JP2016203188A - Hot-forging metal mold - Google Patents

Hot-forging metal mold Download PDF

Info

Publication number
JP2016203188A
JP2016203188A JP2015084773A JP2015084773A JP2016203188A JP 2016203188 A JP2016203188 A JP 2016203188A JP 2015084773 A JP2015084773 A JP 2015084773A JP 2015084773 A JP2015084773 A JP 2015084773A JP 2016203188 A JP2016203188 A JP 2016203188A
Authority
JP
Japan
Prior art keywords
die
mold
piece
hot forging
metal mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015084773A
Other languages
Japanese (ja)
Other versions
JP6528941B2 (en
Inventor
昇平 佐々木
Shohei Sasaki
昇平 佐々木
松本 英樹
Hideki Matsumoto
英樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015084773A priority Critical patent/JP6528941B2/en
Publication of JP2016203188A publication Critical patent/JP2016203188A/en
Application granted granted Critical
Publication of JP6528941B2 publication Critical patent/JP6528941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hot-forging metal mold capable of further surely preventing a crack of the hot-forging metal mold used therefor, even when manufacturing a forging material for a large-sized turbine blade.SOLUTION: A hot-forging metal mold for a turbine blade is integrally constituted by joining a plurality of metal mold pieces. The hot-forging metal mold comprises a turbine blade-shaped diesinking surface, and in the hot-forging metal mold, the plurality of metal mold pieces comprise a base material metal mold installed as an insert mold, a first metal mold piece having a square part and a second metal mold piece having a corner part corresponding to the square part. The first metal mold piece is provided with a chamfer part on the tip of the square part, and a joining part of the first metal mold piece and the second metal mold piece is provided with a gap part constituted of the chamfer part.SELECTED DRAWING: Figure 1

Description

本発明は、複数の金型片を組み合わせて一体に構成された熱間鍛造用金型に関するものである。   The present invention relates to a hot forging die configured integrally by combining a plurality of die pieces.

近年、蒸気タービンの高効率化の要請により、蒸気タービンに用いられるタービンブレードも長尺化してきている。約1500mmを超える長尺のブレード素材を製造する場合では、素材を上型と下型の間に挟み込んで、大型のプレス鍛造でブレード素材に成形する方法が主流である。例えば、特開平4−46651号公報(特許文献1)には三次元形状をした型彫り面を有する上金型および下金型の打撃面を互いに型合わせして構成された三次元形状に捩れたキャビティーを用いて鍛造を行うタービンブレードの製造方法の発明が開示されている。ここに開示されている上金型及び下金型は、1つの金属材料で一体物で構成されている(例えば、特許文献1の図2及び図4参照)。
これに対して、大型のタービンブレード用に最適な熱間鍛造用金型として、本願出願人の提案による特開2014−208379号公報(特許文献2)の提案がある。
In recent years, turbine blades used in steam turbines have become longer due to the demand for higher efficiency of steam turbines. When manufacturing a long blade material exceeding about 1500 mm, the mainstream method is to insert the material between an upper die and a lower die and form the blade material by large-scale press forging. For example, in Japanese Patent Laid-Open No. 4-46651 (Patent Document 1), the upper die and the lower die having a three-dimensional shaped engraving surface are twisted into a three-dimensional shape formed by matching each other. An invention of a method for manufacturing a turbine blade forging using a cavity is disclosed. The upper mold and the lower mold disclosed here are formed of a single metal material as a single body (see, for example, FIGS. 2 and 4 of Patent Document 1).
On the other hand, as a hot forging die optimum for a large turbine blade, there is a proposal of Japanese Patent Application Laid-Open No. 2014-208379 (Patent Document 2) proposed by the applicant of the present application.

特開平4−46651号公報Japanese Patent Laid-Open No. 4-46651 特開2014−208379号公報JP 2014-208379 A

前述の特許文献のうち、特許文献2の発明は、特許文献1では解決することが困難な大型の熱間鍛造用金型の所望の箇所に任意の肉盛層を形成することを容易とすることができるものである。また、分割可能な熱間鍛造用金型とすることで、一体物の熱間鍛造用金型の一部に割れ等の修復不能な欠陥が生じた場合には、熱間鍛造用金型の一部を交換することもでき、大型の鍛造材を得るための熱間鍛造用金型としては優れたものである。
前述した通り、特許文献2では割れ等の不具合が生じた場合にはその部分の金型片を取り換えることが容易であるが、割れの発生自体をより確実に防止することができれば、大型のタービンブレード用の熱間鍛造用金型としては更に好適なものとすることができる。
本発明の目的は、大型のタービンブレード用鍛造材を製造する場合であっても、それに用いる熱間鍛造用金型の割れをより確実に防止することが可能な熱間鍛造用金型を提供することである。
Of the above-mentioned patent documents, the invention of Patent Document 2 makes it easy to form an arbitrary built-up layer at a desired location of a large hot forging die that is difficult to solve with Patent Document 1. It is something that can be done. In addition, by making a hot forging die that can be divided, if a non-repairable defect such as a crack occurs in a part of the integral hot forging die, the hot forging die A part can be exchanged, and it is excellent as a hot forging die for obtaining a large forging material.
As described above, in Patent Document 2, if a defect such as a crack occurs, it is easy to replace the mold piece at that portion. However, if the occurrence of the crack itself can be prevented more reliably, a large turbine It can be made more suitable as a hot forging die for blades.
An object of the present invention is to provide a hot forging die capable of more reliably preventing cracking of a hot forging die used for manufacturing a large forging material for a turbine blade. It is to be.

本発明者は、前記の特許文献2で開示される発明を元に、大型のタービンブレード用の鍛造材を得るためにより好適な熱間鍛造用金型とするために種々の金型形状を検討した結果、組立てる金型片同士が接触する角部と隅部の場所に空隙を形成することで熱間鍛造用金型に加わる応力を低減させることが可能となることを知見し、本発明に到達した。
すなわち本発明は、複数の金型片を接合して一体に構成されたタービンブレード用の熱間鍛造用金型であって、前記熱間鍛造用金型は前記タービンブレード形状の型彫り面を備え、前記複数の金型片が入子型として装着される基材金型と、角部を有する第1の金型片と、前記角部に対応する隅部を有する第2の金型片とを有し、前記第1の金型片は、前記角部の先端に面取り部を備え、前記第1の金型片と前記第2の金型片の接合部に、前記面取り部によって構成された空隙部を有する熱間鍛造用金型である。
好ましくは、前記隅部は半径15mm以上のアールが形成されている熱間鍛造用金型である。
更に好ましくは、前記金型片は前記型彫り面の長手方向に対して、斜めに分割される形状を有する熱間鍛造用金型である。
更に好ましくは、前記金型片の少なくとも1つがNi基超耐熱合金であり、別の少なくとも1つが熱間金型用鋼である熱間鍛造用金型である。
更に好ましくは、前記Ni基超耐熱合金製の金型片は時効処理材である熱間鍛造用金型である。
更に好ましくは、前記金型片の少なくとも1つは鍛造の加圧力の応力集中部を含む場所に設けられている熱間鍛造用金型である。
更に好ましくは、前記金型片および基材金型の少なくとも1つは作業面側にNi基超耐熱合金層が被覆されている熱間鍛造用金型である。
更に好ましくは、前記金型片が焼嵌めによって一体に構成されている熱間鍛造用金型である。
Based on the invention disclosed in Patent Document 2, the present inventor studied various mold shapes in order to obtain a more suitable hot forging mold for obtaining a forging material for a large turbine blade. As a result, it was found that the stress applied to the hot forging die can be reduced by forming voids at the corners and corners where the mold pieces to be assembled contact each other, and the present invention Reached.
That is, the present invention is a hot forging die for a turbine blade integrally formed by joining a plurality of die pieces, and the hot forging die has a die-shaped surface of the turbine blade shape. A base mold on which the plurality of mold pieces are mounted as a telescopic mold, a first mold piece having corners, and a second mold piece having corners corresponding to the corners The first mold piece is provided with a chamfered portion at the tip of the corner portion, and is constituted by the chamfered portion at a joint portion between the first mold piece and the second mold piece. This is a hot forging die having a void portion formed.
Preferably, the corner is a hot forging die in which a radius having a radius of 15 mm or more is formed.
More preferably, the die piece is a hot forging die having a shape that is obliquely divided with respect to the longitudinal direction of the die-carved surface.
More preferably, it is a hot forging die in which at least one of the die pieces is a Ni-base superalloy and at least one of the die pieces is hot die steel.
More preferably, the die piece made of the Ni-based superalloy is a hot forging die which is an aging treatment material.
More preferably, at least one of the die pieces is a hot forging die provided in a place including a stress concentration portion of the forging pressure.
More preferably, at least one of the mold piece and the base metal mold is a hot forging mold in which a Ni-based superalloy layer is coated on the work surface side.
More preferably, it is a hot forging die in which the die pieces are integrally formed by shrink fitting.

本発明の熱間鍛造用金型を用いれば、長尺のタービンブレードを製造する場合に、良く確実に熱間鍛造用金型の割れ等の不具合を防止することが可能となり、熱間型造用金型の寿命も向上させることができる。   The use of the hot forging die of the present invention makes it possible to prevent defects such as cracking of the hot forging die well and reliably when manufacturing a long turbine blade. The service life of the mold can also be improved.

本発明の熱間鍛造用金型に用いられる金型片の組立て体の一例を示す模式図である。It is a schematic diagram which shows an example of the assembly body of the die piece used for the metal mold | die for hot forging of this invention. 本発明の熱間鍛造用金型に用いられる金型片の組立て体の別な一例を示す模式図である。It is a schematic diagram which shows another example of the assembly body of the die piece used for the metal mold | die for hot forging of this invention. 本発明の熱間鍛造用金型に用いられる金型片の組立て体の別な一例を示す模式図である。It is a schematic diagram which shows another example of the assembly body of the die piece used for the metal mold | die for hot forging of this invention. 本発明の熱間鍛造用金型に用いられる金型片の組立て体の別な一例を示す模式図である。It is a schematic diagram which shows another example of the assembly body of the die piece used for the metal mold | die for hot forging of this invention. 本発明の熱間鍛造用金型に用いられる金型片の組立て体の別な一例を示す模式図である。It is a schematic diagram which shows another example of the assembly body of the die piece used for the metal mold | die for hot forging of this invention. 本発明の一例を示す熱間型造用金型の模式図である。It is a schematic diagram of a hot mold making mold showing an example of the present invention. 本発明の熱間型造用金型の空隙部周辺の断面模式図である。It is a cross-sectional schematic diagram of the space | gap part periphery of the mold for hot mold making of this invention. 熱間型造用金型に加わる引張応力の分布を示すシミュレーション結果の図である。It is a figure of the simulation result which shows distribution of the tensile stress added to a hot mold making metal mold | die. 隅部に発生する最大引張応力と隅部半径の関係を示す図である。It is a figure which shows the relationship between the maximum tensile stress which generate | occur | produces in a corner part, and a corner radius.

本発明を図面を用いて説明する。ただし、本発明は、以下に説明する形態によって限定されるものではない。また、本発明で言う「熱間鍛造」とは、熱間や恒温でのプレス鍛造及びホットダイ鍛造も含むものである。
図1から5は、本発明の熱間鍛造用金型に用いられる金型片の組立て体の一例を示す模式図であり、図6は基材金型3内に前記金型片の組立て体を備えた熱間鍛造用金型の一例を示す模式図である。の熱間鍛造用金型1の作業面にはタービンブレード形状の型彫り面4を備えている。
そして、本発明の最大の特徴は、金型片2の角部13の先端に面取り部11を形成して金型片2同士が接触する場所の一部に空隙部12を備えることである。通常は1つの金型片に隣り合う金型片は、角部13と隅部14とが接触する如く嵌め合される。しかし、本発明者の検討によれば、熱間鍛造中に隅部14に多大な応力が発生する。特に、最大荷重が1万トン以上の熱間鍛造により、大型の鍛造品を製造する場合においては、特に角部13と隅部14との組合わせでは、隅部14を有する側の金型片2が破壊する危険性が大きくなる。そのため、本発明では金型片2の破壊を防止するために、空隙部12を備えて金型片2に加わる応力を低減させる。
具体的な一例を示すと、図7に示すように角部13を有する第1の金型片2(金型片A)と、前記角部13に対応する隅部14を有する第2の金型片2(金型片B)とを少なくとも有し、前記第1の金型片2(金型片A)は、前記角部の先端に面取り部11を備え、前記第1の金型片2(金型片A)と第2の金型片2(金型片B)の接合部に、前記面取り部15によって構成された空隙部12を有するものである。なお、金型片が3つ以上となった場合は、図7に示す角部13に対応する隅部14を有する金型片を用いればよい。但し、鍛造荷重が比較的低く、金型片の割れなどの発生の可能性が低い場所には、全ての金型片に必ずしも角部と隅部とによる空隙部を形成する必要はない。
ここで、本発明で規定した「角部」、「隅部」について説明する。本発明で言う「角部」は突状の角部13のことであり、面取りして面取り部11が形成される。また、「隅部」は、図7に示すように、面取り部11を有する角部13が嵌め合される凹状の部位(隅部14)を言う。
The present invention will be described with reference to the drawings. However, this invention is not limited by the form demonstrated below. The “hot forging” as used in the present invention includes hot forging and constant temperature press forging and hot die forging.
FIGS. 1 to 5 are schematic views showing an example of an assembly of mold pieces used in the hot forging mold of the present invention. FIG. 6 is an assembly of the mold pieces in a base mold 3. It is a schematic diagram which shows an example of the metal mold | die for hot forging provided with. The working surface of the hot forging die 1 is provided with a turbine blade-shaped engraved surface 4.
The greatest feature of the present invention is that the chamfered portion 11 is formed at the tip of the corner portion 13 of the mold piece 2 and the gap portion 12 is provided at a part of the place where the mold pieces 2 come into contact with each other. Normally, a mold piece adjacent to one mold piece is fitted so that the corner portion 13 and the corner portion 14 are in contact with each other. However, according to the study of the present inventors, a great amount of stress is generated at the corner 14 during hot forging. In particular, in the case of manufacturing a large forged product by hot forging with a maximum load of 10,000 tons or more, particularly when the corner portion 13 and the corner portion 14 are combined, the mold piece on the side having the corner portion 14 is used. The danger that 2 will break increases. Therefore, in the present invention, in order to prevent the mold piece 2 from being broken, the gap 12 is provided to reduce the stress applied to the mold piece 2.
As a specific example, as shown in FIG. 7, as shown in FIG. 7, a first mold piece 2 (mold piece A) having a corner portion 13 and a second mold having a corner portion 14 corresponding to the corner portion 13. At least a mold piece 2 (mold piece B), and the first mold piece 2 (mold piece A) includes a chamfered portion 11 at a tip of the corner portion, and the first mold piece. 2 (mold piece A) and the second mold piece 2 (mold piece B) have a gap portion 12 constituted by the chamfered portion 15 at the joint portion. When there are three or more mold pieces, a mold piece having a corner portion 14 corresponding to the corner portion 13 shown in FIG. 7 may be used. However, in a place where the forging load is relatively low and the possibility of occurrence of cracks in the mold pieces is low, it is not always necessary to form the gaps between the corner portions and the corner portions in all the mold pieces.
Here, “corner” and “corner” defined in the present invention will be described. The “corner portion” referred to in the present invention is a protruding corner portion 13, and the chamfered portion 11 is formed by chamfering. Further, as shown in FIG. 7, the “corner part” refers to a concave part (corner part 14) in which the corner part 13 having the chamfered part 11 is fitted.

本発明では、第1の金型片(金型片A)と、第2の金型片(金型片B)の接合部に、前記面取り部11によって構成された空隙部12を形成することで第2の金型片(金型片B)の隅部14の応力を低減し、熱間鍛造中の第2の金型片(金型片B)の破壊を抑制する。
図7は空隙部12周辺の断面模式図である。図7に示すように面取り部11は平面状であっても曲面状であっても良い。勿論、平面と曲面との組合わせでも良い。また、第2の金型片(金型片B)の隅部14の形状も平面状、曲面状、またはその組合せであっても良い。なお、特に好ましい隅部14の形状は曲面状である。これは、曲面とする方が熱間鍛造時に第2の金型片(金型片B)の隅部14に加わる応力が低減できるためである。
本発明者の検討によれば、隅部14の曲面は半径が10mm以上であれば、数万トン規模の熱間鍛造を行ったときでも第2の金型片(金型片B)の破壊を抑制する効果が大きい。また、この場合、面取り部11の形状も曲面とし、隅部14の曲面の半径よりも大きくすることが好ましい。
なお、本発明の空隙部12は、金型片2同士を嵌め合せたときの寸法差を超えるものである。例えば、図7にL、Mとして示すのは、空隙部の高さ方向Lと幅方向Mの長さであり、空隙部の高さLはおおよそ10〜60mmとし、幅Mはおおよそ10〜60mmとすると良い。面取り部11と隅部14とで構成される空隙部12の高さと幅は、熱間鍛造時に隅部14周辺に加わる応力の低減効果と、第1の金型片(金型片A)と第2の金型片(金型片B)との締め付け力を勘案して決定すると良い。なお、図7の(b)(c)(d)のように、隅部にアールを形成する場合については、空隙部の高さと幅は、直線部とアール部の接点と規定する。
また、隅部14のアールの半径は15mm以上であることが好ましい。これは、後述するシミュレーション結果で示すように、隅部14周辺に加わる引張応力を1100MPa以下とすることができるためである。好ましくは16mm〜26mmであり、この範囲であれば隅部8周辺に加わる引張応力を1000MPa以下とすることも可能である。このとき、この隅部に対応する角部の面取りは、この隅部のアール半径以上の面取りとする。
In the present invention, the gap portion 12 constituted by the chamfered portion 11 is formed at the joint portion between the first mold piece (mold piece A) and the second mold piece (mold piece B). Thus, the stress at the corner 14 of the second mold piece (mold piece B) is reduced, and the breakage of the second mold piece (mold piece B) during hot forging is suppressed.
FIG. 7 is a schematic cross-sectional view around the gap 12. As shown in FIG. 7, the chamfered portion 11 may be planar or curved. Of course, a combination of a flat surface and a curved surface may be used. Further, the shape of the corner portion 14 of the second mold piece (mold piece B) may be flat, curved, or a combination thereof. A particularly preferable shape of the corner 14 is a curved surface. This is because the curved surface can reduce the stress applied to the corner 14 of the second die piece (die piece B) during hot forging.
According to the study of the present inventor, when the radius of the curved surface of the corner portion 14 is 10 mm or more, the second die piece (die piece B) is broken even when hot forging of tens of thousands of tons is performed. The effect of suppressing is great. In this case, it is also preferable that the shape of the chamfered portion 11 is a curved surface and is larger than the radius of the curved surface of the corner portion 14.
In addition, the space | gap part 12 of this invention exceeds the dimensional difference when the metal mold pieces 2 are fitted together. For example, L and M shown in FIG. 7 are the length in the height direction L and the width direction M of the gap, the height L of the gap is approximately 10 to 60 mm, and the width M is approximately 10 to 60 mm. And good. The height and width of the gap portion 12 constituted by the chamfered portion 11 and the corner portion 14 are the effect of reducing the stress applied to the periphery of the corner portion 14 during hot forging, and the first die piece (die piece A). It may be determined in consideration of the fastening force with the second mold piece (mold piece B). As shown in FIGS. 7B, 7C, and 7D, when the corners are formed at the corners, the height and width of the gap are defined as the contact points between the straight portions and the corners.
The radius of the corner 14 is preferably 15 mm or more. This is because the tensile stress applied to the periphery of the corner 14 can be set to 1100 MPa or less, as shown in the simulation results described later. Preferably, it is 16 mm to 26 mm, and within this range, the tensile stress applied to the periphery of the corner 8 can be 1000 MPa or less. At this time, the chamfer of the corner corresponding to the corner is a chamfer greater than the radius of the corner.

ここで、面取り部によって構成された空隙部との関係により、引張応力の変化をシミュレーションした結果を示す。用いたシミュレーションソフトは市販の有限要素法によるものである。また、第一の金型片と第二の金型片に形成された面取り部形状と隅部の形状は図7(c)に示す形状とした。その結果を図8に示す。また、隅部に発生する最大引張応力と隅部半径の関係を表1及び図9に示す。
空隙部が形成されない構造では、隅部に発生する最大引張応力は1500MPaを超えるのに対し、空隙部を有する形状では、1500MPa以下となった。また、隅部の半径を15mm以上にすることで、最大引張応力は1100MPa以下を示した。
この結果から、面取り部によって構成された空隙部の有無により、金型片に加わる応力が大きく異なることが分かる。また、隅部に形成するアールについても、15mm以上で応力が大幅に低減できることが分かる。これにより、空隙部の形成によって、熱間鍛造用金型の割れの発生をより確実に防止できることが分かる。
Here, the result of having simulated the change of the tensile stress by the relationship with the space | gap part comprised by the chamfering part is shown. The simulation software used is based on a commercially available finite element method. Further, the shape of the chamfered portion and the corner portion formed on the first mold piece and the second mold piece are the shapes shown in FIG. The result is shown in FIG. Table 1 and FIG. 9 show the relationship between the maximum tensile stress generated at the corner and the corner radius.
In the structure in which the void portion is not formed, the maximum tensile stress generated in the corner portion exceeds 1500 MPa, whereas in the shape having the void portion, it is 1500 MPa or less. Moreover, the maximum tensile stress showed 1100 Mpa or less by making the radius of a corner into 15 mm or more.
From this result, it can be seen that the stress applied to the mold piece varies greatly depending on the presence or absence of the void portion constituted by the chamfered portion. In addition, it is understood that the stress can be significantly reduced at the corners of 15 mm or more. Thereby, it turns out that generation | occurrence | production of the crack of the metal mold | die for hot forging can be prevented more reliably by formation of a space | gap part.

ところで、本発明においては、図1から5に示すように、本発明では金型片の形状を変更することで更に金型片の割れ等の不具合を防止することができる。
図1で示す金型片2の組合わせでは、その高さ方向に段差部15を有する。この構造であると、段差部15で熱間鍛造時の荷重を受けることができ、金型片の割れや破壊などの不具合を防止することができる。また、図2で示す金型片2の組合わせでは、その高さ方向の途中に底部16を有する。この構造であると、底部16で熱間鍛造時の荷重を受けることができ、金型片の割れや破壊などの不具合を防止することができる。更に図3〜5に示す金型片の組立体は、その高さ方向に段差部15とテーパ部17を有する。この構造であると、段差部15及びテーパ部17で熱間鍛造時の荷重を受けることができ、金型片の割れや破壊などの不具合を防止することができる。なお、図4に示す金型片の組合わせでは、型彫り面4を斜めに分割された構造を有する。この斜めに分割する方向を、熱間鍛造時に金型片に加わるスラスト荷重方向に設けると、より確実に金型片の割れや破壊などの不具合を防止することができる。
By the way, in this invention, as shown in FIGS. 1-5, in this invention, malfunctions, such as a crack of a mold piece, can further be prevented by changing the shape of a mold piece.
The combination of the mold pieces 2 shown in FIG. 1 has a step portion 15 in the height direction. With this structure, it is possible to receive a load at the time of hot forging at the step portion 15, and it is possible to prevent problems such as cracking and breakage of the mold piece. Further, the combination of the mold pieces 2 shown in FIG. 2 has a bottom 16 in the middle of the height direction. With this structure, the load at the time of hot forging can be received at the bottom portion 16, and problems such as cracking and breaking of the mold piece can be prevented. Further, the assembly of mold pieces shown in FIGS. 3 to 5 has a step portion 15 and a taper portion 17 in the height direction. With this structure, it is possible to receive a load during hot forging at the step portion 15 and the taper portion 17, and it is possible to prevent problems such as cracking and breakage of the mold piece. Note that the combination of the mold pieces shown in FIG. 4 has a structure in which the mold engraving surface 4 is obliquely divided. Providing this diagonally dividing direction in the direction of the thrust load applied to the mold piece during hot forging can more reliably prevent problems such as cracking and breakage of the mold piece.

また、本発明においては、基材金型3と金型片2とを異種金属にすることも可能である。例えば、基材金型3を比較的安価な合金工具鋼として作製し、金型片2をNi基超耐熱合金にすることもできる。合金工具鋼の中でも、熱間金型用鋼は高温での強度に優れているため好ましい。
このような組み合わせの例としては、作業面の全面をNi基超耐熱合金とすることも可能であるし、または、熱間鍛造時に応力が加わる場所や熱間鍛造時に高温に晒される場所の入子型をNi基超耐熱合金金型片とし、別の金型片の少なくとも1つを熱間金型用鋼とすることもできる。前者の構造によれば、作業面全面を高強度化することができるという利点がある。しかも、Ni基超耐熱合金で一体物の熱間鍛造用金型を作製する場合と比較して、経済的である。また、後者の場合は、熱間鍛造時における熱間鍛造用金型の耐摩耗性や耐熱性が特に求められる場所に、Ni基超耐熱合金を有する金型片2を配置すれば、金型の寿命を向上させると共に、より安価な熱間金型用鋼を用いるため経済的であり、特に好ましい。
In the present invention, the base metal mold 3 and the metal mold piece 2 can be made of different metals. For example, the base metal mold 3 can be made as a relatively inexpensive alloy tool steel, and the mold piece 2 can be made of a Ni-based super heat resistant alloy. Among alloy tool steels, hot mold steel is preferred because of its excellent strength at high temperatures.
As an example of such a combination, the entire work surface can be made of a Ni-based super heat resistant alloy, or a place where stress is applied during hot forging or a place exposed to high temperature during hot forging. The core die may be a Ni-based super heat-resistant alloy die piece, and at least one of the other die pieces may be a hot die steel. According to the former structure, there is an advantage that the entire work surface can be strengthened. Moreover, it is more economical than the case of producing an integral hot forging die using a Ni-base superalloy. In the latter case, if the die piece 2 having a Ni-base superheat-resistant alloy is placed in a place where the wear resistance and heat resistance of the hot forging die during hot forging are particularly required, the die It is economical and particularly preferable because it uses a cheaper steel for hot molds.

また、本発明の熱間型造用金型は複数個の金型片で構成されるため、例えば、前記のNi基超耐熱合金を金型片として用いる際に、固溶化処理と時効処理を行って、高強度化がはかれ、より一層、耐摩耗性や耐熱性が高まって金型の寿命を向上させることができる。特に、数万トン規模の大型鍛造製品を熱間鍛造で製造する場合では、熱間鍛造用金型自体が大型化しているため、金型全体を固溶化処理と時効処理を行うには、その熱処理炉も大型のものを準備する必要がある。また、Ni基超耐熱合金の固溶化処理温度を合金工具鋼に適用してしまうと、合金工具鋼が軟化してしまう。本発明の場合、異種金属を用いても個別に最適な熱処理を行って、合金の有する特性を最大限発揮できる熱処理を適用することができる。   Further, since the hot mold making mold of the present invention is composed of a plurality of mold pieces, for example, when using the Ni-based superalloy as the mold piece, a solution treatment and an aging treatment are performed. This increases the strength and further increases the wear resistance and heat resistance, thereby improving the life of the mold. In particular, when manufacturing a large forged product with a scale of tens of thousands of tons by hot forging, the die for hot forging itself is enlarged, so in order to perform solution treatment and aging treatment for the entire die, It is necessary to prepare a large heat treatment furnace. Moreover, if the solution treatment temperature of the Ni-base superalloy is applied to the alloy tool steel, the alloy tool steel is softened. In the case of the present invention, it is possible to apply heat treatment capable of maximizing the characteristics of the alloy by performing optimum heat treatment individually even if different metals are used.

本発明においては、前述のように前記金型片の少なくとも1つは応力集中部を含む場所に設けることが好ましい。応力集中部は加工量の大きい場所で、その形状が山形や谷形となるような場所である。詳細に調査しようとすれば、市販のシミュレーションソフトを用いて応力集中部を特定すると良い。
この応力集中部は、金型片の摩耗も激しいため、金型片2に用いる材質を前述のようにNi基超耐熱合金にしてもよいし、合金工具鋼の金型片2の型彫り面4にNi基超耐熱合金層4被覆しても良い。当然のことながら、金型片2以外の場所にもNi基超耐熱合金層を被覆しても良い。例えば、金型片2をNi基超耐熱合金で作製し、基材金型3を合金工具鋼とし、基材金型3の表面にNi基超耐熱合金層4を被覆すると、作業面側(型彫り面側)全面をNi基超耐熱合金とすることができる。この場合、熱間鍛造用金型の型彫り面側の保熱効果が期待できる。なお、Ni超耐熱合金層の被覆方法としては、例えば、肉盛溶接を用いることで、Ni超耐熱合金層を任意の厚さに調整できるため、特に好ましい。
また、本発明では、金型片2を個別に用意するため、特に大型の製品を熱間鍛造する際の金型製作費用を低減できる。例えば、大型のタービンブレード材の熱間鍛造への適用は有効である。
In the present invention, as described above, it is preferable that at least one of the mold pieces is provided in a place including a stress concentration portion. The stress concentration part is a place where the processing amount is large, and the shape is a mountain shape or a valley shape. If it is going to investigate in detail, it is good to specify a stress concentration part using commercially available simulation software.
Since the stress concentration part is also worn by the mold piece, the material used for the mold piece 2 may be a Ni-based super heat-resistant alloy as described above, or the mold engraving surface of the alloy tool steel mold piece 2 4 may be coated with a Ni-based superalloy layer 4. As a matter of course, a Ni-base superalloy layer may be coated at a place other than the mold piece 2. For example, when the mold piece 2 is made of a Ni-base superheat-resistant alloy, the base metal mold 3 is made of alloy tool steel, and the Ni-base superheat-resistant alloy layer 4 is coated on the surface of the base metal mold 3, the work surface side ( The mold carved surface side) The entire surface can be made of a Ni-base superalloy. In this case, the heat retention effect on the die-carved surface side of the hot forging die can be expected. In addition, as a coating method of a Ni super heat-resistant alloy layer, since a Ni super heat-resistant alloy layer can be adjusted to arbitrary thickness, for example by using overlay welding, it is especially preferable.
Moreover, in this invention, since the metal mold | die piece 2 is prepared separately, the metal mold production expense at the time of hot forging especially a large sized product can be reduced. For example, application of a large turbine blade material to hot forging is effective.

なお、前記の合金工具鋼鋼材とは、例えば、JIS−G4404で規定されるものであれば良い。中でも熱間での使用には典型的な成分範囲を示すと、質量%で、C:0.25〜0.5%、N:0を超えて0.03%以下、Si:0を超えて1.2%以下、Mn:0を超えて0.9%以下、Al:0〜0.5%、P:0〜0.03%、S:0〜0.01%、V:0〜2.1%、Cr:0.8〜5.5%、Ni:0〜4.3%、Cu:0〜0.3%、Mo:0〜3.0%、W:0〜9.5%、Co:0〜4.5%を含み、残部はFe及び不純物でなる合金が好適である。
また、本発明で言うNi基超耐熱合金とは、例えば、Udimet520相当合金(UdimetはSpecial Metals社の登録商標)、Udimet720相当合金、Waspaloy相当合金(WaspaloyはUnited Technologies社の登録商標)、Alloy718相当合金等、Al、Ti、Nb等の金属間化合物を析出強化可能なNiを主成分とする合金を言う。
In addition, the said alloy tool steel materials should just be prescribed | regulated by JIS-G4404, for example. Above all, when a typical component range is shown for use in hot, C: 0.25 to 0.5%, N: more than 0.0 and 0.03% or less, Si: more than 0 by mass%. 1.2% or less, Mn: more than 0 and 0.9% or less, Al: 0 to 0.5%, P: 0 to 0.03%, S: 0 to 0.01%, V: 0 to 2 0.1%, Cr: 0.8 to 5.5%, Ni: 0 to 4.3%, Cu: 0 to 0.3%, Mo: 0 to 3.0%, W: 0 to 9.5% , Co: 0 to 4.5%, with the balance being Fe and impurities.
The Ni-base superalloy referred to in the present invention includes, for example, Udimet 520 equivalent alloy (Udimet is a registered trademark of Special Metals), Udimet 720 equivalent alloy, Waspaloy equivalent alloy (Waspalo is a registered trademark of United Technologies), Alloy 718, and the like. An alloy mainly composed of Ni capable of precipitation strengthening an intermetallic compound such as Al, Ti and Nb.

そして、本発明では、前述した金型片が焼嵌めによって基材金型内に装着されることが好ましい。焼嵌めで金型片と基材金型とを一体化すると強固に一体化できるためである。
以上説明する本発明の熱間型造用金型を用いれば、歩留りの高い金型製造が可能となり、所望の表面形態を有する熱間鍛造材が得られ、品質も安定化することができる。また、鍛造の加圧力の応力集中部を含む場所に高強度の材質の金型片を設けて置けば、熱間鍛造時の金型の割れ等の問題を防止することが可能である。
また、用いる金型片の作業面側にNi基超耐熱合金層を形成すると、更に金型の寿命を向上させることができる。また、金型片ごとにNi基超耐熱合金層を形成することが可能であるため、Ni基超耐熱合金層を形成する肉盛溶接機を特別に大型化することもないため、経済的である。
本発明の熱間型造用金型は、大型のタービンブレード用鍛造材を製造する場合であっても、それに用いる熱間鍛造用金型の割れをより確実に防止することが可能となる。
And in this invention, it is preferable that the metal mold | die piece mentioned above is mounted | worn in a base metal mold | die by shrinkage fitting. This is because when the mold piece and the base metal mold are integrated by shrink fitting, they can be firmly integrated.
By using the hot mold making mold of the present invention described above, it becomes possible to produce a mold with a high yield, to obtain a hot forged material having a desired surface form, and to stabilize the quality. Further, if a high-strength metal mold piece is provided at a location including the stress concentration part of the forging pressure, it is possible to prevent problems such as cracking of the mold during hot forging.
Further, if a Ni-based superalloy layer is formed on the working surface side of the mold piece to be used, the life of the mold can be further improved. In addition, since it is possible to form a Ni-base super heat-resistant alloy layer for each mold piece, the overlay welding machine for forming the Ni-base super heat-resistant alloy layer is not specially enlarged, which is economical. is there.
The hot mold making mold of the present invention can more reliably prevent cracking of a hot forging mold used for manufacturing a large forging material for a turbine blade.

1 熱間型造用金型
2 金型片
3 基材金型
4 型彫り面
11 面取り部
12 空隙部
13 角部
14 隅部
15 段差部
16 底部
17 テーパ部
DESCRIPTION OF SYMBOLS 1 Hot mold making mold 2 Mold piece 3 Base material mold 4 Die-carving surface 11 Chamfering part 12 Cavity part 13 Corner part 14 Corner part 15 Step part 16 Bottom part 17 Tapered part

Claims (8)

複数の金型片を接合して一体に構成されたタービンブレード用の熱間鍛造用金型であって、
前記熱間鍛造用金型は前記タービンブレード形状の型彫り面を備え、
前記複数の金型片が入子型として装着される基材金型と、
角部を有する第1の金型片と、
前記角部に対応する隅部を有する第2の金型片とを有し、
前記第1の金型片は、前記角部の先端に面取り部を備え、
前記第1の金型片と前記第2の金型片の接合部に、前記面取り部によって構成された空隙部を有することを特徴とする熱間鍛造用金型。
A hot forging die for a turbine blade integrally formed by joining a plurality of die pieces,
The hot forging die comprises a turbine blade-shaped engraved surface,
A substrate mold on which the plurality of mold pieces are mounted as a nested mold; and
A first mold piece having corners;
A second mold piece having a corner corresponding to the corner,
The first mold piece includes a chamfered portion at a tip of the corner portion,
A hot forging die having a void portion formed by the chamfered portion at a joint portion between the first die piece and the second die piece.
前記隅部は半径15mm以上のアールが形成されていることを特徴とする請求項1に記載の熱間鍛造用金型。   2. The hot forging die according to claim 1, wherein the corner is formed with a radius of 15 mm or more. 前記金型片は前記型彫り面の長手方向に対して、斜めに分割される形状を有することを特徴とする請求項1または2に記載の熱間鍛造用金型。   3. The hot forging die according to claim 1, wherein the die piece has a shape that is obliquely divided with respect to a longitudinal direction of the die engraving surface. 4. 前記金型片の少なくとも1つがNi基超耐熱合金であり、別の少なくとも1つが熱間金型用鋼であることを特徴とする請求項1乃至3の何れかに記載の熱間鍛造用金型。   The hot forging die according to any one of claims 1 to 3, wherein at least one of the die pieces is a Ni-base superalloy and at least one other is hot die steel. Type. 前記Ni基超耐熱合金製の金型片は時効処理材であることを特徴とする請求項4に記載の熱間鍛造用金型。   The die for hot forging according to claim 4, wherein the die piece made of the Ni-base superalloy is an aging treatment material. 前記金型片の少なくとも1つは鍛造の加圧力の応力集中部を含む場所に設けられていることを特徴とする請求項1乃至5の何れかに記載の熱間鍛造用金型。   The hot forging die according to any one of claims 1 to 5, wherein at least one of the die pieces is provided at a location including a stress concentration portion of the forging pressure. 前記金型片および基材金型の少なくとも1つは作業面側にNi基超耐熱合金層が被覆されていることを特徴とする請求項1乃至6の何れかに記載の熱間鍛造用金型。   The hot forging die according to any one of claims 1 to 6, wherein at least one of the die piece and the base die is coated with a Ni-base superalloy layer on a work surface side. Type. 前記金型片が焼嵌めによって一体に構成されていることを特徴とする請求項1乃至7の何れかに記載の熱間鍛造用金型。   The hot forging die according to any one of claims 1 to 7, wherein the die pieces are integrally formed by shrink fitting.
JP2015084773A 2015-04-17 2015-04-17 Hot forging die Active JP6528941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084773A JP6528941B2 (en) 2015-04-17 2015-04-17 Hot forging die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084773A JP6528941B2 (en) 2015-04-17 2015-04-17 Hot forging die

Publications (2)

Publication Number Publication Date
JP2016203188A true JP2016203188A (en) 2016-12-08
JP6528941B2 JP6528941B2 (en) 2019-06-12

Family

ID=57488522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084773A Active JP6528941B2 (en) 2015-04-17 2015-04-17 Hot forging die

Country Status (1)

Country Link
JP (1) JP6528941B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470534A (en) * 2017-09-25 2017-12-15 埼玉铝合金精密锻造(丹阳)有限公司 A kind of efficient hot forged mould
CN109175923A (en) * 2018-08-14 2019-01-11 南通中能机械制造有限公司 A kind of forging mould and movable vane innovative machining method of the simple die forging of wind motor leaf

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591043A (en) * 1983-05-23 1984-01-06 Mitsutoyo Kiko Kk Die
JPS623845A (en) * 1985-06-28 1987-01-09 Masahiro Yokoi Cold pressing tool
JP2014208379A (en) * 2013-03-28 2014-11-06 日立金属株式会社 Hot forging metal mold and hot forging method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591043A (en) * 1983-05-23 1984-01-06 Mitsutoyo Kiko Kk Die
JPS623845A (en) * 1985-06-28 1987-01-09 Masahiro Yokoi Cold pressing tool
JP2014208379A (en) * 2013-03-28 2014-11-06 日立金属株式会社 Hot forging metal mold and hot forging method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470534A (en) * 2017-09-25 2017-12-15 埼玉铝合金精密锻造(丹阳)有限公司 A kind of efficient hot forged mould
CN109175923A (en) * 2018-08-14 2019-01-11 南通中能机械制造有限公司 A kind of forging mould and movable vane innovative machining method of the simple die forging of wind motor leaf

Also Published As

Publication number Publication date
JP6528941B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6311969B2 (en) Die for hot forging and hot forging method
JP6036881B2 (en) Hot forging die
JP5904431B1 (en) Method for producing Ni-base superalloy
JP2018164925A (en) Method for manufacturing forged product
WO2019065542A1 (en) Method for manufacturing hot forging material
CN112191787A (en) Processing method of titanium alloy die forging
JP2006326609A (en) Build-up welding material for hot forged metallic die and hot-forged metallic die using the same
JP6528941B2 (en) Hot forging die
JP2010037564A (en) Method for manufacturing anvil for forging
JP6521369B2 (en) Hot forging die
JP6410135B2 (en) Hot forging die
RU2380209C1 (en) Method for manufacturing of hollow blade
JP2006247657A (en) Method for manufacturing branch pipe
JP6128671B1 (en) Hot forging die, hot forging apparatus, and hot forging die manufacturing method
JP2013044252A (en) Ni-based alloy large member, ni-based alloy welded structure using the same, and method for manufacturing the structure
JP6924377B2 (en) Hot forging dies and their manufacturing methods and forging material manufacturing methods
CN105458136B (en) The dissection type forging method and its mould of a kind of bucket tooth
KR101817707B1 (en) Hot-working die with damage diminution layer
CN205189866U (en) Novel coal mining machine cutting pick
JP2002035884A (en) Gear die for warm or hot forging and manufacturing method thereof
JP6774623B2 (en) Manufacturing method of materials for turbine blades
JP6924376B2 (en) How to manufacture hot forging dies and forged products
CN110273154A (en) A kind of high temperature wear resistant alloy coat and preparation method thereof, a kind of reinforcing ring rolls backing plate and preparation method thereof
JP6471444B2 (en) Manufacturing method of hot forging die
JP6941283B2 (en) Manufacturing method of materials for turbine blades

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190430

R150 Certificate of patent or registration of utility model

Ref document number: 6528941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350