JP6924377B2 - Hot forging dies and their manufacturing methods and forging material manufacturing methods - Google Patents

Hot forging dies and their manufacturing methods and forging material manufacturing methods Download PDF

Info

Publication number
JP6924377B2
JP6924377B2 JP2017151804A JP2017151804A JP6924377B2 JP 6924377 B2 JP6924377 B2 JP 6924377B2 JP 2017151804 A JP2017151804 A JP 2017151804A JP 2017151804 A JP2017151804 A JP 2017151804A JP 6924377 B2 JP6924377 B2 JP 6924377B2
Authority
JP
Japan
Prior art keywords
die
nesting
hot forging
mold
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017151804A
Other languages
Japanese (ja)
Other versions
JP2018024022A (en
Inventor
松本 英樹
英樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2018024022A publication Critical patent/JP2018024022A/en
Application granted granted Critical
Publication of JP6924377B2 publication Critical patent/JP6924377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Forging (AREA)

Description

本発明は、熱間鍛造用金型及びその製造方法、並びにかかる熱間鍛造用金型を用いた鍛造材の製造方法に関するものである。 The present invention relates to a hot forging die and a method for manufacturing the same, and a method for manufacturing a forging material using such a hot forging die.

近年、蒸気タービンの高効率化の要請により、蒸気タービンに用いられるタービンブレード(以下単に「ブレード」という。)も長尺化してきている。約1500mmを超える長尺のブレード素材を製造する場合では、素材を上型と下型の間に挟み込んで、大型のプレス鍛造でブレード素材に成形する方法が主流である。
例えば、特開平4−46651号公報(特許文献1)には三次元形状をした型彫り面を有する上金型及び下金型の打撃面を互いに型合わせして構成された、三次元形状に優れたキャビティーを用いて鍛造を行うブレードの製造方法の発明が開示されている。ここに開示されている上金型及び下金型は、一つの金属材料で一体物で構成されている(例えば、特許文献1の図2及び図4参照)。
これに対し、本願出願人による特開2014−208379号公報(特許文献2)では、長尺材用の熱間鍛造用金型であって、前記熱間鍛造用金型は、複数個の熱間鍛造用金型片が長尺材の長手方向に一列に並べられた一体の組立て体である熱間鍛造用金型の提案がある。この提案は製品(熱間鍛造材)の大型化にも適用可能な優れた提案である。この提案によれば、数個の熱間鍛造用金型片はタイロッドにより一体化することが好ましいとしている。
In recent years, due to the demand for higher efficiency of steam turbines, turbine blades (hereinafter simply referred to as "blades") used in steam turbines have also become longer. In the case of producing a long blade material exceeding about 1500 mm, the mainstream method is to sandwich the material between the upper mold and the lower mold and form the blade material by large-scale press forging.
For example, Japanese Patent Application Laid-Open No. 4-46651 (Patent Document 1) has a three-dimensional shape formed by matching the striking surfaces of an upper mold and a lower mold having a three-dimensionally shaped engraved surface with each other. The invention of a method for manufacturing a blade for forging using an excellent cavity is disclosed. The upper mold and the lower mold disclosed here are made of one metal material and are integrally formed (see, for example, FIGS. 2 and 4 of Patent Document 1).
On the other hand, in Japanese Patent Application Laid-Open No. 2014-208379 (Patent Document 2) by the applicant of the present application, it is a hot forging die for a long material, and the hot forging die has a plurality of heats. There is a proposal for a hot forging die, which is an integral assembly in which pieces of a die forging are arranged in a row in the longitudinal direction of a long material. This proposal is an excellent proposal that can be applied to increasing the size of products (hot forged materials). According to this proposal, it is preferable that several hot forging die pieces are integrated by a tie rod.

特開平4−46651号公報Japanese Unexamined Patent Publication No. 4-46651 特開2014−208379号公報Japanese Unexamined Patent Publication No. 2014-208379

本発明者の検討によれば、数万トン規模の大型熱間鍛造装置に用いられる熱間鍛造用金型を一体物で製造しようとすると、その素材重量は50トンを超えるような重量となる。このような重量物を素材として所定の特性とするための熱処理を行うのは困難である。
更に、入子型を用いて組み立てる分割金型のような場合では、焼嵌めのように入子型を圧入する金型としたほうが入子型に圧縮応力が加わって金型が割れると言った危険性も低減できる。しかしながら、入子型が四角柱形状の分割金型において、焼嵌めによって入子型を固定する提案は見当たらない。
本発明の目的は、入子型が四角柱形状の熱間鍛造用金型を焼嵌めすることにより、金型の割れを防止して、製品の大型化にも適用可能な熱間鍛造用金型、該金型の製造方法、およびかかる熱間鍛造用金型を用いた鍛造材の製造方法を提供することである。
According to the study of the present inventor, when an attempt is made to integrally manufacture a hot forging die used in a large-scale hot forging device having a scale of tens of thousands of tons, the weight of the material exceeds 50 tons. .. It is difficult to perform heat treatment using such a heavy object as a material to obtain a predetermined characteristic.
Furthermore, in the case of a split die that is assembled using a nesting die, it is said that if the die is press-fitted like a shrink fit, compressive stress will be applied to the nesting die and the die will crack. The risk can also be reduced. However, there is no proposal to fix the nesting die by shrink fitting in the split die in which the nesting die has a square prism shape.
An object of the present invention is to prevent cracking of a hot forging die by shrink-fitting a hot forging die having a square column shape as a nesting die, which can be applied to a large-sized product. It is an object of the present invention to provide a mold, a method for producing the mold, and a method for producing a forging material using such a hot forging die.

本発明は上述した課題に鑑みてなされたものである。
すなわち本発明は、熱間鍛造用素材を押圧して鍛造材とする熱間鍛造用金型において、
前記熱間鍛造用金型は、少なくとも入子型と前記入子型を収納する母型とを有し、
前記入子型は、前記熱間鍛造用素材を押圧する型彫り面を有するとともに四角柱状の外形を有し、
前記母型は、前記入子型を収納する収納部を備えるとともに四角柱状の外形を有し、
前記入子型は、前記母型に挿入される方向に沿って伸びる角部に面取り形状を有し、
前記入子型と前記母型とは焼嵌めされて一体化された構造を有する熱間鍛造用金型である。
好ましくは、前記入子型が複数個の入子金型片の組立て体である。
更に好ましくは、前記入子金型片の前記型彫り面に、Ni基超耐熱合金の肉盛層を有する構造とする。前記入子金型片の少なくとも一つが、Ni基超耐熱合金製の入子金型片であることも好ましい。
上記の熱間鍛造用金型において、前記型彫り面の縁部分の少なくとも一部に、前記入子型に対して着脱可能な分割部材を備えることが好ましい。
さらに、かかる熱間鍛造用金型において、前記分割部材が、前記入子型よりも高い熱間強度を有することが好ましい。
The present invention has been made in view of the above-mentioned problems.
That is, the present invention relates to a hot forging die that presses a hot forging material into a forging material.
The hot forging die has at least a nesting die and a master die for accommodating the nesting die.
The nesting mold has a die-engraved surface for pressing the hot forging material and has a square columnar outer shape.
The mother die has a storage portion for accommodating the nesting die and has a square columnar outer shape.
The nested mold has a chamfered shape at a corner extending along a direction of being inserted into the master mold.
The nesting die and the master die are hot forging dies having a structure that is shrink-fitted and integrated.
Preferably, the nesting mold is an assembly of a plurality of nesting mold pieces.
More preferably, the structure has a build-up layer of a Ni-based superheat-resistant alloy on the engraved surface of the nested mold piece. It is also preferable that at least one of the nesting mold pieces is a nesting mold piece made of a Ni-based super heat-resistant alloy.
In the above hot forging die, it is preferable that at least a part of the edge portion of the die carved surface is provided with a split member that can be attached to and detached from the nesting die.
Further, in such a hot forging die, it is preferable that the split member has a higher hot strength than the nesting die.

また、本発明は、熱間鍛造用素材を押圧して鍛造材とする熱間鍛造用金型の製造方法において、
前記熱間鍛造用金型は、少なくとも入子型と前記入子型を収納する母型とを有し、
前記入子型は、外形が四角柱状であって、前記熱間鍛造用素材を押圧する型彫り面を有し、前記母型に挿入される方向に沿って伸びる角部に面取り形状を有し、
前記母型は、外形が四角柱状であって、前記入子型を収納する収納部を有し、
前記入子型と前記母型とを焼嵌めして一体化する熱間鍛造用金型の製造方法である。
好ましくは、前記入子型が複数個の入子金型片の組立て体である。
Further, the present invention relates to a method for manufacturing a hot forging die, which presses a hot forging material into a forging material.
The hot forging die has at least a nesting die and a master die for accommodating the nesting die.
The nesting mold has a square columnar outer shape, has a die-engraved surface for pressing the hot forging material, and has a chamfered shape at a corner portion extending along a direction of being inserted into the master mold. ,
The mother die has a square columnar outer shape, and has a storage portion for accommodating the nesting die.
This is a method for manufacturing a hot forging die in which the nesting die and the mother die are shrink-fitted and integrated.
Preferably, the nesting mold is an assembly of a plurality of nesting mold pieces.

本発明の鍛造材の製造方法は、加熱された熱間鍛造用素材を上記の熱間鍛造用金型を用いて熱間鍛造し、鍛造材を得ることを特徴とする。 The method for producing a forged material of the present invention is characterized in that a heated hot forging material is hot forged using the above-mentioned hot forging die to obtain a forged material.

本発明の熱間鍛造用金型は、四角柱状の外形を有する入子型を四角柱状の外形を有する母型に焼嵌めすることにより一体化した熱間鍛造用金型とすることで、金型の割れを防止して、製品の大型化にも適用可能な熱間鍛造用金型とすることが可能である。
また、かかる金型を用いる本発明の鍛造材の製造方法によれば、例えば大型の鍛造材を熱間鍛造で得る場合の金型に係るコストを低減することができる。
The hot forging die of the present invention is a die for hot forging that is integrated by shrink-fitting a nesting die having a square columnar outer shape into a mother die having a square columnar outer shape. It is possible to prevent the mold from cracking and use a hot forging die that can be applied to increasing the size of the product.
Further, according to the method for producing a forging material of the present invention using such a mold, it is possible to reduce the cost related to the mold when, for example, a large forging material is obtained by hot forging.

本発明の熱間鍛造用金型の入子型の一例を示す図である。It is a figure which shows an example of the nesting die of the hot forging die of this invention. 本発明の熱間鍛造用金型の一例を示す図である。It is a figure which shows an example of the hot forging die of this invention. 本発明の熱間鍛造用金型の入子型を締結部材で固定したときの一例を示す図である。It is a figure which shows an example at the time of fixing the nesting die of the hot forging die of this invention with a fastening member. 本発明の熱間鍛造用金型に用いる入子金型片の一例を示す図である。It is a figure which shows an example of the nesting die piece used for the hot forging die of this invention. 本発明の熱間鍛造用金型の他の例を示す図である。It is a figure which shows another example of the hot forging die of this invention. 図5に示す実施形態の入子型の部分断面図である。FIG. 5 is a partial cross-sectional view of a nested type of the embodiment shown in FIG.

最初に、焼嵌めを行う熱間鍛造用金型について述べる。通常、焼嵌めによって入子型を圧入した構造を有する熱間鍛造用金型においては、例えば、本願出願人の提案によるWO2013/147154パンフレットに示されるように、環状、円錐台状の金型の組合わせによるものが一般的である。これは、環状の金型であればその直径方向に膨張と収縮して外周全体に均一に応力が加わって強固に圧入による一体化が図れるためである。一方、例えば、ブレードのような長尺の鍛造材を熱間鍛造しようとすると、前述のような環状、円錐台状の金型の組合わせでは長尺材を熱間鍛造する際の金型としては不向きである。また、前述の特許文献2のようにタイロッドで入子型を一体化する方法もあるが、数万トン規模の大型熱間鍛造装置で用いられる場合には、金型の割れをより確実に防止できる方が有利となる。そこで、本発明では、鍛造用素材が棒状で、熱間鍛造によって長尺の熱間鍛造材とするときに用いる熱間鍛造用金型を焼嵌めによって作製するものである。なお、本発明でいう「熱間鍛造」には、恒温鍛造およびホットダイも含まれるものとする。 First, a hot forging die for shrink fitting will be described. Usually, in a hot forging die having a structure in which a nesting die is press-fitted by shrink fitting, for example, as shown in the WO2013 / 147154 pamphlet proposed by the applicant of the present application, an annular or truncated cone-shaped die is used. It is generally a combination. This is because if it is an annular mold, it expands and contracts in the diameter direction, stress is uniformly applied to the entire outer circumference, and it can be firmly integrated by press fitting. On the other hand, for example, when an attempt is made to hot forge a long forged material such as a blade, the combination of the annular and truncated cone-shaped dies as described above can be used as a mold for hot forging the long material. Is unsuitable. Further, there is also a method of integrating the nesting die with a tie rod as in Patent Document 2 described above, but when it is used in a large hot forging device of tens of thousands of tons, cracking of the die is more reliably prevented. It is advantageous to be able to do it. Therefore, in the present invention, the hot forging die used when the forging material is rod-shaped and is used as a long hot forging material by hot forging is produced by shrink fitting. The "hot forging" referred to in the present invention also includes constant temperature forging and hot dies.

本発明の熱間鍛造用金型について、図を用いて説明する。
図1は、本発明の熱間鍛造用金型を構成する入子型2の模式図であり、上述したように、例えば、棒状の鍛造用素材を熱間鍛造によって長尺のブレードのような形状に成形するものである。そのため、図2に示す熱間鍛造用金型1の全体の外形(母型3の外形)と入子型2の外形は四角柱状である。なお、熱間鍛造用金型1の外周に、例えば、ハードプレートに固定するための鍔部等の若干の凹凸状の加工がなされていても差しつかえないし、図1に示すように、鍔部に相当する別部材の入子型固定枠23を設けていても良い。
本発明の熱間鍛造用金型1においては、少なくとも入子型2と前記入子型2を収納する収納部31を備えた母型3とが必須の構成となる。なお、図2に示すように、入子型2の表面には製品形状に応じた凹状(掘り込み部分)の型彫り面21を有するものである。本発明では前記の掘り込み部分を「型彫り面」として説明する。また、入子型2の外形は四角柱状である。ここで言う「四角柱状」とは例えば直方体の他、四角錐台形状も含むものとする。
本発明では、前記入子型の前記母型に挿入される方向(以下、単に挿入方向という)に沿って伸びる角部24(図1では4カ所に角部24を有する)は面取り形状とする。角部を直線的に面取り加工しても良いし、またはR形状としても良い。この面取り形状の付与は、角部24への過度の応力集中を防止して、入子型の割れを防止するために行う。入子型は、その表面に型彫り面を有し、鍛造用素材を加工する。そのため、鍛造時の鍛造荷重を直接受ける入子型の角部を面取りして角部への応力集中を緩和させる。本発明における面取り形状は、かかる目的のために形成されるものであり、金型加工上の制限等で必然的に形成される角部形状とは異なる。例えば、仮に、挿入方向に垂直な方向に沿って伸びる角部に微小なアール形状があったとしても、本発明における面取り形状は、かかるアール形状よりも大きいものである。面取り形状の大きさは、鍛造荷重の大きさ、入子型の大きさ等に応じて決定すればよい。この場合、面取り部の大きさとは、各辺から一つの面取り部によって除去されている長さをいう。例えば、面取り部の大きさは、R10〜R50にすることができる。なお、これに対応する母型3の隅部にも入子型の角部24の面取り形状に合わせて加工を施すと良い。
The hot forging die of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a nesting die 2 constituting the hot forging die of the present invention. As described above, for example, a rod-shaped forging material is hot forged to form a long blade. It is molded into a shape. Therefore, the overall outer shape of the hot forging die 1 (outer shape of the mother die 3) and the outer shape of the nesting die 2 shown in FIG. 2 are square columns. It should be noted that the outer circumference of the hot forging die 1 may be slightly uneven, for example, a collar portion for fixing to a hard plate, and as shown in FIG. 1, the collar portion may be processed. The nesting type fixing frame 23 of another member corresponding to the above may be provided.
In the hot forging die 1 of the present invention, at least the nesting die 2 and the master die 3 provided with the storage portion 31 for accommodating the nesting die 2 are indispensable. As shown in FIG. 2, the surface of the nesting mold 2 has a concave (drilled portion) mold-engraved surface 21 according to the product shape. In the present invention, the dug portion will be described as a "mold carved surface". Further, the outer shape of the nesting type 2 is a square columnar shape. The term "square pillar" as used herein includes, for example, a rectangular parallelepiped as well as a quadrangular pyramid shape.
In the present invention, the corner portions 24 (having four corner portions 24 in FIG. 1) extending along the direction of insertion into the mother mold of the nested mold (hereinafter, simply referred to as the insertion direction) have a chamfered shape. .. The corners may be chamfered in a straight line, or may have an R shape. This chamfered shape is imparted in order to prevent excessive stress concentration on the corner portion 24 and prevent cracking of the nested mold. The nested mold has a carved surface on its surface and processes the forging material. Therefore, the corners of the nesting type that directly receives the forging load at the time of forging are chamfered to alleviate the stress concentration on the corners. The chamfered shape in the present invention is formed for such a purpose, and is different from the square shape that is inevitably formed due to restrictions on mold processing and the like. For example, even if there is a minute rounded shape at the corner portion extending along the direction perpendicular to the insertion direction, the chamfered shape in the present invention is larger than the rounded shape. The size of the chamfered shape may be determined according to the size of the forging load, the size of the nesting mold, and the like. In this case, the size of the chamfered portion means the length removed from each side by one chamfered portion. For example, the size of the chamfered portion can be R10 to R50. It is preferable that the corners of the mother die 3 corresponding to this are also processed according to the chamfered shape of the corners 24 of the nesting die.

本発明の母型3は焼嵌めにより入子型2が圧入されるものであり、入子型2と接触する面に適当な応力を付与する必要がある。特に、入子型が直方体のように、鍛造用素材の長さに合せて長手方向が長い場合、それと接触する母型の部分はその厚さ(図2中の記号W)が過度に薄いと入子型に加わる圧縮応力が低くなって焼嵌めによる割れ防止効果が不十分となるおそれがあることから、例えば、入子型の高さ(図1中のIW)の1.0〜2.0倍程度の厚さでもって入子型の周囲の厚さWとすることが好ましい。また、入子型と母型の大きさについては、鍛造用素材の長さを考慮しつつ焼嵌め率を計算して決定すると良い。 In the master mold 3 of the present invention, the nesting mold 2 is press-fitted by shrink fitting, and it is necessary to apply an appropriate stress to the surface in contact with the nesting mold 2. In particular, when the nesting mold is long in the longitudinal direction according to the length of the forging material, such as a rectangular parallelepiped, the thickness of the base mold portion in contact with it (symbol W in FIG. 2) is excessively thin. Since the compressive stress applied to the nesting mold becomes low and the crack prevention effect due to shrink fitting may be insufficient, for example, the height of the nesting mold (IW in FIG. 1) is 1.0 to 2. It is preferable that the thickness is about 0 times that of the nesting type and the thickness is W. Further, the size of the nesting mold and the master mold should be determined by calculating the shrink fit ratio while considering the length of the forging material.

また、本発明の入子型2は、複数個の入子金型片22を例えば、入子型の長手方向(母型に挿入される方向に垂直な方向)に一列に並べて組立て体の入子型とすることができる。これにより、個々の入子金型片22の大きさを小さくすることができる。そのため、型彫り面に対して肉盛を行う際に、特別な大型肉盛溶接機を新たに用意することなく、入子金属片22に対して個別に所望の箇所に任意の厚さや形状の肉盛層を形成することができる。また、図2に示す入子金型片22を、図4に示すように更に分割(金型片27のように)して構成して良い。この場合、型彫り面側を予め時効処理まで施して強度を十分に高めたNi基超耐熱合金製の入子金型片22とし、最も大きな鍛造荷重がかかる箇所に配置すれば、金型の寿命を大きく向上させることも可能である。
また、もし、一部の入子金型片が過度に摩耗を生じた場合でも、当該入子金型片のみを交換したり、補修することも可能である。これにより、経済的にも有利な熱間鍛造用金型とすることができる。
なお、入子金型片の材質は、大きな鍛造荷重が加わる位置以外は、基本的に、例えば、JISで規定されるSKD61、SKT4等の熱間金型用鋼を用いることができるし、例えば、金型を高強度化する場合には、Alloy718等のNi基超耐熱合金、高速度工具鋼を選択することもできる。また、本発明では、それぞれの金型片に加わる負荷の大きさに応じて異なる材質の金型片を組み合わせて熱間鍛造用金型を構成することができる。これらの組み合わせにより、熱間鍛造用金型の寿命を向上させることができる。母型の材質はJISで規定されるSKD61、SKT4等の熱間金型用鋼で十分である。
Further, in the nesting mold 2 of the present invention, a plurality of nesting mold pieces 22 are arranged in a row in a row in the longitudinal direction of the nesting mold (direction perpendicular to the direction of being inserted into the master mold), for example, and the assembly body is inserted. It can be a child type. Thereby, the size of each nesting mold piece 22 can be reduced. Therefore, when overlaying the engraved surface, the nested metal piece 22 is individually provided with an arbitrary thickness and shape at a desired location without preparing a new large overlay welding machine. An overlay layer can be formed. Further, the nesting mold piece 22 shown in FIG. 2 may be further divided (as in the mold piece 27) as shown in FIG. In this case, if the die-engraved surface side is preliminarily subjected to aging treatment to obtain a nickel-based superheat-resistant alloy-made nesting die piece 22 whose strength is sufficiently increased, and the die is placed in a place where the largest forging load is applied, the die can be formed. It is also possible to greatly improve the life.
Further, even if some of the nested mold pieces are excessively worn, it is possible to replace or repair only the nested mold pieces. This makes it possible to obtain a hot forging die that is economically advantageous.
As the material of the nesting die piece, basically, for example, hot mold steel such as SKD61 and SKT4 specified by JIS can be used except for the position where a large forging load is applied. When increasing the strength of the mold, a Ni-based superheat-resistant alloy such as Alloy718 or a high-speed tool steel can be selected. Further, in the present invention, a die for hot forging can be formed by combining die pieces made of different materials according to the magnitude of the load applied to each die piece. By combining these, the life of the hot forging die can be improved. As the material of the master mold, steel for hot dies such as SKD61 and SKT4 specified by JIS is sufficient.

また、本発明で用いる入子金型片22の長さ(長尺材の長手方向の長さ)は、不均等にしてもよい。これは、例えば、ブレードなどの場合においては、熱間鍛造中の被鍛造材には捻じりの作用が働くため、例えば、応力が高く加わる箇所の入子金型片22には、応力に耐える長さとしたり、逆に、応力が低い箇所はコスト的に有利な金型片の長さとすることで、入子金型片22の組立体としたときに、熱間鍛造用金型全体にかかる応力を分散することが可能となるとともに、金型コストも低減できる。また、必要に応じて、各金型片の応力が加わる箇所を予めシミュレーションで検証し分割場所を決定することが好ましく、もし、応力が高く加わる場所であっても、やむを得ず分割する必要がある場合は、例えば、図4に示すように、金型片の高さ方向を更に斜めに分割して応力を緩和させたり、隣合う金型片の荷重を受ける突起状の鍔部26を設けておくことが有効である。
また、各金型片の長手方向の長さは、熱間鍛造用金型に加わる応力や金型片自体が有する材料強度を勘案して長さを決定するのが良い。特に、数万トン規模の大型熱間鍛造装置に用いられる際には、金型片に加わる応力も大きくなることから、過度に長さが短くなると金型片が破壊するおそれがあることから、最低でも100mm以上の長さとすることが好ましい。
Further, the length of the nesting mold piece 22 used in the present invention (the length in the longitudinal direction of the long member) may be uneven. This is because, for example, in the case of a blade or the like, a twisting action acts on the material to be forged during hot forging. Therefore, for example, the nesting die piece 22 at a place where high stress is applied withstands stress. By setting the length and conversely, the location where the stress is low is the length of the die piece, which is advantageous in terms of cost, it is applied to the entire hot forging die when the nesting die piece 22 is assembled. The stress can be dispersed and the mold cost can be reduced. In addition, if necessary, it is preferable to verify the location where the stress of each mold piece is applied in advance by simulation and determine the division location. If it is unavoidable to divide even the location where the stress is high, it is necessary to divide. For example, as shown in FIG. 4, the height direction of the mold piece is further divided diagonally to relieve stress, or a protruding collar portion 26 for receiving the load of adjacent mold pieces is provided. Is effective.
Further, the length of each die piece in the longitudinal direction should be determined in consideration of the stress applied to the hot forging die and the material strength of the die piece itself. In particular, when used in a large-scale hot forging device with a scale of tens of thousands of tons, the stress applied to the die piece also increases, and if the length becomes excessively short, the die piece may break. The length is preferably at least 100 mm or more.

また、本発明では入子型2を4個以上の入子金型片22の組立て体とすることができる。上述したように、入子金型片22の長さ(長尺材の長手方向の長さ)を不均一とすることで、応力の分散が可能となる。例えば、鍛造の初期段階から最終段階に移行する、各段階では組み立てた熱間鍛造用金型に加わる応力が各金型片に応じて異なるため、例えば、ブレードの場合では、根部付近、ボス部付近、カバー部付近を分割し、それを更に複数個の金型片に分割することで応力の分散をより確実に行うことができる。特に数万トン規模の大型熱間鍛造装置に用いられる際に、本発明の熱間鍛造用金型を用いる場合は、入子型2を5個以上の入子金型片22に分割すると良く、更に好ましくは7個以上とすると良い。
更に、本発明では入子型2を4個以上の入子金型片22で構成すると、一つの入子金型片の重量を小さくすることができる。従来のような一体の金型を大型製品の熱間鍛造に使用しようとすると、どうしても焼入れ時の冷却速度が低下して、靱性を阻害するベイナイトのような金属組織があらわれて靱性が劣化する。これに対し、本発明では、例えば、上述のJISで規定されるSKD61、SKT4等の熱間金型用鋼を金型片として用いた場合であっても、金型片の焼入れの際に冷却速度を速くすることが可能となる。その結果、SKD61、SKT4等の熱間金型用鋼が有する、優れた高温強度と、高靱性を十分に発揮することが可能となり、高強度と高靱性を兼備する金型片とすることができる。そのため、その重量が小さくできるように、4個以上の入子金型片とするのが好ましい。
Further, in the present invention, the nesting mold 2 can be an assembly body of four or more nesting mold pieces 22. As described above, the stress can be dispersed by making the length of the nesting mold piece 22 (the length in the longitudinal direction of the long material) non-uniform. For example, in the transition from the initial stage to the final stage of forging, the stress applied to the assembled hot forging die differs depending on each die piece. Therefore, for example, in the case of a blade, the vicinity of the root and the boss portion By dividing the vicinity and the vicinity of the cover portion and further dividing the vicinity into a plurality of mold pieces, stress can be more reliably dispersed. In particular, when the hot forging die of the present invention is used when used in a large-scale hot forging device having a scale of tens of thousands of tons, it is preferable to divide the nesting die 2 into five or more nesting die pieces 22. , More preferably, 7 or more.
Further, in the present invention, when the nesting mold 2 is composed of four or more nesting mold pieces 22, the weight of one nesting mold piece can be reduced. When an attempt is made to use a conventional integrated die for hot forging of a large product, the cooling rate at the time of quenching inevitably decreases, and a metal structure such as bainite that inhibits toughness appears and the toughness deteriorates. On the other hand, in the present invention, for example, even when hot mold steel such as SKD61 and SKT4 specified in JIS is used as the mold piece, it is cooled at the time of quenching the mold piece. It is possible to increase the speed. As a result, it is possible to sufficiently exhibit the excellent high-temperature strength and high toughness of hot mold steels such as SKD61 and SKT4, and it is possible to obtain a mold piece having both high strength and high toughness. can. Therefore, it is preferable to use four or more nested mold pieces so that the weight can be reduced.

また、本発明では、入子金型片の型彫り面に、Ni基超耐熱合金の肉盛層を形成しても良い。
Ni基超耐熱合金の肉盛層は熱間鍛造時の負荷が大きく加わる箇所に、高強度化可能な材質のものを選定すると、金型片の寿命を高めることが可能となる。また、用いるNi基超耐熱合金の肉盛層は、金型片の材質と比較して熱伝導率の低い材質を選定すると、熱間鍛造中に被鍛造材の温度低下を防止する効果も得られる。
上述した、高寿命化、温度低下防止効果の2つの効果を得るには、例えば、Ni基超耐熱合金製の肉盛層を形成するのが好ましく、中でも特に、質量%でB:0〜0.02%、C:0.01〜0.15%、Mg:0〜0.01%、Al:0.5〜2%、Si:0〜1%、Mn:0〜1%、Ti:1〜3%、Cr:15〜22%、Co:2〜15%、Nb:0〜3%、Mo:3〜7%、Ta:1〜7%、W:3〜7%、且つ、Ta単独またはTa+2Nbの合計で1〜7%を含み、残部はNi及び不純物でなる合金を用いるのが好ましい。
Further, in the present invention, a build-up layer of a Ni-based superheat-resistant alloy may be formed on the engraved surface of the nesting mold piece.
If the overlay layer of the Ni-based superheat-resistant alloy is selected from a material capable of increasing the strength at a location where a large load is applied during hot forging, the life of the die piece can be extended. Further, if the overlay layer of the Ni-based superheat-resistant alloy to be used is selected to have a lower thermal conductivity than the material of the die piece, the effect of preventing the temperature of the material to be forged to drop during hot forging can be obtained. Be done.
In order to obtain the above-mentioned two effects of extending the life and preventing temperature decrease, for example, it is preferable to form a build-up layer made of a Ni-based superheat-resistant alloy, and in particular, B: 0 to 0 in mass%. .02%, C: 0.01 to 0.15%, Mg: 0 to 0.01%, Al: 0.5 to 2%, Si: 0 to 1%, Mn: 0 to 1%, Ti: 1 ~ 3%, Cr: 15-22%, Co: 2-15%, Nb: 0-3%, Mo: 3-7%, Ta: 1-7%, W: 3-7%, and Ta alone Alternatively, it is preferable to use an alloy containing 1 to 7% of Ta + 2Nb in total and the balance being Ni and impurities.

また、図5に示すように、凹状の型彫り面の縁部分の少なくとも一部に、入子型に対して着脱可能な分割部材を備える構成も好ましい。図6は図5のA−Aの位置における断面のうち左側の部分を拡大した部分断面図である。図5および図6に示す実施形態では、製品形状に応じた凹状の型彫り面21の縁部分に、型彫り面を成す入子型2に対して着脱可能な分割部材28が配置されている。
型彫り面を形成した金型で型鍛造を行う場合、欠肉を防ぐとともに、上型と下型による圧下の終盤で加圧力が急激に上昇して過負荷になることを防ぐため、型彫り面の縁を超えて鍛造用素材をはみ出させるための隙間(ばり道)を上型と下型の間に設けるのが一般的である。この場合、型彫り面の縁の部分の金型の摩耗や損傷が特に著しくなり、型彫り面の縁の部分と、その内側の型彫り面の中央寄りの部分とで、摩耗や損傷の程度が大きく異なることになる。これに対して、図5に示す実施形態のように、摩耗等が激しい縁の部分を着脱可能にしておけば、分割部材が摩耗等で使用不能になった場合には、分割部材のみを交換すればよい。したがって、金型の交換作業が大幅に簡略化され、材料ロスも低減される。
Further, as shown in FIG. 5, it is also preferable that at least a part of the edge portion of the concave engraved surface is provided with a split member that can be attached to and detached from the nesting type. FIG. 6 is an enlarged partial cross-sectional view of the left side portion of the cross section at the position AA in FIG. In the embodiment shown in FIGS. 5 and 6, a split member 28 that can be attached to and detached from the nesting mold 2 forming the die carving surface is arranged at the edge portion of the concave die carving surface 21 according to the product shape. ..
When forging a die with a die having a die-engraved surface, the die-engraving is done to prevent meat shortage and to prevent the pressing force from suddenly increasing at the end of the reduction by the upper and lower dies and causing an overload. Generally, a gap (burr path) is provided between the upper die and the lower die to allow the forging material to protrude beyond the edge of the surface. In this case, the wear and damage of the mold at the edge of the engraved surface becomes particularly remarkable, and the degree of wear and damage between the edge of the engraved surface and the inner part of the engraved surface near the center. Will be very different. On the other hand, as in the embodiment shown in FIG. 5, if the edge portion where the wear is severe is made removable, only the split member is replaced when the split member becomes unusable due to the wear or the like. do it. Therefore, the mold replacement work is greatly simplified and the material loss is also reduced.

さらに、分割部材28が、入子型よりも高い熱間強度を有する構成を採用することで、金型の寿命をよりいっそう延ばすことができる。ここでいう熱間強度は、熱間鍛造の際に金型表面が到達する温度における強度であり、例えば温度500℃における引張強度をその指標とすることができる。分割部材28の材質としては、Alloy718等のNi基超耐熱合金、高速度工具鋼等を用いることができる。このうち、Ni基超耐熱合金が特に好ましい。Ni基超耐熱合金のように高価な材料を用いる場合であっても、分割部材の部分だけ交換すればよいので、金型の維持・交換コストの大幅な低減が可能である。
図5の分割部材が占める領域を一つの分割部材で構成することもできるが、図5に示すように隣接配置された複数の分割部材片で分割部材を構成すること、すなわち分割部材を複数の分割部材片に分割された状態で配置することで、摩耗等によって交換する部分を必要最小限にすることができる。また、鍛造の際の応力が分散され、分割部材にかかる最大応力が低減されることも期待できる。
Further, by adopting a structure in which the split member 28 has a higher hot strength than the nested mold, the life of the mold can be further extended. The hot strength referred to here is the strength at the temperature reached by the mold surface during hot forging, and for example, the tensile strength at a temperature of 500 ° C. can be used as an index thereof. As the material of the dividing member 28, a Ni-based super heat-resistant alloy such as Alloy718, high-speed tool steel, or the like can be used. Of these, Ni-based super heat-resistant alloys are particularly preferable. Even when an expensive material such as a Ni-based super heat-resistant alloy is used, only the part of the dividing member needs to be replaced, so that the maintenance and replacement costs of the mold can be significantly reduced.
The area occupied by the dividing member of FIG. 5 can be composed of one dividing member, but as shown in FIG. 5, the dividing member is composed of a plurality of divided member pieces arranged adjacent to each other, that is, the divided member is composed of a plurality of divided members. By arranging the divided member pieces in a divided state, it is possible to minimize the parts to be replaced due to wear or the like. Further, it can be expected that the stress at the time of forging is dispersed and the maximum stress applied to the divided member is reduced.

図6の部分断面図に示すように、型彫り面の縁に配置された分割部材28の一部は、型彫り面の彫り込み方向(鍛造の加圧方向:z方向)に垂直な方向で型彫り面に露出し、該型彫り面の一部を構成する。分割部材28の他の一部はz方向上側の表面に露出し、ばり道28の一部を構成する。摩耗等の損傷が激しい、凹状の型彫り面のz方向端部およびばり道を含む縁の部分に着脱可能な分割部材28を配置することは、交換等に係る金型コスト低減に非常に効果的である。
図5に示す示す実施形態では、長手方向に沿った長辺側に分割部材が配置されている。型彫り面の全周に渡って分割部材を配置することもできるが、図5に示すように、摩耗等が激しい、少なくとも一部に配置すればよい。
As shown in the partial cross-sectional view of FIG. 6, a part of the dividing member 28 arranged at the edge of the die-engraved surface is formed in a direction perpendicular to the engraving direction (forging pressure direction: z-direction) of the die-engraved surface. It is exposed on the carved surface and forms a part of the carved surface. The other part of the dividing member 28 is exposed on the upper surface in the z direction and forms a part of the beam path 28. Placing the removable split member 28 on the z-direction end of the concave die-carved surface and the edge including the burrs, which are severely damaged such as wear, is very effective in reducing the mold cost related to replacement and the like. Is the target.
In the embodiment shown in FIG. 5, the dividing member is arranged on the long side along the longitudinal direction. The dividing member may be arranged over the entire circumference of the engraved surface, but as shown in FIG. 5, it may be arranged at least in a part where the wear is severe.

分割部材28の上面の、ばり道を構成する部分から先には、型彫り面から遠ざかるにしたがい下側に傾斜する傾斜部、及びかかる傾斜部の先に続く、ばり道を構成する面よりも下方に位置する面で構成される、ばりだまり29が形成されている。図6に示す実施形態では、上述のばりだまり29が形成される位置で、分割部材28が入子型に上方からボルト30によって着脱可能に固定されている。
また、分割部材28は、その下部に、型彫り面の彫り込み方向(z方向)に垂直な方向(型彫り面の縁に垂直な方向であって、図6ではy方向である。)に突出した、断面が矩形の凸部を有し、入子型には、かかる凸部と嵌め合わせ可能な凹部が設けられている。かかる凸部および凹部によって、分割部材、入子型、それぞれに凹凸が形成されている。分割部材27の凹凸が入子型の凹凸に嵌合することにより、分割部材28が型彫り面の彫り込み方向(z方向)で拘束される。したがって、鍛造の際に分割部材に上方に向かう強い摩擦力が働いても、分割部材の固定状態を安定に維持することができる。図6に示す凹凸の嵌合による拘束を利用しない構成を用いることもできるが、図6に示す構成を用いることで、ばりだまり部分の位置でのボルト固定に加えて、より型彫り面に近い位置で分割部材を型彫り面の彫り込み方向で拘束するため、よりいっそう強固に補強部材を固定することができる。
入子型を複数の入子型片の組立て体で構成する場合、各入子型片に分割部材を配置することができる。かかる場合、分割部材を配置する入子型片の数は一つでも、二つ以上でもよい。また、一つの入子型片に配置する分割部材の数も、一つでも、二つ以上でもよい。
From the portion of the upper surface of the dividing member 28 that constitutes the beam path, there is an inclined portion that inclines downward as it goes away from the engraved surface, and a surface that continues beyond the inclined portion and forms the beam path. A burrs 29 are formed, which are composed of surfaces located below. In the embodiment shown in FIG. 6, at the position where the above-mentioned burrs 29 are formed, the dividing member 28 is detachably fixed to the nesting type by bolts 30 from above.
Further, the dividing member 28 projects below the split member 28 in a direction perpendicular to the engraving direction (z direction) of the engraved surface (a direction perpendicular to the edge of the engraved surface, which is the y direction in FIG. 6). The nested type has a convex portion having a rectangular cross section, and the nested type is provided with a concave portion that can be fitted with the convex portion. Concavities and convexities are formed in each of the divided member and the nesting type by the convex portion and the concave portion. By fitting the unevenness of the dividing member 27 to the unevenness of the nesting type, the dividing member 28 is constrained in the engraving direction (z direction) of the engraved surface. Therefore, even if a strong upward frictional force acts on the split member during forging, the fixed state of the split member can be stably maintained. It is possible to use a configuration that does not utilize the restraint due to the fitting of the unevenness shown in FIG. 6, but by using the configuration shown in FIG. 6, in addition to fixing the bolt at the position of the burrs, it is closer to the carved surface. Since the dividing member is restrained at the position in the engraving direction of the engraved surface, the reinforcing member can be fixed more firmly.
When the nested mold is composed of an assembly of a plurality of nested mold pieces, a dividing member can be arranged on each nested mold piece. In such a case, the number of nested pieces for arranging the dividing members may be one or two or more. Further, the number of dividing members arranged in one nested piece may be one or two or more.

なお、Ni基超耐熱合金の肉盛層を形成する場合は、金型片と肉盛層との間に、肉盛層とは別の固溶強化型耐熱合金でなる合金層を肉盛溶接により形成し、溶接性を向上させ、金型片の母材と打撃面との間に発生する応力を緩和させることが好ましい。
本発明で言う固溶強化型耐熱合金とは、例えば、JIS−G4901やG4902に示される組成を有する合金のうち、合金元素を固溶させて基地(マトリックス)を強化することが可能な組成を有する合金や、ASTM−A494に記される合金で有ればよい。
典型的な成分範囲を示すと、質量%で、C:0.15%以下、Cr:15〜30%、Co:0〜3%、Mo:0〜30%、W:0〜10%、Nb:0〜4%、Ta:0〜4%、Ti:0〜1%、Al:0〜2%、Fe:0〜20%、Mn:0〜4%を含み、残部はNi及び不純物でなる合金である。
When forming a build-up layer of a Ni-based super heat-resistant alloy, an alloy layer made of a solid-melt reinforced heat-resistant alloy different from the build-up layer is built-up welded between the mold piece and the build-up layer. It is preferable to improve the weldability and alleviate the stress generated between the base material of the mold piece and the striking surface.
The solid solution strengthened heat-resistant alloy referred to in the present invention is, for example, a composition capable of solid-solving an alloy element to strengthen a matrix among alloys having a composition shown in JIS-G4901 or G4902. It may be an alloy having the alloy or the alloy described in ASTM-A494.
A typical component range is C: 0.15% or less, Cr: 15 to 30%, Co: 0 to 3%, Mo: 0 to 30%, W: 0 to 10%, Nb in mass%. : 0 to 4%, Ta: 0 to 4%, Ti: 0 to 1%, Al: 0 to 2%, Fe: 0 to 20%, Mn: 0 to 4%, and the balance consists of Ni and impurities. It is an alloy.

上述した本発明の熱間鍛造用金型を製造(組立て)する代表例としては、先ず、外形が四角柱状であって、鍛造用素材を押圧する型彫り面を有する入子型を準備する。前述のように熱間鍛造用素材は長尺製品となるものであるため、丸棒状の形状である。準備する入子型は直方体となる場合が多く、予め鍛造荷重とその分布を計算し、鍛造荷重に耐えるに必要な入子金型片の個数、形状、材質とする。特に耐久性が必要な個所は、入子金型片自体または型彫り面にNi基超耐熱合金の肉盛層を形成したものを用意するか、或いは、入子金型片を更に分割して、型彫り面を予め固溶化熱処理と時効処理を施したNi超耐熱合金製の金型片とするのが好ましい。なお、入子型と母型の熱収縮の計算を行って、入子型の寸法を決定することを考慮すると、大きな鍛造荷重を受ける型彫り面付近だけにNi基超耐熱合金の金型片を用いるか、肉盛層を形成するのが熱収縮計算が容易となるため好ましい。
また、組立てた入子型の四隅(母型に挿入される方向に沿って伸びる4つの角部)となる部分に面取り加工を行って、一体物としてタイロッド等の締結部材25により締結して一体化し、入子型2とする(図3)。なお、図3に示すように、入子型を構成する入子型片の形状は鍛造荷重を考慮して、鍛造荷重を受ける鍔部を有したものや、例えばNi基超耐熱合金製の別な金型片27との組立て体を設けても差し支えない。
As a typical example of manufacturing (assembling) the hot forging die of the present invention described above, first, a nesting die having a square columnar outer shape and a die carved surface for pressing the forging material is prepared. As described above, the hot forging material is a long product, and therefore has a round bar shape. The nesting die to be prepared is often a rectangular parallelepiped, and the forging load and its distribution are calculated in advance, and the number, shape, and material of the nesting die pieces required to withstand the forging load are used. For places where durability is particularly required, prepare a nesting mold piece itself or a mold having a built-up layer of Ni-based superheat-resistant alloy formed on the die-engraved surface, or further divide the nesting mold piece. It is preferable that the die carved surface is a mold piece made of a Ni superheat resistant alloy that has been previously subjected to solution heat treatment and aging treatment. Considering that the dimensions of the nesting mold are determined by calculating the heat shrinkage of the nesting mold and the master mold, a mold piece of Ni-based superheat resistant alloy is used only near the die carved surface that receives a large forging load. It is preferable to use or to form a build-up layer because the heat shrinkage calculation becomes easy.
In addition, chamfering is performed on the four corners (four corners extending along the direction of insertion into the mother die) of the assembled nesting mold, and the parts are fastened and integrated by a fastening member 25 such as a tie rod as an integral body. Chamfer type 2 (Fig. 3). As shown in FIG. 3, the shape of the nesting die piece constituting the nesting die is different from that having a flange portion that receives the forging load in consideration of the forging load, or, for example, a Ni-based superheat resistant alloy. An assembly body with the mold piece 27 may be provided.

次に、外形が四角柱状であって、入子型を収納する収納部を備えた母型を準備する。母型の収納部の隅部には、入子型の角部24の面取り形状に合わせて加工を施すと良い。母型と入子型が焼嵌めによって強固に一体化できるように、母型の幅は入子型の高さの1.0〜2.0倍程度の厚さでもって入子型の周囲の厚さとすることが好ましい。
そして、この母型と入子型とを焼嵌めして一体化して、外形が四角柱状の熱間鍛造用金型とすることができる。
以上、説明する本発明によれば、肉盛溶接も任意の箇所に所望の肉盛層が形成可能で、経済的にも優れ、製品の大型化、高強度化にも適用可能である。
Next, a master mold having a square columnar outer shape and having a storage portion for storing the nesting mold is prepared. The corners of the storage portion of the mother mold may be processed according to the chamfered shape of the corner portion 24 of the nesting mold. The width of the mother mold is about 1.0 to 2.0 times the height of the nest mold so that the mother mold and the nest mold can be firmly integrated by shrink fitting. The thickness is preferable.
Then, the mother die and the nesting die can be shrink-fitted and integrated to form a hot forging die having a square columnar outer shape.
According to the present invention described above, overlay welding can also form a desired overlay layer at an arbitrary position, is economically excellent, and can be applied to increasing the size and strength of products.

1 熱間鍛造用金型
2 入子型
21 型彫り面
22 入子型片
23 入子型固定枠
24 角部
25 締結部材
26 鍔部
27 金型片
28 分割部材
29 ばりだまり
30 ボルト
3 母型
31 収納部
32 隅部

1 Hot forging die 2 Nested die 21 Die carved surface 22 Nethered die piece 23 Nethered die fixing frame 24 Square 25 Fastening member 26 Flange 27 Die piece 28 Divided member 29 Burr 30 Bolt 3 Master mold 31 Storage section 32 Corner

Claims (8)

熱間鍛造用素材を押圧して鍛造材とする熱間鍛造用金型において、
前記熱間鍛造用金型は、少なくとも入子型と前記入子型を収納する母型とを有し、
前記入子型は、前記熱間鍛造用素材を押圧する型彫り面を有するとともに四角柱状の外形を有し、
前記母型は、前記入子型を収納する収納部を備えるとともに四角柱状の外形を有し、
前記入子型は、前記母型に挿入される方向に沿って伸びる角部に面取り形状を有し、
前記入子型と前記母型とは焼嵌めされて一体化された構造を有し、
前記型彫り面の縁部分の少なくとも一部に、前記入子型に対して着脱可能な分割部材を備えることを特徴とする熱間鍛造用金型。
In a hot forging die that presses a hot forging material into a forging material,
The hot forging die has at least a nesting die and a master die for accommodating the nesting die.
The nesting mold has a die-engraved surface for pressing the hot forging material and has a square columnar outer shape.
The mother die has a storage portion for accommodating the nesting die and has a square columnar outer shape.
The nested mold has a chamfered shape at a corner extending along a direction of being inserted into the master mold.
The said the entering-subtype mold have a structure that is integral with the shrink fit,
A hot forging die characterized in that at least a part of the edge portion of the die carved surface is provided with a split member that can be attached to and detached from the nesting die.
前記入子型が複数個の入子金型片の組立て体であることを特徴とする請求項1に記載の熱間鍛造用金型。 The hot forging die according to claim 1, wherein the nesting die is an assembly of a plurality of nesting die pieces. 前記入子金型片の前記型彫り面に、Ni基超耐熱合金の肉盛層を有することを特徴とする請求項2に記載の熱間鍛造用金型。 The hot forging die according to claim 2, wherein a build-up layer of a Ni-based superheat-resistant alloy is provided on the engraved surface of the nested die piece. 前記入子金型片の少なくとも一つが、Ni基超耐熱合金製の入子金型片であることを特徴とする請求項2または3に記載の熱間鍛造用金型。 The hot forging die according to claim 2 or 3, wherein at least one of the nested die pieces is a nested die piece made of a Ni-based superheat-resistant alloy. 前記分割部材が、前記入子型よりも高い熱間強度を有することを特徴とする請求項1〜4のいずれか一項に記載の熱間鍛造用金型。 The hot forging die according to any one of claims 1 to 4, wherein the split member has a higher hot strength than the nested die. 熱間鍛造用素材を押圧して鍛造材とする熱間鍛造用金型の製造方法において、
前記熱間鍛造用金型は、少なくとも入子型と前記入子型を収納する母型とを有し、
前記入子型は、外形が四角柱状であって、前記熱間鍛造用素材を押圧する型彫り面を有し、前記母型に挿入される方向に沿って伸びる角部に面取り形状を有し、
前記母型は、外形が四角柱状であって、前記入子型を収納する収納部を有し、
前記型彫り面の縁部分の少なくとも一部に、前記入子型に対して着脱可能な分割部材を備え、
前記入子型と前記母型とを焼嵌めして一体化することを特徴とする熱間鍛造用金型の製造方法。
In the method of manufacturing a hot forging die that presses a hot forging material into a forging material,
The hot forging die has at least a nesting die and a master die for accommodating the nesting die.
The nesting mold has a square columnar outer shape, has a die-engraved surface for pressing the hot forging material, and has a chamfered shape at a corner portion extending along a direction of being inserted into the master mold. ,
The mother die has a square columnar outer shape, and has a storage portion for accommodating the nesting die.
At least a part of the edge portion of the engraved surface is provided with a split member that can be attached to and detached from the nesting die.
A method for manufacturing a hot forging die, which comprises shrink-fitting the nesting die and the mother die to integrate them.
前記入子型が複数個の入子金型片の組立て体であることを特徴とする請求項に記載の熱間鍛造用金型の製造方法。 The method for manufacturing a hot forging die according to claim 6 , wherein the nesting die is an assembly of a plurality of nested die pieces. 加熱された熱間鍛造用素材を請求項1〜のいずれか一項に記載の熱間鍛造用金型を用いて熱間鍛造し、鍛造材を得る鍛造材の製造方法。 A method for producing a forged material, which obtains a forged material by hot forging a heated hot forging material using the hot forging die according to any one of claims 1 to 5.
JP2017151804A 2016-08-04 2017-08-04 Hot forging dies and their manufacturing methods and forging material manufacturing methods Active JP6924377B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016153482 2016-08-04
JP2016153482 2016-08-04

Publications (2)

Publication Number Publication Date
JP2018024022A JP2018024022A (en) 2018-02-15
JP6924377B2 true JP6924377B2 (en) 2021-08-25

Family

ID=61194932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151804A Active JP6924377B2 (en) 2016-08-04 2017-08-04 Hot forging dies and their manufacturing methods and forging material manufacturing methods

Country Status (1)

Country Link
JP (1) JP6924377B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10940523B2 (en) * 2018-06-01 2021-03-09 The Boeing Company Apparatus for manufacturing parts, and related methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623845A (en) * 1985-06-28 1987-01-09 Masahiro Yokoi Cold pressing tool
JPH01113145A (en) * 1987-10-22 1989-05-01 Kobe Steel Ltd Die for forging hot die
CN104203450B (en) * 2012-03-30 2016-05-04 日立金属株式会社 Forge hot mould
JP6311969B2 (en) * 2013-03-28 2018-04-18 日立金属株式会社 Die for hot forging and hot forging method

Also Published As

Publication number Publication date
JP2018024022A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6311969B2 (en) Die for hot forging and hot forging method
JP6036881B2 (en) Hot forging die
JP6601051B2 (en) Steel powder
CN107427896B (en) The manufacturing method of Ni base superalloy
JP6647771B2 (en) Mold steel and mold
CN101878086B (en) Method for manufacturing a coiler drum and a coiler drum
JP2015224363A (en) Steel for metallic mold and metallic mold
JP6924377B2 (en) Hot forging dies and their manufacturing methods and forging material manufacturing methods
US9427793B2 (en) Hot upset forging method
JP4877293B2 (en) Manufacturing method of anvil for forging
JP6528941B2 (en) Hot forging die
CN100389926C (en) Hot werk mould steel welding material
JP5444938B2 (en) Steel for mold
JP6410135B2 (en) Hot forging die
JP6521369B2 (en) Hot forging die
KR101817707B1 (en) Hot-working die with damage diminution layer
JP6924376B2 (en) How to manufacture hot forging dies and forged products
JP6774623B2 (en) Manufacturing method of materials for turbine blades
JP6941283B2 (en) Manufacturing method of materials for turbine blades
JP6471444B2 (en) Manufacturing method of hot forging die
JP6120144B2 (en) Die for rotary forging
US6048491A (en) Steel alloy, steel product and use thereof
DE10130549A1 (en) Production of forging dies comprises forming bimetallic plate by explosive welding which is then hot-forged to produce desired surface contour, optionally after forming cavity in plate
UA12987U (en) Die of stressed structure
PL228007B1 (en) Cutting tool set and method for producing a cutting tool set

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210714

R150 Certificate of patent or registration of utility model

Ref document number: 6924377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350