is to heat the powdered sprayed material with the plasma jet of the plasma spray gun,
This is a method of forming a sprayed coating on a target surface to be sprayed by accelerating to a state of melting or close to it. The plasma spraying includes a method using argon, helium, nitrogen, hydrogen or the like as a working gas, and a water plasma spraying using oxygen and hydrogen generated by decomposition of water. Also, flame (flame) spraying is a method of heating a powdered sprayed material using a combustion flame of oxygen and a flammable gas, melting it or a state close to it, and spraying the sprayed material on a surface to be sprayed to form a sprayed film. How to Note that a jet of compressed gas may be used to accelerate the fine powder to be sprayed. And high-speed flame spraying increases the speed of the flame three times or more as compared with normal spraying (specifically, 2000 to 2700 m /
Second) to form a thermal spray coating.

【0014】なお、溶射皮膜12の厚みTは、例えば
0.3〜1.5mm程度とする。また、図2(B)に示
す第1変形例においては、傾斜皮膜の場合、銅板16の
上端で0.1〜1.0mm(この実施の形態では0.3
mm)、下部側となるにつれ連続的に溶射皮膜18を厚
くし、銅板16の下端で1.0〜2.0mm(この実施
の形態では1.5mm)とすることが好ましい。そし
て、図2(C)に示す第2変形例においては、部分皮膜
の場合、銅板17の上部の厚みを0.1〜1.0mm
(この実施の形態では0.3mm)、銅板17の下部の
厚みを0.5〜2.0mm(この実施の形態では1.5
mm)とした溶射皮膜19を形成することが好ましい。
前記したように、溶射皮膜12、18、19及びめっき
層13共にNiを含んでいるため、熱処理時(例えば、
900〜1100℃)に溶射皮膜12、18、19とめ
っき層13との間で相互拡散が生じ易くなる。従って、
鋳型本体11の銅板14、16、17に対する溶射皮膜
12、18、19の密着強度を安定させることが可能と
なる。
The thickness T of the thermal spray coating 12 is, for example, about 0.3 to 1.5 mm. Further, in the first modified example shown in FIG. 2B, in the case of the inclined film, the upper end of the copper plate 16 has a thickness of 0.1 to 1.0 mm (0.3 mm in this embodiment).
mm), it is preferable that the thermal spray coating 18 be continuously thickened toward the lower side, and be 1.0 to 2.0 mm (1.5 mm in this embodiment) at the lower end of the copper plate 16. In the second modification shown in FIG. 2C, in the case of a partial coating, the thickness of the upper part of the copper plate 17 is set to 0.1 to 1.0 mm.
(0.3 mm in this embodiment), the thickness of the lower portion of the copper plate 17 is 0.5 to 2.0 mm (1.5 in this embodiment).
mm) is preferably formed.
As described above, since both the thermal spray coatings 12, 18, 19 and the plating layer 13 contain Ni, during the heat treatment (for example,
(900 to 1100 ° C.), mutual diffusion easily occurs between the sprayed coatings 12, 18, 19 and the plating layer 13. Therefore,
It is possible to stabilize the adhesion strength of the thermal spray coatings 12, 18, 19 to the copper plates 14, 16, 17 of the mold body 11.

【0015】ここでは、鋳型本体11の銅板14、1
6、17の内側表面(加工面)にNi又はNiを主体と
する合金のめっき層13を施した場合について示した
が、めっき層13を介することなく(R=0)、上記の
方法で溶射皮膜12、18、19を鋳型本体11の銅板
14、16、17の内側表面にそれぞれ形成することも
可能である。なお、溶射皮膜12、18、19及び銅板
14、16、17はそれぞれ形状のみが異なったもので
あるため、以降の説明は溶射皮膜12と銅板14につい
てのみ説明する。
Here, the copper plates 14, 1,
The case where the plating layer 13 made of Ni or an alloy mainly composed of Ni is applied to the inner surfaces (worked surfaces) of Nos. 6 and 17 is shown, but the thermal spraying is performed by the above method without the interposition of the plating layer 13 (R = 0). It is also possible to form the coatings 12, 18, 19 on the inner surfaces of the copper plates 14, 16, 17 of the mold body 11, respectively. Since the thermal spray coatings 12, 18, 19 and the copper plates 14, 16, 17 are different from each other only in shape, the following description will be made only for the thermal spray coating 12 and the copper plate 14.

【0016】上記のように、鋳型本体11の内側表面に
溶射皮膜12を形成した後、溶射皮膜12を900〜1
100℃で熱処理(フュージング)する。なお、この熱
処理は無酸素雰囲気中、又は例えば窒素ガスを充満させ
た不活性雰囲気中で、例えば10〜30分程度行うこと
が好ましい。ここで、熱処理を900〜1100℃とし
たのは、熱処理を900℃以上で実施することで、溶射
皮膜12とめっき層13との境界面近傍の拡散が開始
し、溶射皮膜12の密着力が向上するためである。ま
た、溶射皮膜12内の金属マトリックスと耐摩耗性硬質
セラミックスの微粉末も互いに拡散し、皮膜強度が向上
するためである。一方、熱処理を1100℃以下とした
のは、溶射皮膜12の融点が約1100℃であることに
起因する。従って、溶射皮膜12の強度の低下を生じさ
せることなく、溶射皮膜12とめっき層13との境界面
近傍の拡散、また溶射皮膜12内の微粉末の拡散を効率
良く行うため、熱処理を950〜1100℃、更には1
000〜1050℃で実施することが好ましい。また、
めっき層13を使用しない場合は、溶射皮膜12と銅板
14との境界面近傍の拡散が開始する。
As described above, after the thermal spray coating 12 is formed on the inner surface of the mold body 11, the thermal spray coating 12 is
Heat treatment (fusing) at 100 ° C. Note that this heat treatment is preferably performed in an oxygen-free atmosphere or in an inert atmosphere filled with, for example, nitrogen gas, for example, for about 10 to 30 minutes. Here, the reason why the heat treatment is set to 900 to 1100 ° C. is that by performing the heat treatment at 900 ° C. or more, diffusion near the interface between the thermal spray coating 12 and the plating layer 13 starts, and the adhesion of the thermal spray coating 12 is reduced. It is to improve. Further, the metal matrix in the thermal spray coating 12 and the fine powder of the wear-resistant hard ceramic are also diffused with each other, and the coating strength is improved. On the other hand, the reason why the heat treatment is set to 1100 ° C. or less is that the melting point of the thermal spray coating 12 is about 1100 ° C. Therefore, in order to efficiently diffuse the vicinity of the interface between the thermal spray coating 12 and the plating layer 13 and to diffuse the fine powder in the thermal spray coating 12 without lowering the strength of the thermal spray coating 12, heat treatment is performed at 950 to 950. 1100 ° C, even 1
It is preferable to carry out at 000 to 1050 ° C. Also,
If the plating layer 13 is not used, diffusion near the interface between the thermal spray coating 12 and the copper plate 14 starts.

【0017】なお、この熱処理は、品質の安定化を考慮
するということから、加熱炉を用いて炉内で行うことが
好ましい。しかし、溶射皮膜12とめっき層13との境
界面からめっき層13側、また溶射皮膜12と銅板14
との境界面から銅板14側に0.2mm程度の位置が9
00〜1100℃の温度になるように熱処理できるので
あれば、例えばバーナーやレーザー等を用いて熱処理す
ることも可能である。この実施の形態では、鋳型本体1
1の内側表面に溶射皮膜12を形成した後、溶射皮膜1
2を熱処理する場合について示したが、鋳型の使用環境
や使用頻度等を考慮して、熱処理を行わない状態で鋳型
を使用することも可能である。
The heat treatment is preferably carried out in a furnace using a heating furnace, in view of stabilizing the quality. However, from the interface between the thermal spray coating 12 and the plating layer 13 to the plating layer 13 side, and also from the thermal spray coating 12 to the copper plate 14.
The position of about 0.2 mm on the copper plate 14 side from the boundary surface with
As long as the heat treatment can be performed at a temperature of 00 to 1100 ° C., the heat treatment can be performed using, for example, a burner or a laser. In this embodiment, the mold body 1
After forming the thermal spray coating 12 on the inner surface of the thermal spray coating 1,
Although the case of heat-treating the mold 2 has been described, it is also possible to use the mold without performing the heat treatment in consideration of the use environment and use frequency of the mold.

【0018】次に、本発明の第2の実施の形態に係る連
続鋳造用鋳型について説明するが、これは、本発明の第
1の実施の形態に係る連続鋳造用鋳型の溶射皮膜12を
形成する微粉末の耐摩耗性硬質セラミックスの代わり
に、耐摩耗性硬質セラミックスの微粉末とCo、Ni、
Cr、Fe又はこれらの合金のいずれか一種以上を含む
サーメットを用いたものである。従って、溶射皮膜12
の成分が代わっただけで、溶射施工、すなわち、溶射皮
膜の溶射方法、溶射皮膜の厚み、銅板の前加工等は本発
明の第1の実施の形態に係る連続鋳造用鋳型と同じであ
るため、同一の番号を付してその詳しい説明を省略す
る。また、溶射皮膜の形成方法や熱処理についてもその
詳しい説明を省略する。本発明の第2の実施の形態に係
る連続鋳造用鋳型は、1対の長辺鋳型部(長辺鋳型の一
片)と、1対の短辺鋳型部(図示しない)とを、例えば
4つ組みして製造されたものである。そして、この長辺
鋳型部を構成する鋳型本体11の内側表面には、溶射皮
膜12が形成されている。この溶射皮膜12を形成する
微粉末は、Cr:0又は0を超え8質量%以下、B:
1.0〜4.5質量%、Si:1.5〜5.0質量%、
C:1.1質量%以下、Fe:5.0質量%以下、C
o:1.0質量%以下、Mo:4.0質量%以下、C
u:4.0質量%以下、残部Niからなるニッケル基自
溶合金を金属マトリックスとする。また、この溶射皮膜
12の耐摩耗材としては、耐摩耗性硬質セラミックス
(例えば、炭化物、酸化物、硼化物、窒化物、ケイ化物
のいずれか1又は2以上)とCo、Ni、Cr、Fe又
はこれらの合金のいずれか一種以上を含むサーメットか
らなっている。なお、このサーメットは、溶射皮膜12
を形成する微粉末内に5〜50質量%含まれている。ま
た、溶射皮膜12は、Ni又はNiを主体とする合金の
めっき層13を介して、鋳型本体11の内側表面に形成
されている。以下、詳しく説明する。
Next, a description will be given of a continuous casting mold according to a second embodiment of the present invention, which forms a sprayed coating 12 of the continuous casting mold according to the first embodiment of the present invention. Instead of the fine powder of wear-resistant hard ceramics, fine powder of wear-resistant hard ceramics and Co, Ni,
A cermet containing one or more of Cr, Fe, or an alloy thereof is used. Therefore, the thermal spray coating 12
Only the composition of the thermal spraying, that is, the thermal spraying method of the thermal spray coating, the thickness of the thermal spray coating, the pre-processing of the copper plate, etc. are the same as those of the continuous casting mold according to the first embodiment of the present invention. , And the detailed description thereof will be omitted. In addition, a detailed description of the method of forming the thermal spray coating and the heat treatment will be omitted. The continuous casting mold according to the second embodiment of the present invention includes, for example, four long-side mold parts (one piece of a long-side mold) and one pair of short-side mold parts (not shown). It is manufactured in combination. A thermal spray coating 12 is formed on the inner surface of the mold main body 11 constituting the long side mold portion. The fine powder forming the thermal spray coating 12 is Cr: 0 or more than 0 and 8% by mass or less.
1.0 to 4.5% by mass, Si: 1.5 to 5.0% by mass,
C: 1.1% by mass or less, Fe: 5.0% by mass or less, C
o: 1.0% by mass or less, Mo: 4.0% by mass or less, C
u: 4.0 mass% or less, a nickel-based self-fluxing alloy consisting of the balance Ni is used as a metal matrix. Further, as the wear-resistant material of the thermal spray coating 12, a wear-resistant hard ceramic (for example, one or more of carbide, oxide, boride, nitride, and silicide) and Co, Ni, Cr, Fe, or It consists of a cermet containing one or more of these alloys. In addition, this cermet is used for the thermal spray coating 12.
Is contained in an amount of 5 to 50% by mass in the fine powder. The thermal spray coating 12 is formed on the inner surface of the mold body 11 via a plating layer 13 of Ni or an alloy mainly composed of Ni. The details will be described below.

【0019】サーメットは、耐摩耗性硬質セラミックス
が10〜90質量%、Co、Ni、Cr、Fe又はこれ
らの合金のいずれか一種以上のマトリックスが90〜1
0質量%となっているものを使用することが好ましい。
ここで一方の成分に対し、他方の成分を10〜90質量
%としたのは、マトリックスが10質量%未満であれ
ば、耐摩耗性硬質セラミックスの接合性が悪くなり、9
0質量%を超えるとマトリックス内の耐摩耗性硬質セラ
ミックス(骨材)が不足し、充分な強度が得られないか
らである。
The cermet is composed of 10 to 90% by mass of a wear-resistant hard ceramic and 90 to 1% of a matrix of at least one of Co, Ni, Cr, Fe or an alloy thereof.
It is preferable to use one having 0% by mass.
Here, the reason that the other component is set to 10 to 90% by mass with respect to one component is that if the matrix is less than 10% by mass, the bondability of the wear-resistant hard ceramic becomes poor,
If the amount exceeds 0% by mass, the wear-resistant hard ceramics (aggregate) in the matrix becomes insufficient, and sufficient strength cannot be obtained.

【0020】このサーメットに使用する耐摩耗性硬質セ
ラミックスは、本発明の第1の実施の形態に係る連続鋳
造用鋳型に使用した耐摩耗性硬質セラミックスと同一の
ものである。ここで、サーメットの含有割合を5〜50
質量%としたのは、5質量%未満では、溶射皮膜12が
耐摩耗性を発揮するために充分な量でなく、一方、50
質量%を超えると、溶射皮膜12の硬度が高くなり、鋳
型を繰返し使用することで溶射皮膜12にクラックが入
る可能性があるためである。従って、溶射皮膜12にク
ラックが入ることなく、溶射皮膜12がより耐摩耗性を
発揮し、しかも必要な硬度を得るには、10〜40質量
%、更には15〜40質量%とすることが好ましい。こ
の実施の形態の場合、溶射皮膜12を900〜1100
℃で熱処理(フュージング)することで、溶射皮膜12
とめっき層13との境界面近傍の拡散が開始し、また溶
射皮膜12内の金属マトリックスとサーメットの微粉末
も互いに拡散し始める。従って、鋳型本体11に対する
溶射皮膜12の密着力を向上させ、更に溶射皮膜12の
強度も向上させることが可能となる。なお、ここでは、
鋳型本体11の銅板14の内側表面(加工面)にNi又
はNiを主体とする合金のめっき層13を施した場合に
ついて示したが、めっき層13を介することなく(R=
0)、前記の方法で溶射皮膜12を鋳型本体11の銅板
14の内側表面に形成することも可能である。この場
合、溶射皮膜12を900〜1100℃で熱処理するこ
とで、溶射皮膜12と銅板14との境界面近傍の拡散が
開始する。
The wear-resistant hard ceramic used for the cermet is the same as the wear-resistant hard ceramic used for the continuous casting mold according to the first embodiment of the present invention. Here, the content ratio of the cermet is 5 to 50.
If the amount is less than 5% by mass, the amount is not sufficient for the thermal sprayed coating 12 to exhibit abrasion resistance.
If the content exceeds mass%, the hardness of the thermal spray coating 12 increases, and cracks may occur in the thermal spray coating 12 by repeatedly using the mold. Therefore, in order for the thermal sprayed coating 12 to exhibit more abrasion resistance without cracking in the thermal sprayed coating 12 and to obtain the required hardness, the content should be 10 to 40% by mass, more preferably 15 to 40% by mass. preferable. In the case of this embodiment, the thermal spray coating 12 is 900 to 1100
By heat treatment (fusing) at a temperature of .degree.
The diffusion near the interface between the metal layer and the plating layer 13 starts, and the metal matrix and the fine powder of the cermet in the thermal spray coating 12 also begin to diffuse with each other. Therefore, it is possible to improve the adhesion of the thermal spray coating 12 to the mold body 11 and further improve the strength of the thermal spray coating 12. Here,
The case where the plating layer 13 of Ni or an alloy mainly composed of Ni is applied to the inner surface (working surface) of the copper plate 14 of the mold body 11 is shown, but without the plating layer 13 (R =
0) It is also possible to form the thermal spray coating 12 on the inner surface of the copper plate 14 of the mold body 11 by the method described above. In this case, the heat treatment of the thermal spray coating 12 at 900 to 1100 ° C. starts diffusion near the interface between the thermal spray coating 12 and the copper plate 14.

【0021】[0021]

【実施例】本発明に係る連続鋳造用鋳型の一部(発明
材)を使用し、溶射皮膜の耐クラック性試験、耐溶着性
試験、耐摩耗性試験をそれぞれ行った試験結果について
現行材と比較して説明する。ここで発明材に使用した溶
射皮膜を形成する微粉末の金属マトリックスは、Cr:
0又は0を超え8質量%以下、B:1.0〜4.5質量
%、Si:1.5〜5.0質量%、C:1.1質量%以
下、Fe:5.0質量%以下、Co:1.0質量%以
下、Mo:4.0質量%以下、Cu:4.0質量%以
下、残部Niからなるニッケル基自溶合金である。ま
た、サーメットは、耐摩耗性硬質セラミックスとしてC
23 の微粉末とNiCrを含んでいる。まず、図3
に示すように、耐クラック性試験は、移動速度を種々に
変化させた火炎(フレーム)装置20からの火炎21
を、溶射皮膜22上に吹き付けて実施した。このよう
に、火炎装置20の移動速度を変化させることで、溶射
皮膜22の加熱速度及び冷却速度を変化させ、溶射皮膜
22の表層部に発生する平均クラック間隔(クラックの
大きさ)を測定して耐クラック性の評価を行った。図4
に示すように、現行材は平均クラック間隔の数値が高い
が、発明材にはクラックが発生していないため、現行材
と比較し発明材は耐クラック性が良好となったことが分
かる。
EXAMPLE Using a part (inventive material) of a continuous casting mold according to the present invention, a crack resistance test, a welding resistance test, and a wear resistance test of a thermal sprayed coating were performed. A comparison will be described. Here, the metal matrix of the fine powder used to form the thermal spray coating used in the invention material is Cr:
0 or more than 0 and 8% by mass or less, B: 1.0 to 4.5% by mass, Si: 1.5 to 5.0% by mass, C: 1.1% by mass or less, Fe: 5.0% by mass Hereinafter, it is a nickel-based self-fluxing alloy composed of 1.0 mass% or less of Co, 4.0 mass% or less of Mo, 4.0 mass% or less of Cu, and the balance of Ni. Cermet is a wear-resistant hard ceramic with C
It contains fine powder of r 2 C 3 and NiCr. First, FIG.
As shown in the figure, the crack resistance test was conducted by the flame 21 from the flame (frame) device 20 with various moving speeds.
Was sprayed onto the thermal spray coating 22. As described above, by changing the moving speed of the flame device 20, the heating speed and the cooling speed of the sprayed coating 22 are changed, and the average crack interval (the size of cracks) generated in the surface layer portion of the sprayed coating 22 is measured. To evaluate the crack resistance. FIG.
As shown in Table 2, the average crack interval value of the current material is high, but no crack occurs in the invention material, so that the invention material has better crack resistance than the current material.

【0022】次に、耐溶着性試験は、一辺が50cmの
正方形で、厚みが30cmの直方体の銅塊の表面に、厚
みが0.5mmの溶射皮膜を形成したものを使用して実
施した。この溶射皮膜上に溶解温度1650℃の溶鋼を
流すことで、溶射皮膜側の銅塊の表層温度を計測し、更
に溶射皮膜に対する溶鋼の溶着状態を確認して、溶射皮
膜に対する溶鋼の耐溶着性の評価を行った。図5に示す
ように、現行材の場合、銅塊の表層温度が約400℃程
度で溶射皮膜に対する溶鋼の溶着が開始するが、発明材
の場合、約690℃程度で溶射皮膜に対する溶鋼の溶着
が開始する。従って、発明材である溶射皮膜の溶着温度
は、現行材と比較し約290℃程度上昇させることが可
能となり、現行材と比較し発明材は耐溶着性が良好とな
ったことが分かる。そして、図6に示すように、耐摩耗
性試験は雰囲気温度を300℃とし、溶射皮膜23上で
円柱状の鋼材(S45C)24を、鋼材24の軸心を中
心として時計廻りに回転させて行った。なお耐摩耗性の
評価は、発明材及び現行材の摩耗量と摩擦係数をぞれぞ
れ測定することで行った。図7に示すように、発明材は
現行材と比較して、摩耗減量が約半分程度となり、しか
も摩擦係数も低下しているため、耐摩耗性が良好となっ
たことが分かる。前記した試験結果から、発明材は現行
材と比較し、耐クラック性、耐溶着性、耐摩耗性に優れ
た材料であることが分かる。
Next, the welding resistance test was carried out using a square copper piece having a side of 50 cm and a thickness of 30 cm and a sprayed coating having a thickness of 0.5 mm formed on the surface of a rectangular solid copper piece having a thickness of 30 cm. By flowing molten steel having a melting temperature of 1650 ° C. on the thermal spray coating, the surface temperature of the copper lump on the thermal spray coating side was measured, and further, the welding state of the molten steel to the thermal spray coating was confirmed. Was evaluated. As shown in FIG. 5, in the case of the current material, welding of the molten steel to the sprayed coating starts when the surface layer temperature of the copper ingot is about 400 ° C., while in the case of the invention material, the welding of the molten steel to the sprayed coating is performed at about 690 ° C. Starts. Therefore, the welding temperature of the thermal spray coating of the invention material can be increased by about 290 ° C. as compared with the current material, and it can be seen that the invention material has better welding resistance than the current material. Then, as shown in FIG. 6, in the wear resistance test, the atmosphere temperature was set to 300 ° C., and the columnar steel material (S45C) 24 was rotated clockwise around the axis of the steel material 24 on the thermal sprayed coating 23. went. The wear resistance was evaluated by measuring the wear amount and the friction coefficient of the inventive material and the current material, respectively. As shown in FIG. 7, it can be seen that the invented material has improved abrasion resistance because the abrasion loss is about half and the friction coefficient is reduced as compared with the current material. From the test results described above, it can be seen that the inventive material is a material excellent in crack resistance, welding resistance, and abrasion resistance as compared with the current material.

【0023】以上、本発明を、実施の形態を参照して説
明してきたが、本発明は何ら上記した実施の形態に記載
の構成に限定されるものではなく、特許請求の範囲に記
載されている事項の範囲内で考えられるその他の実施の
形態や変形例も含むものである。例えば、前記実施の形
態においては、長辺鋳型部を構成する鋳型本体の内側表
面に溶射皮膜が形成された場合について示したが、短辺
鋳型部を構成する鋳型本体の内側表面に溶射皮膜を形成
することも可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. The present invention also includes other embodiments and modifications that can be considered within the scope of the matters. For example, in the above-described embodiment, the case where the thermal spray coating is formed on the inner surface of the mold main body constituting the long side mold portion has been described, but the thermal spray coating is formed on the inner surface of the mold main body constituting the short side mold portion. It is also possible to form.

【0024】[0024]

【発明の効果】請求項1及びこれに従属する請求項3、
4、5記載の連続鋳造用鋳型においては、ニッケル基自
溶合金の金属マトリックスを使用することで、溶射皮膜
の靱性、熱伝導率等が向上するため、溶射皮膜に対する
連続鋳造用鋳型に鋳込む溶鋼の耐クラック性及び耐溶着
性を改善することが可能となる。また、耐摩耗性硬質セ
ラミックスの微粉末を使用することで、溶射皮膜の耐摩
耗性を向上させることが可能となる。これにより、連続
鋳造用鋳型の冷却が十分に行われない場合でも、半凝固
状態となった溶鋼は、溶射皮膜に溶着することなく、し
かも溶射皮膜にクラックを発生させることなく、容易に
鋳型から引抜くことが可能となる。また、半凝固状態と
なった溶鋼が溶射皮膜と接触しながら引抜かれた場合で
も、耐摩耗性を向上させた溶射皮膜により、半凝固状態
となった溶鋼は、従来の鋳型のように溶射皮膜を摩耗さ
せることなく鋳型から引抜くことが可能となる。従っ
て、鋳型の寿命を伸ばすことが可能となり、経済性が良
好となる。
According to the first aspect and the third aspect dependent thereon,
In the continuous casting molds described in 4 and 5, the use of a metal matrix of a nickel-based self-fluxing alloy improves the toughness, thermal conductivity, and the like of the sprayed coating. It is possible to improve the crack resistance and welding resistance of the molten steel. Further, by using fine powder of wear-resistant hard ceramics, it becomes possible to improve the wear resistance of the sprayed coating. As a result, even when the continuous casting mold is not sufficiently cooled, the semi-solidified molten steel can be easily removed from the mold without welding to the sprayed coating and without generating cracks in the sprayed coating. It becomes possible to pull out. Even when the semi-solidified molten steel is drawn out while in contact with the sprayed coating, the semi-solidified molten steel can be spray-coated like a conventional mold by the sprayed coating with improved wear resistance. Can be pulled out of the mold without abrasion. Therefore, the life of the mold can be extended, and the economy is improved.

【0025】請求項2及びこれに従属する請求項3、
4、5記載の連続鋳造用鋳型においては、ニッケル基自
溶合金の金属マトリックスを使用することで、溶射皮膜
の靱性、熱伝導率等が向上するため、溶射皮膜に対する
連続鋳造用鋳型に鋳込む溶鋼の耐クラック性及び耐溶着
性を改善することが可能となる。また、市販のサーメッ
トを使用して、溶射皮膜の耐摩耗性を向上させることが
可能となる。これにより、連続鋳造用鋳型の冷却が十分
に行われない場合でも、半凝固状態となった溶鋼は、溶
射皮膜に溶着することなく、しかも溶射皮膜にクラック
を発生させることなく、容易に鋳型から引抜くことが可
能となる。また、半凝固状態となった溶鋼が、溶射皮膜
と接触しながら引抜かれた場合でも、市販のサーメット
を用いて耐摩耗性を向上させた溶射皮膜により、半凝固
状態となった溶鋼は、従来の鋳型のように溶射皮膜を摩
耗させることなく鋳型から引抜くことが可能となる。従
って、経済性が良好な鋳型を製造することが可能とな
り、しかも鋳型の寿命を伸ばすことも可能となる。
Claim 2 and dependent claims 3,
In the continuous casting molds described in 4 and 5, the use of a metal matrix of a nickel-based self-fluxing alloy improves the toughness, thermal conductivity, and the like of the sprayed coating. It is possible to improve the crack resistance and welding resistance of the molten steel. In addition, it is possible to improve the wear resistance of the thermal spray coating by using a commercially available cermet. As a result, even when the continuous casting mold is not sufficiently cooled, the semi-solidified molten steel can be easily removed from the mold without welding to the sprayed coating and without generating cracks in the sprayed coating. It becomes possible to pull out. In addition, even if the molten steel in the semi-solid state is drawn out while contacting with the sprayed coating, the molten steel in the semi-solidified state is not It is possible to pull out the sprayed coating from the mold without abrasion of the sprayed coating as in the case of the mold. Therefore, it is possible to manufacture a mold with good economy, and it is also possible to extend the life of the mold.

【0026】特に、請求項3記載の連続鋳造用鋳型にお
いては、溶射皮膜の耐摩耗性を更に向上させることが可
能となるので、鋳型の寿命を更に伸ばすことが可能とな
る。請求項4記載の連続鋳造用鋳型においては、溶射皮
膜及びめっき層共にNiを含んでいることで、鋳型本体
の内側表層部の酸化を防止することが可能となり、例え
ば900〜1100℃で熱処理する時に、溶射皮膜とめ
っき層との間で相互拡散が生じ易くなるので、鋳型本体
に対する溶射皮膜の密着強度を安定させることが可能と
なる。従って、鋳型本体の内側表面に、容易に溶射皮膜
を溶射でき、しかも鋳型本体の内側表面から溶射皮膜が
剥離しにくくなるため、安定した品質を有する鋳型を製
造することが可能となる。請求項5記載の連続鋳造用鋳
型においては、溶射皮膜と鋳型本体の内側表層部との拡
散が開始し、鋳型本体に対する溶射皮膜の密着力を向上
させることが可能となる。そして、溶射皮膜内の金属マ
トリックスと耐摩耗性硬質セラミックスの微粉末、また
金属マトリックスとサーメットの微粉末も互いに拡散し
て溶射皮膜の強度も向上させることが可能となる。従っ
て、より安定した品質を有する鋳型を製造することが可
能となる。
In particular, in the continuous casting mold according to the third aspect, the wear resistance of the sprayed coating can be further improved, so that the life of the mold can be further extended. In the continuous casting mold according to the fourth aspect, since the thermal spray coating and the plating layer both contain Ni, it is possible to prevent oxidation of the inner surface layer of the mold main body, and for example, heat-treat at 900 to 1100 ° C. Occasionally, mutual diffusion between the sprayed coating and the plating layer is likely to occur, so that the adhesion strength of the sprayed coating to the mold body can be stabilized. Therefore, the sprayed coating can be easily sprayed on the inner surface of the mold main body, and the sprayed coating is hardly peeled off from the inner surface of the mold main body, so that a mold having stable quality can be manufactured. In the continuous casting mold according to the fifth aspect, diffusion of the thermal spray coating and the inner surface layer portion of the mold main body starts, and the adhesion of the thermal spray coating to the mold main body can be improved. Then, the metal matrix and the fine powder of the wear-resistant hard ceramic, and the fine powder of the metal matrix and the cermet in the thermal spray coating are also diffused with each other, so that the strength of the thermal spray coating can be improved. Therefore, it is possible to manufacture a mold having more stable quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る連続鋳造用鋳
型の長辺鋳型部の要部平断面図である。
FIG. 1 is a plan cross-sectional view of a main part of a long side mold portion of a continuous casting mold according to a first embodiment of the present invention.

【図2】(A)、(B)、(C)はそれぞれ同連続鋳造
用鋳型の長辺鋳型部の斜視図、同連続鋳造用鋳型に傾斜
した溶射皮膜を施工する場合の説明図、同連続鋳造用鋳
型に部分的な溶射皮膜を施工する場合の説明図である。
2 (A), 2 (B), and 2 (C) are perspective views of a long-side mold portion of the continuous casting mold, respectively, and an explanatory diagram in the case where an inclined thermal spray coating is applied to the continuous casting mold. It is explanatory drawing in the case of applying a partial spray coating to the casting mold for continuous casting.

【図3】耐クラック性試験の試験方法の説明図である。FIG. 3 is an explanatory diagram of a test method of a crack resistance test.

【図4】耐クラック性試験の試験結果の説明図である。FIG. 4 is an explanatory diagram of test results of a crack resistance test.

【図5】耐溶着試験の試験結果の説明図である。FIG. 5 is an explanatory diagram of a test result of a welding resistance test.

【図6】耐摩耗試験の試験方法の説明図である。FIG. 6 is an explanatory diagram of a test method of a wear resistance test.

【図7】耐摩耗試験の試験結果の説明図である。FIG. 7 is an explanatory diagram of test results of a wear resistance test.

【図8】連続鋳造用鋳型に溶鋼を充填した場合の模式図
及びそのときの温度分布を示すグラフである。
FIG. 8 is a schematic diagram when molten steel is filled in a continuous casting mold and a graph showing a temperature distribution at that time.

【符号の説明】[Explanation of symbols]

11:鋳型本体、12:溶射皮膜、13:めっき層、1
4:銅板、15:バックプレート(水箱)、16:銅
板、17:銅板、18:溶射皮膜、19:溶射皮膜、2
0:火炎(フレーム)装置、21:火炎、22:溶射皮
膜、23:溶射皮膜、24:鋼材
11: Mold body, 12: Thermal spray coating, 13: Plating layer, 1
4: Copper plate, 15: Back plate (water box), 16: Copper plate, 17: Copper plate, 18: Thermal spray coating, 19: Thermal spray coating, 2
0: Flame (frame) device, 21: Flame, 22: Thermal spray coating, 23: Thermal spray coating, 24: Steel material

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E004 AB04 4K031 AA03 AB08 BA05 CB30 CB39 CB42 CB44 CB45 CB46 CB47 FA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4E004 AB04 4K031 AA03 AB08 BA05 CB30 CB39 CB42 CB44 CB45 CB46 CB47 FA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋳型本体の内側表面に溶射皮膜が形成さ
れた連続鋳造用鋳型において、前記溶射皮膜を形成する
微粉末は、Cr:0又は0を超え8質量%以下、B:
1.0〜4.5質量%、Si:1.5〜5.0質量%、
C:1.1質量%以下、Fe:5.0質量%以下、C
o:1.0質量%以下、Mo:4.0質量%以下、C
u:4.0質量%以下、残部Niからなるニッケル基自
溶合金の金属マトリックスと、耐摩耗性硬質セラミック
スの微粉末とからなって該耐摩耗性硬質セラミックスを
5〜50質量%含むことを特徴とする連続鋳造用鋳型。
In a continuous casting mold in which a sprayed coating is formed on the inner surface of a mold body, the fine powder forming the sprayed coating is Cr: 0 or more than 0 and 8% by mass or less, B:
1.0 to 4.5% by mass, Si: 1.5 to 5.0% by mass,
C: 1.1% by mass or less, Fe: 5.0% by mass or less, C
o: 1.0% by mass or less, Mo: 4.0% by mass or less, C
u: 4.0 mass% or less, comprising a metal matrix of a nickel-based self-fluxing alloy composed of a balance of Ni and a fine powder of a wear-resistant hard ceramic, containing 5 to 50 mass% of the wear-resistant hard ceramic. Characteristic continuous casting mold.
【請求項2】 鋳型本体の内側表面に溶射皮膜が形成さ
れた連続鋳造用鋳型において、前記溶射皮膜を形成する
微粉末は、Cr:0又は0を超え8質量%以下、B:
1.0〜4.5質量%、Si:1.5〜5.0質量%、
C:1.1質量%以下、Fe:5.0質量%以下、C
o:1.0質量%以下、Mo:4.0質量%以下、C
u:4.0質量%以下、残部Niからなるニッケル基自
溶合金の金属マトリックスと、耐摩耗性硬質セラミック
スの微粉末とCo、Ni、Cr、Fe又はこれらの合金
のいずれか一種以上を含むサーメットからなって、該サ
ーメットを5〜50質量%含むことを特徴とする連続鋳
造用鋳型。
2. In a continuous casting mold in which a thermal spray coating is formed on the inner surface of a mold body, the fine powder forming the thermal spray coating is Cr: 0 or more than 0 and 8% by mass or less, B:
1.0 to 4.5% by mass, Si: 1.5 to 5.0% by mass,
C: 1.1% by mass or less, Fe: 5.0% by mass or less, C
o: 1.0% by mass or less, Mo: 4.0% by mass or less, C
u: 4.0% by mass or less, containing a metal matrix of a nickel-based self-fluxing alloy composed of the balance Ni, fine powder of wear-resistant hard ceramics, and one or more of Co, Ni, Cr, Fe, and alloys thereof. A continuous casting mold comprising cermet and containing the cermet in an amount of 5 to 50% by mass.
【請求項3】 請求項1又は2記載の連続鋳造用鋳型に
おいて、前記耐摩耗性硬質セラミックスは、炭化物、酸
化物、硼化物、窒化物、ケイ化物のいずれか1又は2以
上であることを特徴とする連続鋳造用鋳型。
3. The continuous casting mold according to claim 1, wherein the wear-resistant hard ceramic is at least one of carbide, oxide, boride, nitride, and silicide. Characteristic continuous casting mold.
【請求項4】 請求項1〜3のいずれか1項に記載の連
続鋳造用鋳型において、前記溶射皮膜は、Ni又はNi
を主体とする合金のめっき層を介して、前記鋳型本体の
内側表面に形成されていることを特徴とする連続鋳造用
鋳型。
4. The continuous casting mold according to claim 1, wherein the thermal spray coating is made of Ni or Ni.
A continuous casting mold formed on the inner surface of the mold body via a plating layer of an alloy mainly composed of:
【請求項5】 請求項1〜4のいずれか1項に記載の連
続鋳造用鋳型において、前記鋳型本体の内側表面に前記
溶射皮膜を形成した後、該溶射皮膜を900〜1100
℃で熱処理することを特徴とする連続鋳造用鋳型。
5. The continuous casting mold according to claim 1, wherein the sprayed coating is formed on the inner surface of the mold body, and then the sprayed coating is formed in a range of 900 to 1100.
A continuous casting mold characterized by being heat-treated at a temperature of ° C.
JP2000279824A 2000-09-14 2000-09-14 Manufacturing method of continuous casting mold Expired - Lifetime JP3916388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279824A JP3916388B2 (en) 2000-09-14 2000-09-14 Manufacturing method of continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279824A JP3916388B2 (en) 2000-09-14 2000-09-14 Manufacturing method of continuous casting mold

Publications (2)

Publication Number Publication Date
JP2002086248A true JP2002086248A (en) 2002-03-26
JP3916388B2 JP3916388B2 (en) 2007-05-16

Family

ID=18764774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279824A Expired - Lifetime JP3916388B2 (en) 2000-09-14 2000-09-14 Manufacturing method of continuous casting mold

Country Status (1)

Country Link
JP (1) JP3916388B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307938A (en) * 2003-04-07 2004-11-04 Honda Motor Co Ltd Method for coupling thermal spraying layer and iron and steel members
JP2006247722A (en) * 2005-03-11 2006-09-21 Mishima Kosan Co Ltd Casting mold for continuous casting
JP2006263807A (en) * 2005-03-22 2006-10-05 Nippon Steel Hardfacing Co Ltd Roll for continuous casting having excellent wear resistance
JP2009142839A (en) * 2007-12-12 2009-07-02 Mishima Kosan Co Ltd Mold for continuous casting
JP2009160632A (en) * 2008-01-09 2009-07-23 Mishima Kosan Co Ltd Mold for continuous casting
KR100940552B1 (en) * 2002-08-16 2010-02-10 카엠이 저머니 아게 Liquid-cooled mold
CN102513723A (en) * 2011-11-16 2012-06-27 广汉川冶新材料有限责任公司 Welding powder
JP2012250274A (en) * 2011-06-06 2012-12-20 Mishima Kosan Co Ltd Continuous casting mold
JPWO2018142225A1 (en) * 2017-02-03 2020-04-16 日産自動車株式会社 Sliding member and sliding member of internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225469B (en) * 2011-06-07 2013-01-09 南通高欣金属陶瓷复合材料有限公司 Ceramic grid-enhanced metal wear-resistant composite and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940552B1 (en) * 2002-08-16 2010-02-10 카엠이 저머니 아게 Liquid-cooled mold
JP2004307938A (en) * 2003-04-07 2004-11-04 Honda Motor Co Ltd Method for coupling thermal spraying layer and iron and steel members
JP2006247722A (en) * 2005-03-11 2006-09-21 Mishima Kosan Co Ltd Casting mold for continuous casting
JP4694227B2 (en) * 2005-03-11 2011-06-08 三島光産株式会社 Continuous casting mold
JP2006263807A (en) * 2005-03-22 2006-10-05 Nippon Steel Hardfacing Co Ltd Roll for continuous casting having excellent wear resistance
JP4724453B2 (en) * 2005-03-22 2011-07-13 日鉄ハード株式会社 Continuous casting roll with excellent wear resistance
JP2009142839A (en) * 2007-12-12 2009-07-02 Mishima Kosan Co Ltd Mold for continuous casting
JP2009160632A (en) * 2008-01-09 2009-07-23 Mishima Kosan Co Ltd Mold for continuous casting
JP2012250274A (en) * 2011-06-06 2012-12-20 Mishima Kosan Co Ltd Continuous casting mold
CN102513723A (en) * 2011-11-16 2012-06-27 广汉川冶新材料有限责任公司 Welding powder
JPWO2018142225A1 (en) * 2017-02-03 2020-04-16 日産自動車株式会社 Sliding member and sliding member of internal combustion engine
US11187116B2 (en) 2017-02-03 2021-11-30 Nissan Motor Co., Ltd. Sliding member, and sliding member of internal combustion engine

Also Published As

Publication number Publication date
JP3916388B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
KR100802329B1 (en) Method of preparing metal matrix composite and coating layer and bulk prepared by using the same
JPWO2005028143A1 (en) Continuous casting mold and method for continuous casting of copper alloy
MX2007013601A (en) Coating process for manufacture or reprocessing of sputter targets and x-ray anodes.
CN110804711A (en) High-entropy alloy powder and preparation method and application of laser cladding layer
JP2002086248A (en) Die for continuous casting
JP3204637B2 (en) Manufacturing method of self-fluxing alloy spray-coated member
CN109930148A (en) The method and powder of Copper Water Jacket are prepared based on low pressure cold spraying increases material manufacturing technology
JP5096899B2 (en) Continuous casting mold and W-based self-fluxing alloy
KR20000039464A (en) Alloy powdered material of zirconium for amorphous thermal spraying coating
JP4231582B2 (en) Corrosion-resistant wear-resistant sliding member and manufacturing method thereof
JP4694227B2 (en) Continuous casting mold
JP4146112B2 (en) Water cooling lance for metallurgy and manufacturing method thereof
JP5222567B2 (en) Continuous casting mold
JP4408649B2 (en) Dipping member for hot metal plating baths with excellent dross resistance
JP4093688B2 (en) Continuous casting mold
JP2000345313A (en) Production of roll used for continuous casting improved in heat resistance, corrosion resistance and wear resistance of surface of base material of roll barrel part applied with repeated thermal impact and sliding wear
JP3846960B2 (en) Welding torch member and manufacturing method thereof
JP3524684B2 (en) Casting mold parts and casting equipment
JP3622437B2 (en) Continuous casting mold and continuous casting method using the same
KR102289658B1 (en) Mold for continuous casting and coating method of mold for continuous casting
JPH08117984A (en) Sliding nozzle plate refractories
JP2005059034A (en) Continuous casting mold having functionality
JP2006255733A (en) Mold copper plate for continuous casting
JPH09316621A (en) Sprayed coating suitable for sliding wear resistant member subjected to repeated thermal impact
JPH0871704A (en) Mold for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3916388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term