JP6106796B1 - Transparent glass coating material that shields ultraviolet rays and infrared rays and has photocatalytic action, method for producing the same, and method for producing a coating film using the same - Google Patents

Transparent glass coating material that shields ultraviolet rays and infrared rays and has photocatalytic action, method for producing the same, and method for producing a coating film using the same Download PDF

Info

Publication number
JP6106796B1
JP6106796B1 JP2016200232A JP2016200232A JP6106796B1 JP 6106796 B1 JP6106796 B1 JP 6106796B1 JP 2016200232 A JP2016200232 A JP 2016200232A JP 2016200232 A JP2016200232 A JP 2016200232A JP 6106796 B1 JP6106796 B1 JP 6106796B1
Authority
JP
Japan
Prior art keywords
mass
parts
solvent
transparent glass
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016200232A
Other languages
Japanese (ja)
Other versions
JP2018062546A (en
Inventor
木 彬 大
木 彬 大
Original Assignee
大木 彬
大木 彬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大木 彬, 大木 彬 filed Critical 大木 彬
Priority to JP2016200232A priority Critical patent/JP6106796B1/en
Application granted granted Critical
Publication of JP6106796B1 publication Critical patent/JP6106796B1/en
Publication of JP2018062546A publication Critical patent/JP2018062546A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】可視光線を透過し、赤外線と紫外線とを遮蔽すると共に、光触媒活性を有し、自己洗浄性作用、防汚作用、抗菌作用、防臭作用、などを有する透明な媒塗料を提供する。【解決手段】アクリルポリオール樹脂と脂肪族ポリイソシアネートとの反応生成物と、赤外線遮蔽無機化合物の微粒子と、アナターゼ型酸化チタンの微粒子と、ペルオキソチタン酸と、を両親媒性溶剤である第1溶剤と、第1溶媒と同じか又は異なる第2溶剤と、水と、からなる混合溶媒に均一に分散させた透明ガラス用塗料を提供する。この透明ガラス用塗料は、塗布し乾固することによって、光触媒が生成する活性酸素が塗料の高分子樹脂を侵襲するのを防御する構造を形成する。【選択図】 なしThe present invention provides a transparent medium coating that transmits visible light, shields infrared rays and ultraviolet rays, has photocatalytic activity, and has a self-cleaning action, an antifouling action, an antibacterial action, an odor prevention action, and the like. A first solvent which is an amphiphilic solvent comprising a reaction product of an acrylic polyol resin and an aliphatic polyisocyanate, fine particles of an infrared shielding inorganic compound, fine particles of anatase-type titanium oxide, and peroxotitanic acid. And a transparent glass paint that is uniformly dispersed in a mixed solvent comprising a second solvent that is the same as or different from the first solvent, and water. This transparent glass paint forms a structure that prevents active oxygen generated by the photocatalyst from invading the polymer resin of the paint by applying and drying. [Selection figure] None

Description

本発明は、紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料に係り、より詳しくは、赤外線を吸収して遮蔽し、紫外線を吸収して光触媒作用を発揮すると共に光触媒が生成する活性酸素が塗膜を構成する高分子樹脂を侵襲するのを防御する、ガラスに塗布可能な紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料に関する。   The present invention relates to a coating material for transparent glass that shields ultraviolet rays and infrared rays and has a photocatalytic action. The present invention relates to a coating material for transparent glass that shields ultraviolet rays and infrared rays that can be applied to glass and has a photocatalytic action, which protects the polymer resin constituting the coating film from invading.

ガラス窓は、室内に太陽光を導入して部屋を明るくすると共に外の景色が見えるようにして開放感を与え、またガラス張りの建造物の外観は、近代的な印象を与える。建築物の外装にも多くのガラスが用いられるようになり、外壁全面がカラス張りの建造物も多くなった。更に、ガラス窓が無いか、又は少ない場合は、昼間でも室内を照明しなければならないので、ガラス窓は省エネ効果を有していることになる。   The glass window introduces sunlight into the room, brightens the room and allows the outside scenery to be seen, giving a sense of openness, and the exterior of the glass building gives a modern impression. A lot of glass has come to be used for the exterior of buildings, and there are many buildings with crows on the entire outer wall. Furthermore, when there are no or few glass windows, the room must be illuminated even in the daytime, so the glass windows have an energy saving effect.

一方、30分間に太陽から地球に降り注ぐエネルギーの量は、1年分の全世界の消費エネルギー量に匹敵すると言われているほど莫大なものである。また、太陽エネルギー光は、可視光線を45%、赤外線を50%、および紫外線が5%を含み、通常のガラスは太陽光線中の可視光線だけでなく、赤外線や紫外線も透過させる。   On the other hand, the amount of energy that falls from the sun to the earth in 30 minutes is so large that it is said to be equivalent to the amount of energy consumed worldwide for one year. Solar energy light contains 45% visible light, 50% infrared light, and 5% ultraviolet light, and ordinary glass transmits not only visible light in sunlight but also infrared light and ultraviolet light.

赤外線は、熱線であって夏季の過剰照射は室内の温度を過度に上昇させて冷房の電力消費量を増大させ、紫外線は、肌にダメージを与えて日焼けさせるため、過剰な太陽光線の照射は重大な問題を生じる。太陽光線の過剰照射の問題は、建造物の窓ガラスのみならず、自動車や列車等の車両の窓ガラス窓にも生じている。   Infrared rays are heat rays.Excessive irradiation in summer increases the power consumption of the air conditioner by excessively raising the indoor temperature, and ultraviolet rays damage the skin and cause sunburn. Cause serious problems. The problem of excessive irradiation with sunlight is occurring not only in the window glass of buildings, but also in the window glass windows of vehicles such as automobiles and trains.

従って、有用な可視光線のみを透過させて紫外線および赤外線を遮蔽するような性質をガラスに付加することが望まれている。これに対し、太陽光線中の可視光線を透過させつつ、赤外線および紫外線を遮蔽する方法としては、ガラス自体に赤外線と紫外線の遮蔽作用を付与するか、ガラスに赤外線および紫外線を遮蔽する機能が付与された透明フィルムを添付するか、又は透明な塗料を塗布することが行なわれている。   Accordingly, it is desirable to add a property to glass that transmits only useful visible light and shields ultraviolet rays and infrared rays. On the other hand, as a method of shielding infrared rays and ultraviolet rays while transmitting visible light in sunlight, the glass itself has a function of shielding infrared rays and ultraviolet rays, or the glass has a function of shielding infrared rays and ultraviolet rays. A transparent film is attached, or a transparent paint is applied.

ここで、赤外線と紫外線の遮蔽作用を有するガラスは公知であるが高価であって、一般の窓ガラスとして使用するのは経済的に困難である。
窓ガラス用の赤外線遮断透明フィルムが特許文献1に記載されている。
しかし、窓は多様な形状をしており、大きいものは一辺が数メートル以上もあるので、完成後の建造物に透明フィルムをムラが生じないように貼付するのは高度の技術が必要である。
Here, glass having an infrared and ultraviolet shielding effect is known but expensive, and it is economically difficult to use as a general window glass.
An infrared shielding transparent film for window glass is described in Patent Document 1.
However, since windows have various shapes and large ones have a length of several meters or more, it is necessary to apply advanced technology to paste a transparent film on a completed building so as not to cause unevenness. .

無機赤外線吸収材と、有機紫外線吸収剤とを含む紫外線・近赤外線遮蔽水性塗料が知られている。しかしながら、ガラスは表面に油脂分を吸着して水を弾いて水玉ができてしまうし、水玉ができないようにガラスを清浄にするのは容易なことではないから、水性塗料を窓ガラス塗布するのは大変な作業である。
上記のように、紫外線および赤外線を遮蔽する透明ガラス用塗料は、十分な性能を有するものは知られていない。
An ultraviolet / near-infrared shielding water-based paint containing an inorganic infrared absorber and an organic ultraviolet absorber is known. However, glass adsorbs oil and fat on the surface and repels water, creating polka dots, and it is not easy to clean the glass so that polka dots are not formed. Is a tough job.
As described above, a transparent glass coating material that shields ultraviolet rays and infrared rays is not known to have sufficient performance.

赤外線の遮蔽剤は、多様なものが知られているが、インジュームドープ酸化錫、アンチモンドープ酸化錫およびガリウムドープ酸化亜鉛のような無機酸化物組成体が優れた性質を示すことが知られている(例えば引用文献1を参照)。
一方、紫外線の遮蔽材は、化粧品の日焼け止めの分野や色素・感光材分野で、多くの有機化合物が開示された。しかし、窓ガラスは直射日光に数年間も晒されるという使用環境を考慮すると、有機化合物の安定性には問題がある。
Various infrared screening agents are known, but inorganic oxide compositions such as indium doped tin oxide, antimony doped tin oxide and gallium doped zinc oxide are known to exhibit excellent properties. (See, for example, cited document 1).
On the other hand, as an ultraviolet shielding material, many organic compounds have been disclosed in the fields of cosmetic sunscreen and dye / photosensitive material. However, considering the usage environment in which window glass is exposed to direct sunlight for several years, there is a problem with the stability of organic compounds.

更に、光触媒作用を有するアナターゼ型酸化チタンの微粉末は、紫外線を吸収して活性酸素を発生することが知られている。しかし、従来のアナターゼ型酸化チタン微粉末は、数百度で焼成しなければ成膜できなかったので、フィルムや塗料に入れることができなかった。近年市販されている酸化チタンの微粉末は、1次粒子の粒径はナノスケールであるが、2次粒子は1次粒子が数千個会合した粉末であって、可視光の透過性に問題があるものが多い。更に、光触媒が生成する活性酸素が、フィルムや塗料の基材である高分子樹脂を酸化分解してしまうので、塗料やフィルムに活性酸素を混合することができないという問題も有する。   Furthermore, it is known that fine powder of anatase-type titanium oxide having a photocatalytic action absorbs ultraviolet rays and generates active oxygen. However, the conventional anatase-type titanium oxide fine powder could not be formed into a film or paint because it could not be formed unless it was fired at several hundred degrees. The fine powder of titanium oxide that is commercially available in recent years has a nano-scale primary particle size, but the secondary particle is a powder in which thousands of primary particles are associated with each other, and there is a problem with the transmittance of visible light. There are many things. Furthermore, since the active oxygen generated by the photocatalyst oxidizes and decomposes the polymer resin that is the base material of the film or paint, there is a problem that the active oxygen cannot be mixed into the paint or film.

特許文献2には、アナターゼ型酸化チタンと、アンチモンドープ酸化錫を含む無機酸化物と、シリカおよびアルミナを含む無機材料と、高分子樹脂樹脂と、からなる組成物が開示され、アナターゼ型酸化チタンが紫外線を吸収して生成する活性酸素が樹脂を破壊するのを無機材料が防御すると記載されている。しかし、開示された無機材料はいずれも粉末であり、膜を形成するものは含まれていないので、それら無機材料が樹脂を活性酸素から保護する能力は十分なものではない。   Patent Document 2 discloses a composition comprising anatase-type titanium oxide, an inorganic oxide containing antimony-doped tin oxide, an inorganic material containing silica and alumina, and a polymer resin resin. Anatase-type titanium oxide Describes that the inorganic material protects the active oxygen produced by absorbing ultraviolet rays from destroying the resin. However, since all the disclosed inorganic materials are powders and do not include those that form a film, the ability of these inorganic materials to protect the resin from active oxygen is not sufficient.

特開2013−230613号公報JP 2013-230613 A 特開2008−302351号公報JP 2008-302351 A 特許第3490013号公報Japanese Patent No. 3490013 特許第3490012号公報Japanese Patent No. 3490012

本発明は、かかる問題を解決するためになされたものであって、本発明の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料を塗布することによって、可視光線を通過させながら赤外線と紫外線とを遮蔽すると共に、高い光触媒活性を有し、自己洗浄性作用、防汚作用、抗菌作用、防臭作用、空気清浄化作用などを有する紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料を提供することを課題とする。   The present invention has been made to solve such problems, and by applying the transparent glass paint having a photocatalytic action that shields the ultraviolet rays and infrared rays of the present invention, infrared rays and ultraviolet rays are allowed to pass through. A transparent glass coating material that has high photocatalytic activity and has self-cleaning action, antifouling action, antibacterial action, deodorization action, air cleaning action, etc. The issue is to provide.

また本発明は、透明度が高く、強固な塗膜を形成すると共に、光触媒が発生させる活性酸素から、高分子樹脂の塗膜を保護する構造を構成する耐久性および耐候性に優れた高分子樹脂塗料を提供することを課題とする。   In addition, the present invention provides a polymer resin excellent in durability and weather resistance, which forms a structure having a high transparency and a strong coating film, and also protects the coating film of the polymer resin from active oxygen generated by the photocatalyst. It is an object to provide a paint.

更に本発明は、紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料を容易に製造する方法を提供すると共に、塗料がガラスに対して高い濡れ性を有し、透明な塗料をガラスに容易に均一に塗布することができる透明ガラス用塗膜の製造方法を提供することを目的とする。   Furthermore, the present invention provides a method for easily producing a coating material for transparent glass having a photocatalytic action by shielding ultraviolet rays and infrared rays, and the coating material has high wettability with respect to glass so that the transparent coating material can be easily applied to glass. It aims at providing the manufacturing method of the coating film for transparent glass which can be apply | coated uniformly.

かかる課題を解決するための本発明の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料は、塗料の全質量を100質量部とした場合に、アクリルポリオール樹脂15〜30質量部および脂肪族ポリイソシアネート1〜6質量部の反応生成物と、赤外線遮蔽無機化合物の微粒子を4〜9質量部、アナターゼ型酸化チタンの微粒子0.1〜2質量部、およびペルオキソチタン酸を酸化チタンに換算して0.1〜2質量部を、沸点が140℃以上200℃以下の両親媒性溶剤である第1溶剤35〜55質量部および第1溶媒と同じか又は異なる第2溶剤1〜3質量部、および水15〜30質量部を含み、前記両親媒性溶剤の質量と前記水の質量との合計を100質量%としたときの溶媒の含水率が20乃至50質量%である溶媒に均一に分散させたことを特徴とする。   In order to solve this problem, the transparent glass coating material for shielding ultraviolet rays and infrared rays according to the present invention and having a photocatalytic action is composed of 15 to 30 parts by mass of an acrylic polyol resin and aliphatic when the total mass of the coating is 100 parts by mass. 4-9 parts by mass of the reaction product of 1-6 parts by mass of polyisocyanate, fine particles of infrared shielding inorganic compound, 0.1-2 parts by mass of fine particles of anatase-type titanium oxide, and peroxotitanic acid converted to titanium oxide 0.1 to 2 parts by mass of the first solvent 35 to 55 parts by mass which is an amphiphilic solvent having a boiling point of 140 ° C. or higher and 200 ° C. or lower, and 1 to 3 parts by mass of the second solvent which is the same as or different from the first solvent And a solvent having a water content of 20 to 50% by mass when the total of the mass of the amphiphilic solvent and the mass of water is 100% by mass. And wherein the dispersed one.

前記両親媒性溶剤は、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、又はジエチレングリコールジエチルエーテルから選ばれる1以上であることを特徴とする。   The amphiphilic solvent is selected from ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol diacetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, or diethylene glycol diethyl ether 1 or more.

また、前記赤外線遮蔽無機化合物は、酸化アンチモン、酸化錫、酸化インジューム、酸化ガリウム、および酸化亜鉛から選ばれる1以上であることを特徴とする。
また、アクリルポリオール樹脂の質量と脂肪族ポリイソシアネートの質量の比が20:1〜20:3の範囲であることが好ましい。
The infrared shielding inorganic compound is one or more selected from antimony oxide, tin oxide, indium oxide, gallium oxide, and zinc oxide.
Moreover, it is preferable that ratio of the mass of acrylic polyol resin and the mass of aliphatic polyisocyanate is the range of 20: 1-20: 3.

本発明の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料の製造方法は、透明ガラス用塗料の製造方法であって、塗料の全質量を100質量部とした場合に、アクリルポリオール樹脂15乃至30質量部を沸点が140℃以上200℃以下である両親媒性溶剤35乃至55質量部に溶解したポリオール溶液および脂肪族ポリイソシアネート1乃至6質量部と第2溶剤1乃至3質量部とに溶解した脂肪族ポリイソシアネート溶液を反応させてアクリルウレタン樹脂溶液を製造する樹脂溶液製造段階と、酸化チタンに換算したペルオキソチタン酸の濃度が0.1乃至10質量%のペルオキソチタン酸水溶液を10乃至20質量部、酸化チタンの濃度が0.1乃至10質量%のアナターゼ型酸化チタンの微粒子水分散液を10乃至20質量部、および赤外線遮蔽無機化合物の微粒子を4乃至9質量部を混合して機能性無機物液を製造する機能性無機物液製造段階と、樹脂溶液および機能性無機物液を前記両親媒性溶剤の質量と水の質量との合計を100質量%としたときの溶媒の含水率が20乃至50質量%となるように混合して均一に分散させる塗料製造段階と、を有することを特徴とする。
更に本発明によれば、前記透明ガラス用塗料を、ガラス基体の表面に塗布し乾燥することによって紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗膜を製造することができる。
The method for producing a coating material for transparent glass that shields ultraviolet rays and infrared rays and has a photocatalytic action according to the present invention is a method for producing a coating material for transparent glass, and when the total mass of the coating material is 100 parts by mass, acrylic polyol resin 15 1 to 6 parts by mass of a polyol solution and aliphatic polyisocyanate and 1 to 3 parts by mass of a second solvent in which thirty to 30 parts by mass are dissolved in 35 to 55 parts by mass of an amphiphilic solvent having a boiling point of 140 ° C. or higher and 200 ° C. or lower. A resin solution production stage for producing an acrylic urethane resin solution by reacting a dissolved aliphatic polyisocyanate solution, and a peroxotitanic acid aqueous solution having a concentration of 0.1 to 10% by mass of peroxotitanic acid converted to titanium oxide. 20 to 10 parts by weight of an anatase-type titanium oxide fine particle aqueous dispersion having a titanium oxide concentration of 0.1 to 10% by weight. 0 part by mass, and 4 to 9 parts by mass of fine particles of an infrared shielding inorganic compound are mixed to produce a functional inorganic substance liquid, and a resin solution and a functional inorganic substance are mixed with the amphiphilic solvent. And a paint manufacturing stage in which the water content of the solvent is 20 to 50% by mass when the total of the mass and the mass of water is 100% by mass, and the mixture is uniformly dispersed.
Furthermore, according to the present invention, a coating film for transparent glass having a photocatalytic action by shielding ultraviolet rays and infrared rays can be produced by applying the transparent glass coating material to the surface of a glass substrate and drying it.

本発明の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料は、可視光線を通過させながら赤外線と紫外線とを強く遮蔽すると共に、高い光触媒活性を有し、自己洗浄性作用、防汚作用、抗菌作用、防臭作用、空気清浄化作用などを有する透明ガラス用塗料を提供する。   The paint for transparent glass which shields ultraviolet rays and infrared rays and has a photocatalytic action of the present invention strongly shields infrared rays and ultraviolet rays while allowing visible light to pass through, and has high photocatalytic activity, self-cleaning action, antifouling action The present invention provides a transparent glass paint having antibacterial action, deodorization action, air cleaning action and the like.

また本発明に係る塗料は、透明度が高く、強固な塗膜を形成すると共に、高分子樹脂の塗膜を、光触媒が発生させる活性酸素による侵襲から保護する構造を自発的に構成することができ、耐久性および耐候性に優れた高分子樹脂塗料を提供する。
更に本発明は、溶媒として含水した両親媒性溶媒を用いることによって、塗料がガラスに対して高い濡れ性を有し、容易に均一に塗布することができる透明ガラス用塗料および塗膜の製造方法を提供する。
In addition, the paint according to the present invention has a high transparency and can form a strong coating film, and can spontaneously constitute a structure that protects the coating film of the polymer resin from invasion by active oxygen generated by the photocatalyst. A polymer resin paint excellent in durability and weather resistance is provided.
Furthermore, the present invention provides a coating material for transparent glass and a method for producing a coating film by using a water-containing amphiphilic solvent as a solvent so that the coating material has high wettability with respect to glass and can be easily and uniformly applied. I will provide a.

(微粒子について)
本発明で「微粒子」は、「大きさが可視光線の波長(380〜780nm)より小さく、屈折率の異なる透明溶液に分散した場合でも分散液が透明となる大きさの粒子」という意味で用いる。概略的には「微粒子粉末」は、「大きさが1μm以下の粒子からなる粉末」がこれに相当する。
本発明で用いる酸化チタン微粒子は、例えば特許文献4に記載された粒子径8nmのアナターゼ型酸化チタン微粒子であって、水分散液を塗布・乾燥することによって透明な塗膜を形成する。また、ペルオキソチタン酸は水溶液であって塗布・乾燥することによって非結晶性の透明塗膜を形成する。一方、赤外線遮蔽剤の微粒子粉末は、市販品を購入することができる。
(About fine particles)
In the present invention, the term “fine particles” is used to mean “particles whose size is smaller than the wavelength of visible light (380 to 780 nm) and whose dispersion is transparent even when dispersed in transparent solutions having different refractive indices”. . In general, “fine particle powder” corresponds to “powder composed of particles having a size of 1 μm or less”.
The titanium oxide fine particles used in the present invention are, for example, anatase-type titanium oxide fine particles having a particle diameter of 8 nm described in Patent Document 4, and a transparent coating film is formed by applying and drying an aqueous dispersion. Peroxotitanic acid is an aqueous solution, and forms an amorphous transparent coating film by coating and drying. On the other hand, as the fine particle powder of the infrared shielding agent, a commercial product can be purchased.

(本発明について)
光触媒は、光の照射を受けて空気中の酸素を活性化し、生成した活性酸素が有機物を酸化分解するので、通常は有機物の基材の上には光触媒を塗布することができない。しかし、本発明者は、ペルオキソチタン酸水溶液(例えば特許文献3を参照)と、アナターゼ型酸化チタン微粒子の水分散液(例えば特許文献4を参照)と油溶性を有する高分子樹脂とを、特定の含水率で含水した高沸点の両親媒性溶剤に均一に分散させたのち乾固させると、活性酸素による高分子樹脂への侵襲が有意に防御されることを見出した。
(About the present invention)
The photocatalyst activates oxygen in the air upon irradiation with light, and the generated active oxygen oxidizes and decomposes the organic substance. Therefore, the photocatalyst cannot usually be applied on the organic base material. However, the present inventor specified a peroxotitanic acid aqueous solution (see, for example, Patent Document 3), an aqueous dispersion of anatase-type titanium oxide fine particles (see, for example, Patent Document 4), and an oil-soluble polymer resin. It was found that the invasion to the polymer resin by active oxygen is significantly protected when it is uniformly dispersed in a high-boiling amphiphilic solvent containing water at a water content of

この現象は、塗料から水が先に蒸発する過程において、塗膜上で樹脂成分の不均化が起こり、活性酸素を防護する膜構造が自発的に形成されたものと推測する。
上記組成物に、更に赤外線遮蔽機能を有する無機化合物の微粒子を添加することによって本発明の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料に到達した。
This phenomenon is presumed that the resin component disproportionation occurred on the coating film during the process of evaporating water from the coating material, and the film structure protecting active oxygen was spontaneously formed.
By adding fine particles of an inorganic compound having an infrared shielding function to the above composition, the coating composition for transparent glass having the photocatalytic action by shielding ultraviolet rays and infrared rays of the present invention was reached.

(高分子樹脂成分)
本発明の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料は、塗料の全質量を100質量部とした場合(以下、質量部は、特に断らない限り同じ)に、アクリルポリオール樹脂15〜30質量部と脂肪族ポリイソシアネート1〜6質量部との反応生成物であるアクリルウレタン樹脂と、赤外線遮蔽無機化合物の微粒子を4〜9質量部と、アナターゼ型酸化チタンの微粒子を0.1〜2質量部と、ペルオキソチタン酸を酸化チタンに換算して0.1〜2質量部と、を沸点が140℃以上200℃以下である両親媒性溶剤35〜55質量部と、第2溶剤1〜3質量部と、水15〜30質量部からなる溶媒に均一に加え、前記両親媒性溶剤の質量と水の質量との合計を100質量%としたときの溶媒の含水率が20乃至50質量%であることを特徴とする。
(Polymer resin component)
The transparent glass coating material that shields ultraviolet rays and infrared rays according to the present invention and has a photocatalytic action has an acrylic polyol resin 15 to 15 when the total mass of the coating material is 100 parts by mass (hereinafter, the parts by mass are the same unless otherwise specified). Acrylic urethane resin, which is a reaction product of 30 parts by mass and aliphatic polyisocyanate 1 to 6 parts by mass, 4 to 9 parts by mass of fine particles of an infrared shielding inorganic compound, and 0.1 to 0.1 parts of fine particles of anatase-type titanium oxide 2 parts by mass, 0.1 to 2 parts by mass of peroxotitanic acid converted to titanium oxide, 35 to 55 parts by mass of an amphiphilic solvent having a boiling point of 140 ° C. or higher and 200 ° C. or lower, and the second solvent 1 The water content of the solvent is 20 to 50 when the total of the mass of the amphiphilic solvent and the mass of water is 100% by mass in addition to the solvent consisting of ˜3 parts by mass and 15 to 30 parts by mass of water. mass% Characterized in that there.

前記アクリルポリオール樹脂は、エステル部分に水酸基を有するアクリル酸エステルを重合させたポリマーオールであって、ポリイソシアネートと反応して架橋反応し、更に高分子化してアクリルウレタン樹脂になって固化する。
アクリルポリオール樹脂を用いるアクリルウレタンについては公知なので、詳細な説明は省略する。
本発明のアクリルポリオール樹脂の含有量は、好ましくは15〜30質量部の範囲であり、より好ましくは、20〜30質量部の範囲内であり、最も好ましくは、20〜25質量部の範囲内である。
The acrylic polyol resin is a polymer all obtained by polymerizing an acrylate ester having a hydroxyl group in an ester portion, reacts with a polyisocyanate, undergoes a crosslinking reaction, and further polymerizes to become an acrylic urethane resin and solidifies.
Since acrylic urethane using an acrylic polyol resin is known, detailed description thereof is omitted.
The content of the acrylic polyol resin of the present invention is preferably in the range of 15 to 30 parts by mass, more preferably in the range of 20 to 30 parts by mass, and most preferably in the range of 20 to 25 parts by mass. It is.

また本発明の脂肪族ポリイソシアネート含有量は好ましくは1〜6質量部であり、より好ましくは2〜5質量部である。また、アクリルポリオール樹脂の質量と脂肪族ポリイソシアネートの質量の比が20:1〜20:3の範囲であることが好ましい。
アクリルポリオール樹脂と脂肪族ポリイソシアネートとの反応は物質の出入りがないので、本発明のアクリルウレタン樹脂の含量は、16〜36質量部になる。
第2溶媒は、脂肪族ポリイソシアネートを溶解し反応しない溶媒であれば特に制限されない。第2溶媒の量は、1〜3質量部であることができる。
Moreover, the aliphatic polyisocyanate content of the present invention is preferably 1 to 6 parts by mass, more preferably 2 to 5 parts by mass. Moreover, it is preferable that ratio of the mass of acrylic polyol resin and the mass of aliphatic polyisocyanate is the range of 20: 1-20: 3.
Since the reaction between the acrylic polyol resin and the aliphatic polyisocyanate does not enter and exit the material, the content of the acrylic urethane resin of the present invention is 16 to 36 parts by mass.
The second solvent is not particularly limited as long as it dissolves the aliphatic polyisocyanate and does not react. The amount of the second solvent can be 1 to 3 parts by mass.

(赤外線遮蔽無機化合物)
本発明の赤外線遮蔽無機化合物は、酸化アンチモン、酸化錫、酸化インジューム、酸化ガリウム、および酸化亜鉛からなる金属酸化物から選ばれる1以上である。また本発明は、2以上の無機酸化物の組成体であることができる。これらの組み合わせのうちから、好ましい具体例として、少量の酸化アンチモンを含む酸化錫(ATO)、少量の酸化インジュウームを含む酸化錫(ITO)、および少量の酸化ガリウムを含む酸化亜鉛を挙げることができる。
なお、金属酸化物は、全ての価数の金属酸化物を含むものとする。
(Infrared shielding inorganic compound)
The infrared shielding inorganic compound of the present invention is at least one selected from metal oxides consisting of antimony oxide, tin oxide, indium oxide, gallium oxide, and zinc oxide. Further, the present invention can be a composition of two or more inorganic oxides. Among these combinations, preferred specific examples include tin oxide (ATO) containing a small amount of antimony oxide, tin oxide (ITO) containing a small amount of indium oxide, and zinc oxide containing a small amount of gallium oxide. .
Note that the metal oxide includes metal oxides of all valences.

本発明で用いる赤外線遮蔽無機化合物は、塗料の全質量を100質量部とした場合に、好ましくは4〜9質量部、より好ましくは5〜8質量部である。また、酸化アンチモンと酸化錫の比は、1:5〜20の範囲であることができる。
酸化錫および酸化亜鉛は、微粉末を購入することが可能である。酸化アンチモン、酸化インジューム、および酸化ガリウムは、使用量が少ないので目に見えない程度の大きさ(たとえば10μm以下)であれば、通常の方法で粉末化したものを使用しても支障がない。
The infrared shielding inorganic compound used in the present invention is preferably 4 to 9 parts by mass, more preferably 5 to 8 parts by mass, when the total mass of the coating is 100 parts by mass. Also, the ratio of antimony oxide to tin oxide can range from 1: 5 to 20.
Tin oxide and zinc oxide can be purchased in fine powder. Since antimony oxide, indium oxide, and gallium oxide have a small amount of use, so long as they are invisible (for example, 10 μm or less), there is no problem even if powdered by a normal method is used. .

(ペルオキソチタン酸)
本発明のペルオキソチタン酸の量は、塗料の全質量を100質量部とした場合に、酸化チタンに換算して0.1〜2質量部であることが好ましい。ペルオキソチタン酸の量は、より多い範囲も好ましいが、濃度が高いペルオキソチタン酸水溶液は粘性が高く製造することが困難であるから、これより多いペルオキソチタン酸を加えると、溶媒中の水分量が高くなりすぎることがある。
(ナターゼ型酸化チタンの微粒子)
本発明のアナターゼ型酸化チタンの微粒子の量は、0.1〜2質量部であることが好ましい。アナターゼ型酸化チタンの微粒子の量はより多い範囲も好ましいが、本発明は、ペルオキソチタン酸水溶液を70〜200℃で加熱して製造したアナターゼ型酸化チタンの微粒子の水分散液を用いるので、ペルオキソチタン酸と同様に、これより多いアナターゼ型酸化チタンの微粒子を加えると、溶媒中の水分量が高くなりすぎることがある。
(Peroxotitanic acid)
The amount of peroxotitanic acid of the present invention is preferably 0.1 to 2 parts by mass in terms of titanium oxide when the total mass of the coating is 100 parts by mass. A larger amount of peroxotitanic acid is preferable, but a peroxytitanic acid aqueous solution having a high concentration has a high viscosity and is difficult to produce. Therefore, if more peroxotitanic acid is added, the amount of water in the solvent is reduced. May be too high.
(Natase type titanium oxide fine particles)
The amount of the anatase-type titanium oxide fine particles of the present invention is preferably 0.1 to 2 parts by mass. Although the amount of anatase-type titanium oxide fine particles is preferably within a larger range, the present invention uses an aqueous dispersion of anatase-type titanium oxide fine particles produced by heating an aqueous peroxotitanic acid solution at 70 to 200 ° C. As with titanic acid, adding more anatase-type titanium oxide fine particles may result in excessively high water content in the solvent.

(溶剤)
本発明の第1溶剤は、沸点が140℃以上200℃以下である両親媒性溶剤あることが好ましい。
また、第1溶剤の量は、35〜55質量部であることが好ましく、40〜50質量部であることがより好ましい。第1溶剤の量が35質量部以下では、アクリルウレタン樹脂を十分に溶解させることができないことがあり、55質量部を越えると、高分子樹脂成分の量が少なくなって、赤外線・紫外線の遮蔽活性および光触媒活性が低下することがある。
(solvent)
The first solvent of the present invention is preferably an amphiphilic solvent having a boiling point of 140 ° C. or higher and 200 ° C. or lower.
Moreover, it is preferable that the quantity of a 1st solvent is 35-55 mass parts, and it is more preferable that it is 40-50 mass parts. When the amount of the first solvent is 35 parts by mass or less, the acrylic urethane resin may not be sufficiently dissolved. When the amount exceeds 55 parts by mass, the amount of the polymer resin component decreases, and infrared / ultraviolet ray shielding is achieved. Activity and photocatalytic activity may be reduced.

本発明は、両親媒性溶剤と水との合計量を100質量%として溶媒の含水率を計算した場合に、含水率が20〜50質量%であることが好ましく、含水率が25〜40%であることがより好ましい。
含水率が20質量%未満であると、親水性であるアナターゼ型酸化チタン、ペルオキソチタン酸、および赤外線遮蔽無機化合物が析出することがあり、50質量%を超えると油性である塗料の塗膜を構成する高分子樹脂が析出することがあり、また水の蒸発が遅れて活性酸素を防御する膜構造が形成されないことがある。
In the present invention, when the water content of the solvent is calculated with the total amount of the amphiphilic solvent and water being 100% by mass, the water content is preferably 20 to 50% by mass, and the water content is 25 to 40%. It is more preferable that
When the water content is less than 20% by mass, hydrophilic anatase-type titanium oxide, peroxotitanic acid, and an infrared shielding inorganic compound may be precipitated. When the water content exceeds 50% by mass, an oil-based paint film is formed. The constituting polymer resin may be precipitated, and the evaporation of water may be delayed to form a film structure that protects active oxygen.

両親媒性溶剤は、沸点が140℃以上200℃以下であり、水を1:1の質量比まで含むことができるものであればいずれでもよいが、好ましい実例としてエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジエチルエーテルを挙げることができる。しかし、本発明の両親媒性溶媒は、これに限定されるものではない。   Any amphiphilic solvent may be used as long as it has a boiling point of 140 ° C. or higher and 200 ° C. or lower and can contain water up to a mass ratio of 1: 1. Preferred examples include ethylene glycol monomethyl ether acetate, ethylene glycol Mention may be made of monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol diacetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate and diethylene glycol diethyl ether. However, the amphiphilic solvent of the present invention is not limited to this.

本発明の第2溶剤は、塗膜硬化剤を溶解できるものであれば特に制限されないが、第1溶剤に用いた両親媒性溶剤が塗膜硬化剤を溶解できるものであれば、同じ両親媒性溶剤を用いることが好ましい。   The second solvent of the present invention is not particularly limited as long as it can dissolve the coating film curing agent, but if the amphiphilic solvent used for the first solvent can dissolve the coating film curing agent, the same amphiphile is used. It is preferable to use an ionic solvent.

以下に、本発明の光触媒塗料の製造方法に関して説明する。
(樹脂溶液製造段階)
アクリルポリオール樹脂15〜30質量部を沸点が140℃以上200℃以下である両親媒性溶剤35〜55質量部に溶解したポリオール溶液と、脂肪族ポリイソシアネート1〜6質量部と第2溶剤1〜3質量部とに溶解したポリイソシアネート溶液とを混合・撹拌してアクリルウレタン樹脂溶液を製造した。
Below, the manufacturing method of the photocatalyst coating material of this invention is demonstrated.
(Resin solution production stage)
A polyol solution prepared by dissolving 15 to 30 parts by mass of an acrylic polyol resin in 35 to 55 parts by mass of an amphiphilic solvent having a boiling point of 140 ° C. or more and 200 ° C. or less, 1 to 6 parts by mass of an aliphatic polyisocyanate, and 1 to 2 of a second solvent. The polyisocyanate solution dissolved in 3 parts by mass was mixed and stirred to produce an acrylic urethane resin solution.

(機能性無機物液製造段階)
<ペルオキソチタン酸水溶液製造段階>
チタン原料含有水溶液に、反応当量より過剰の過酸化水素水を加え、次いでアンモニア水を加えて中和し、得られた黄色溶液を放置してペルオキソチタン酸塩を沈殿させ、沈殿をろ取・洗浄し、水に懸濁させて過酸化水素水を加えると、黄色透明なペルオキソチタン酸水溶液が得られる。塗布され、乾燥されたペルオキソチタン酸水溶液は、基材に塗布し乾燥するとペルオキソ基を有する非晶質の強固な塗膜を形成する。
(Functional inorganic liquid production stage)
<Peroxotitanic acid aqueous solution production stage>
To the aqueous solution containing titanium raw material, an excess amount of hydrogen peroxide than the reaction equivalent is added, and then neutralized by adding ammonia water. The resulting yellow solution is left to precipitate peroxotitanate, and the precipitate is collected by filtration. After washing, suspending in water and adding hydrogen peroxide, a yellow transparent peroxotitanic acid aqueous solution is obtained. The applied and dried peroxotitanic acid aqueous solution forms an amorphous strong coating film having a peroxo group when applied to a substrate and dried.

ペルオキソチタン酸水溶液の濃度は、ペルオキソチタン酸水溶液の質量を100質量%とし、ペルオキソチタン酸水溶液を酸化チタンに換算した場合、0.1〜10質量%であることが好ましい。
ペルオキソチタン酸水溶液の濃度が0.1質量%未満では、乾燥後に十分な厚さの非晶質固体膜を形成することができず、10質量%を超えるペルオキソチタン酸水溶液は、製造するのが困難である。
The concentration of the peroxotitanic acid aqueous solution is preferably 0.1 to 10% by mass when the mass of the peroxotitanic acid aqueous solution is 100% by mass and the peroxotitanic acid aqueous solution is converted to titanium oxide.
If the concentration of the aqueous solution of peroxotitanic acid is less than 0.1% by mass, an amorphous solid film having a sufficient thickness cannot be formed after drying, and an aqueous solution of peroxotitanic acid exceeding 10% by mass is produced. Have difficulty.

ペルオキソチタン酸水溶液を乾燥・固化して形成した非晶質ペルオキソチタン酸は高い成膜性を有し、多くの基材と結合して強い皮膜を形成する。特に、ペルオキソチタン酸水溶液から製造したアナターゼ型酸化チタン膜とは強い親和性を有し、アナターゼ型酸化チタン膜のアンダーコート膜として、又はアナターゼ型酸化チタンの微粒子水分散液と混合してアナターゼ型酸化チタン膜の強度を増強する目的で用いることができる。   Amorphous peroxotitanic acid formed by drying and solidifying a peroxotitanic acid aqueous solution has high film-forming properties, and forms a strong film by bonding to many substrates. In particular, it has a strong affinity with an anatase-type titanium oxide film produced from a peroxotitanic acid aqueous solution. It can be used for the purpose of enhancing the strength of the titanium oxide film.

<アナターゼ型酸化チタン微粒子の水分散液製造段階>
ペルオキソチタン酸水溶液を70℃〜200℃において、2〜40時間、好ましくは80〜120℃で3〜30時間、最も好ましい実例として90℃〜100℃未満で5〜20時間の加熱処理をして、アナターゼ型酸化チタン微粒子の分散液を製造することができる。加熱温度が70℃以下では、反応に時間がかかりすぎて好ましくなく。200℃以上に加熱しても、反応が速くなりすぎて制御が困難になると共に、装置が大掛かりになるだけでそれに見合う効果がない。
<Production stage of aqueous dispersion of anatase-type titanium oxide fine particles>
The peroxotitanic acid aqueous solution is heated at 70 ° C. to 200 ° C. for 2 to 40 hours, preferably 80 to 120 ° C. for 3 to 30 hours, most preferably 90 ° C. to less than 100 ° C. for 5 to 20 hours. A dispersion of anatase-type titanium oxide fine particles can be produced. When the heating temperature is 70 ° C. or lower, the reaction takes too much time, which is not preferable. Even if it is heated to 200 ° C. or higher, the reaction becomes too fast and it becomes difficult to control, and the apparatus becomes large and there is no effect commensurate with it.

ペルオキソチタン酸水溶液を70℃〜200℃に加熱して製造したアナターゼ型酸化チタン微粒子の水分散液は、淡黄色の透明液体であって、引用文献4によれば、分散しているアナターゼ型酸化チタン微粒子の粒径は8nmである。
合成したアナターゼ型酸化チタン微粒子の水分散液を基材に塗布し乾燥することによって、光触媒膜を形成することができる。ここで合成した光触媒膜は、可視光線でも光触媒機能を発揮するという優れた特徴を有する。
An aqueous dispersion of anatase-type titanium oxide fine particles produced by heating a peroxotitanic acid aqueous solution to 70 ° C. to 200 ° C. is a pale yellow transparent liquid. The particle size of the titanium fine particles is 8 nm.
A photocatalyst film can be formed by applying an aqueous dispersion of synthesized anatase-type titanium oxide fine particles to a substrate and drying it. The photocatalyst film synthesized here has an excellent feature of exhibiting a photocatalytic function even with visible light.

本発明で用いるアナターゼ型酸化チタン微粒子の水分散液の濃度は、アナターゼ型酸化チタン微粒子の水分散液の質量を100質量%とした場合、0.1〜10質量%であることができる。   The concentration of the aqueous dispersion of anatase-type titanium oxide fine particles used in the present invention can be 0.1 to 10% by mass when the mass of the aqueous dispersion of anatase-type titanium oxide fine particles is 100% by mass.

アナターゼ型酸化チタン微粒子の水分散液の濃度が0.1質量%未満では、乾燥後に十分な量のアナターゼ型酸化チタン微粒子を形成することができず、生成した塗料の光触媒活性が不十分な場合があり、10質量%を超えるアナターゼ型酸化チタン微粒子の水分散液は、、原料のペルオキソチタン酸水溶液を製造するのが困難である。   When the concentration of the aqueous dispersion of anatase-type titanium oxide fine particles is less than 0.1% by mass, a sufficient amount of anatase-type titanium oxide fine particles cannot be formed after drying, and the photocatalytic activity of the resulting paint is insufficient In an aqueous dispersion of anatase-type titanium oxide fine particles exceeding 10% by mass, it is difficult to produce a peroxotitanic acid aqueous solution as a raw material.

(塗料製造段階)
前記アクリルウレタン樹脂溶液に前記機能性無機物液を加えて均一に分散させることによって、本発明の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料を製造することができる。
前記アクリルウレタン樹脂溶液と前記機能性無機物液とを、前記両親媒性溶剤の質量と水の質量との合計を100質量%としたときの溶媒の含水率が20乃至50質量%となるような割合に混合して均一に分散させることが好ましい。
なお、実施例および比較例全体を通じて、脂肪族ポリイソシアネートの質量は、アクリルポリオール樹脂の質量の10分の1とし、第2溶媒の質量は、脂肪族ポリイソシアネートの質量の2分の1とした。
(Paint production stage)
By adding and uniformly dispersing the functional inorganic liquid into the acrylic urethane resin solution, it is possible to produce the transparent glass paint having a photocatalytic action by shielding ultraviolet rays and infrared rays of the present invention.
The water content of the solvent is 20 to 50% by mass when the total of the mass of the amphiphilic solvent and the mass of water is 100% by mass of the acrylic urethane resin solution and the functional inorganic liquid. It is preferable to mix in proportion and uniformly disperse.
Throughout the examples and comparative examples, the mass of the aliphatic polyisocyanate was 1/10 of the mass of the acrylic polyol resin, and the mass of the second solvent was 1/2 of the mass of the aliphatic polyisocyanate. .

[実施例1]
(第1工程)樹脂液製造段階
塗料の全質量を100質量部とした場合に、アクリルポリオール樹脂20質量部をエチレングリコールモノブチルエーテルアセテート51質量部に溶解したポリオール溶液と、脂肪族ポリイソシアネート2質量部をプロピレングリコールモノエチルエーテルアセテート1質量部に溶解したポリイソシアネート溶液と、を混合・撹拌して74質量部のアクリルウレタン樹脂溶液を作成した。
[Example 1]
(First step) Resin liquid production stage When the total mass of the coating is 100 parts by mass, a polyol solution in which 20 parts by mass of acrylic polyol resin is dissolved in 51 parts by mass of ethylene glycol monobutyl ether acetate and 2 parts by mass of aliphatic polyisocyanate 74 parts by mass of an acrylic urethane resin solution was prepared by mixing and stirring a polyisocyanate solution having 1 part by mass dissolved in 1 part by mass of propylene glycol monoethyl ether acetate.

(第2工程)機能性無機物液製造段階
<5質量%濃度のペルオキソチタン酸水溶液の製造>
四塩化チタンの60%(質量/容量)水溶液39.6mLを蒸留水で4000mLとした溶液に、2.5%(質量/容量)のアンモニア水、440mLを滴下して水酸化チタンを沈殿させた。沈殿物をろ取し、蒸留水で洗浄後、蒸留水を加えて72mLとした水酸化チタン懸濁液に、30%(質量/容量)の過酸化水素水、80mLを加えて攪拌した。7℃において24時間放置して余剰の過酸化水素水を分解させ、更に水を加えて、酸化チタン換算で5質量%濃度のペルオキソチタン酸水溶液200gを得た。
(2nd process) Functional inorganic substance manufacturing stage <Manufacture of 5 mass% concentration of peroxotitanic acid aqueous solution>
Titanium hydroxide was precipitated by dropwise addition of 440 mL of 2.5% (mass / volume) ammonia water to a solution of 39.6 mL of 60% (mass / volume) aqueous solution of titanium tetrachloride in 4000 mL with distilled water. . The precipitate was collected by filtration, washed with distilled water, and then added with 80 mL of 30% (mass / volume) hydrogen peroxide solution to a titanium hydroxide suspension to 72 mL by adding distilled water and stirred. The mixture was allowed to stand at 7 ° C. for 24 hours to decompose excess hydrogen peroxide solution, and water was further added to obtain 200 g of a peroxotitanic acid aqueous solution having a concentration of 5% by mass in terms of titanium oxide.

<5質量%濃度のアナターゼ型酸化チタン微粒子の分散液の製造>
第一工程で得たペルオキソチタン酸水溶液を耐圧ガラス容器に密閉して水浴中で12時間煮沸(98〜100℃)し、5質量%濃度のアナターゼ型酸化チタン微粒子の水分散液を製造した。
<Production of dispersion of 5% by mass anatase-type titanium oxide fine particles>
The aqueous peroxotitanic acid solution obtained in the first step was sealed in a pressure-resistant glass container and boiled in a water bath for 12 hours (98 to 100 ° C.) to produce an aqueous dispersion of 5% by mass anatase-type titanium oxide fine particles.

<機能性無機物液製造段階>
塗料の全質量を100質量部とした場合に、酸化チタン換算で5質量%濃度のペルオキソチタン酸水溶液10質量部、5質量%濃度のアナターゼ型酸化チタン微粒子の水分散液10質量部、酸化錫微粒子(SN−100P、石原産業株式会社)5質量部、および三酸化アンチモン1質量部を混合して26質量部の機能性無機物液を製造した。
<Functional inorganic liquid production stage>
When the total mass of the coating is 100 parts by mass, 10 parts by mass of a 5% by mass peroxotitanic acid aqueous solution in terms of titanium oxide, 10 parts by mass of an aqueous dispersion of 5% by mass anatase-type titanium oxide fine particles, tin oxide 26 parts by mass of a functional inorganic liquid was produced by mixing 5 parts by mass of fine particles (SN-100P, Ishihara Sangyo Co., Ltd.) and 1 part by mass of antimony trioxide.

(第3工程)塗料製造段階
第1工程で製造した74質量部のアクリルウレタン樹脂溶液と、第2工程で製造した26質量部の機能性無機物液を混合・撹拌して100質量部の透明ガラス用塗料を製造した。第1溶剤(エチレングリコールモノブチルエーテルアセテート)の含水率は27.1質量%である。
(3rd process) Paint manufacturing stage 100 mass parts transparent glass by mixing and stirring the 74 mass parts acrylic urethane resin solution manufactured at the 1st process, and 26 mass parts functional inorganic substance liquid manufactured at the 2nd process. A paint was produced. The water content of the first solvent (ethylene glycol monobutyl ether acetate) is 27.1% by mass.

[実施例2]
実施例1と同様に、但し表1に示すように、5質量%濃度のペルオキソチタン酸水溶液の量と、5質量%濃度のアナターゼ型酸化チタン微粒子の水分散液の量とを増加し、エチレングリコールモノブチルエーテルアセテートの量を減少させる変更をして実施例2の透明ガラス用塗料を製造した。第1溶剤(エチレングリコールモノブチルエーテルアセテート)の含水率は41.0質量%である。
[Example 2]
As in Example 1, except that as shown in Table 1, the amount of the 5% by mass concentration of peroxotitanic acid aqueous solution and the amount of the 5% by mass concentration of anatase-type titanium oxide fine particles in aqueous dispersion were increased. The clear glass paint of Example 2 was prepared with the modification to reduce the amount of glycol monobutyl ether acetate. The water content of the first solvent (ethylene glycol monobutyl ether acetate) is 41.0% by mass.

[比較例1、2]
実施例1と同様に、但し表1に示すように、5質量%濃度のペルオキソチタン酸水溶液の量および5質量%濃度のアナターゼ型酸化チタン微粒子の水分散液の量を更に大幅に増減しエチレングリコールモノブチルエーテルアセテートの量を変更して透明ガラス用塗料を製造した。第1溶剤(エチレングリコールモノブチルエーテルアセテート)の含水率は、比較例1では13.5質量%であり、比較例2では55.1質量%である。
[Comparative Examples 1 and 2]
As in Example 1, except that, as shown in Table 1, the amount of the 5 mass% concentration of peroxotitanic acid aqueous solution and the amount of the 5 mass% concentration of anatase-type titanium oxide fine particles in the aqueous dispersion were greatly increased or decreased. The coating material for transparent glass was produced by changing the amount of glycol monobutyl ether acetate. The water content of the first solvent (ethylene glycol monobutyl ether acetate) is 13.5% by mass in Comparative Example 1 and 55.1% by mass in Comparative Example 2.

[実施例3]
実施例1と同様に、但し表1に示すように、塗膜を構成する高分子樹脂の量を増やして透明ガラス用塗料を製造した。第1溶剤の含水率は32.5質量%である。
[Example 3]
As in Example 1, but as shown in Table 1, a transparent glass paint was produced by increasing the amount of the polymer resin constituting the coating film. The water content of the first solvent is 32.5% by mass.

[比較例3、4]
実施例1、3と同様に、但し表1に示すように、塗膜を構成する高分子樹脂およびエチレングリコールモノエチルエーテルアセテート量を更に大幅に変更して透明ガラス用塗料を製造した。生成した塗料に第1溶剤の含水率は、比較例3は、23.3質量%であり、比較例4は、40.4質量%である。比較例3、4は、膜形成性が悪かった。
[Comparative Examples 3 and 4]
As in Examples 1 and 3, but as shown in Table 1, the amounts of the polymer resin and ethylene glycol monoethyl ether acetate constituting the coating film were further greatly changed to produce a coating material for transparent glass. The water content of the first solvent in the produced paint is 23.3% by mass in Comparative Example 3, and 40.4% by mass in Comparative Example 4. Comparative Examples 3 and 4 had poor film forming properties.

Figure 0006106796
Figure 0006106796

[実施例4]
ペルオキシチタン酸水溶液の濃度および量を増やした。
(第1工程)
実施例1と同じ。
(第2工程)
<10質量%濃度のペルオキソチタン酸水溶液の製造>
四塩化チタンの60%(質量/容量)水溶液39.6mLを蒸留水で4000mLとした溶液に2.5%(質量/容量)のアンモニア水、440mLを滴下して水酸化チタンを沈殿させた。沈殿物をろ取し、蒸留水で洗浄後、30%(質量/容量)の過酸化水素水、80mLを加えて攪拌した。7℃において24時間放置して余剰の過酸化水素水を分解させ更に水を加えて、黄色粘性液体の酸化チタン換算で10質量%濃度のペルオキソチタン酸水溶液100gを得た。
<5質量%濃度のナターゼ型酸化チタン微粒子の水分散液の製造>
以後、実施例1と同様に、但し5質量%のアナターゼ型酸化チタン微粒子の水分散液代わりに10質量%のアナターゼ型酸化チタン微粒子の水分散液を用いて実施例4の透明ガラス用塗料を製造した。第1溶剤の含水率は39.7質量%である。
[Example 4]
The concentration and amount of peroxytitanic acid aqueous solution were increased.
(First step)
Same as Example 1.
(Second step)
<Production of 10 mass% concentration of peroxotitanic acid aqueous solution>
Titanium hydroxide was precipitated by dropwise addition of 440 mL of 2.5% (mass / volume) ammonia water to a solution of 39.6 mL of 60% (mass / volume) aqueous solution of titanium tetrachloride in 4000 mL with distilled water. The precipitate was collected by filtration, washed with distilled water, 30% (mass / volume) hydrogen peroxide water and 80 mL were added and stirred. The mixture was allowed to stand at 7 ° C. for 24 hours to decompose excess hydrogen peroxide water, and water was further added to obtain 100 g of a peroxotitanic acid aqueous solution having a concentration of 10% by mass in terms of titanium oxide in a yellow viscous liquid.
<Manufacture of aqueous dispersion of 5% by mass concentration of Natase type titanium oxide fine particles>
Thereafter, in the same manner as in Example 1, except that an aqueous dispersion of 10% by mass of anatase-type titanium oxide fine particles was used instead of an aqueous dispersion of 5% by mass of anatase-type titanium oxide fine particles. Manufactured. The water content of the first solvent is 39.7% by mass.

[実施例5]
アナターゼ型酸化チタン微粒子の水分散液の濃度および量を増やした。
(第1工程)
実施例1と同じ。
(第2工程)
<10質量%濃度のナターゼ型酸化チタン微粒子の水分散液の製造>
10質量%濃度のペルオキソチタン酸水溶液を耐圧ガラス容器に密閉して水浴中で12時間煮沸(98〜100℃)し、10質量%濃度のアナターゼ型酸化チタン微粒子の水分散液を製造した。
以後、実施例1と同様に、但し5質量%のアナターゼ型酸化チタン微粒子の水分散液の代わりに10質量%のアナターゼ型酸化チタン微粒子の水分散液を用いて実施例5の透明ガラス用塗料を製造した。第1溶剤の含水率は39.7質量%である。
[Example 5]
The concentration and amount of the aqueous dispersion of anatase-type titanium oxide fine particles were increased.
(First step)
Same as Example 1.
(Second step)
<Manufacture of an aqueous dispersion of 10% by mass concentration of Natase type titanium oxide fine particles>
A 10 mass% concentration of peroxotitanic acid aqueous solution was sealed in a pressure-resistant glass container and boiled in a water bath for 12 hours (98 to 100 ° C.) to produce an aqueous dispersion of 10 mass% concentration of anatase type titanium oxide fine particles.
Thereafter, in the same manner as in Example 1, except that an aqueous dispersion of 10% by mass of anatase-type titanium oxide fine particles was used instead of an aqueous dispersion of 5% by mass of anatase-type titanium oxide fine particles. Manufactured. The water content of the first solvent is 39.7% by mass.

[実施例6]
(第1工程)
実施例1と同じ。
(第2工程)
<1.0質量%濃度のペルオキソチタン酸水溶液の製造>
四塩化チタンの60%(質量/容量)水溶液39.6mLを蒸留水で4000mLとした溶液に2.5%(質量/容量)のアンモニア水、440mLを滴下して水酸化チタンを沈殿させた。沈殿物をろ取し、蒸留水で洗浄後、蒸留水を加えて720mLとした水酸化チタン懸濁液に、30%(質量/容量)の過酸化水素水、80mLを加えて攪拌した。7℃において24時間放置して余剰の過酸化水素水を分解させ更に水を加えて、黄色粘性液体の酸化チタン換算で1質量%濃度のペルオキソチタン酸水溶液1000gを得た。
<1質量%濃度のアナターゼ型酸化チタン分散液の製造>
第一工程で得た1質量%濃度のペルオキソチタン酸水溶液を耐圧ガラス容器に密閉して水浴中で12時間煮沸(98〜100℃)し、5質量%濃度のアナターゼ型酸化チタン微粒子の水分散液を製造した。
以後、実施例1と同様に、但し5質量%のアナターゼ型酸化チタン微粒子の水分散液の代わりに1質量%のアナターゼ型酸化チタン微粒子の水分散液を用いて実施例6の透明ガラス用塗料を製造した。第1溶剤の含水率は28.0質量%である。
[Example 6]
(First step)
Same as Example 1.
(Second step)
<Production of 1.0 mass% concentration of peroxotitanic acid aqueous solution>
Titanium hydroxide was precipitated by dropwise addition of 440 mL of 2.5% (mass / volume) ammonia water to a solution of 39.6 mL of 60% (mass / volume) aqueous solution of titanium tetrachloride in 4000 mL with distilled water. The precipitate was collected by filtration, washed with distilled water, and then added with 80 mL of 30% (mass / volume) hydrogen peroxide water to a titanium hydroxide suspension to which 720 mL was added by adding distilled water and stirred. The mixture was allowed to stand at 7 ° C. for 24 hours to decompose excess hydrogen peroxide solution, and water was further added to obtain 1000 g of a 1 mass% peroxotitanic acid aqueous solution in terms of titanium oxide in a yellow viscous liquid.
<Production of 1% by mass anatase-type titanium oxide dispersion>
The peroxotitanic acid aqueous solution having a concentration of 1% by mass obtained in the first step is sealed in a pressure-resistant glass container and boiled in a water bath for 12 hours (98 to 100 ° C.), and water dispersion of anatase-type titanium oxide fine particles having a concentration of 5% by mass is carried out. A liquid was produced.
Thereafter, in the same manner as in Example 1, except that an aqueous dispersion of 1% by mass of anatase-type titanium oxide fine particles was used instead of an aqueous dispersion of 5% by mass of anatase-type titanium oxide fine particles. Manufactured. The water content of the first solvent is 28.0% by mass.

[比較例5〜8]
実施例4と同様に、但し、表2に示すように、アナターゼ型酸化チタン微粒子の水分散液およびペルオキソチタン酸水溶液の濃度、量を変化させて比較例5〜8の明ガラス用塗料を製造した。なお、0・5質量%濃度のアナターゼ型酸化チタン微粒子の水分散液およびペルオキソチタン酸水溶液は、1質量%濃度の物を水で希釈して用いた。
生成した第1溶剤の含水率は、比較例5、6は、53.7質量%、比較例7、8は、28.0質量%である。
[Comparative Examples 5 to 8]
As in Example 4, except that, as shown in Table 2, the concentrations and amounts of the aqueous dispersion of anatase-type titanium oxide fine particles and the aqueous solution of peroxotitanic acid were changed to produce bright glass paints of Comparative Examples 5-8. did. The aqueous dispersion of 0.5 mass% anatase-type titanium oxide fine particles and the aqueous solution of peroxotitanic acid were diluted with 1 mass% and used.
The moisture content of the produced first solvent is 53.7% by mass in Comparative Examples 5 and 6, and 28.0% by mass in Comparative Examples 7 and 8.

Figure 0006106796
Figure 0006106796

[実施例7、8]
実施例1と同様に、但し、表3に示すように、赤外線遮蔽無機化合物の量およびエチレングリコールモノブチルエーテルアセテート量を変更して透明ガラス用塗料を製造した。生成した第1溶剤の含水率は、実施例7は、26.4質量%であり、実施例8は、28.4質量%である。
[Examples 7 and 8]
As in Example 1, except that the amount of the infrared shielding inorganic compound and the amount of ethylene glycol monobutyl ether acetate were changed as shown in Table 3, a transparent glass paint was produced. The moisture content of the produced first solvent is 26.4% by mass in Example 7, and 28.4% by mass in Example 8.

[比較例7、8]
実施例1と同様に、但し、表3に示すように、赤外線遮蔽無機化合物の量およびエチレングリコールモノブチルエーテルアセテート量を変更して透明ガラス用塗料を製造した。生成した第1溶剤の含水率は、比較例7は、25.7質量%であり、比較例8は、29.7質量%である。
[Comparative Examples 7 and 8]
As in Example 1, except that the amount of the infrared shielding inorganic compound and the amount of ethylene glycol monobutyl ether acetate were changed as shown in Table 3, a transparent glass paint was produced. The moisture content of the produced first solvent is 25.7% by mass in Comparative Example 7, and 29.7% by mass in Comparative Example 8.

Figure 0006106796
Figure 0006106796

[参考例1〜4]
実施例1と同様に、但し、表4に示すように、実施例11の各成分のペルオキソチタン酸水溶液、アナターゼ型酸化チタン微粒子の水分散液、又は赤外線遮蔽無機化合物のうちのいずれか1種を含まないか、若しくは第1溶媒の代わりに水対トルエンの比率が1:1を含む水性エマルジョン塗料である参考例1〜4を製造した。
[Reference Examples 1 to 4]
As in Example 1, except that as shown in Table 4, any one of the peroxotitanic acid aqueous solution, the aqueous dispersion of anatase-type titanium oxide fine particles, and the infrared shielding inorganic compound of each component of Example 11 Reference Examples 1 to 4 were prepared, which are water-based emulsion paints that contain no water or a water to toluene ratio of 1: 1 instead of the first solvent.

Figure 0006106796
Figure 0006106796

[試験例]
(試験用試料片の作成)
試験用ガラス片を、自動洗浄機を用いて洗浄後水切りをしても水玉ができなくなるまで洗浄し、熱風乾燥器(60℃)で乾燥した。この試験用ガラス片に試験用塗料組成物を、スプレーコーターを用いて1mあたり20g塗布し、室温暗所にて10日間自然乾燥させて試験用試料片を作成した。
[Test example]
(Preparation of test specimen)
The glass piece for test was washed using an automatic washing machine until it was no longer watered even after draining and then dried with a hot air dryer (60 ° C.). The test coating composition was applied to this glass piece for test using a spray coater, and 20 g per 1 m 2 , and naturally dried in a dark room temperature for 10 days to prepare a test sample piece.

(可視光透過性)
本発明の複合塗膜を塗布したガラス片を透過した可視光の強度(VIS)と、複合塗膜を塗布しないガラス片を透過した可視光の強度(VIS)を測定し、式(1)を用いて可視光遮蔽率(%)を計算した。
(式1) 可視光遮蔽率(%)=(VIS/VIS)×100
可視光遮蔽率80%以上を○、60〜80%未満を△、60%未満を×とし、△以上を合格とした。
(Visible light transmission)
The intensity of visible light (VIS) transmitted through the glass piece coated with the composite coating film of the present invention and the intensity of visible light (VIS 0 ) transmitted through the glass piece not coated with the composite coating film were measured, and the formula (1) Was used to calculate the visible light shielding rate (%).
(Formula 1) Visible light shielding rate (%) = (VIS / VIS 0 ) × 100
Visible light shielding rate of 80% or more was evaluated as ◯, 60 to less than 80% as Δ, less than 60% as ×, and Δ or more as acceptable.

(赤外線遮蔽試験)
赤外線ランプおよび赤外線測定器を用いて、本発明の複合塗膜を塗布したガラス片を透過した赤外線の強度(IR)と、複合塗膜を塗布しないガラス片を透過した赤外線の強度(IR)を測定し、式(2)を用いて赤外線遮蔽率(%)を計算した。
(式2)赤外線遮蔽率(%)={(IR−IR)/IR}×100
赤外線遮蔽率80%以上を○とし、60〜80%未満を△とし、60%未満を×とし、△以上を合格とした。
(Infrared shielding test)
Using an infrared lamp and an infrared measuring instrument, the intensity of infrared rays (IR) transmitted through a glass piece coated with the composite coating film of the present invention and the intensity of infrared rays (IR 0 ) transmitted through a glass piece coated with no composite coating film. Was measured, and the infrared shielding rate (%) was calculated using the formula (2).
(Formula 2) Infrared shielding rate (%) = {(IR 0 −IR) / IR 0 } × 100
Infrared shielding rate of 80% or more was evaluated as ◯, 60 to less than 80% as Δ, less than 60% as ×, and Δ or more as acceptable.

(紫外線遮蔽試験)
中圧紫外線ランプ(出力波長200〜600nm)および紫外線測定器を用いて,本発明の複合塗膜を塗布したガラス片を透過した紫外線の強度(UV)と、複合塗膜を塗布しないガラス片を透過した紫外線の強度(UV)を測定し、式(3)を用いて赤外線遮蔽率(%)を計算した。
(式3)紫外線遮蔽率(%)={(UV−UV)/UV}×100
赤外線遮蔽率80%以上を○とし、60〜80%未満を△とし、60%未満を×とし、△以上を合格とした。
(UV shielding test)
Using a medium-pressure ultraviolet lamp (output wavelength: 200 to 600 nm) and an ultraviolet ray measuring instrument, the intensity (UV) of ultraviolet rays transmitted through the glass piece coated with the composite coating film of the present invention and the glass piece not coated with the composite coating film The intensity of the transmitted ultraviolet rays (UV 0 ) was measured, and the infrared shielding rate (%) was calculated using Equation (3).
(Formula 3) Ultraviolet ray shielding rate (%) = {(UV 0 −UV) / UV 0 } × 100
Infrared shielding rate of 80% or more was evaluated as ◯, 60 to less than 80% as Δ, less than 60% as ×, and Δ or more as acceptable.

(光触媒活性試験)
直径7cmのガラス製シャーレに水15mL、0.01Mアンモニア水1mLおよび数滴のフェノールフタレイン指示薬を加え、試験用試料片の試料塗装面を下向きにしてシャーレを覆い、上方から10Wの紫外線ランプを照射して、光触媒が発生させた過酸化酸素がアンモニアを酸化してフェノールフタレインの紅色の呈色が消えるまでの時間を測定した。
光触媒が活性化されるまでには多少のタイムラグがあるので、フェノールフタレイン呈色の消失時間が20分未満のものを○とし、20分以上30分未満を△とし、30分を超えたものを×とし、△以上を合格とした。
(Photocatalytic activity test)
Add 15 mL of water, 1 mL of 0.01 M aqueous ammonia and a few drops of phenolphthalein indicator to a glass petri dish with a diameter of 7 cm, cover the petri dish with the sample coating surface of the test piece facing down, and apply a 10 W UV lamp from above. After irradiation, the time until oxygen peroxide generated by the photocatalyst oxidizes ammonia and the red color of phenolphthalein disappears was measured.
Since there is a slight time lag before the photocatalyst is activated, the phenolphthalein color disappearance time of less than 20 minutes is marked as ◯, 20 minutes or more but less than 30 minutes as △, and more than 30 minutes Was evaluated as x, and Δ or higher was regarded as acceptable.

(耐蝕性試験)
試験用試料片から50cm離れたところから50Wの中圧紫外線ランプ(出力波長200〜600nm)を20時間照射し、試験片の外観を照射前後で比較した。目視により、紫外線照射前後に変化なしを○とし、僅かに着色したものを△とし、着色または濁りを生じたものを×とし、△以上を合格とした。
(Corrosion resistance test)
A 50 W medium pressure ultraviolet lamp (output wavelength: 200 to 600 nm) was irradiated for 20 hours from a distance of 50 cm from the test specimen, and the appearance of the specimen was compared before and after irradiation. By visual inspection, no change before and after UV irradiation was evaluated as ◯, slightly colored as △, colored or turbid as x, and Δ or higher as acceptable.

(密着性試験)
カッターナイフを用いて試験片表面の塗膜を縦横1mm過閣で格子状に傷つけ、1mm角の塗膜ブロックを100個形成し、その表面にセロハンテープ(ニチバン製)を貼付したのち剥離し、剥がれた塗膜ブロックの数を数えた。剥がれた塗膜ブロックが0を○とし、5以下を△とし、6以上を×とし、△以上を合格とした。
(Adhesion test)
Using a cutter knife, the coating on the surface of the test piece was scratched in a grid pattern with 1 mm length and width, and 100 1 mm square coating blocks were formed, and cellophane tape (manufactured by Nichiban) was applied to the surface and then peeled. The number of paint film blocks peeled off was counted. The peeled coating block was evaluated as 0, 0 or less as Δ, 6 or more as x, and Δ or more as acceptable.

[試験結果]
試験結果を表5に示す。

Figure 0006106796
[Test results]
The test results are shown in Table 5.
Figure 0006106796

表5に示すように、本願の特許請求の範囲に含まれる光触媒塗料は、何れも可視光透過性を示す。また本発明の特許請求項の範囲に含まれる実施例1〜8の塗料は、ガラスに塗布したとき、赤外線および紫外線に対して優れた遮蔽活性を有し、更に光触媒活性を有すると共に、高分子樹脂成分に対する活性酸素の侵襲を防ぎ、優れた耐食性を有することが示された。   As shown in Table 5, any of the photocatalyst paints included in the claims of the present application exhibits visible light transmittance. In addition, the paints of Examples 1 to 8 included in the scope of the claims of the present invention have excellent shielding activity against infrared rays and ultraviolet rays when applied to glass, and further have a photocatalytic activity, and a polymer. It was shown that the active ingredient is prevented from invading the resin component and has excellent corrosion resistance.

表1は、ペルオキソチタン酸、アナターゼ型酸化チタン微粉末、およびアクリルポリオール樹脂の量を変化させたものである
本発明の特許請求項の範囲より第1溶媒中の含水量が少なすぎる比較例1および多すぎる比較例2、5、6水を含まない参考例1、並びに第1溶媒の代わりに水対トルエン1:1の水性塗料である参考例4は、耐食試験終了後に塗膜の劣化が観察され、光触媒が生成した活性酸素が塗膜の高分子樹脂を侵襲したことが示された。
高分子樹脂成分の少ない比較例3は、膜形成性が悪く、多すぎる比較例4は、活性成分が相対的に低下し、赤外線及び紫外線の遮蔽効果および光触媒活性が低かった。
Table 1 shows the amounts of peroxotitanic acid, anatase-type titanium oxide fine powder, and acrylic polyol resin varied. Comparative Example 1 in which the water content in the first solvent is too small from the scope of the claims of the present invention And Comparative Examples 2, 5, and 6 which contain too much water, and Reference Example 4 which is a water-to-toluene 1: 1 water-based paint instead of the first solvent show deterioration of the coating film after completion of the corrosion resistance test. It was observed that the active oxygen produced by the photocatalyst invaded the polymer resin of the coating film.
Comparative Example 3 with few polymer resin components had poor film-forming properties, and Comparative Example 4 with too much polymer component had relatively low active components, and the infrared and ultraviolet shielding effects and photocatalytic activity were low.

表2は、水性成分であるペルオキソチタン酸およびアナターゼ型酸化チタン微粉末を添加する限界を求めたものである。
ペルオキソチタン酸又はアナターゼ型酸化チタン微粉末の添加量が多すぎる比較例5,6は両親媒性溶媒の含水率が高くなりすぎて、前述したように保護膜を形成することができず、紫外線照射によって著しい塗膜の侵襲が起こり、光触媒が生成した活性酸素が塗膜の高分子樹脂を侵襲したことが示された。
Table 2 shows the limit of adding peroxotitanic acid and anatase-type titanium oxide fine powder, which are aqueous components.
In Comparative Examples 5 and 6 in which the amount of peroxotitanic acid or anatase-type titanium oxide fine powder added is too large, the water content of the amphiphilic solvent becomes too high to form a protective film as described above. Irradiation caused significant invasion of the coating film, indicating that the active oxygen produced by the photocatalyst invaded the polymer resin of the coating film.

ペルオキソチタン酸の添加量が少なすぎる比較例7は、光触媒が高分子樹脂を侵襲するのを防ぐことができず、耐蝕性試験が不合格であった。また、アナターゼ型酸化チタン微粉末の添加量が少なすぎる比較例8は、紫外線の遮蔽効果および光活性が不合格であった。また、成膜性が劣り、密着性がやや弱い傾向があった。   In Comparative Example 7 in which the amount of peroxotitanic acid added was too small, the photocatalyst could not be prevented from invading the polymer resin, and the corrosion resistance test was rejected. Further, Comparative Example 8 in which the addition amount of the anatase-type titanium oxide fine powder was too small failed in the ultraviolet shielding effect and photoactivity. Further, the film formability was inferior, and the adhesion was slightly weak.

表3は、赤外線遮蔽無機化合物の微粒子を添加する限界を求めたものである。赤外線遮蔽無機化合物の微粒子の添加量が少なすぎる比較例9は赤外線の遮蔽効果が不合格であり、多すぎる比較例は成膜性が劣り、密着性が不合格であった。
表3、5の結果から、赤外線遮蔽無機化合物の微粒子の添加量は、4乃至9質量部であると判断された。

Table 3 shows the limit of adding fine particles of the infrared shielding inorganic compound. Comparative Example 9 in which the addition amount of the fine particles of the infrared shielding inorganic compound was too small failed in the infrared shielding effect, and in the comparative example too much, the film forming property was inferior and the adhesion was unsatisfactory.
From the results of Tables 3 and 5, it was determined that the addition amount of the fine particles of the infrared shielding inorganic compound was 4 to 9 parts by mass.

Claims (9)

透明ガラス用塗料の全質量を100質量部とした場合に、
アクリルポリオール樹脂15乃至30質量部および脂肪族ポリイソシアネート1乃至6質量部の反応生成物と、赤外線遮蔽無機化合物の微粒子を4乃至9質量部、アナターゼ型酸化チタンの微粒子を0.1乃至2質量部、およびペルオキソチタン酸を酸化チタンに換算して0.1乃至2質量部を含む固体成分を、
沸点が140℃以上200℃以下の両親媒性溶剤である第1溶剤35乃至55質量部と、第1溶媒と同じか又は異なる第2溶剤1乃至3質量部と、水15乃至30質量部と、を含み、前記両親媒性溶剤の質量と水の質量との合計を100質量%としたときの溶媒の含水率が20乃至50質量%である溶媒に均一に分散させたことを特徴とする紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料。
When the total mass of the transparent glass paint is 100 parts by mass,
Reaction product of acrylic polyol resin 15 to 30 parts by mass and aliphatic polyisocyanate 1 to 6 parts by mass, fine particles of infrared shielding inorganic compound 4 to 9 parts by mass, and anatase titanium oxide fine particles 0.1 to 2 parts by mass And a solid component containing 0.1 to 2 parts by mass of peroxotitanic acid converted to titanium oxide,
35 to 55 parts by mass of a first solvent which is an amphiphilic solvent having a boiling point of 140 ° C. or more and 200 ° C. or less, 1 to 3 parts by mass of a second solvent which is the same as or different from the first solvent, and 15 to 30 parts by mass of water , And is uniformly dispersed in a solvent having a water content of 20 to 50% by mass when the total of the mass of the amphiphilic solvent and the mass of water is 100% by mass. A paint for transparent glass that shields ultraviolet rays and infrared rays and has a photocatalytic action.
前記両親媒性溶剤は、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、又はジエチレングリコールジエチルエーテルから選ばれる1以上であることを特徴とする請求項1に記載の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料。   The amphiphilic solvent is selected from ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol diacetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, or diethylene glycol diethyl ether The transparent glass paint having a photocatalytic action by shielding ultraviolet rays and infrared rays according to claim 1. 前記赤外線遮蔽無機化合物は、酸化アンチモン、酸化錫、酸化インジューム、酸化ガリウム、および酸化亜鉛から選ばれる1以上であることを特徴とする請求項1または2に記載の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料。   The photocatalyst that blocks ultraviolet rays and infrared rays according to claim 1 or 2, wherein the infrared shielding inorganic compound is at least one selected from antimony oxide, tin oxide, indium oxide, gallium oxide, and zinc oxide. Transparent glass paint with action. 前記アクリルポリオール樹脂の質量と前記脂肪族ポリイソシアネートの質量との比が、20:1乃至20:3の範囲であることを特徴とする請求項1乃至3の何れか1項に記載の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料。   4. The ultraviolet ray according to claim 1, wherein the ratio of the mass of the acrylic polyol resin to the mass of the aliphatic polyisocyanate is in a range of 20: 1 to 20: 3. 5. Transparent glass paint that shields infrared rays and has photocatalytic activity. 透明ガラス用塗料の製造方法であって、前記透明ガラス用塗料の全質量を100質量部とした場合に、
アクリルポリオール樹脂15乃至30質量部を沸点が140℃以上200℃以下である両親媒性溶剤35乃至55質量部に溶解したポリオール溶液と、脂肪族ポリイソシアネート1乃至6質量部と第2溶剤1乃至3質量部とに溶解した脂肪族ポリイソシアネート溶液を反応させてアクリルウレタン樹脂溶液を製造する樹脂溶液製造段階と、
酸化チタンに換算したペルオキソチタン酸の濃度が0.1乃至10質量%のペルオキソチタン酸水溶液を10乃至20質量部と、酸化チタンの濃度が0.1乃至10質量%のアナターゼ型酸化チタン微粒子の水分散液を10乃至20質量部と、赤外線遮蔽無機化合物の微粒子を4乃至9質量部と、を混合して機能性無機物液を製造する機能性無機物液製造段階と、
前記樹脂溶液と前記機能性無機物液とを、前記樹脂溶液に含まれる前記両親媒性溶剤の質量と、前記機能性無機物液に含まれる水の質量との合計を100質量%としたときの溶媒の含水率が20乃至50質量%となるように混合して均一に分散させる塗料製造段階と、
を有することを特徴とする紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料の製造方法。
A method for producing a coating material for transparent glass, wherein the total mass of the coating material for transparent glass is 100 parts by mass,
A polyol solution prepared by dissolving 15 to 30 parts by mass of an acrylic polyol resin in 35 to 55 parts by mass of an amphiphilic solvent having a boiling point of 140 ° C. or higher and 200 ° C. or lower; 1 to 6 parts by mass of an aliphatic polyisocyanate; A resin solution production step of producing an acrylic urethane resin solution by reacting an aliphatic polyisocyanate solution dissolved in 3 parts by mass;
10 to 20 parts by mass of a peroxotitanic acid aqueous solution having a peroxotitanic acid concentration of 0.1 to 10% by mass in terms of titanium oxide, and anatase-type titanium oxide fine particles having a titanium oxide concentration of 0.1 to 10% by mass A functional inorganic material liquid production stage in which 10 to 20 parts by mass of an aqueous dispersion and 4 to 9 parts by mass of fine particles of an infrared shielding inorganic compound are mixed to produce a functional inorganic liquid.
Solvent when the resin solution and the functional inorganic liquid are 100% by mass of the total of the mass of the amphiphilic solvent contained in the resin solution and the mass of water contained in the functional inorganic liquid. A coating production stage in which the water content is mixed and uniformly dispersed so that the water content is 20 to 50% by mass;
A method for producing a coating material for transparent glass having a photocatalytic action by shielding ultraviolet rays and infrared rays.
前記両親媒性溶剤は、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、又はジエチレングリコールジエチルエーテルから選ばれる1以上であることを特徴とする請求項5に記載の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料の製造方法。   The amphiphilic solvent is selected from ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol diacetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, or diethylene glycol diethyl ether The method for producing a coating material for transparent glass having a photocatalytic action by shielding ultraviolet rays and infrared rays according to claim 5. 前記赤外線遮蔽無機化合物が、酸化アンチモン、酸化錫、酸化インジューム、酸化ガリウム、および酸化亜鉛から選ばれる1以上のであることを特徴とする請求項5に記載の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料の製造方法。   6. The ultraviolet ray and infrared ray shielding and photocatalytic activity according to claim 5, wherein the infrared ray shielding inorganic compound is at least one selected from antimony oxide, tin oxide, indium oxide, gallium oxide, and zinc oxide. The manufacturing method of the coating material for transparent glass which has. 前記アクリルポリオール樹脂の質量と前記脂肪族ポリイソシアネートの質量の比が20:1乃至20:3の範囲であることを特徴とする請求項5に記載の紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗料の製造方法。   6. The transparent material having a photocatalytic action by shielding ultraviolet rays and infrared rays according to claim 5, wherein the ratio of the mass of the acrylic polyol resin to the mass of the aliphatic polyisocyanate is in the range of 20: 1 to 20: 3. A method for producing a paint for glass. 請求項1乃至4の何れか1項に記載の透明ガラス用塗料を、ガラス基体の表面に塗布し乾燥することを特徴とする紫外線および赤外線を遮蔽し光触媒作用を有する透明ガラス用塗膜の製造方法。   A transparent glass coating film having a photocatalytic action that blocks ultraviolet rays and infrared rays, wherein the transparent glass coating material according to any one of claims 1 to 4 is applied to a surface of a glass substrate and dried. Method.
JP2016200232A 2016-10-11 2016-10-11 Transparent glass coating material that shields ultraviolet rays and infrared rays and has photocatalytic action, method for producing the same, and method for producing a coating film using the same Active JP6106796B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016200232A JP6106796B1 (en) 2016-10-11 2016-10-11 Transparent glass coating material that shields ultraviolet rays and infrared rays and has photocatalytic action, method for producing the same, and method for producing a coating film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016200232A JP6106796B1 (en) 2016-10-11 2016-10-11 Transparent glass coating material that shields ultraviolet rays and infrared rays and has photocatalytic action, method for producing the same, and method for producing a coating film using the same

Publications (2)

Publication Number Publication Date
JP6106796B1 true JP6106796B1 (en) 2017-04-05
JP2018062546A JP2018062546A (en) 2018-04-19

Family

ID=58666334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016200232A Active JP6106796B1 (en) 2016-10-11 2016-10-11 Transparent glass coating material that shields ultraviolet rays and infrared rays and has photocatalytic action, method for producing the same, and method for producing a coating film using the same

Country Status (1)

Country Link
JP (1) JP6106796B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063712A (en) * 2017-09-29 2019-04-25 信越化学工業株式会社 Photocatalyst/alloy fine-particle dispersion having antibacterial/antifungal properties, method of preparation thereof, and member having photocatalyst/alloy thin film on surface
CN111138630A (en) * 2020-01-08 2020-05-12 万华化学集团股份有限公司 Composition for preparing polyurethane wood-like material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234641A1 (en) 2022-02-25 2023-08-30 Basf Se Compositions, comprising modified titanium dioxide nanoparticles and uses thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323661A (en) * 2003-04-24 2004-11-18 Toyo Riken Kk Light-shielding coating agent and coating film
JP2006514143A (en) * 2003-03-17 2006-04-27 ヘ−ウク・リー Heat ray shielding composition, heat ray shielding film using the same, and production method thereof
JP2007118584A (en) * 2005-09-28 2007-05-17 Dainippon Printing Co Ltd Decorative sheet
JP2010254887A (en) * 2009-04-28 2010-11-11 Shin-Etsu Chemical Co Ltd Photocatalyst-coating liquid that gives thin photocatalyst film excellent in optical responsivity, and the photocatalyst thin film
JP2011111516A (en) * 2009-11-26 2011-06-09 Jts Kk Emulsion coating and coating film having ultraviolet cut function
JP2013087228A (en) * 2011-10-19 2013-05-13 Dainichiseika Color & Chem Mfg Co Ltd Ultraviolet/near-infrared ray shielding aqueous coating material, heat-shielding treatment glass on which coating film formed of the coating material is formed, and method for subjecting window glass to heat-shielding treatment using the coating material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514143A (en) * 2003-03-17 2006-04-27 ヘ−ウク・リー Heat ray shielding composition, heat ray shielding film using the same, and production method thereof
JP2004323661A (en) * 2003-04-24 2004-11-18 Toyo Riken Kk Light-shielding coating agent and coating film
JP2007118584A (en) * 2005-09-28 2007-05-17 Dainippon Printing Co Ltd Decorative sheet
JP2010254887A (en) * 2009-04-28 2010-11-11 Shin-Etsu Chemical Co Ltd Photocatalyst-coating liquid that gives thin photocatalyst film excellent in optical responsivity, and the photocatalyst thin film
JP2011111516A (en) * 2009-11-26 2011-06-09 Jts Kk Emulsion coating and coating film having ultraviolet cut function
JP2013087228A (en) * 2011-10-19 2013-05-13 Dainichiseika Color & Chem Mfg Co Ltd Ultraviolet/near-infrared ray shielding aqueous coating material, heat-shielding treatment glass on which coating film formed of the coating material is formed, and method for subjecting window glass to heat-shielding treatment using the coating material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063712A (en) * 2017-09-29 2019-04-25 信越化学工業株式会社 Photocatalyst/alloy fine-particle dispersion having antibacterial/antifungal properties, method of preparation thereof, and member having photocatalyst/alloy thin film on surface
CN111138630A (en) * 2020-01-08 2020-05-12 万华化学集团股份有限公司 Composition for preparing polyurethane wood-like material

Also Published As

Publication number Publication date
JP2018062546A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
CA2667024C (en) Photocatalytic titanium oxide sol, and coating composition and member using the same
DE69730006T2 (en) PHOTOCATALYTIC COATING COMPOSITION AND PHOTOCATALYST CONTAINING SYSTEM
JP5906098B2 (en) Near-infrared reflector and composition containing the same
CN102803413B (en) The near infrared shielding coating agent that can solidify at normal temperatures, the near infrared screened film using this coating agent and preparation method thereof
JP6106796B1 (en) Transparent glass coating material that shields ultraviolet rays and infrared rays and has photocatalytic action, method for producing the same, and method for producing a coating film using the same
EP2726563B1 (en) Liquid tint materials and films made therefrom
CN103436111A (en) Preparation method of water-based ultraviolet barrier coating based on ZnO quantum dots
CN101903102A (en) Photocatalytic film, method for production of photocatalytic film, article, and hydrophilization method
DE19802392A1 (en) Coating liquid give hydrophilic film, that inhibits soiling
JP6198921B1 (en) Photocatalyst composite coating film that transmits visible light and shields ultraviolet rays and infrared rays, and method for producing the same
JP2019098297A (en) Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product
WO2013083439A1 (en) Use of a zinc-oxide-containing frit as a uv protection means and pvc plastic having such a frit
JPH1192689A (en) Inorganic coating
JP2005318999A (en) Antibacterial deodorant and its manufacturing method
JP3914609B2 (en) Silicate-containing sheet
WO2014052074A2 (en) Coatable composition, photocatalytic articles, and methods of making the same
JP7023689B2 (en) Photocatalyst coating body and photocatalyst coating composition
JP6714530B2 (en) Photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP4094331B2 (en) Method for producing hydrophilic coating composition
JP4964331B2 (en) Method for producing antibacterial deodorant
TW202214787A (en) Coating composition
JP6646603B2 (en) Multilayer coating, coating agent set, and painted body
JP3866076B2 (en) Cerium phosphate-titanium phosphate UV blocking agent and method for producing the same
JP4553439B2 (en) Application method
JP3970375B2 (en) Binder for metal oxide sol

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6106796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250